八年级数学下册第十六章二次根式知识点归纳及题型总结新版新人教版

合集下载

第16章二次根式复习与小结(课件)八年级数学下册(人教版)

第16章二次根式复习与小结(课件)八年级数学下册(人教版)

知识梳理
人教版数学八年级下册
6.二次根式的除法法则:
两个二次根式相除, 根指数 不变,被开方数 相除.
需要满足什 么条件呢?
a
a
(a≥0,b>0)
bb
二次根式的除法与乘法中b 的取值范围不同,为什么?
知识梳理
人教版数学八年级下册
7.二次根式除法法则的变形:
a a (a 0,b 0). bb 8.最简二次根式: (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式.
3.二次根式的运算,可以类比整式的运算进行,在进行运算时, 能用公式的尽量用公式.
课堂检测
人教版数学八年级下册
1.二次根式
中,字母a的取值范围是 ( D )
A. a>
B. a<
C. a≥
D. a≤
2.使
有意义的x的取值范围是 ( B )
A.x≥3 B.x≥3且x≠4 C.x≤3 D.x<3
课堂检测
步骤: “一化、二找、三合并”.
知识梳理
人教版数学八年级下册
11.二次根式的混合运算:
1.二次根式混合运算顺序与实数中的运算顺序一样,先乘方, 再乘除,最后算加减,有括号的先算括号里的(或者先去括号).
2.对于二次根式混合运算,实数中的运算律(分配律、结合律、 交换律)运算法则及所有的乘法公式和分式的运算法则仍然适用.
人教版数学八年级下册
人教版数学八年级下册
第16章二次根式复习与小结
知识梳理
人教版数学八年级下册
1.二次根式的概念:
一般地,我们把形如 a(a≥0)的式子叫做二次根式.
2.如何确定二次根式中字母的取值范围? ①被开方数不小于零; ②分母中有字母时,要保证分母不为零.

人教版初中数学八年级下册第十六章二次根式知识清单(原卷版+解析)

人教版初中数学八年级下册第十六章二次根式知识清单(原卷版+解析)

第十六章二次根式知识清单一、二次根式的概念一般地,我们把形如___________的式子叫做二次根式,“____”称为二次根号. 【深度理解】1.________________________________________________________2.________________________________________________________3.________________________________________________________4.________________________________________________________5.________________________________________________________二、二次根式的有意义的条件1.________2....有意义的条件:_________3.有意义的条件:________4.二次根式与分式的和如B CB有意义的条件:_______________三、二次根式的性质性质一:一般地,__________________即一个非负数的算术平方根的平方等于_________.注意:___________________________________________________________. 性质二:任意一个数的平方的算术平方根等于它本身的_________.四、代数式及其写法思考:到现在为止,初中阶段所学的代数式主要有哪几类?【归纳】代数式书写格式注意事项:1.________________________________________________________________2.________________________________________________________________3.________________________________________________________________4.________________________________________________________________5.________________________________________________________________六、二次根式的乘法1.二次根式的乘法法则:__________________________即:二次根式相乘,________不变,________相乘.语言表述:____________________________________________________. 2.积的算术平方根的性质:__________________________语言表述:____________________________________________________.七、二次根式的除法1.二次根式的除法法则: ______=ba (a ≥0,b >0) 即:二次根式相除,________不变,________相除.语言表述:___________________________________________.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得_________(0,0,0).a b n=≥>≠ 2.二次根式的商的算术平方根的性质:_____(0,0).a b =≥> 语言表述:_______________________________________________.八、最简二次根式(1) _________________________;(2) _________________________________________.我们把满足上述两个条件的二次根式,叫做___________________.在二次根式的运算中,一般要把最后结果化为__________,并且______中不含二次根式.九、二次根式的加减1.化成_______________后,被开方数________的几个二次根式,叫做___________________.2.二次根式加减时,可以先将二次根式化成_______________,再将被开方数_____的二次根式(________________)进行合并.加减法的运算步骤:(1)______________________________________;(2)______________________________________;(3)______________________________________.简单说成“__________________________”十、二次根式的混合运算二次根式的混合运算的顺序:_____________________________________________________ ___________________________________________________________________.第十六章二次根式知识清单一、二次根式的概念一般地,我们把形如√a (a≥0)的式子叫做二次根式,“√ ”称为二次根号. 【深度理解】1.表示a的算术平方根;2.a可以是数,也可以是式;3.形式上含有二次根号√ ;4.a≥0,√a≥0 (双重非负性);5.既可表示开方运算,也可表示运算的结果.二、二次根式的有意义的条件1.单个二次根式如√A有意义的条件:A≥02.多个二次根式相加如√A +√B+...+√N 有意义的条件:00...0A B N ⎧⎪⎪⎨⎪⎪⎩≥;≥;≥;3.二次根式作为分式的分母如√A 或√1A 有意义的条件:A >0 4.二次根式与分式的和如√AB 或√A +CB 有意义的条件:A ≥0且B ≠0三、二次根式的性质 性质一:一般地,(√a)2=a (a ≥0)即一个非负数的算术平方根的平方等于它本身.注意:不要忽略a ≥0这一限制条件.这是使二次根式√a 有意义的前提条件. 性质二:一般地,根据算术平方根的意义, √a 2=a (a ≥0),√a 2=−a (a <0) 即任意一个数的平方的算术平方根等于它本身的绝对值. √a 2=| a |四、代数式及其写法回顾我们学过的式子,如5,a ,a+b ,-ab ,st ,-x 3,√3,√a (a ≥0),它们都是用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.代数式书写格式注意事项:1.表示数的字母相乘时,可用“· ”代替乘号或省略不写.如:a ×b 通常写作a ·b 或ab.2.数和字母相乘时,数字应写在字母前面.如:a ×2通常写作2a.3.带分数与字母相乘时,应把带分数化成假分数.如:323×a 通常写作113a.4.含有字母的除式中用分数线代替除号.如:3÷y 通常写作: 3y .5.最后一步是加、减运算时,如果有单位,要用括号把代数式括起来.如:温度由2℃上升t ℃后是(2+t)℃.六、二次根式的乘法1.二次根式的乘法法则:√a •√b =√ab (a ≥0,b ≥0)即:二次根式相乘,________不变,________相乘.语言表述:算术平方根的积等于各个被开方数积的算术平方根.2.积的算术平方根的性质:√ab =√a ⋅√b (a≥0,b ≥0)语言表述:积的算术平方根,等于积中各因式的算术平方根的积.应用范围:我们可以运用它来进行二次根式的解题和化简.七、二次根式的除法1.二次根式的除法法则:√a √b =√ab (a ≥0,b >0)即:二次根式相除,________不变,________相除.语言表述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得(0,0,0).a b n=≥>≠2.二次根式的商的算术平方根的性质:(0,0).a b=≥>语言表述:商的算术平方根,等于积中各因式的算术平方根的商.我们可以运用它来进行二次根式的解题和化简.八、最简二次根式(1) 被开方数不含分母;(2) 被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.九、二次根式的加减1.同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式.2.二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式(同类二次根式)进行合并.加减法的运算步骤:(1)化—将非最简二次根式的二次根式化简;(2)找—找出被开方数相同的二次根式;(3)并—把被开方数相同的二次根式合并.“一化简二判断三合并”十、二次根式的混合运算1.二次根式的混合运算:二次根式的混合运算的顺序:先算乘方,再算乘除,最后算加减,有括号先算括号里面的.2.二次根式与乘法公式的综合运用:二次根式中单乘多、多乘多、多除单与整式乘法非常相似,均可以运用整式乘法法则与整式乘法公式进行计算.运用的乘法公式主要是:平方差公式与完全平方公式.。

人教版八年级数学下册精品教学课件 第十六章 二次根式 小结与复习

人教版八年级数学下册精品教学课件 第十六章 二次根式 小结与复习

a2 a
当 a 2 时,
原式 2 2 1 2.
2
11. 已知a是实数,求 a 22 a 12 的值.
解: a 22 a 12 a 2 a 1 , 分三种情况讨论: 当a≤-2时,原式=(-a-2)-[-(a-1)]=-a-2+a-1=-3; 当-2<a≤1时,原式=(a+2)+(a-1)= 2a+1; 当a>1时,原式=(a+2)-(a-1)=3.
( A)
A.3个
B.4个
C.5个
D.6个
2.下列运算正确的是
( C)
A. 2 3 5
B.2 2 3 2 6 2
C. 12 3 2
D.3 2 2 3
3.若实数a,b满足| a 2 |
b
4
0,则
a2 b
1.
4.若1<a<3,化简 a2 2a 1 a2 6a 9 的结
果是 2 .
12. 已知 x 2 1, y 2 1 ,求 x y 的值.
yx
解:∵ x y 2 1 2 1 2 2,
xy 2 1 2 1 1.
∴ x y x2 y2 x y 2 2xy
y x xy
xy
2
2 2 2
6.
1
13.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以
52)cm,则三角形的面积为 (3 6)cm2 .
6.求下列二次根式中字母的取值范围:
(1) x 4 4 x;
(2) x 5
解:(1)
由题意得
x 4≥0,
4-x≥0,
∴x=4.
(2)
由题意得
x 5 3 x
0, 0,

人教版八年级数学下册第16章二次根式重难点详解

人教版八年级数学下册第16章二次根式重难点详解

点拨:观察发现已知条件 x, y中的 5 与2
5 2 是一对相反数,而所求式子是这
两个数的平方和与这两个数的乘积的差,故可由已知转变条件,运用完全平方式
简化求值.
栏目名:错题集
解二次根式常见错误分类解析
一、审题不清导致错误 例 1 16 的平方根是______ .
错解: 16 的平方根是 4.
诊断:错把 16 的平方根当成 16 的平方根。

栏目名:期末练兵
综合练习题
一、选择题(每小题 3 分,共 30 分)
1.下列各式正确的是(

A. 4 2; B. (6)2 6; C. 7 5 7 5; .
D. 52 5
2.下列各式中属于最简二次根式的是( )
A. 27
B. 5
C. 12
3.在下列各组根式中,是同类二次根式的是(
剖析:二次根式 a 中 a 的取值范围为 a 0 ,从而 a 0 。
解:∵ x3 2x2 0; ∴ x x 2 0
而 x 2 0,x 0 即 x 0. 又 x 2 0, x 2
∴ x 的取值范围是 2 x 0 。
例 2 数 a、 b 在 数 轴 上 的 位 置 如 图 所
正解: 5 2 3 5 2 3 15 2 3
3
3
十、乱用运算律导致错误
例 11 计算 6 3 2 .
错解:原式= 6 ÷ 3 + 6 ÷ 2 = 2 3 。
诊断:除法没有分配律,本题应分母有理化。
正解: 6 3 2 =
6
6 3 2
诊断:当一个式子与一个多项式相乘时,多项式应注意添括号.

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

初二数学下册(人教版)第十六章二次根式16.1知识点总结含同步练习及答案

初二数学下册(人教版)第十六章二次根式16.1知识点总结含同步练习及答案

− − 1 2
)
C.√6 D.√8
B.√4
答案: C 解析: A 中被开方数含有分母,不是最简二次根式;B 中被开方数含有小数,不是最简二次根式;D 中
被开方数含有因数 25,能开方,所以不是最简二次根式,C 是最简二次根式.
− − − − 2. 若使二次根式 √− x − 2 在实数范围内有意义,则 x 的取值范围是 (
A.x ⩾ 2
答案: A
)
D.x ⩽ 2
B.x > 2
C.x < 2
− − − − 3. 二次根式 √− x − 1 中字母 x 的取值范围是 (
A.x < 1
答案: D
)
C.x > 1 D.x ⩾ 1
B.x ⩽ 1
4. 已知实数 a 在数轴上的位置如图所示,则化简 |1 − a| + √a2 的结果为 (
− −
⎧ a, ⎩
最简二次根式与同类二次根式 一个二次根式满足被开方数不含有分母,且不含有能开得尽方的因数或因式,叫做最简二次根 式(simplest quadratic radical). 几个二次根式化为最简二次根式后,如果它们被开方数相同,就把这几个二次根式叫做同类二次 根式.
−a,
a > 0, a 次根式满足被开方数不含有分母,且不含有能开得尽方的因数或因式.

下列根式中,与 √2 是同类二次根式的是( ) − A. √6 B. √8 C. √9 D. √− 12 解:B.
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 下列二次根式中,最简二次根式是 ( A.√
− −
).
A.1
答案: A
B.−1

八年级数学下册第十六章二次根式小结与复习课件新人教版

八年级数学下册第十六章二次根式小结与复习课件新人教版
第十六章 二次根式
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
要点梳理
1.二次根式的概念
一般地,形如___a_(a≥0)的式子叫做二次根式.
对于二次根式的理解: ①带有二次根号;②被开方数是非负数,即a≥0. [ 易错点] 二次根式中,被开方数一定是非负数,否则就没 有意义.
2.二次根式的性质
? ?a 2 ? a ?a ? 0?;
例4 计算: 24 ? 1 ? 4 ? 1 ? (1? 2) 0.
3
8
【解析】:先算乘方,再算乘除,最后算加减.
解:原式 ? 24? 1 ? 4? 2 ? 1
3
4
?2 2? 2
? 2.
针对训练
5.计算:3( 2 ? 3) ? 24 ? | 6 ? 3 |? -6 .
例5
先化简,再求值:
x2 x?
注意平方差公式与完全平方公式的运用!
考点讲练
考点一 二次根式有意义的条件及性质
例1 使代数式
x≥ 且12 x. ≠3
2 x有?意1 义的x的取值范围是
3? x
【解析】分别求出使分式、二次根式有意义的x的取值范围,
再求出它们解集的公共部分.根据题意,有3-x≠0,2x-1≥0,
解得x≥
1
且2 x≠3.
【解析】根据题意及二次根式与完全平方式的非 负性可知 x ? 1 和 (3 x ? y ? 1) 2 均为0.
解:∵ x ? 1 ? (3 x ? y ? 1) 2 ? 0, ∴x-1=0,3x+y-1=0,解得x=1,y=-2, 则 5x ? y2 ? 5? 1? (? 2)2 ? 3.
方法总结 初中阶段主要涉及三种非负数: a ≥0,|a|≥0,

初二数学下册(人教版)第十六章二次根式16.4知识点总结含同步练习及答案

初二数学下册(人教版)第十六章二次根式16.4知识点总结含同步练习及答案
1.代数式求值
描述: 代数式求值常见方法
化简代入法 把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数 式中去求值的一种方法.通过整体代入,实现降次、归零、约分,快速求得其值. 赋值求值法 代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法.这是一种 开放型题目,答案不唯一,在赋值时,要注意取值范围. 倒数法 将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法. 设参数法 添加一个辅助未知数. 拆项法 根据已知将所求的代数式中的数字或某一项拆开,得到一些有规律的式子. 主元代换法 把条件等式中某一个未知数(元)视为常数,解出其余未知数(主元),再代入求值的一种方 法. 配方法 通过配方,把已知条件变形成几个非负数的和的形式,利用“若几个非负数的和为零,则每个非 负数都应为零”来确定字母的值,再代入求值. 利用根与系数的关系 如果代数式可以看作某两个“字母”的轮换对称式,而这两个“字母”又可以看作某个一元二次
2ab 7ab
=
−6ab −ab
=6.
(赋值法)先化简
3x + 3 x2 − 1

x
2 −
1
,然后选择一个你喜欢的
x
的值代入求值.
解:
原式 =
(x
3(x + 1) + 1)(x −
1)

2 x−1
=
3 x−1

2 x−1
只要选=择xx−1≠1
, ±1
的数就行,如当
x
=
2
时,原式
=
1.
2

2020年春季人教版 八年级下数学第16章二次根式(知识点总结+例题+练习+答案)(含答案)

2020年春季人教版 八年级下数学第16章二次根式(知识点总结+例题+练习+答案)(含答案)

第16章二次根式一、二次根式的概念核心提要1.二次根式的定义:形如________(其中a≥0)的式子叫做二次根式.2.与二次根式相关的概念:(1)若x2=a,则________是________的平方根;(2)a(a≥0)表示________的算术平方根.知识点1:平方根与算术平方根1.填空:(1)9的平方根是________;(2)25的算术平方根是________;(3)0的算术平方根是________;(4)a(a≥0)的算术平方根是________.知识点2:二次根式的定义2.下列式子中是二次根式的是()A.7B.3 7C.x D.-7知识点3:二次根式有意义的条件3.式子1x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≤1 C.x>1D.x≥1 4.当x是怎样的实数时,下列各式在实数范围内有意义?(1)x+1;(2)2x;变式1填空:(1)5的平方根是________;(2)11的算术平方根是________;(3)-3________平方根是(填“有”或“没有”);(4)a(a≥0)的平方根是________.变式2下列式子:①12;②-3;③-x2+1;④327;⑤(-3)2是二次根式的有()A.①③B.①③⑤C.①②③D.①②③⑤变式3式子x-1 x-2在实数范围内有意义,则x的取值范围是()A.x≥1B.x≥1且x≠2 C.x>1D.x≤1且x≠2变式4当x是怎样的实数时,下列各式在实数范围内有意义?(1)3-x;(2)-4x;基础巩固1.下列各式①12;②2x;③x2+y2;④-5;⑤35,其中二次根式的个数有()A.1个B.2个C.3个D.4个2.下列式子在实数范围内有意义,则x的取值范围是x≥3的是()A.2x-3B.1x-3C.x-3D.x-3 3.若使二次根式2x-6有意义,则x的取值范围是________ 4.若|3-a|+2+b=0,则a+b的值是________.5.若式子4-x-x-3有意义,求x的取值范围.6.若式子11-3a有意义,求a的取值范围.能力提升7.下列式子没有意义的是()A.-3B.0C.2D.(-1)28.若代数式11-x在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥1C.x≠1D.x≥0 且x≠1 9.若a为实数,则下列各式中一定有意义的是()A.a+3B.a2+3C.a2-3D.a a2+310.一个面积为18 cm2的矩形,它的长与宽之比为3∶2,求它的长与宽各是多少?培优训练11.若y=x-3+3-x3,求(x+y)y的值.二、二次根式的性质核心提要二次根式的性质:1.(a)2=________(a≥0).2.a2=________.知识点1:(a)2=a(a≥0)1.计算:(1)(3)2=________;(2)(7)2=________;(3)(4)2=________;(4)(0.3)2=________;(5)(13)2=________;(6)(23)2=________.知识点2:a2=a(a≥0)(一般地a2=|a|)2.计算:(1)42=________;(2)(-3)2=________;(3)(13)2=________;(4)(-0.2)2=________.知识点3:双非负性a≥0(a≥0)3.已知实数x、y满足(5-x)2+y+6=0,求代数式(x+y)2 001的值.变式1计算:(1)(5)2=________;(2)(8)2=________;(3)(34)2=________;(4)(0.6)2=________;(5)(24)2=________;(6)(-32)2=________.变式2计算:(1)112=________;(2)(-7)2=________;(3)(-1.2)2=________;(4)(-13)2=________.变式3已知1+a+||b-7=0,求a+b的值.基础巩固1.计算(-4)2的结果是()A.-4B.4C.±4D.162.二次根式(3-2)2的值等于()A.3-2B.2-3C.±(3-2)D.2+3 3.当x<5时, (x-5)2的值是()A.x-5B.5-x C.5+x D.-5-x 4.计算:(1)(9)2=________;(2)-(5)2=________;(3)32=________;(4)-(-34)2=________;5.若a、b、c分别是三角形的三边长,化简: (a+b-c)2+ (b-c-a)2+ (b+c-a)26.若(m+1)2+n-2=0,求代数式m+n的值.能力提升7.计算:(1-2)(1+2)=________.8.若(x-1)2=1-x,则x的取值范围是________.9.在实数范围内分解因式:x2-2=_____________.10.实数a在数轴上的位置如图所示,化简:(a-1)2+a.培优训练11.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.三、二次根式的乘法核心提要二次根式的乘法公式a·b=________(a≥0,b≥0).知识点:a×b=ab(a≥0,b≥0)1.计算:(1)5×6;(2)12×8.2.计算:(1)32×23;(2)212×(-3);(3)a3·a;(4)x3·2 x.3.计算:ab·bc·cd·da.变式1计算:(1)3×5; (2)13×27.变式2 计算: (1)23×276; (2)2a7×(-14a );(3)(5+3)(5-3); (4)()2-32. 变式3 计算:115×23×(-1210).巩固练习1.计算3×2的结果( ). A .5 B .6 C .23D .322.一个矩形的长和宽分别是36、23,则它的面积是( ) A .203B .182C.172D.1623.化简x-1x,正确的是()A.-x B.xC.--x D.-x4.已知7·a的积是一个整数,则正整数a的最小值是()A.7B.2C.19D.55.若一个长方体的长为3 6 cm,宽为2 3 cm,高为 2 cm,则它的体积为________ cm3.6.计算:(1)2a·8a(a≥0)=________;(2)43×(-12)=________.(3)54×64125=________.(4)-8x3×63x=________.7.如图,在△ABC中,AD△BC于点D,BC=42,AD=2,求△ABC的面积.8.把代数式(a-1)11-a中的a-1移到根号内,则这个代数式等于()A.-1-a B.a-1C.1-a D.-a-1 9.化简:(1)0.4×(- 3.6)=________;(2)(3+22)99(3-22)100=________.10.计算:ab·5ab·(-ba)·(-1ab).培优训练11.已知x=3-2,求代数式(x+1)2+2(x+1)+1的值.四、积的算术平方根核心提要积的算术平方根ab=________(a≥0,b≥0).(此公式用于化简二次根式)知识点:ab=a·b(a≥0,b≥0)1.化简:(1)4=________;25=________;81=________;(2)9×16=________;32×72=________;(3)4×5=________;16×3=________;(4)8=________;24=________;32=________;4a=________.2.化简:(1) 1 000=________;(2)9a3=________;(3)5×15=________;(4)4a2b=________;(5)3a·6a=________;(6)2y 3·8y=________. 3.设正方形的边长为a ,面积为S . (1)如果a =2 5 cm ,则S =________cm 2; (2)如果S =32 cm 2,则a =________cm ; (3)如果S =50 cm 2,则a =________cm. 变式1化简:(1)9=________;16=________; 64=________;(2) 32×52=________;36×4=________;(3)4×16=________;3×49=________; (4)12=________;18=________; 60=________;36b =________. 变式2化简:(1)25b 3=________; (2)10a ·5a =________; (3)28×(-36)=________; (4)-16a 2b 3c =________; (5)2×23×12=________; (6)133x 2y 3·12x 2y=________.变式3已知非负实数a、b、c满足a2+b2=c2.(1)如果a=3,b=5,则c=________;(2)如果c=12,b=10,则a=________;(3)如果a=32,b=3,则c=________.基础巩固-32×3的计算结果是()1.二次根式()A.33B.-33C.3D.92.若a<0,b>0,则-a3b化简得()A.-a-ab B.-a abC.a-ab D.a ab3.化简:(1)24=________;(2)28=________;(3)45=________;(4)72=________;(5)25a2(a>0)=________;(6)80ab3(a>0,b>0)=________.4.已知x>0,y>0,则xy2·x2y=________.5.化简:(a2-b2)(a4-b4)(b<a<0)得_______________.6.计算:(1)32×224;(2)214x·4xy.7.如图,在Rt△ABC中,△C=90°,BC=12,AC=18.求△ABC 的面积.能力提升8.已知12n是正整数,则满足条件的最小正整数n为()A.2B.3C.4D.59.计算:(1)62+82=________;(2)132-52=________;(3)4-2=________.10.先化简,再求值:x+2x-1÷(x+1-3x-1),其中x=3+2.培优训练11.先化简,再求值:(a2-b2a2-2ab+b2+ab-a)÷b2a2-ab,其中a、b满足1+a+||b-3=0.五、二次根式的除法核心提要1.二次根式的除法法则为:ab=________(a≥0,b>0).2.最简二次根式同时满足下列条件:(1)________________________________________;(2)________________________________________.知识点1:二次根式的除法1.计算:(1)186;(2)8a÷2a.知识点2:化成最简二次根式2.将下列式子化成最简二次根式:(1)3100;(2)11336;(3)13; (4)35.知识点3:二次根式的乘除混合运算 3.计算:34÷112×24. 变式1 计算:(1)455; (2)243.变式2 将下列式子化成最简二次根式:(1)225; (2)112;(3)123; (4)a 1a变式3 计算:20×3515÷(-6).基础巩固1.下列二次根式是最简二次根式的是( ) A .12B .0.2C .2D .202.化简-32×27的结果是( )A .-23B .-23C .-66D .-23.能使等式x x -2=x x -2成立的x 的取值范围是( ) A .x ≠2 B .x ≥0 C .x >2D .x ≥24.若长方形的宽为 2 cm ,面积为2 6 cm 2,则长方形的长为________.5.计算: (1)(-113)÷554;(2)512×34÷52;(3)12÷227×18.能力提升6.如果ab>0,a+b<0,那么下面各式:△ab=ab,△ab·ba=1,△ab÷ab=-b,其中正确的是()A.△△B.△△C.△△D.△△△7.计算:(1)6-33=________;(2)233-1=________.8.先化简,再求值:a2+3aa2+4a+4÷a+3a+2-2a+2,其中a=2-2.培优训练9.小芳在学习了ab=ab后,认为ab=ab也成立,因此她认为一个化简过程:-20-5=-20-5=-5×4-5=-5×4-5=4=2是正确的.△你认为她的化简对吗?如果不对,请写出正确的化简过程;△说明ab=ab成立的条件.六、二次根式的加减法核心提要1.同类二次根式:把几个二次根式化成____________后,如果被开方数(即根号下的数或式)________,则这几个二次根式叫做同类二次根式.2.二次根式加减时,先将二次根式化为_______________,再将______________的二次根式进行合并.知识点:二次根式的加减1.计算:(1)4a-3a=________;(2)5a+6ab-a+2ab=________;(3)32-22=________;(4)5ab-3ab=________.2.计算:(1)35+2-25-32;(2)3-12+18.3.计算:22-23+12.变式1计算:(1)5xy+6xy=________;(2)3x+5xy-4x-xy=________;(3)66-6+26=________;(4)7x-x=________.变式2计算:(1)37-28+7;(2)36-2+24+8.变式3计算:a+a4-2a1a.基础巩固1.计算27-3的结果是()A.24B.26C.3D.232.下列根式中,与18为同类二次根式的是()A.2B.3C.5D.63.如果等腰三角形的底边长为8,腰长为18,则其周长为________.4.计算:(1)3-32+33+2;(2)16b-25b;(3) (48+20)+(12-5);(4)28+1417-700.能力提升5.已知2a -3+5=25,则a 的值是( ) A .2 B .3 C .4D .56.若3的整数部分为x ,小数部分为y ,则3x -y 的值是( ) A .33-3 B .3 C .1D .37.若x =12(a +b ),y =12(a -b ),则x +y 的值为________.8.若对实数a ,b ,c ,d 规定运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则⎪⎪⎪⎪⎪⎪⎪⎪12-38=________.9.计算:(48-418)-(313-20.5).培优训练10.已知x=1+3,求x2-x+1的值.七、二次根式的混合运算核心提要二次根式的混合运算顺序:先算________,再算________,最后算________,有括号先算括号里面的.知识点1:化成最简二次根式1.化简:(1)8=________;(2)32=________;4(5)35=________;(6)2a=________.知识点2:二次根式的混合运算2.计算:(1)3×15=________;(2)363=________;(3)12+3=________;(4)28-63=________.3.计算:13×(212-75).4.若x=2+1,求x2-2x+1的值.变式1化简:(1)27=________;(2)40=________;(3)18a2=________;(4)17=________;168变式2计算:(1)2×98=________;(2)40÷5=________;(3)2+18=________;(4)27-75=________.变式3计算:(248-327)÷ 3.变式4若m=2+3,n=2-3,求mn2+m2n的值.巩固练习1.下列运算错误的是()A.2+3=5B.2×3=6C.8÷2=2D.(-2)2=22.估计32×12+20的运算结果应在( ) A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间3.计算5×153的结果是________.4.一个矩形的长和宽分别为12 cm 和27 cm ,则这个矩形的周长为___________.5.计算:(1)(12+58)×3;(2)(48+36)÷27;(3)3+33;(4)(3+2)2-(3+22)(3-22).能力提升6.计算:(2+1)2 018×(2-1)2 019.7.如图,在Rt△ABC中,△C=90°,CD△AB于D.AC=3+1,BC=3-1,AB=22,求CD的长.8.如图所示,在Rt△ABC中,△B=90°,AB=6厘米,BC=12厘米,点P从点B开始沿BA边以1厘米/秒的速度向A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为24平方厘米?(结果用最简二次根式表示)第十六章二次根式第1课时二次根式的概念【核心提要】1.a2.(1)x a (2)a【典例精讲】1.±3 5 0a2.A 3.C4.(1)x ≥-1 (2)x ≥0【变式训练】1.±511 没有 ±a 2.B 3.B4.(1)x ≤3 (2)x ≤0【基础巩固】1.B 2.D3.x ≥3 4.1 5.3≤x ≤4 6.a <13【能力提升】7.A 8.D 9.B10.长3 3 cm 宽2 3 cm【培优训练】11.1第2课时 二次根式的性质【核心提要】1.a 2.|a |【典例精讲】1.(1)3 (2)7 (3)4 (4)0.3 (5)13(6)12 2.(1)4 (2)3 (3)13(4)0.2 3.-1 【变式训练】1.(1)5 (2)8 (3)34(4)0.6 (5)16 (6)18 2.(1)11 (2)7 (3)1.2 (4)133.6 【基础巩固】1.B 2.B 3.B4.(1)9 (2)-5 (3)3 (4)-345.a +b +c 6.1【能力提升】7.-18.x ≤1 9.(x +2)(x -2) 10.1【培优训练】11.7+42第3课时 二次根式的乘法【核心提要】ab【典例精讲】1.(1)30 (2)2 2.(1)66 (2)-12(3)a 2 (4)2x 3.1【变式训练】1.(1)15 (2)32.(1)3 (2)-2a(3)-4 (4)5-263.-6【基础巩固】1.B 2.B 3.C 4.A5.366.(1)4a (2)-4 (3)45 (4)-4x7.4【能力提升】8.A 9.(1)-1.2 (2)3-22 10.5【培优训练】11.3第4课时 积的算术平方根【核心提要】a ·b【典例精讲】1.(1)2 5 9 (2)12 21 (3)25 43 (4)22 26 42 2a2.(1)1010 (2)3a a (3)53(4)2a b (5)3a 2 (6)4y3.(1)20 (2)42 (3)52【变式训练】1.(1)3 4 8 (2)15 12 (3)8 73(4)23 32 215 6b 2.(1)5b b (2)5a 2 (3)-243(4)-4ab bc (5)122 (6)2x 2y3.(1)34 (2)211 (3)33【基础巩固】1.A 2.A3.(1)26 (2)27 (3)35 (4)62 (5)5a (6)4b 5ab4.xy xy5.(b 2-a 2)a 2+b 26.(1)243 (2)2x y7.36【能力提升】8.B9.(1)10 (2)12 (3)1410.1x -2 33【培优训练】11.a b -33第5课时 二次根式的除法【核心提要】 1.a b2.(1)被开方数中不含能开得尽方的因数或因式(2)被开方数中不含分母【典例精讲】1.(1)3 (2)22.(1)310 (2)76 (3)33 (4)1553.66【变式训练】1.(1)3 (2)222.(1)25 (2)62 (3)36 (4)a 3.-32【基础巩固】1.C 2.C 3.C4.2 3 cm5.(1)-6105 (2)324(3)2 【能力提升】6.解析:∵ab >0,a +b <0,∴a <0,b <0.①a b =a b,被开方数应≥0,a ,b 不能作被开方数,(故①错误), ②a b ·b a =1,a b ·b a =ab =a b ×b a =1=1,(故②正确), ③ab ÷a b =-b ,ab ÷a b =ab ÷ab -b =ab ×-b ab=-b ,(故③正确). 故选:B. 7.(1)2-1 (2)3+3 8.1-22【培优训练】9.解:①化简不对,正确过程为-20-5=205=5×45=4=2; ②∵0作除数无意义,∴a b =a b 成立的条件:a ≥0,b >0. 第6课时 二次根式的加减法【核心提要】1.最简二次根式,相同2.最简二次根式,被开方数相同【典例精讲】1.(1)a (2)4a +8ab (3)2 (4)2ab 2.(1)5-22 (2)-3+323.223【变式训练】1.(1)11xy (2)-x +4xy (3)76(4)6x2.(1)27(2)56+23.-a 2【基础巩固】1.D 2.A3.824.(1)43-22(2)-b(3)63+5(4)-67【能力提升】5.C 6.C7.a8.529.33【培优训练】10.解:∵x=1+3,∴x2-x+1=(1+3)2-(1+3)+1=1+23+3-1-3+1=3+4;第7课时二次根式的混合运算【核心提要】乘方乘除加减【典例精讲】1.(1)22(2)42(3)2a6(4)3 2(5)155(6)2aa2.(1)35(2)23(3)33(4)-7 3.-1 4.2【变式训练】1.(1)33(2)210(3)3a2(4)7 7(5)22 (6)324 2.(1)32(2)22 (3)42 (4)-233.-1 4.4【基础巩固】1.A 2.C 3.5 4.10 3 cm 5.(1)6+106 (2)43+2 (3)3+1 (4)4+26 【能力提升】6.2-17.22【培优训练】8.解:设t 秒后△PBQ 的面积等于24平方厘米,根据题意得: 12×2t ×t =24, 解得:t 1=-26(不合题意舍去),t 2=2 6.答:26秒后△PBQ 的面积等于24平方厘米.。

八年级数学下册第十六章二次根式知识点总结(超全)(带答案)

八年级数学下册第十六章二次根式知识点总结(超全)(带答案)

八年级数学下册第十六章二次根式知识点总结(超全)单选题1、下列二次根式中,最简二次根式是()A.√5B.√4C.√12D.√12答案:A分析:根据最简二次根式的定义,被开方数中不含能开得尽方的因数或因式,被开方数中不含分母,判断即可.解:A、√5是最简二次根式,符合题意;B、√4=2不是最简二次根式,不符合题意;C、√12=2√3不是最简二次根式,不符合题意;D、√12=√22不是最简二次根式,不符合题意;故选:A.小提示:本题考查了最简二次根式,掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式是解题的关键.2、二次根式√1x−2有意义,则x满足的条件是()A.x<2B.x>2C.x≥2D.x≤2答案:B分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.解:根据题意得:x﹣2>0,解得,x>2.故选:B.小提示:主要考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.3、若a=√3b−1﹣√1−3b+6,则ab的算术平方根是()A .2B .√2C .±√2D .4 答案:B试题解析:∵a =3b √−1−√1−3b +6, ∴{3b −1≥01−3b ≥0, ∴1−3b =0, ∴b =13, ∴a =6,∴ab =6×13=2, 2的算术平方根是√2, 故选B.4、下列各式中,是二次根式有( )①√7;②√−3;③√103;④√−3−x 2;⑤√a 2+9;⑥√1x 2+1.A .2个B .3个C .4个D .5个 答案:B分析:根据二次根式的概念进行分析判断. 解:①√7是二次根式,②√−3没有意义,不是二次根式, ③√103是三次根式,不是二次根式, ④√−3−x 2没有意义,不是二次根式, ⑤√a 2+9是二次根式, ⑥√1x 2+1是二次根式,∴①⑤⑥是二次根式,共3个, 故选:B .小提示:本题考查二次根式的定义,理解二次根式的概念(形如√a ,a ≥0的式子叫做二次根式)是解题关键.5、计算2√5×3√10=( )A.6√15B.6√30C.30√2D.30√5答案:C分析:根据二次根式的混合运算和根式的性质即可解题.解:2√5×3√10=6√50=30√2,故选C.小提示:本题考查了根式的运算,属于简单题,熟悉根式的性质是解题关键.6、计算√8+√18的值等于()A.√26B.4√2C.5√2D.2√2+2√3答案:C分析:根据二次根式的运算法则即可求出答案.解:原式=2√2+3√2=5√2故选C.小提示:本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.7、若a=√2﹣1,则a+1a的整数部分是()A.0B.1C.2D.3答案:C分析:把a的值代入,利用二次根式的混合运算法则计算得出最简结果,再估算即可求解.解:∵a=√2−1,∴a+1a =√2−1√2−1=√2−1+√2+1=2√2,∵4<8<9,∴2<2√2<3,∴a+1a的整数部分是2,故选:C小提示:本题主要考查了二次根式的混合运算,无理数的估算能力,掌握二次根式的混合运算法则是解决问题的关键.8、下列计算正确的是( ) A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4D .√3+2√3=3√3 答案:D分析:由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案. 解:32=9,故A 不符合题意; (−25)3=−8125, 故B 不符合题意; (−2a 2)2=4a 4, 故C 不符合题意; √3+2√3=3√3, 故D 符合题意; 故选D小提示:本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.9、估计√12×√13+√10÷√2的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间 答案:C分析:先进行二次根式的运算,然后再进行估算. 解:原式=2√3×√33+√10÷√2=2+√5, √4<√5<√9, 即2<√5<3, 4<2+√5<5,故选:C.小提示:题目主要考查二次根式的混合运算及运用“夹逼法”估算无理数的大小,熟练掌握二次根式的混合运算法则是解题关键.10、2,5,m是某三角形三边的长,则√(m−3)2+√(m−7)2等于()A.2m−10B.10−2m C.10D.4答案:D分析:先根据三角形三边的关系求出m的取值范围,再把二次根式进行化解,得出结论.解:∵2,3,m是三角形的三边,∴5−2<m<5+2,解得:3<x<7,∴√(m−3)2+√(m−7)2=m−3+7−m=4,故选:D.小提示:本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m的范围,再对二次根式化简.填空题11、如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为________cm2.答案:8√3-12分析:根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为4cm,√12=2√3cm,∴AB=4cm,BC=(2√3+4)cm,∴空白面积=(2√3+4)×4-12-16=8√3+16-12-16=(8√3-12)cm2,故答案为8√3-12.小提示:本题主要考查了二次根式的应用,解本题的要点在于求出AB 、BC 的长度,从而求出空白部分面积. 12、化简:(√x −2)2+√(1−x )2=_________. 答案:2x -3分析:根据二次根式的性质可知,x ≥2,再根据x 的取值范围进行化简即可. 解:∵x −2⩾0, ∴x ⩾2,∴√(1−x )2=x −1,∴原式=x −2+(x −1)=x -2+x -1=2x -3.小提示:本题考查了二次根式的性质,解题的关键是熟练掌握二次根式的性质.13、已知√x +5有意义,如果关于x 的方程√x +5+a =3没有实数根,那么a 的取值范围是__. 答案:a >3.分析:把方程变形为√x +5=3−a ,根据方程没有实数根可得3−a <0,解不等式即可. 解:由√x +5+a =3得√x +5=3−a , ∵ √x +5有意义,且√x +5⩾0,∴方程√x +5=3−a 没有实数根,即3−a <0, ∴a >3,所以答案是:a >3.小提示:本题考查了二次根式的性质,解题关键是利用二次根式的非负性确定a 的取值范围. 14、人们把√5−12这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =√5−12,b =√5+12,得ab =1,记S 1=11+a +11+b ,S 2=11+a 2+11+b 2,S 3=11+a 3+11+b 3,…,则S 1+S 2+⋅⋅⋅+S 2022=______. 答案:2022分析:根据异分母分式加法法则分别求出S 1、S 2、 S 3⋯ 、S 10的值,发现结果均为1,依此解答即可. 解:S 1=11+a +11+b =1+b+1+a(1+a)(1+b)=2+a+b1+a+b+ab =2+a+b1+a+b+1=2+a+b2+a+b =1,S 2=11+a 2+11+b 2=1+b 2+1+a 2(1+a 2)(1+b 2)=2+a 2+b 21+a 2+b 2+a 2b 2=2+a 2+b 21+a 2+b 2+1=2+a 2+b 22+a 2+b 2=1, S 3=11+a 3+11+b 3=1+b 3+1+a 3(1+a 3)(1+b 3)=2+a 3+b 31+a 3+b 3+a 3b 3=2+a 3+b 31+a 3+b 3+1=2+a 3+b 32+a 3+b 3=1, S n =11+a n +11+b n =1+b n +1+a n(1+a n )(1+b n )=2+a n +b n1+a n +b n +a n b n =2+a n +b n1+a n +b n +1=2+a n +b n2+a n +b n =1, ∴S 1+S 2+⋯+S 2022=1+1+⋯1=2022. 所以答案是:2022小提示:本题考查分式的规律计算,正确掌握异分母分式的加减计算法则及运用规律解决问题是解题的关键. 15、当_____时,式子√x −3+√5−x有意义.答案:3≤x <5.分析:根据二次根式和分式的意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解. 根据题意,得:{x −3≥05−x >0,解得:3≤x <5. 小提示:本题考查了的知识点为:分式有意义,分母不为0;二次根式有意义,被开方数是非负数. 解答题16、如图,正方形ABCD 的面积为8,正方形ECFG 的面积为32.(1)求正方形ABCD 和正方形ECFG 的边长; (2)求阴影部分的面积.答案:(1)正方形ABCD 的边长为2√2,正方形ECFG 的边长为4√2 (2)阴影部分的面积为12分析:(1)根据正方形的面积公式直接开平方得出正方形的边长即可;(2)用两个正方形的面积之和减去直角三角形ABD 和直角三角形BGF 的面积,即可得出阴影部分的面积. (1)解:∵正方形ABCD 的面积为8,正方形ECFG 的面积为32,∴正方形ABCD的边长为√8=2√2,正方形ECFG的边长为√32=4√2.(2)阴影部分的面积为:S阴影=S正方形ABCD+S正方形ECFG−SΔABD−SΔBGF=8+32−12×2√2×2√2−12×4√2×(2√2+4√2)=12小提示:本题主要考查了正方形的性质,根据阴影部分的面积等于两个正方形的面积减去两个三角形的面积,是解题的关键.17、计算:(1)√24÷√12−(√6+√2)2+(π−√3)0;(2)(7+4√3)(2−√3)2−(2+√3)(2−√3)+√3.答案:(1)-7(2)√3分析:(1)直接利用乘法公式以及零指数幂的性质、二次根式的除法运算法则分别化简,进而合并得出答案;(2)直接利用乘法公式以及二次根式的乘法运算法则分别化简,进而合并得出答案.(1)原式=√24×2﹣(6+4√3+2)+1=4√3﹣8﹣4√3+1=﹣7;(2)原式=(7+4√3)(7﹣4√3)﹣(4﹣3)+√3=49﹣48﹣1+√3=√3.小提示:此题主要考查了二次根式的混合运算以及零指数幂的性质,正确运用乘法公式化简是解题关键.18、计算:(1)(4√12−2√20)−(√48+√5)(2)(√48−√27)÷√3+√6×2√3答案:(1)4√3−5√5(2)1+6√2分析:(1)直接化简二次根式,进而利用二次根式的加减运算法则计算得出答案;(2)直接化简二次根式,再利用二次根式的乘除运算法则计算得出答案.(1)(4√12−2√20)−(√48+√5)=(8√3−4√5)−(4√3+√5)=8√3−4√5−4√3−√5=4√3−5√5(2)(√48−√27)÷√3+√6×2√3=(4√3−3√3)÷√3+6√2=√3÷√3+6√2=1+6√2小提示:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.。

初二数学下册(人教版)第十六章二次根式16.2-16.3知识点总结含同步练习及答案

初二数学下册(人教版)第十六章二次根式16.2-16.3知识点总结含同步练习及答案

高考不提分,赔付1万元,关注快乐学了解详情。
③ 将原有无理数的分子化为有理数的过程,也就是将分子中的根号化去,叫做分子有理化.
1 ⋅ (√2 − √5 ) 1 1 ⋅ √3 1 √3 √5 − √2 = = , = = ; 3 √2 + √5 3 (√2 + √5 ) ⋅ (√2 − √5 ) √3 √3 ⋅ √3 (√2 − √3 )(√2 + √3 ) √2 − √3 = 1 . √3 − √2
B.减号 C.乘号 D.除号
2. 在算式 (− A.加号
答案: D 解析:
)
当填入加号时,(− 当填入减号时,(−
2√3 √3 √3 ; ) + (− )=− 3 3 3 √3 √3 ) − (− ) = 0; 3 3 ) ( )
(
当填入乘号时,(− 当填入除号时,(−
(
1 √3 √3 ) × (− )= ; 3 3 3 √3 √3 ) ÷ (− ) = 1. 3 3
− − − ,则下列表示正确的是 ( 4. 设 √2 = a , √3 = b ,用含 a , b 的式子表示 √− 0.54
A.0.3ab
答案: A 解析:
B.3ab
C.0.1ab 2
D.0.1a2 b
− − − = √− − − − − − − − − − − − × √2 × √3 = 0.3 × √2 ×√3 = 0.3ab .故选 A. √− 0.54 0.09 × 2− × 3 = √− 0.09
化简 √a3 (a > 0). − − 解:√a3 = ∣a∣√a = a√a . 化简 √(a − b)2 + a (a < b).
− − −− − 3 1 − + √− −) + (√3 − √5 );(4) ÷ √ ;(3) (√− 12 20 2 18

最新新人教版八年级数学第十六章二次根式知识点+测试题知识讲解

最新新人教版八年级数学第十六章二次根式知识点+测试题知识讲解

第十六章 二次根式基本知识点1.二次根式的有关概念:(1)形如 的 式子叫做二次根式.(即一个 的算术平方根)二次根式有意义的条件: .(2)满足下列两个条件的二次根式,叫做最简二次根式:① ;② .(3)同类二次根式:几个二次根式化成最简二次根式后,如果 相同,那么这几个二次根式叫做同类二次根式。

2.二次根式的性质:(1) 非负性3.二次根式的运算:二次根式乘法法则二次根式除法法则二次根式的加减:(一化,二找,三合并 ) 0()a≥0 2(2)(0)a = ≥ =(0,0)a b = ≥ ≥(00)a b = ≥>(0,0)a b = ≥≥ (0,0)a b = ≥>(1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。

Ps:类似于合并同类项,关键是把同类二次根号外的因数合并。

二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律、公式)仍然适用二次根式提高测试题一、选择题1.要使式子x -1有意义,则x 的取值范围是( )A.x ≤1B.x ≥1C.x >0D.x >﹣12.下列式子成立的是( ) A .331= B .2332=- C .332=-)( D.(3)2=6 3.化简8的结果是( )A .2B .4C .22D .±224.下列二次根式中,属于最简二次根式的是( )A.2x B.8 C.2x D.12+x 5.如图,数轴上A ,B 两点表示的数分别是1和,点A 关于点B 的对称点是点C ,则点C 所表示的数是( )A 2 1B .2.2 2 D .2 16.化简2723-的结果是( ) A .32- B .32- C .36- D .2- 7.若代数式有意义,则x 的取值范围是( ) A.x ≥﹣2且x ≠﹣1 B.x >﹣2且x ≠﹣1C.x ≤2且x ≠﹣1D.x <2且x ≠﹣18.已知是整数,则实数n 的最大值是( ).A .12B .11C .8D .3二、填空题9.(3+7)(3﹣7)= .10.已知a 、b 为两个连续的整数,且28b <,则a+b=________.11()2310m n -+=,则m ﹣n 的值为 . 1221x +在实数范围内有意义,则x 的取值范围为 .13.已知x=3+1,y=3﹣1,则代数式yx x y +的值是 . 14.若x ,y 为实数,且0)31(32=-+-y x ,则xy= . 15. 若246m -234m -m 的值为 . 16. 若0,0a b <>3a b -化简得 .三、计算题17.计算:272833.)1(-+-;22)2664.()2(÷-;227614.)3(⨯÷;)7581()3125.0.()4(---.18.计算:10)41(2)31(-+-+-四、解答题19.已知某正数的两个平方根分别是a+3和2a-15,b 的立方根是-2,求3a+b 的算术平方根.20.先化简,再求值:(1).2222()a b a b a b a b--÷+,其中a =b =(2).()22a 2a 1b ab a a 1+++÷+,其中a 1b 1==,.学习《弟子规》验收试题一、默写(10分)1、亲有过,_____________,____________,____________。

最新人教版八年级数学下册第16章知识点总结【全文】

最新人教版八年级数学下册第16章知识点总结【全文】

精选全文完整版可编辑修改
本单元的主要内容是人教版八年级数学下册第16章知识点,包括二次根式、二次根式的乘除、二次根式的加减三部分内容,希望对大家有帮助!
一、二次根式
I.二次根式的定义和概念
1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。

当a>0时,√a表示a的算数平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式。

√ā(a≥0)是一个非负数。

II.二次根式√ā的简单性质和几何意义
1)a≥0 ; √ā≥0 [ 双重非负性 ]
2)(√ā)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式]
3) √(a^2+b^2)表示平面间两点之间的间隔,即勾股定理推论。

二、二次根式的乘除
1.积的算数平方根的性质
列如:√ab=√a·√b(a≥0,b≥0)
2. 乘法法那么
列如:√a·√b=√ab(a≥0,b≥0)
二次根式的乘法运算法那么,用语言表达为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。

三、二次根式的加减
知识点1:同类二次根式
(Ⅰ)几个二次根式化成最简二次根式以后,假设被开方数一样,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。

(Ⅱ)判断同类二次根式的方法:
(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否一样。

(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

人教版八年级数学下册第16章知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家以更好的学习,获得优异的成绩。

最新部编人教版初中八年级下册数学知识点总结

最新部编人教版初中八年级下册数学知识点总结

八年级数学(下册)知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件: 大于或等于0。

3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。

6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。

求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。

人教版初二数学8年级下册 第16章(二次根式)章节知识点梳理 课件(共44张PPT)

人教版初二数学8年级下册 第16章(二次根式)章节知识点梳理 课件(共44张PPT)

1
x0
x
(5) x3
x0
(6) 1 x2
x0
典题突破
3、当x为怎样的实数时,下列各式有意义?
1 x 3
6 x
x≥3 x≤6
∴3≤x≤6
2 1 x x 1
x≥1 x≤1
∴x=1
3 x2 2
4 x 1
x为任何实数。 x为任何实数。
典题突破
4、函数 y 1 5 x 中,自变量x的取值范围
例:(1) x 2 2
x2 ( 2)2 x 2 x 2
(2)2x2 3 y 2
( 2x)2 ( 3y)2 2x 3y 2x 3y
典题突破
二次根式的非负性的应用。
14、已知: x 4 + 2x y =0,求x-y的值。
解:由题意,得x-4=0且2x+y=0 解得x=4,y=-8
a (a 0,b 0)
b
1、 a 2 aa 0
aa 0 2、 a2 a aa 0
四种运算
加、减、乘、除
知识点梳理
知识点一:二次根定义
1. 一般地,我们把形如 a(a≥0)
的式子叫做二次根式,“ ”称为二次
根号。
二次根式
被开方数a≥0; 根指数为2。
知识点梳理
形如 a (a 0)的式子叫做二次根式
知识点四:最简单的二次根式的定义
满足下列两个条件的二次根式,叫做最简二次式。
(1)被开方数的因数是整数,因式是整式。 (2)被开方数中不含开方开得尽的因数或因 式。
知识点梳理
知识点五:同类二次根式的定义
几个二次根式化为最简二次根 式后,若被开方数相同,则这几个 二次根式就叫做同类二次根式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式知识点归纳和题型归类
一、知识框图
二、知识要点梳理
知识点一、二次根式的主要性质:
1.;
2.;
3.;
4.积的算术平方根的性质:;
5.商的算术平方根的性质:.
6.若,则.
知识点二、二次根式的运算
1.二次根式的乘除运算
(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.
(2) 注意每一步运算的算理;
(3) 乘法公式的推广:
2.二次根式的加减运算 先化简,再运算,
3.二次根式的混合运算 (1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里; (2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。

) 1.下列各式中一定是二次根式的是( )。

A 、3-; B 、x ; C 、12+x ; D 、1-x
2.x 取何值时,下列各式在实数范围内有意义。

(1) (2)
1
21+-x (3)45++x x
(4)
(5)121
3-+
-x x
(6)
.
(7)若1)1(-=
-x x x x ,
则x 的取值范围是 (8)若1
31
3++=++x x x x ,则x 的取值范围是 。

3.若13-m 有意义,则m 能取的最小整数值是 ;若20m 是一个正整数,则正整数m 的最小值是________. 4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。

5. 若20042005a a a -+-=,则2
2004a -=_____________;若433+-+-=
x x y ,则=+y x
6.设m 、n 满足3
2
9922-+-+-=
m m m n ,则mn = 。

7.若m 适合关系式35223199199x y m x y m x y x y +--++-=-+⋅--,求m 的值. 8. 若三角形的三边a 、b 、c 满足3442
-++-b a a =0,则第三边c 的取值范围是 9.已知ABC △的三边a b c ,,满足2|12|102422a b c a b ++--=+--,则ABC △为( )
10.若0|84|=--+-m y x x ,且0>y 时,则( ) A 、10<<m B 、2≥m C 、2<m D 、2≤m 二.利用二次根式的性质2a =|a |=⎪⎩

⎨⎧<-=>)0()0(0)
(a a a b a a (即一个数的平方的算术平方根等于这个数的绝对值)来解题
1.已知233x x +=-x 3+x ,则( ) A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0
2..已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a -- B .ab a - C .ab a D .ab a -
3.若化简|1-x|-1682+-x x 的结果为2x-5则( ) A 、x 为任意实数 B 、1≤x ≤4 C 、x ≥1 D 、x ≤4
4.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=
5. 当-3<x<5时,化简25109622+-+++x x x x = 。

③已知21915-=+-+x x ,求x x +++1519 ④已知a a x 1-=,求 2
2
4242x x x x x x +-++++
(2)变结论:
①设 3 =a ,30 =b ,则0.9 = 。

②y -
211,y m y y
+=则
的结果为( )
③.已知12,12+=-=y x ,求
xy
y x x y y x 33++++ ④若315,35-=-=+xy y x ,求y x +的值。

⑤已知5=+y x ,3=xy ,(1)求x y
y
x
+
的值 (2)求y
x y x +-的值
(3)同时变条件与结论 : 已知:
,求 的值.
五.关于求二次根式的整数部分与小数部分的问题
1.估算31-2的值在哪两个数之间( )A .1~2 B.2~3 C. 3~4 D.4~5 2.若3的整数部分是a ,小数部分是b ,则=-b a 3
3.已知9+13913-与的小数部分分别是a 和b ,求ab -3a +4b +8的值
4.若a ,b 为有理数,且8+18+8
1=a+b 2,则b a
= .
六.二次根式的比较大小(1)322005
1
和 (2)-5566-和 (3)13151517--和
(4)设a=23-, 32-=b ,25-=c , 则( )A. c b a >> B. b c a >> C. a b c >> D. a c b >>
七.实数范围内因式分解: 1. 9x 2-5y 2 2. 4x 4-4x 2+1 3. x 4+x 2-6
19.
已知:11a a +=+221
a a
+的值。

20. 已知:,x y
为实数,且13y x -+
,化简:3y -
21. 已知()1
1
039
32
2++=+-+-y x x x y x ,求
的值。

相关文档
最新文档