七年级数学下学期期中测试卷(含答案)

合集下载

湖南省永州市新田县2023-2024学年七年级下学期期中考试数学试卷(含答案)

湖南省永州市新田县2023-2024学年七年级下学期期中考试数学试卷(含答案)

2024年期中质量监测试卷七年级数学(试题卷)温馨提示:1.本试卷包括试题卷和答题卡。

考生作答时,选择题和非选择题均须作答在答题卡上,在本试题卷上作答无效。

考生在答题卡上按答题卡中注意事项的要求答题。

2.考试结束后,将本试题卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

本试卷共三道大题,26个小题。

如有缺页,考生须声明。

一、选择题(在下列各题的四个选项中,只有一项是符合题意的。

本大题共10个小题,每小题3分,共30分)1.下列方程组中,是二元一次方程组的是()A .B .C .D .2.下列各式从左到右的变形中,是因式分解的是( )A .B .C .D .3.下列运算正确的是( )A .B .C .D .4.已知是因式分解的结果,则的值为( )A .B .C .D .5.将多项式提公因式后,另一个因式为()A .B .C .D .6.若是一个完全平方公式,则的值为()A .6B .12C .D .7.从甲地到乙地有一段上坡路与一段下坡路。

如果上坡平均每小时走,下坡平均每小时走,那么从甲地走到乙地需要15分钟,从乙地走到甲地需要20分钟。

若设从甲地到乙地上坡路程为,下坡路程为,则所列方程组正确的是()A.B.C.D.8.如果是方程组的解,则的值为()A.1B.C.2D.9.“九宫图”于我国古代夏禹时期的《洛书》(如图1),是世界上最早的矩阵,又称“幻方”,其实幻方就是把一些有规律的数填在正方形图内,使每一行、每一列和每一条对角线上各个数之和都相等(如图2),图3的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则的值为()图1 图2 图3A.0B.1C.3D.610.如图,将两张边长分别为和的正方形纸片按图1,图2两种方式放置长方形内(图1,图2中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示,若长方形中边的长度分别为.设图1中阴影部分面积为,图2中阴影部分面积为.当时,的值为()图1 图2A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分,请将答案填在答题卡的答案栏内)11.计算:______.12.已知一个正方形的边长是,则它的面积是______(用科学记数法表示)。

浙江省温州市2023-2024学年七年级下学期期中学业质量检测数学试卷(含答案)

浙江省温州市2023-2024学年七年级下学期期中学业质量检测数学试卷(含答案)

七年级期中学业质量检测(数学)考生须知:1.本卷评价内容范围是《数学》七年级下册第一章至第三章3.5节,全卷满分100分; 2.考试时间90分钟,不可以使用计算器. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个正确选项) 1.下列方程是二元一次方程的是( ▲ )A .320x B .232x x C .11y xD .31x y2.将如图所示的图案通过平移后可以得到的图案是( ▲ )A.B .C .D .3.如图,∠B 的同旁内角是( ▲ )A .∠4B .∠3C .∠2D .∠14.计算34[-10]()的结果是( ▲ )A .710B .710C .1210D .1210 5.下列运算中,计算结果正确的是( ▲ )A .235a a a B .236a a a C .236(2)6a a D .459236a a a6.下列各式中,不能..用平方差公式计算的是( ▲ ) A .()()a b a b B .()()a b b a C .()()a b a b D .()()a b b a 7.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ▲ )A .34 B .12 C .ECD D D .0180ABD A 8.若关于x ,y 的二元一次方程组2425x y x y ,的解也是方程3x y k 的解,则k 的值为( ▲ )A .2B .1C .1D .2(第2题)(第3题)(第7题)9. 某兴趣小组组织野外活动,男生戴蓝色帽子,女生戴红色帽子,如果每位男生看到蓝色帽子比红色帽子多2个,每位女生看到蓝色帽子是红色帽子的2倍,则该兴趣小组男女生分别有多少人?设男生有x 人,女生有y 人,则下列方程正确的是( ▲ ) A .122-1x y x y ()B .122x y x yC .122-1x y xy D .22x y xy10.如图,正方形AEIJ ,正方形EFGH ,正方形LMCK依次放在长为6,宽为4的长方形ABCD 中,要求出 图中阴影两部分的周长之差,只需要知道下列哪条线 段的长( ▲ )A .AEB .EFC .CMD .NL二、填空题(本题有8小题,每小题3分,共24分) 11.已知方程2x y ,用含x 的代数式表示y ,则y ▲ .12.计算:2(1)a ▲ .13.已知1x a y ,是方程53=+y x 的一组解,则a 的值为 ▲ .14.计算:4413=3(-) ▲ .15. 如图,将两块含30角的三角板ABC 和含45角的三角板BDE 按如图所示的位置放置,若BE AC ∥,则DBA 的度数为 ▲ °.16.已知2(231)x y 与431x y 的值互为相反数,则x y 的值为 ▲ .17.已知240m n ,则42m n ▲ .18.如图1,将一张长方形纸片ABCD 右端沿着EF 折叠成如图2,再将纸片左端沿着GH折叠成如图3,GD 恰好经过点F ,且GF 平分∠HFB .在图3中,若2∠GHF +∠BFE =135°,则∠BFE 的度数为 ▲ ° .三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或证明过程) 19.(本题6分)化简(1)23(21)x xy y (2)(2)(2)(1)x x x x图1图2 图 3(第18题)(第15题)45°30°EDACB(第10题)20.(本题8分)解方程组 (1)3210y x x y (2)327465x y x y21.(本题6分)如图是由边长为1的小正方形构成的8×8网格,线段AB 端点和点P 均在格点上.(1)将线段AB 向上平移1格,再向右平移2格,请在图甲中作出经上述两次平移后所得的线段CD .(2)请在图乙中找一格点E ,连结PB ,PE ,使得∠PBA=∠EPB .22.(本题8分)如图,在△ABC 中,点D 在BC 上,DE ∥AB 交AC 于点E ,点F 在AB 上,∠BFD =∠DEC .(1)说明DF 与AC 平行的理由.理由如下://DE AB ( ▲ ), BFD FDE ( ▲ ). BFD DEC ,FDE▲ .//DF AC ( ▲ ).(2)若∠B +∠C =120°,求∠FDE 的度数.(第22题)图甲图乙(第21题)23.(本题8分) 某校为了喜迎新春,开展了“巧制花灯,福满校园”的活动,如图1为学生制作的其中一种花灯样式,它的四面是由四个完全相同的平面模板(如图2)折叠拼接而成的.模板是由2个长方形A 、2个长方形C 、1个长方形D 和4个等腰梯形B 构成的,其中尺寸如图2所示:长方形A 的宽为,长为,等腰梯形的高与长方形A 的宽大小一样,长方形C 的长为(4)n ,宽为( 1.5)m ,模板总高为32cm . (1)请用含的代数式表示模板的面积(结果需化简). (2)当221n m 时,请求出花灯模板的面积.24.(本题10分)探究学校校服订购的方案.素材1:天气转热,不少学生的夏季校服有损坏或丢失,故学校联系了厂商订制一批校素材2:本届七年级使用的是改版后的校服,每件新版衣服和裤子的价格均比旧版多10元.为保证各年级段校服统一,学校要求七年级学生购买新版,八、九年级学生购买旧版.【任务1】分别求出旧版衣服和旧版裤子的单价.【任务2】依据往年八、九年级的数据统计,衣服数量不超过80件,裤子数量不超过50件.若学校恰好用了4900元为八、九年级购买旧版校服,则衣服和裤子各买了多少件?【任务3】学校统计各班的订购意向后,最终花费9200元订购这批校服.已知七年级订购的衣服数量占所有衣服和裤子总数量的14,且少于50件,则八、九年级订购的裤子共有 ▲ 件.(请直接写出答案)m n m n ,单位:cm图2图1(第23题)七年级期中学业质量检测数学参考答案及评分标准一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有8小题,每小题3分,共24分)11.2x −+. 12.221a a −+. 13.2. 14.1. 15. 15. 16.0. 17.16. 18.22.5.三、解答题(本题有6小题,共46分) 19. (本题6分)(1)23(21)x xy y −+22=363x y xy x −+解:原式 ..................(3分)(2)(2)(2)(1)x x x x +−−−22=4x x x −−+解:原式4x =− ..................(3分)20.(本题8分) (1)3210y x x y =⎧⎨+=⎩①②解:将①代入②得:2310x x += 解得:2x = 将2x =代入①得:6y =所以原方程组的解是=2...........(4)6x y ⎧⎨=⎩分(2)327465x y x y −=⎧⎨+=⎩①②解: 3⨯①+②得:1326x =解得:2x =将2x =代入①得: 12y =−所以原方程组的解是=2............(4)12x y ⎧⎪⎨=−⎪⎩分(1)(2)22.(本题8分) (1)理由如下://DE AB ( 已知 ), BFDFDE ( 两直线平行,内错角相等 ).BFD DEC ,FDE∠DEC .//DF AC ( 内错角相等,两直线平行 ).………….(4分)(2)解:∵//DF AC∴FDB C ∠=∠ ∵//DE AB ∴EDC B ∠=∠ ∵120B C ∠+∠=° ∴120FDB EDC ∠+∠=°∴FDE ∠=180°()60FDB EDC −∠+∠=° ..................(4分) (其它正确答案酌情给分)(1)[]124(4)2( 1.5)(4)3262( 1.5)2mn m n n m n n m m +⨯−++−−+−−− =163212m n −++ ...........................(5分)(其它正确答案酌情给分)(2)当221n m −=时原式=163212m n −++=162)12m n −++( =162112⨯+=348 .................................(3分)24.(本题10分):任务1 设一件旧版衣服x 元,一件旧版裤子y 元.由题意,得100807300120607500x y x y解得4535x y答:一件旧版衣服45元,一件旧版裤子35元. .................(4分)任务2 设购买衣服m 件,裤子n 件.由题意,得45m +35n =4900, 化简,得91407n m .∵m ≤80,n ≤50且m ,n 均为正整数, ∴7050m n 或7741m n答:衣服70件、裤子50件或衣服77件、裤子41件.............(4分)任务3 11. .................(2分)设新版衣服a 件,旧版裤子b 件.则所有衣服和裤子共4a 件,旧版衣服和新版裤子共(3a -b )件.由题意,得55a +45(3a -b )+35b =9200, 化简,得b =19a - 920. ∵a <50,且a ,b 均为正整数, ∴a =49,b =11.。

河北省石家庄市第四十二中学2023-2024学年七年级下学期期中考试数学试卷(含答案)

河北省石家庄市第四十二中学2023-2024学年七年级下学期期中考试数学试卷(含答案)

数学一、选择题(本大题共16个小题,1-10题每小题3分,11-16题每小题2分,共42分.)1.下列方程中,是二元一次方程的是()A.B.C.D.2.方程组的解为,则被遮盖的前后两个数分别为()A.1、2B.1、5C.5、1D.2、43.下列运算中,正确的是()A.B.C.D.4.如图,将一张长方形纸对折两次,产生的折痕与折痕之间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定5.下列图形中,线段的长表示点到直线距离的是()A.B.C.D.6.下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③两点之间直线最短;④同一平面内,经过一点有且只有一条直线与已知直线垂直.其中真命题的个数有()A.1个B.2个C.3个D.4个7.如图,直线、相交于点,于,若,则的度数为()A.B.C.D.8.下列所示的四个图形中,和是同位角的是()A.②③B.①②③C.①②④D.①④9.若,,则的值为()A.B.C.D.10.若为正整数,则()A.B.C.D.11.数学活动中老师要求同学们利用三角板作已知直线的平行线,如图是甲同学和乙同学作图的过程,下列判断正确的是()A.甲、乙都正确B.甲正确,乙错误C.甲错误,乙正确D.甲、乙都错误12.如图,给出下列条件:①;②;③,且;④且;其中能推出的条件为()A.①②B.②④C.②③D.②③④13.如图1的晾衣架中存在多组平行关系,将晾衣架的侧面抽象成如图2的数学问题,已知,若,,则的度数为()A.B.C.D.14.如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g15.已知方程组,那么与的关系是()A.B.C.D.16.将一副三角板的直角顶点重合按如图放置,小明得到下列结论:①如果,则;②;③如果,则;④如果,则.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(17题4分,18-20题每题3分,共13分)17.______;若,则______.18.已知、满足方程组,则的值为______.19.用一张等宽的纸条折成如下图所示的图案,若,则的度数为______.20.如图,在甲、乙、丙三只袋中分别装有球29个、29个、5个.先从甲丙袋袋中取出个球放入乙袋,再从乙袋中取出个球放入丙袋,最后从丙袋中取出个球放入甲袋,此时三只袋中球的个数相同,则的值等于______.三、解答题(本大题共6个小题,共45分)21.(每小题4分,共8分)(1)计算:(2)解方程组:22.(6分)在正方形网格中,小正方形的顶点称为“格点”,每个小正方形的边长均为1,的三个顶点均在“格点”处.(1)在给定方格纸中,平移,使点与点对应,请画出平移后的;(2)线段与线段的位置关系是______,数量关系是______;(3)四边形的面积是______.23.(8分)如图,已知,,(1)求证:.请将下面证明过程补充完整:证明:(已知),(______).又(已知),______(同角的补角相等),(______),(______).(2)若平分,于点,,求的度数.24.(6分)已知关于,的二元一次方程组的解满足,求的值.25.(8分)某汽车销售公司计划购进一批新能汽车尝试进行销售,据了解2辆型汽车、3辆型汽车的进价共计80万元;3辆型汽车、2辆型汽车的进价共计95万元.(1)求、两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案.26.(9分)已知直线,为平面内一点,连接、.(1)如图1,已知,,求的度数;(2)如图2,判断、、之间的数量关系,并说明理由.(3)如图3,在(2)的条件下,,平分,若,则的度数为______.答案一、选择题1.B.2.C.3.A.4.A.5.D.6.A.7.D.8.C.9.A.10.A.11.A.12.D.13.B.14.C .15.C.16.C.二、填空题(17题4分,18-20题每题3分,共13分)17.;518.119.20.128(或都可以)21.(1)(2)22.(1)见图(2)平行;相等;(3)1523.(1)两直线平行,同旁内角互补;;内错角相等,两直线平行;两直线平行,同位角相等(2)解:平分,,,由(1)知,,,,,,,,,.24.解:方法一:由,解得,将,代入,得方法二:,得,即,,,,解得.25.解:(1)设型汽车每辆的进价为万元,型汽车每辆的进价为万元,依题意,得:,解得:.答:型汽车每辆的进价为25万元,型汽车每辆的进价为10万元.(2)设购进型汽车辆,购进型汽车辆,依题意,得:,解得:.,均为正整数,,,,共3种购买方案,方案一:购进型车6辆,型车5辆;方案二:购进型车4辆,型车10辆;方案三:购进型车2辆,型车15辆.26.解:(1)如图1,过点作,,,,,,,,;(2),如图2,过点作,则,,,,,;(3)如图3,交于点,,,,,,,,,平分,,,由(2)得,,。

人教版数学七年级下册《期中检测试题》附答案解析

人教版数学七年级下册《期中检测试题》附答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9 3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯ 4. 一个角度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90°5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 216. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS 8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 3310. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s 表示此人离家距离,t 表示时间,在下面给出的四个表示s 与t 的关系的图象中,符合以上情况的是( ) A. B. C. D.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a 2b)(3ab)=____________________.12. 对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______ 15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.16. 若102m =,103n =,则210m n +=_________.17. 若226m n -=,且3m n -=,则m n +=___.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 位置关系是______________20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.22. 请将下列证明过程补充完整:已知:∠1=∠E ,∠B =∠D . 求证:AB ∥CD证明:∵ ∠1=∠E ( 已知 )∴ ∥ ( )∴ ∠D +∠2=180°( ) ∵ ∠B =∠D ( 已知 )∴ ∠B + ∠2= 180°( ) ∴ AB ∥CD ( )23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.25. 已知如图,A、E、F、C四点共线,BF=DE,AB=CD.(1)请你添加一个条件,使△DEC≌△BFA;(2)在(1)基础上,求证:DE∥BF.26. 如图:BD平分∠ABC,∠ABD=∠ADB,∠ABC=50°,请问:(1)∠BDC+∠C 度数是多少?并说明理由.(2)若P点是BC上的一动点(B点除外),∠BDP与∠BPD之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?答案与解析一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.[答案]B[解析][分析]根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.[详解]解: A.∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;B.∠1与∠2的两边互为反向延长线, 只有一个公共顶点,是对顶角;C.∠1与∠2有两个公共顶点,不是对顶角;D. ∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;故选B .[点睛]本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系..它是在两直线相交的前提下形成的.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9[答案]D[解析][分析]根据同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.[详解]A 、应x 6÷x 3=x 3,故本选项错误;B 、应为2x 3﹣x 3=x 3,故本选项错误;C 、应为x 2•x 3=x 5,故本选项错误;D 、(x 3)3=x 9,正确.[点睛]本题考查同底数幂的除法,合并同类项法则,同底数幂的乘法,幂的乘方,熟练掌握运算性质和法则是解题的关键.3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯[答案]D[解析][分析]科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.[详解]0.00000156的小数点向右移动6位得到1.56,所以0.00000156用科学记数法表示为1.56×10-6,故选D .[点睛]本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 一个角的度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90° [答案]A[解析][分析]若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.依此求出度数.[详解]40°角的余角是:90°−40°=50°,50°角的补角是:180°−50°=130°.故选:A.[点睛]考查余角与补角的相关计算,掌握余角与补角的定义是解题的关键.5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 21 [答案]B[解析]由题意分该等腰三角形的腰长分别为4和9两种情况结合三角形三边间的关系进行讨论,然后再根据三角形的周长公式进行计算即可.详解:由题意分以下两种情况进行讨论:(1)当该等腰三角形的腰长为4时,因为4+4<9,围不成三角形,所以这种情况不成立;(2)当该等腰三角形的腰长为9时,因为4+9>9,能够围成三角形,此时该等腰三角形的周长=9+9+4=22. 综上所述,该等腰三角形的周长为22.故选B.点睛:当已知等腰三角形其中两边长,求第三边长或周长时,通常要分“已知两边分别为等腰三角形的腰长”两种情况,结合三角形三边间的关系进行讨论.6. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-[答案]B[解析][分析]根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.[详解]解:、、符合平方差公式的特点,故能运用平方差公式进行运算;、两项都互为相反数,故不能运用平方差公式进行运算.故选:.[点睛]本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS[答案]B我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.[详解]解:作图的步骤:①以为圆心,任意长为半径画弧,分别交OA 、OB 于点、;②任意作一点,作射线O A '',以为圆心,OC 长为半径画弧,交O A ''于点;③以为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选B .[点睛]本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm[答案]C[解析][分析]根据三角形的三边关系进行判断.[详解]A 、 3+5=8 ,不能组成三角形;B 、 8+8<18,不能组成三角形;C 、 1+1>1 ,能组成三角形;D 、 3+4<8 ,不能组成三角形;故选:C .[点睛]本题考查三角形的三边关系,一般用两条较短的线段相加,如果大于最长那条就能够组成三角形. 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 33 [答案]B先根据完全平方公式进行变形,再代入求出即可.[详解]∵a+b=−5,ab=−4,∴a2−ab+b2=(a+b)2−3ab=(−5)2−3×(−4)=37,故选:B.[点睛]本题考查完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键.10. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s表示此人离家的距离,t表示时间,在下面给出的四个表示s与t的关系的图象中,符合以上情况的是( )A. B. C. D.[答案]C[解析][分析]根据修车时,路程没变化,可得答案.[详解]∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.[点睛]本题考查函数图象,观察图象是解题关键,注意修车时路程没有变化.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a2b)(3ab)=____________________.[答案]-6a3b2[解析][分析]根据单项式与单项式相乘的运算法则进行计算即可得到答案.[详解]解:(-2a2b)(3ab)=-6a3b2.故答案为-6a3b2.[点睛]本题考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.12. 对于圆的周长公式c=2πr,其中自变量是______,因变量是______.[答案] (1). r (2). c[解析]试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r ,其中自变量是,因变量是 .故答案为,.r C13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________[答案]110°[解析][分析]由D 点是∠ABC 和∠ACB 角平分线的交点可推出∠DBC +∠DCB =70°,再利用三角形内角和定理即可求出∠BDC 的度数.[详解]解:∵D 点是∠ABC 和∠ACB 角平分线的交点,∴∠CBD =∠ABD =12∠ABC ,∠BCD =∠ACD =12∠ACB , ∵∠A=40°,∴∠ABC +∠ACB =180°−40°=140°,∴∠DBC +∠DCB =70°,∴∠BDC =180°−70°=110°,故答案为:110°.[点睛]此题主要考查学生对角平分线性质,三角形内角和定理,熟记三角形内角和定理是解决问题的关键. 14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______[答案]S=35t[解析][分析]根据路程=速度×时间列出函数关系式即可.[详解]解:根据路程=速度×时间得:汽车所走的路程S (千米)与所用的时间t (时)的关系表达式为:s=35t . 故答案为:S=35t .[点睛]本题考查函数关系式,解题的关键是明确路程=速度×时间,据此表示出关系式.15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.[答案]CB =CD[解析][分析]要判定△ABC ≌△ADC ,已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 可添加CB =CD .[详解]已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 能判定△ABC ≌△ADC ,则需添加CB =CD ,故答案为:CB =CD .[点睛]本题考查三角形全等的判定方法,解题的关键是掌握判定两个三角形全等的一般方法(SSS ). 16. 若102m =,103n =,则210m n +=_________.[答案][解析]∵10m =2,10n =3,∴10m+2n =10m •102n =2×32=18.故答案是:18.17. 若226m n -=,且3m n -=,则m n +=___.[答案]2[解析][分析]将m 2−n 2 利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值.[详解]解:∵m 2-n 2=(m+n)(m-n)=6,且m-n=3,∴m+n=2.故答案为:2.[点睛]本题考查利用平方差公式因式分解,熟练掌握公式及法则是解本题的关键.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)[答案](2n+1) −4×n=4n+1.[解析][分析]由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.[详解]由题意知, ①223415-⨯=,②225429-⨯=,③2274313-⨯=,则第④个等式为9−4×4=17,故第n 个等式为(2n+1) −4×n=4n+1左边=4n+4n+1−4n=4n+1=右边,∴(2n+1) −4×n=4n+1故答案为(2n+1) −4×n=4n+1.[点睛]此题考查规律型:数字的变化类,解题关键在于理解题意找到规律. 三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 的位置关系是______________[答案](1)见解析;(2)DE 平行BC.理由见解析.[解析][分析](1)由题意作∠ADE=∠ABC ,DE 与AC 边交于点E ,即可得到图形;(2)根据同位角两直线平行进行判定即可得到答案.[详解](1)作∠ADE=∠ABC ,DE 与AC 边交于点E ,如图所示:∠ADE 即为所求;(2)DE 平行BC.理由:由(1)可知∠ADE=∠ABC ,根据同位角相等,两直线平行可得DE 平行BC.[点睛]本题考查作图—基本作图和平行线的判定,解题的关键是掌握作图基本方法和平行线的判定方法. 20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-[答案](1)1;(2)43a 7b 5;(3)-m ²+3m−2;(4)a ²+2ab+b ²-4; [解析][分析](1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)先算括号里面的,再根据单项式乘单项式的运算法则计算,然后合并同类项即可;(3)根据多项式乘多项式和单项式乘多项式的运算法则并合并同类项计算即可;(4)把a+b 当成一项,根据平方差公式计算,在展开合并化简即可. [详解](1)原式=1+14−14=1; (2)原式=-8a 6b 3÷(-2ab)13a ²b 3=43a 7b 5; (3)原式=m ²−m−2−2m ²+4m=-m ²+3m−2;(4)原式=(a+b)²-4=a ²+2ab+b ²-4.[点睛]本题考查了整式混合运算,熟练掌握整式的混合运算是解题的关键,计算时要注意符号的正确处理. 21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.[答案]70°[解析]分析]设这个角是x ,表示出它的补角为(180°−x ),然后列出方程求出x ,再根据余角的定义计算即可得解.[详解]设这个角是x ,则它的补角=180°−x ,根据题意得,x ∶(180°−x)=1∶8,解得x =20°,90°−20°=70°.答:这个角的余角是70°.[点睛]本题考查了余角和补角,熟记定义并表示这个角的补角,然后列出方程是解题的关键.22. 请将下列证明过程补充完整:已知:∠1=∠E,∠B=∠D.求证:AB∥CD证明:∵∠1=∠E(已知)∴∥()∴∠D+∠2=180°()∵∠B=∠D(已知)∴∠B+ ∠2= 180° ( )∴AB∥CD()[答案]∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°(等量代换)∴AB∥CD(同旁内角互补,两直线平行)[解析][分析]根据∠1=∠E可判定AD∥BE,可得∠D和∠2为同旁内角互补;结合∠B=∠D,可推得∠2和∠B也互补,从而判定AB平行于CD.[详解]证明:∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°,∴AB∥CD.[点睛]本题考查了平行线的性质和平行线的判定,同学们要熟练掌握.23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?[答案](1) 30千米;(2)10时30分,休息了半小时;(3) 17.5千米;(4) 12.5千米.[解析]试题分析:(1)(3)小题,观察图象,结合题意即可得到对应的答案;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,由此可得1112点玲玲骑车前进了30-17.5=12.5(km).试题解析:(1)观察图象可得:玲玲是在12点时到达距家最远的地方的,此时她距家30km;(2)观察图象可得:玲玲10点30分开始第一次休息,休息了30分钟;(3)观察图象可得:玲玲第一次休息时,距家17.5km;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,∴11点12点,玲玲骑车行驶了:30-17.5=12.5(km).点睛:解答这类题的关键有以下两点:(1)弄清图象中点的横坐标和纵坐标所代表的量的意义;(2)弄清图象中各个转折点(如图中的点C、D、E、F)的意义.24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.[答案]见解析[解析][分析]证明△ABC ≌△DEF 得到∠B=∠DEF ,即可推出AB ∥DE.[详解]∵BE=CF ,∴BE+CE=CF+CE,即BC=EF ,在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF,∴∠B=∠DEF ,∴AB ∥DE.[点睛]此题考查三角形全等的判定及性质,根据题中的已知条件证得△ABC ≌△DEF 是解题的关键. 25. 已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD .(1)请你添加一个条件,使△DEC ≌△BFA ;(2)在(1)的基础上,求证:DE ∥BF .[答案](1)添加的条件为:AE=CF (答案不唯一);(2)证明见解析;[解析][分析](1)添加的条件AE=CF ,因此可得AF=CE ,即可证明△DEC ≌△BFA ;(2) 由(1)知△DEC ≌△BFA ,得到∠DEC=∠BFA ,根据直线平行的判定,即可证明;[详解]解:(1)添加的条件为:AE=CF ,证明:∵AE=CF ,∴AE+EF=CF+EF ,即:AF=CE ,又∵BF=DE ,AB=CD ,∴在△DEC 和△BFA 中,AB CD BF DE AF CE =⎧⎪=⎨⎪=⎩∴△DEC ≌△BFA (SSS );(2)由(1)知△DEC ≌△BFA ,∴∠DEC=∠BFA(全等三角形对应角相等),∴DE ∥BF (内错角相等,两直线平行).[点睛]本题主要考查了三角形全等的判定以及三角形全等的性质、直线平行的·判定,掌握内错角相等两直线平行是解题的关键.26. 如图:BD 平分∠ABC ,∠ABD=∠ADB ,∠ABC=50°,请问:(1)∠BDC +∠C 度数是多少?并说明理由.(2)若P 点是BC 上的一动点(B 点除外),∠BDP 与∠BPD 之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.[答案](1)∠BDC+∠C=155°,理由见解析,(2)∠BDP 与∠BPD 之和是一个确定的值,∠BDP+∠BPD=155°,理由见解析.[解析][分析](1)由BD 平分∠ABC ,∠ABD=∠ADB ,可得出AD ∥BC ,在△BCD 中,∠DBC=25°,从而可得答案,(2)因为∠DBC 大小固定,ADB ∠的大小就固定,所以无论P 点如何移动,∠BDP 与∠BPD 之和为一定值.[详解]解:(1)∠BDC+∠C=155°. 理由如下:∵BD 平分∠ABC ,∠ABC=50°,∴∠ABD=∠CBD=25°; 又∠ABD=∠ADB=25°,∠BDC+∠C=180°-∠CBD=155°.(2)是确定的值. 理由如下:∵∠ADB=∠CBD ,∴AD∥BC,∴∠ADP+∠BPD=180°;∴∠BDP+∠BPD=180°-∠ADB=155°.[点睛]本题考查的是角平分线的性质,三角形的内角和定理,平行线的判定与性质,熟练掌握平行线的判定定理及性质和三角形内角和公式是解题的关键.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?[答案](1)m-n;(2)(m-n)(m-n)=(m-n)2,(m+n)2-4mn=(m-n)2;(3)(m+n)2-4mn=(m-n)2;(4)29[解析][分析](1)观察得到长为m,宽为n的长方形的长宽之差即为阴影部分的正方形的边长;(2)可以用大正方形的面积减去4个长方形的面积得到图2中的阴影部分的正方形面积;也可以直接利用正方形的面积公式得到;(3)利用(2)中图2中的阴影部分的正方形面积得到(m+n)2-4mn=(m-n)2;(4)根据(3)的结论得到(a-b)2=(a+b)2-4ab,然后把a+b=7,ab=5代入计算.[详解]解:(1)观察图形可得正方形的边长=m-n;(2)方法一:(m-n)(m-n)=(m-n)2 ;方法二:(m+n)2-4mn=(m-n)2 ;(3)利用(2)中的方法二可得:(m+n)2-4mn=(m-n)2 ;⨯=.(4)根据(3)的结论可得:(a-b)2=(a+b)2-4ab=27-4529[点睛]本题考查了完全平方公式与图形之间的关系,从几何的图形来解释完全平方公式的意义.解此类题目的关键是正确的分析图列,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.。

天津市河西区2023-2024学年七年级下学期期中数学试题(含答案)

天津市河西区2023-2024学年七年级下学期期中数学试题(含答案)

七年级数学(一)试卷满分100分,考试时间90分钟一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在平面直角坐标系中,点()3,7-所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如果一个正方形的面积等于2,则这个正方形的边长为( )A. 1B. 1.5C.D.3. 的值在( )A. 1和2 之间B. 2和3之间C. 3和4之间D. 4和5之间4. 如图,街道AB 与CD 平行,拐角0137ABC ∠=,则拐角BCD ∠的度数为()A. 43°B. 53°C. 107°D. 137°5. 如果点A 的坐标为()4,5-,则点A 到x 轴的距离为( )A. 3B. 4C. 5D. 6. 下列命题是真命题的为( )A. 分数都是有理数 B. 最小的正实数是1 C. 无限小数都是无理数 D. 最小的整数是07. 下列说法正确的是( )A.B.3.14π-的绝对值是3.14π-C. 若26x =,则x =D. 若36x =,则x =8. 已知250a b c +-=,且1a =,则用含有b 的式子来表示c ,正确的为( )A. 251b c -=-B. 251b c -=C. 512c b -=D. 125b c +=9. 把一副三角板放在同一水平桌面上,摆放成如图所示的形状使两个直角顶点重合,两条斜边平行,则1∠的度数是()A. 110°B. 90°C. 75°D. 45°10. 三角形ABC 三个顶点的坐标分别为()()()2,1,1,3,4,5A B C ---,则三角形ABC 的面积为( )A. 3B. 4C. 6D. 8二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上.11. 计算___________.12. 若制作一个体积为318m 的正方体形状的包装箱,则这个包装箱的棱长应为____________m .13. 请你任意写出一个点(),x y ,使得,x y 满足二元一次方程5x y -=,这个点可以为____________.14. 如图,已知0180A B ∠+∠=,ABDC ⎪⎪,056C ∠=,则A ∠的度数为____________°.15. 如图,在三角形ABC 中,6BC cm =,将三角形ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得对应图形为三角形DEF ,设平移时间为t 秒,若要使2AD CE =成立,则t 的值为____________.16. 如图,点,,A B C 在数轴上,点A 表示的数是-1,将点A 个单位长度得到点B ,且点B 是AC 的中点,则点C 表示的数为________________;BC 的中点表示的数为____________.三、解答题:本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.17.(本小题6分)比较下列各组数的大小:(1(2)1;(3)3_________2-18.(本小题6分)解方程组503744x y x y -=⎧⎨+=⎩19.(本小题8分)为了解天津市的地铁线路图,某班同学将网上查到的部分线路示意图(如图1),并利用网格画出如图2所示的示意图.现在根据图2建立了平面直角坐标系,表示“直沽站”的点E 的坐标为()3,3-,且测得点A B C O 、、、站恰好在格线的交点上(允许有测量误差).(1)你找一找“周邓纪念馆站”(点F )的位置,在图2的坐标系中在哪个象限?“小白楼站”(点G )的位置在哪个象限?(2)在这个平面直角坐标系中,图中表示“远洋国际中心站”的点A 的坐标为____________;表示“津湾广场站”的点B 的坐标为____________;表示“东南角站”的点C 的坐标为____________;表示“天津站”的点O 的坐标为______________;20.(本小题8分)已知:如图,直线,AB CD 被直线EF 所截,12,34∠=∠∠=∠.求证:EGFH ⎪⎪.证明:∵12∠=∠(已知),且1AEF ∠=∠( ),∴2AEF ∠=∠(),∴ABCD ⎪⎪( ),∴BEF CFE ∠=∠( ),∵34∠=∠(已知)∴43BEF CFE ∠-∠=∠-∠( )即GEF HFE ∠=∠,∴EGFH ⎪⎪( )21.(本小题8分)如图,三角形ABC ,点D 是的边BC 上的一点,点E 是的边BC 上的一点,且DE AB ⎪⎪,0070,66A B ∠=∠=.(1)EDC ∠等于多少度?为什么?(2)①请你利用三角板和直尺,过点D 画出AC 的平行线DF ,交AB 于点F ;②画图后,FDE ∠的度数是多少度?说明理由.(3)通过这道题,能说明三角形ABC 的内角和是180°吗?说明理由.22.(本小题8分)养牛场原有30只大牛和15只小牛,1天约需用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天约需用饲料940kg .饲养员李大叔估计平均每只大牛1天约需饲料1820kg ,每只小牛1天约需饲料78kg .你能否通过计算检验他的估计是否准确?23.(本小题8分)如图1,在平面直角坐标系中,O 为原点,OAB ∆是等腰直角三角形,090B ∠=,点()4.2,0A ,点B 在第一象限,长方形OCDE 的顶点()()3,0,0,1.2E C -,点D 在第二象限.(1)点D 的坐标为____________;长方形OCDE 的面积为_______________;(2)将长方形OCDE 沿x 轴向右平移,得到长方形O C D E '''',点,,,O C D E 的对应点分别为,,,O C D E ''''.长方形O C D E ''''与OAB ∆重叠部分的面积为S .小王同学猜想:当点D '恰好落在OB 边上时(如图2)S 最大;小张同学猜想:当长方形恰好平移到等腰直角三角形OAB ∆的中央位置(如图3),即O E ''的中点与OA 的中点恰好重合时S 最大.请你探究一下这两种位置中,哪一种位置的S 比较大,并说明理由.(提示:设BA 与长方形的边D C C O ''''、分别交于M N 、两点,可令图2中的MC a '=)参考答案一、选择题题号12345678910答案BCBDCAADCB二、填空题11. 12. 1213. ()6,1(答案不唯一) 14. 56 15. 2或6 16. 1;1-+三、解答题17. 解:略18. 解:由①得:5x y =③,将③代入②解得:2y =,将2y =代入③,解得:10x =,∴方程组的解为102x y =⎧⎨=⎩.19. 解:(1)F 在第三象限;G 在第四象限;(2)()()()()1,0;2,0;0,3;0,0--20. 证明:∵12∠=∠(已知),且1AEF ∠=∠(对顶角相等),∴2AEF ∠=∠(等量代换),∴AB CD ⎪⎪(同位角相等,两直线平行),∴BEF CFE ∠=∠(两直线平行,内错角相等),∵34∠=∠(已知),∴43BEF CFE ∠-∠=∠-∠(等式性质)即GEF HFE ∠=∠,∴EGFH ⎪⎪(内错角相等,两直线平行).21. 解:(1)66°,∵DE AB ⎪⎪,∴066B EDC ∠=∠=;(2)70°,∵AC DF ⎪⎪,∴070A BFD ∠=∠=,∵ABDE ⎪⎪,∴070BFD FDE ∠=∠=;(3)能,∵DF AC ⎪⎪,∴C BDF ∠=∠,又由(2)知,A FDE B EDC ∠=∠∠=∠,∴0180A B C FDE EDC BDF BDC ∠+∠+∠=∠+∠+∠=∠=.即ABC ∆的内角和是180°.22. 解:设每只大牛1天约需饲料xkg ,每只小牛1天约需饲料ykg .根据题意,得30156754220940x y x y +=⎧⎨+=⎩,解得205x y =⎧⎨=⎩∴每只大牛1天约需饲料20kg ,每只小牛1天约需饲料5kg .答:李大叔对于大牛的估计正确,对于小牛的估计不对.23. 解:(1)()3,1.2D -;3.6;(2)小王同学猜想:当点D '恰好落在OB 边上时,如图2,∵OAB ∆是等腰直角三角形,可知004545BOA BAO ∠==∠=,再由平移长方形可知,C D OA ⎪⎪'',∴045BMD BAO '∠=∠=,∴C MN '∆是等腰直角三角形.∴MC C N a ''==,∴C MN '∆的面积22a =.∴长方形O C D E ''''与OAB ∆重叠部分的面积为22a S -长方形.小张同学猜想:当长方形恰好平移到等腰直角三角形OAB ∆的中央位置时,如图3,可知此时的2a MC C N ''==,∴C MN '∆的面积212228a a a == .∴长方形O C D E ''''与OAB ∆重叠部分的面积为222884a a a S S --=-长方形长方形.而2242a a <,∴2224a a S S -<-长方形长方形,∴小张同学的方法使得重叠部分的面积更大.(注:以上为参考答案,其他解法相应给分).。

人教版数学七年级下学期《期中检测试题》含答案解析

人教版数学七年级下学期《期中检测试题》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程是( )A. 2x =1B. 120x -=C. 2x -y =5D. 2x +1=2x 2.二元一次方程组224x y x y +=⎧⎨-=⎩的解是( ) A. 02x y =⎧⎨=⎩ B. 20x y =⎧⎨=⎩ C. 31x y =⎧⎨=-⎩ D. 11x y =⎧⎨=⎩3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++= 5.由方程组43x m y m +=⎧⎨-=⎩,可得出x 与y 的关系是( ) A. x+y=1 B. x+y=-1 C. x+y=7 D. x+y=-76.不等式组10260x x +>⎧⎨-≤⎩解集在数轴上表示正确的是( ) A.B.C.D 7.某文具店一本练习本和一支中性笔单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ 8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.10.x 的3倍与5的和不大于8,用不等式表示为______.11.若方程23x y -=,用含的代数式表示,则=____.12.不等式5140x +≥的负整数解的和是____.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.16.解方程组:20346x y x y +=⎧⎨+=⎩ 17.解方程组:2201160x y z x y z x y ++=-⎧⎪-+=⎨⎪+=⎩.18.解不等式213436x x --≥,并把解集数轴上表示出来. 19.已知x=1是方程2﹣13(a ﹣x)=2x 的解,求关于y 的方程a(y ﹣5)﹣2=a(2y ﹣3)的解. 20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?24.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.答案与解析一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程的是( )A. 2x=1B. 120x-= C. 2x-y=5 D. 2x+1=2x[答案]A[解析][分析]依据一元一次方程的定义解答即可.[详解]解:A、2x=1是一元一次方程,故A正确;B、120x-=不是整式方程,故B错误;C、2x-y=5是二元一次方程,故C错误;D、2x+1=2x是一元二次方程,故D错误;故选:A.[点睛]本题主要考查的是一元一次方程的定义,熟练掌握一元一次方程的概念是解题的关键.2.二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩[答案]B[解析][分析]方程组利用加减消元法求出解即可.[详解]224x yx y①②+=⎧⎨-=⎩,①+②得:3x=6,即x=2, 把x=2代入①得:y=0,则方程组的解为20 xy=⎧⎨=⎩,故答案选B.[点睛]本题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.解题的关键是熟练的掌握解二元一次方程组的方法.3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > [答案]D[解析][分析]根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,对A 进行判断;不等式两边乘(或除以)同一个正数,不等号的方向不变,对B 、D 进行判断;不等式两边乘(或除以)同一个负数,不等号的方向改变,对C 进行判断.[详解]∵不等式两边加(或减)同一个数(或式子),不等号的方向不变∵m >n∴m -2>n -2故A 错误∵不等式两边乘(或除以)同一个正数,不等号的方向不变∵m >n∴6m >6n ,44m n > 故B 错误,D 正确∵不等式两边乘(或除以)同一个负数,不等号的方向改变∵m >n∴-8m <-8n故C 错误故选:D[点睛]本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++=[答案]A[解析]根据等式的性质方程两边都乘以12即可.解:24x ++1=3x,去分母得:3(x+2)+12=4x,故选A.“点睛”本题考查了一元一次方程的变形,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1.5.由方程组43x my m+=⎧⎨-=⎩,可得出x与y的关系是( )A. x+y=1B. x+y=-1C. x+y=7D. x+y=-7 [答案]C[解析][分析]将两个方程相加即可得到结论.[详解]43 x my m+=⎧⎨-=⎩①②由①+②得:x+y=7.故选C.[点睛]考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.6.不等式组10260xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D. [答案]C [解析] [分析]分别解两个不等式得到1x >-和3x ,从而得到不等式组的解集为13x -<,然后利用此解集对各选项进行判断.[详解]10{260x x ①②+>-≤,解①得x>-1,解②得x≤3,所以不等式组的解集为-1<x≤3.故选.[点睛]本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.某文具店一本练习本和一支中性笔的单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ [答案]B[解析][分析]根据等量关系“一本练习本和一支中性笔的单价合计为3元”,“20本练习本的总价+10支中性笔的总价=40”,列方程组求解即可.[详解]设练习本每本为x 元,中性笔每支为y 元,根据单价的等量关系可得方程为x+y=3,根据总价40得到的方程为20x+10y=40,所以可列方程为:3201040x y x y +=⎧⎨+=⎩, 故选:B .[点睛]此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x[答案]B[解析][分析]首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.[详解]设原来每天最多能生产x 辆,由题意得:15(x+6)>20x,故选B .[点睛]此题主要考查了由实际问题抽象出一元一次不等式,关键正确理解题意,抓住关键描述语. 二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.[答案]-4[解析]把x =6代入方程2x +3a =0得:12+3a =0,解得:a =﹣4,10.x 的3倍与5的和不大于8,用不等式表示为______.[答案]358x +≤[解析]分析:先表示出x 的3倍,再表示出与5的和,最后根据和不大于...8可得不等式.详解:根据题意可列不等式:3x +5≤8.故答案为3x +5≤8.点睛:本题考查了由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.11.若方程23x y -=,用含的代数式表示,则=____.[答案]32x - [解析]要用含x 的代数式表示y ,就要把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1即可.[详解]解:移项,得23y x -=-+,系数化为1,得32x y -=, 故答案为:32x -. [点睛]本题考查了代入消元法解二元一次方程组,解题关键是把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1.12.不等式5140x +≥的负整数解的和是____.[答案]-3[解析][分析]先移项再系数化为1即可解不等式,再取负整数的解进行相加即可得到答案.[详解]解:5140x +≥,移项得到:514x ≥-,系数化为1得到:145x ≥-, ∴负整数解有:-2、-1,∴负整数解得和为:(-2)+(-1)= -3,故答案为:-3;[点睛]本题主要考查了解不等式以及整数的定义,掌握解不等式的步骤值解题的关键.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.[答案]80[解析][分析]设该书包的进价为x 元,根据销售收入﹣成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.[详解]解:设该书包的进价为x 元,根据题意得:110×0.8﹣x =10%x ,解得:x =80.答:该书包的进价为80元.故答案为:80.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.[答案]5[解析][分析]由图可知:2个球体的重量=5个圆柱体的重量,2个正方体的重量=3个圆柱体的重量.可设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程即可得出答案.[详解]解:设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程:2x =5y ;2z =3y ,即:6x =15y ;10z =15y ,则:6x =10z ,即:3x =5z ,即三个球体的重量等于五个正方体的重量.故答案:5.[点睛]本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.[答案]x =-3.[解析][分析]方程去括号,移项合并,把x 系数化为1,即可求出解.[详解]解:去括号得:3x -1=5x +5,移项得:3x -5x =5+1,合并得:-2x =6,系数化为1得:x =-3.[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.解方程组:20 346 x yx y+=⎧⎨+=⎩[答案]原方程组的解为=63 xy⎧⎨=-⎩[解析][分析]利用代入法进行求解即可得.[详解]20346x yx y+=⎧⎨+=⎩①②,由①得:x=-2y ③将③代入②得:3(-2y)+4y=6, 解得:y=-3,将y=-3代入③得:x=6,∴原方程组的解为63xy=⎧⎨=-⎩.[点睛]本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.17.解方程组:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩.[答案]6113xyz=⎧⎪=-⎨⎪=⎩.[解析][分析]①﹣②得出2y=-22,求出y=﹣11,把y=﹣11代入③,即可求得x=6,再把x=6,y=-11代入①进而求得z=3即可.[详解]解:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩①②③①-②得,2y=-22, 解得y=-11.把y=-11代入③中, 得11x+6×(-11)=0,解得x=6.把x=6,y=-11代入①中, 得6-11+z=-2,解得z=3.∴原方程组的解为6113xyz=⎧⎪=-⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,利用了消元的思想,解决本题的关键是消元,消元的方法有:代入消元法与加减消元法.18.解不等式213436x x--≥,并把解集在数轴上表示出来.[答案]x≥-2;在数轴上表示见解析.[解析][分析]根据不等式的性质解一元一次不等式,然后在数轴上表示不等式的解集.[详解]解:2(2x-1)≥3x-4,4x-2≥3x-4,4x-3x≥-4+2,x≥-2.在数轴上表示如图所示:[点睛]本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.19.已知x=1是方程2﹣13(a﹣x)=2x的解,求关于y的方程a(y﹣5)﹣2=a(2y﹣3)的解.[答案]y=﹣4.[解析]试题分析:把x=1代入方程计算求出a的值,代入所求方程求出解即可.试题解析:把x=1代入方程得:2﹣13(a﹣1)=2,解得:a=1,代入方程a(y﹣5)﹣2=a(2y﹣3)得:(y﹣5)﹣2=2y﹣3, 解得:y=﹣4.20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?[答案]21人,羊为150元[解析][分析]可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.[详解]设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150,答:买羊人数21人,羊价为150元.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.[答案](1)m>2;(2)3x>-.[解析][分析](1)首先要解这个关于x的方程,然后根据解是负数,就可以得到一个关于m的不等式,最后求出m的范围.(2)本题是关于x的不等式,应先只把x看成未知数,根据m的取值范围求得x的解集.[详解]解:(1)4x+2m+1=2x+5,2x=4-2m,x=2-m.由题意,得x<0,即2-m<0,∴m>2,∴m的取值范围m>2;(2)∵m>2,∴m取最小整数为3.∴关于x的不等式为3112xx+-<,2(1)31x x-<+,2231x x-<+,3x>-∴不等式的解集为3x>-.[点睛]本题主要考查解一元一次不等式和一元一次方程的能力,(1)此题是一个方程与不等式的综合题目,解关于x的不等式是本题的一个难点.(2)需注意,在不等式两边都除以一个负数时,应改变不等号的方向.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.[答案](1)x=2或23x=-;(2)①b<-1;②-1;③b>-1.[解析][分析](1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.[详解]解:(1)当3x-2≥0时,原方程可化为3x-2=4,解得x=2;当3x-2<0时,原方程可化为3x-2=-4,解得23x=-.所以原方程的解是x=2或23x=-.(2)∵|x﹣2|≥0,∴当b +1<0,即b <﹣1时,方程无解;当b +1=0,即b =﹣1时,方程只有一个解;当b +1>0,即b >﹣1时,方程有两个解故答案为:①b <-1;②-1;③b >-1.[点睛]本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?[答案](1)甲种图书单价为30元,乙种图书单价为20元;(2)最多可购买甲种图书20本.[解析][分析](1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以求得甲种图书最多能购买多少本.[详解](1)设甲种图书的单价为x 元,乙种图书的单价为y 元,由题意,得:1032130x y x y =+⎧⎨+=⎩解得:3020x y =⎧⎨=⎩. 答:甲种图书单价为30元,乙种图书单价为20元.(2)设最多可购买甲种图书m 本,则购乙种图书(50﹣m )本,由题意,得:30m +20×(50﹣m )≤1200解得:m ≤20.答:最多可购买甲种图书20本.[点睛]本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和一元一次不等式.24.已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.[答案](1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨;(2)共有2种租车方案:①租A型车6辆,B型车2辆;②租A型车2辆,B型车5辆;(3)最省钱租车方案为方案②,租车费用为800元.[解析][分析](1)根据2辆A型车和1辆B型车装满货物=10吨;1辆A型车和2辆B型车装满货物=11吨,列出方程组即可解决问题.(2)由题意得到3a+4b=26,根据a、b均为正整数,即可求出a、b的值.(3)求出每种方案下的租金数,经比较、分析,即可解决问题.[详解]解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货λ吨、μ吨,由题意得:210211λμλμ+=⎧⎨+=⎩,解得:34λμ=⎧⎨=⎩故1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意和(1)得:3a+4b=26,∵a、b均非负整数,∴62ab=⎧⎨=⎩或25ab=⎧⎨=⎩,∴共有2种租车方案:①租A型车6辆,B型车2辆,②租A型车2辆,B型车5辆.(3)方案①的租金为:6×100+2×120=840(元),方案②的租金为:2×100+5×120=800(元),∵840>800,∴最省钱的租车方案为方案②,租车费用为800元.[点睛]根据题意设未知数列方程,并确保计算的正确性.。

人教版数学七年级下册《期中测试题》(带答案)

人教版数学七年级下册《期中测试题》(带答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共30分)1. 如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180° 2. 图所示,150∠=︒,34180∠+∠=︒,则 2∠=( )A. 130B. 140C. 50D. 403. 点P 是直线l 外一点,A 为垂足,PA l ⊥,且5cm PA =,则点P 到直线l 的距离( )A 小于5cm PA = B. 等于5cm PA = C. 大于5cm PA = D. 不确定 4. 下列图形中1∠与2∠是同位角是( ) A B. C. D. 5. 某数x 的两个不同的平方根是23a +与15a -,则x 的值是( )A. 11B. 121C. 4D. 11±6. –27的立方根与81的平方根之和是 A. 0B. –6C. 0或–6D. 67. 下列命题中,真命题有( ).(1)有且只有一条直线与已知直线平行,(2)垂直于同一条直线的两条直线互相垂直,(3)两条直线被第三条直线所截,内错角相等,(4)在平面内过一点有且只有一条直线与已知直线垂直.A. 1个B. 2个C. 3个D. 4个8. 若点M 的坐标是(a ,b),且a>0,b<0,则点M 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 若22x y =⎧⎨=⎩是方程1x my -=的一个解,则m 的值为( )A. 1B. 12C. 14D. 12- 10. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A. 4 B. 3 C. 2 D. 1二、填空题:(每题3分,共30分)11. 如图所示,直线AB,CD,EF 相交于点O ,且AB CD ⊥,135∠=︒,则 2∠=________ .12. 如图,直线a ∥b ,则∠ACB =______13. 比较大小:12π-________1214. 已知|a -5|3b +=0,那么a -b =_______.15. 81________,25的相反数是________.16. 若点(1,26)P a a +-在x 轴上,则点P 的坐标为________.17. 已知点P(2-a ,3a+6),且点P 到两坐标轴距离相等,则点P 的坐标是_____.18. 若方程4x m-n -5y m+n =6是二元一次方程,则m=______,n=______.19. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分, 负一场是0分.某队踢了14场,其中负5场,共得19分.若设胜了x 场,平了y 场,则可列出方程组:_____________.20. 若(5x +2y -12)2+|3x +2y -6|=0,则2x +4y =__________.三、解答题(共60分)21. 计算: (1)3352335(2)|23|2+(32339718111682⎛⎫--- ⎪⎝⎭22. 解方程: (1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩ 23. 在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示: ABC(,0)A a (3,0)B (5,5)C 111A B C △ 1(4,2)A 1(7,)B b1(,)C c d (1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.24. 如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.25. 如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.26. 用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?27. 在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.28. 新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?29. 如图,AD ∥BC ,BE 平分∠ABC 交AD 于点E ,BD 平分∠EBC.(1)若∠DBC =30°,求∠A 的度数;(2)若点F 在线段AE 上,且7∠DBC -2∠ABF =180°,请问图中是否存在与∠DFB 相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.答案与解析一、选择题:(每题3分,共30分)1. 如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180°[答案]A[解析][分析] 运用平行线的判定方法进行判定即可.[详解]解:选项A 中,∠1=∠2,只可以判定AC//BD (内错角相等,两直线平行),所以A 错误; 选项B 中,∠3=∠4,可以判定AB//CD (内错角相等,两直线平行),所以正确;选项C 中,∠5=∠B ,AB//CD (内错角相等,两直线平行),所以正确;选项D 中,∠B +∠BDC =180°,可以判定AB//CD (同旁内角互补,两直线平行),所以正确; 故答案为A.[点睛]本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键. 2. 图所示,150∠=︒,34180∠+∠=︒,则 2∠=( )A. 130B. 140C. 50D. 40[答案]C[解析][分析]先由已知与平角定义推出∠3=∠5,利用同位角相等,两直线平行得a ∥b ,在利用平行线的性质即可求出∠2.[详解]根据平角定义得∠4+∠5=180º,又∵34180∠+∠=︒,∴∠3=∠5,∴a ∥b ,∴∠1=∠2,∵∠1=50º,∴∠2=50º,故选择:C .[点睛]本题考查平行线的判定与性质,以及平角定义,掌握平角定义与平行线的判定和性质是解题关键. 3. 点P 是直线l 外一点,A 为垂足,PA l ⊥,且5cm PA =,则点P 到直线l 的距离( )A. 小于5cm PA =B. 等于5cm PA =C. 大于5cm PA =D. 不确定[答案]B[解析][分析]根据点到直线的距离的定义得出即可.[详解]解:根据点到直线的距离的定义得出P 到直线l 的距离是等于5cm PA =,故选:B .[点睛]本题考查了点到直线的距离的定义,能熟记点到直线的距离的定义的内容是解此题的关键,注意:从直线外一点到这条直线的垂线段的长度,叫点到直线的距离.4. 下列图形中1∠与2∠是同位角的是( ) A. B. C. D.[答案]C[解析][分析]同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角,据此进行判断即可.[详解]解:A 图不符合同位角定义,故此选项错误;B 图不符合同位角定义,故此选项错误;C 图符合同位角定义,可知答案是C ;D 图不符合同位角定义,故此选项错误.故选:C .[点睛]本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.5. 某数x 的两个不同的平方根是23a +与15a -,则x 的值是( )A. 11B. 121C. 4D. 11±[答案]B[解析][分析]利用正数的平方根有两个,它们是互为相反数,列出方程,解方程求出4a =,再求某数即可.[详解]某数x 的两个不同的平方根是23a +与15a -,列方程得:23a ++15a -=0,合并得:3120a -=,解得:4a =,当4a =时,23=24311a +⨯+=,则()223=121x a =+.故选择:B .[点睛]本题考查正数的平方根问题,掌握数的平方根的性质,会用正数两个平方根构造方程是解题关键.6. –27A. 0B. –6C. 0或–6D. 6 [答案]C[解析][分析]根据立方根的定义求得-27的立方根是-3,根据平方根的性质±3,由此即可得到它们的和.[详解]∵-27的立方根是-3,,9的平方根是±3,所以它们的和为0或-6.故选C.[点睛]此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.7. 下列命题中,真命题有( ).(1)有且只有一条直线与已知直线平行,(2)垂直于同一条直线的两条直线互相垂直,(3)两条直线被第三条直线所截,内错角相等,(4)在平面内过一点有且只有一条直线与已知直线垂直.A. 1个B. 2个C. 3个D. 4个[答案]A[解析][分析]利于平行线的定义、平行公理、平行线的性质及垂直的定义分别判断后即可确定正确的选项.[详解]解:(1)过直线外一点有且只有一条直线与已知直线平行,故错误,是假命题;(2)垂直于同一条直线的两条直线平行,故错误,是假命题;(3)两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;(4)在平面内过一点有且只有一条直线与已知直线垂直,正确,是真命题.故选A.[点睛]本题考查了命题与定理的知识,解题的关键是了解平行线的定义、平行公理、平行线的性质及垂直的定义等知识,难度不大.8. 若点M的坐标是(a,b),且a>0,b<0,则点M在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]D[解析]根据各象限内点的坐标符号特征判定,:∵a>0,b<0,∴点M(a,b)在第四象限,故选D9. 若22xy=⎧⎨=⎩是方程1x my-=的一个解,则m的值为( )A. 1B. 12C.14D.12-[答案]B [解析] [分析]把22x y =⎧⎨=⎩代入1x my -=,得到关于m 的方程,解方程即可得到结论. [详解]解:把22x y =⎧⎨=⎩代入1x my -=得,2-2m=1, 解得:m=12, 故选:B .[点睛]本题主要考查的是二元一次方程的解,得到关于m 的方程是解题的关键.10. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A. 4B. 3C. 2D. 1[答案]C[解析]由题意得:x=y,∴4x+3x=14,∴x=2,y=2,把它代入方程kx+(k-1)y=6得2k+2(k-1)=6,解得k=2.故选C . 二、填空题:(每题3分,共30分)11. 如图所示,直线AB,CD,EF 相交于点O ,且AB CD ⊥,135∠=︒,则 2∠=________ .[答案]55︒[解析][分析]根据题意由对顶角相等先求出∠ FOD,然后根据AB ⊥CD,∠2与∠ FOD 互为余角,求出即可.[详解]∵CD 、EF 相交于点O ,∴∠FOD=∠1=35︒,∵AB ⊥CD,∴∠2=90︒−∠FOD=903555︒-︒=︒,故答案为:55︒.[点睛]本题考察对顶角相等和垂线的定义及性质,熟练掌握基础知识是解题的关键.12. 如图,直线a ∥b ,则∠ACB =______[答案]78°[解析]如图,延长BC 与a 相交,已知a ∥b ,根据两直线平行,内错角相等可得∠1=∠50°;再由三角形的外角的性质可得∠ACB =∠1+28°=50°+28°=78°.点睛:本题主要考查平行线的性质和三角形外角性质,较为简单,属于基础题.13. 比较大小:12π-________12 [答案][解析][分析] 利用估值比较法3222π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变22π-<-,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小.[详解]∵322π>22832=22<, ∴22π>, ∴22π-<-, ∴12π-<12.故答案为:.[点睛]本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.14. 已知|a -5|=0,那么a -b =_______.[答案]8[解析][分析]利用非负数性质得:a-5=0,b+3=0,可求a,b.[详解]因为|a -5|=0,|a -5|≥≥0,所以,a-5=0,b+3=0,所以,a=5,b=-3.所以,a-b=8.故答案为8点睛]本题考核知识点:非负数性质. 解题关键点:利用非负数性质.15. ________,2的相反数是________.[答案] (1). 3; (2).2.[解析][分析] 根据平方运算,可得一个数的算术平方根,根据相反数的性质在这个数前加一“-”化简即可.[详解]9=3=;=3,∵(222--=-=,∴22,故答案为:2.[点睛]本题考查了算术平方根和相反数的性质,,再求出9的算术平方根,熟悉相关性质是解题的关键.16. 若点(1,26)P a a +-在x 轴上,则点P 的坐标为________.[答案](4,0).[解析][分析]根据点在x 轴上的特点解答即可.[详解]解:∵点P (a+1,2a-6)x 轴上,∴2a-6=0,解得,a=3,∴a+1=4∴点P 的坐标是(4,0);故答案为:(4,0).[点睛]本题主要考查了点在x 轴上时纵坐标是0的特点.17. 已知点P(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是_____.[答案](33)P ,或(66)P -, [解析][分析]根据点坐标到x 轴的距离即是点的纵坐标的绝对值,点到y 轴距离,即点的横坐标的绝对值,据此解题.[详解](236)P a a -+,到两坐标轴的距离相等, 236a a ∴-=+236a a ∴-=+或236a a -=--解得:1a ∴=-或4a =-当1a =-时,点P 的坐标为(33)P ,当4a =-时,点P 的坐标为(66)P -,故答案:(33)P ,或(66)P -, [点睛]本题考查直角坐标系中,各象限点坐标的特征,是重要考点,难度较易,掌握相关知识是解题关键. 18. 若方程4x m-n -5y m+n =6是二元一次方程,则m=______,n=______.[答案] (1). 1 (2). 0[解析][分析][详解]解:根据题意,得1{1m n m n -=+= 解,得m=1,n=0.故答案是1,0.考点:二元一次方程的定义.19. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分, 负一场是0分.某队踢了14场,其中负5场,共得19分.若设胜了x 场,平了y 场,则可列出方程组:_____________.[答案]514319x y x y ++=+=⎧⎨⎩ [解析][分析]根据比赛总场数和总分数可得相应的等量关系:胜的场数+平的场数+负的场数=14;胜的积分+平的积分=19,把相关数值代入即可.[详解]∵共踢了14场,其中负5场,∴x+y+5=14;∵胜一场得3分,平一场得1分,负一场是0分,共得19分.∴3x+y=19,故列的方程组为514319x y x y ++=+=⎧⎨⎩ , 故答案为514319x y x y ++=+=⎧⎨⎩ [点睛]此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程20. 若(5x +2y -12)2+|3x +2y -6|=0,则2x +4y =__________.[答案]0[解析][分析]根据非负数的性质列出方程组,求出x 、y 的值代入所求代数式计算即可.[详解]解:由题意得521203260x y x y +-=⎧⎨+-=⎩两个方程相减得:2x=6,解得x=3.把x=3代入5x+2y-12=0得,5×3+2y-12=0,解得32y =- 把33,2x y ==-代入2x+4y 得:323402⎛⎫⨯+⨯-= ⎪⎝⎭ 故答案为:0[点睛]本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了解二元一次方程组.三、解答题(共60分)21. 计算:(1)(2)||+(3112-[答案];(3) 52-. [解析][分析](1)合并同类项计算即可;(2),然后根据绝对值的性质去掉绝对值符号计算即可;(3)根据绝对值的性质、开平方及开立方的方法化简计算即可.详解]解:(1)原式==(2)原式=;(3)原式=313135212424422-+=-++-=-. [点睛]本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.22. 解方程:(1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩[答案](1)21x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩[解析][分析](1)运用代入消元法求解即可;(2)运用加减消元法求解即可.[详解]解:(1)23328y x x y =-⎧⎨+=⎩①②① 代入②得,32(23)8x x +-=,解得,x=2,把x=2代入①得,y=1,所以,方程组的解为:21x y =⎧⎨=⎩; (2)25324x y x y -=⎧⎨+=⎩①② ①×2+②得,7x=14 解得,x=2把x=2代入①得,4-y=5,解得,y=-1∴方程组的解为:21x y =⎧⎨=-⎩ [点睛]此题主要考查了解二元一次方程组,解二元一次方程组的方法有:代入消元法和加减消元法. 23. 在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示: ABC111A B C △ (1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.[答案](1)先向上平移2 个单位,再向右平移4个点位.(2)画图见详解(3)7.5.[解析][分析](1)由A 到A 1纵坐标变化,说明向上平移2个单位,由B 到B 1横坐标变化说明向右平移4个单位,规律即可发现 ;(2)利用平移的特征先求出A 、B 1、C 1三点坐标,然后在平面直角坐标系中描点A 、B 、C 、A 1、B 1、C 1,再顺次连结AB 、BC 、CA ;A 1B 1、B 1C 1、C 1A 1;则△ABC 为原图,△A 1B 1C 1为平移后的图形;(3)先求△A 1B 1C 1的底113A B =,再求底边上的高长为5;利用面积公式求即可.[详解](1)由A 到A 1纵坐标变化为由0到2,说明向上平移2个单位,由B 到B 1横坐标变化为由3到7说明向右平移4个单位,平移的规律为先向上平移2 个单位,再向右平移4个点位;故答案为:先向上平移2 个单位,再向右平移4个点位.(2)440a a +==,,022b b +==,,549c c +==,,527d d +==,,则A 、B 1、C 1三点坐标分别为()00A ,,()172B ,,()197C ,,如图 描点:A 、B 、C 、A 1、B 1、C 1,连线:顺次连结AB 、BC 、CA ;A 1B 1、B 1C 1、C 1A 1,结论:则△ABC 为原图,△A 1B 1C 1为平移后的图形.(3)11743A B =-=,11A B 边上的高为725-=,111115357.522A B C S ∆=⨯⨯==. [点睛]本题考查平移规律,画图和三角形面积问题,掌握平移规律发现的方法,画图的步骤与要求,会求钝角三角形的面积是解题关键.24. 如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.[答案]125°.[解析][分析]由两直线垂直,求得∠AOE=90°;由∠AOC 与∠EOC 互余,∠EOC=35°,即可得到∠AOC 的度数;再由∠AOD 与∠AOC 互补,即可得出∠AOD 的度数.[详解]∵EO ⊥AB ,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°.[点睛]本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.25. 如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.[答案]40°[解析][分析]根据平行线的性质可得∠ACB=∠AED=80°,∠EDC=∠BCD,然后根据角平分线的定义可得∠BCD=12∠ACB=40°,从而求出结论.[详解]解:∵DE∥BC,∠AED=80°∴∠ACB=∠AED=80°,∠EDC=∠BCD ∵CD平分∠ACB,∴∠BCD=12∠ACB=40°∴∠EDC=40°[点睛]此题考查的是平行线的性质和角平分线的定义,掌握平行线的性质是解决此题的关键.26. 用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?[答案]需要16张白铁皮做盒身,20张白铁皮做盒底[解析][分析]可设用x张制盒身,则(36-x)张制盒底,可使盒身与盒底正好配套,根据等量关系:一个盒身与两个盒底配成一套.列出方程求解即可.[详解]解:设用x张制盒身,则(36-x)张制盒底,根据题意,得到方程:2×25x=40(36-x),解得:x=16,36-x=36-16=20.答:用16张制盒身,20张制盒底,可使盒身与盒底正好配套.[点睛]本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27. 在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.[答案]24.5[解析][分析]本题等量关系比较明显:2辆大车运载吨数+3辆小车运载吨数=15.5;5辆大车运载吨数+6辆小车运载吨数=35,算出1辆大车与1辆小车一次可以运货多少吨后,即可计算出3辆大车与5辆小车一次可以运货多少吨.[详解]设大货车每辆装x 吨,小货车每辆装y 吨,根据题意列出方程组为:2315.55635x y x y +=⎧⎨+=⎩, 解这个方程组得:42.5x y =⎧⎨=⎩, ∴3x +5y =24.5.答:3辆大车与5辆小车一次可以运货24.5吨.[点睛]本题考察二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 28. 新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?[答案]骑车用1.25小时,步行用0.25小时.[解析]分析]首先设他骑车用了x 小时,根据骑车时间+步行时间=1.5小时表示出步行时间,再由骑车路程+步行路程=20千米,根据等量关系列出方程组,解方程组即可.[详解]设骑自行车的时间为小时,步行的时间为小时,根据题意得: 1.515520x y x y +=⎧⎨+=⎩,解得1.250.25 xy=⎧⎨=⎩,答:骑车用1.25小时,步行用0.25小时.[点睛]本题考查二元一次方程组的应用,关键是弄懂题意,根据题目中的等量关系列出方程组.29. 如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.[答案](1)∠A=60°;(2)存在,∠DFB=∠DBF.[解析][分析](1)根据角平分线的定义得到∠EBC=2∠DBC=60°,∠ABC=2∠EBC=120°,根据平行线的性质得到∠A+∠ABC=180°,于是得到结论;(2)设∠DBC=x°,则∠ABC=2∠ABE=(4x)°,根据已知条件得到∠ABF=(72x-90)°,求得∠DBF=(90-12x)°,根据平行线的性质得到∠DFB+∠CBF=180°,于是得到∠DFB=(90-12x)°,即可得到结论.[详解]解:(1)∵BD平分∠EBC,∠DBC=30°, ∴∠EBC=2∠DBC=60°.∵BE平分∠ABC,∴∠ABC=2∠EBC=120°.∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=60°.(2)存在∠DFB=∠DBF.理由如下:设∠DBC=x°,则∠ABC=2∠ABE=(4x)°.∵7∠DBC-2∠ABF=180°,∴(7x)°-2∠ABF=180°,∴∠ABF=(72x-90)°,∴∠CBF=∠ABC-∠ABF=(12x+90)°,∠DBF=∠ABC-∠ABF-∠DBC=(90-12 x)°.∵AD∥BC,∴∠DFB+∠CBF=180°,∴∠DFB=(90-12 x)°,∴∠DFB=∠DBF.[点睛]本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.。

江苏省苏州市吴江、吴中、相城、新区四区2023-2024学年七年级下学期期中考试数学试卷(含答案)

江苏省苏州市吴江、吴中、相城、新区四区2023-2024学年七年级下学期期中考试数学试卷(含答案)

数学2024.04本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟.注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上.2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B铅笔画出图形,再用0.5毫米黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上.)1.下列长度(单位:)的三根小木棒,能搭成为三角形的是()A.3,4,8B.5,6,11C.5,6,10D.8,8,162.已知正多边形的一个外角等于,则该正多边形的边数为()A.3B.4C.5D.63.如图,在一个弯形管道中,测得,后,就可以知道管道,其依据的定理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一条直线的两直线平行4.计算的结果正确的是()A. B. C. D.5.如图,木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的和).这样做的依据是()A.矩形的对称性B.三角形的稳定性C.两点之间线段最短D.垂线段最短6.如图,直线,将一块含的直角三角板按如图方式放置,其中A,C两点分别落在直线a,b上,若,则的度数为()A. B. C. D.7.如图,将沿方向平移到,若A,D之间的距离为2,,则等于()A.6B.7C.8D.98.如图,在数学兴趣活动中,小吴将两根长度相同的铁丝,分别做成甲、乙两个长方形,面积分别为,,则的值是()A. B. C.27 D.3二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.已知,,则________.10.如图,直线a,b被直线c所截,添加一个条件________,使.11.分解因式:________.12.如果,那么m的值为________13.如图,在三角形纸片中,,,将纸片的一角折叠,使点C落在内,若,则_________.14.一辆汽车在公路上行驶,经过两次向右拐弯后(第一次拐弯后,行驶了一段路程再第二次拐弯),行驶方向仍与原来的行驶方向平行.已知这辆汽车在这三段公路上都是沿直线行驶,且第一次是向右拐弯,那么第二次向右拐弯的最小度数是________.15.如图,将长为6,宽为4的长方形先向右平移2,再向下平移1,得到长方形,则阴影部分的面积为________.16.在平面内有n个点,其中每三个点都能构成等腰三角形,我们把具有这样性质的n个点构成的点集称为爱尔特希点集.如图,四边形的四个顶点构成爱尔特希点集,若平面内存在一个点P与A,B,C,D 也构成爱尔特希点集,则________.三、解答题(本大题共11小题,共82分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)17.(本题6分)计算:(1)(2)18.(本题6分)已知,,,,先计算,再比较a、b、c,d的大小,并用“”号连接起来.19.(本题6分)如图,.(1)若,求的度数;(2)若,求证:.20.(本题6分)把下列各式因式分解:(1);(2).21.(本题6分)规定.(1)求;(2)若,求x的值.22.(本题6分)如图,点E在上,点F在上,、分别交于点G、H,已知,.(1)与平行吗?请说明理由;(2)若,且,求的度数。

湖北省黄石市2023-2024学年七年级下学期期中考试数学试卷(含答案)

湖北省黄石市2023-2024学年七年级下学期期中考试数学试卷(含答案)

2024年春季期中考试七年级数学试题一、选择题(每小题3分,共30分)1.9的平方根是()A.3B.C.D.2.如图,下列条件中,能判定的是()第2题图A.B.C.D.3.已知点Q的坐标为,点P的坐标为,若直线轴,则点Р的坐标为()A.B.C.D.4.下列说法正确的是()A.一定没有平方根B.25的平方根是C.-a立方根等于它本身的数是0,1D.-4的算数平方根是25.如图,下列5种说法:①与是内错角;②与是同位角;③与是同旁内角;④与是同位角;⑤2与5是内错角.其中正确的有()第5题图A.1个B.2个C.3个D.4个6.如图,将周长为8的沿BC方向平移2个单位长度得到,则四边形ABFD的周长为()第6题图A.10B.12C.14D.167.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是()A.B.C.2D.8.如图,学校相对于小明家的位置下列描述最准确的是()第8题图A.距离学校1200米处B.南偏西65°方向上的1200米处C.北偏东65°方向上的1200米处D.南偏西25°方向上的1200米处9.下列说法:①﹔②无理数都是无限小数;③-3是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数,正确的个数有()A.2个B.3个C.4个D.5个10.如图,已知,,,则x,y,z三者之间的关系是()(第10题图)A.B.C.D.二、填空题(每小题3分,共15分)11.在,,π,0,-1.6,中,无理数有______个.12.如图,直线AB和CD交于点O,,垂足为,,则______°第12题图13.如图,将某动物园中的猴山,狮虎山,熊猫馆分别记为M,N,P,若建立平面直角坐标系,将猴山M,狮虎山N用坐标分别表示为和,则熊猫馆Р用坐标表示为______.第13题图14.已知一个正数的两个平方根分别是和,那么的立方根是______.15.如图,,的平分线交AE于点B,G是CF上的一点,的平分线交CF于点D,且,下列结论:①BC平分﹔②﹔③若,则;④与互余的角有2个,其中正确的有______.(把你认为正确结论的序号都填上)(第15题图)三、解答题(共75分)16.(8分)计算或解方程(1)计算:;(2)解方程:17.(6分)已知的立方根是3,的算术平方根是4,c是的整数部分.求的平方根.18.(6分)请将下面解答过程填写完整.如图,,,若,求的度数.解:∵(已知),∴().∵(已知),∴______(等量代换).∴______∴______().∵(已知),∴______19.(6分)已知点,解答下列各题:(1)若点P在x轴上,则点P的坐标为______;(2)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.20.(8分)如图,点O是直线AB上一点,射线OC、OD、OE在直线AB的同一侧,且OC平分,.(1)如果,求的度数.(2)如果,求的度数.21.(8分)如图,已知,.(1)试问与相等吗?请说明理由;(2)若,,求D的度数.22.(10分)如图,在平面直角坐标系xOy中,,,.将三角形ABC向左平移5个单位长度,再向上平移3个单位长度,可以得到三角形,其中点,,,分别与点A,B,C 对应.(1)画出平移后的三角形;(2)求三角形的面积;(3)若点P在y轴上,以,,P为顶点的三角形面积为2,求点P的坐标.23.(11分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法有道理、因为的整数部分是1,将减去其整数部分,差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.根据以上内容,解答下列问题:(1)的整数部分是______,小数部分是______;(2)如果的小数部分为a,的整数部分为b,求的值;(3)已知,其中x是整数,且,求的值.24.(12分)如图,已知直线,,点E,F在CD上,且满,BE平分.(1)直线AD与BC有何位置关系?请说明理由;(2)求的度数;(3)若左右平移AD,在平移AD的过程中,①求与的数量关系②是否存在某种情况,使,若存在,求出的度数;若不存在,请说明理由.七年级下学期期中考试数学参考答案1.C;2.A;3.D;4.B:5.C:6.B;7.A:8.C:9.B:10.D;11.3;12.145;13.;14.3;15.①②③16,(1);(2)或-217.解:∵27的立方根是3,∴,∴;∵16的算术平方根是4,∴,∴;∵,∴,∵c是的整数部分,∴;∴,∴的平方根为18.(两直线平行,同位角相等);;DG;;(两直线平行,同旁内角互补);105°.19.(1)(2,0)(2)解:∵点Р在第二象限,且它到x轴、y轴的距离相等∴,解得:,把代入.20.(1)解:∵OC平分.∴,∵,∴.∵;(2)解:∵,,∴,,∵OC平分,∴,∵,∴.21.(1)解:与相等,理由如下:∵,∴,∵,∴,∴,∴(2)解:∵,∴,∵,,∴,即,∵,,∴,即.22.(1)解:如图所示,则即为所作.(2)的面积为:;(3)设,∵,,∴点到y轴的距离为2,∴,∴,∴,解得:或8,∴点P的坐标为(0,4)或(0,8).23.(1)4;(2)解:∵,即,∴的整数部分是2,小数部分是,∴.∵,即,∴的整数部分是3,∴.∴.(3)解:∵,∴,∴,∵,其中x是整数,且,∴,.∴24.(1)解:直线AD与BC互相平行,理由:∵,∴,又∵∴,∴;(2)解:∵;∴,∵,BE平分,∴;(3)解:①∵∴,∵,∴∴②存在,理由如下:设.∵,∴;∵,∴,∴,当时,∴∴,即。

人教版数学七年级下册《期中检测试题》(带答案)

人教版数学七年级下册《期中检测试题》(带答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.填空题1.一个数的平方根等于它本身,这个数是_______;一个数的算术平方根等于它本身,这个数是_______;一个数的立方根等于它本身,这个数是___________.2.如果一个数的两个平方根分别是a+3与2a-15,那么这个数是_______.3.25的算术平方根是_________;(-14)2 的算术平方根是_________. 4.若3x +是4的平方根,的立方根是1y -,则x y +=_________.5.把命题“对顶角相等”改写成“如果…那么…”形式是__________________.6.如图,直线a ∥b ,点B 在直线b 上,AB BC ⊥,若255∠=︒,则1∠=___度.7.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x 为____.8.如图,已知直线a ∥b ,c ∥d ,∠1=115°,则∠2=__________,∠3=__________.9.实数120的整数部分是_____, 小数部分是_____.10.把下列各数分别填入相应的集合内:32,34,9, -5,-38,0有理数集合:_______________;无理数集合: _______________; 正数集合:__________________;负数集合:_________________.二.选择题11.与数轴上的点成一一对应关系的数是( )A. 有理数B. 整数C. 无理数D. 实数12.在下列四个图中,∠1与∠2是同位角的图是( )A. ①②B. ①③C. ②③D. ③④13.下列运算中,正确的是( )55-= B. 3.60.6-=- 2(13)13-= 366=±14.坐标平面上,在第三象限内有一点P ,且点P 到X 轴的距离是4,到Y 轴的距离是5,则点P 的坐标为() A. (-5,-4) B. (-4 ,5) C. (4,5) D. (5,-4)15.若点P(m+3,m+1) 在y 轴上,则点P 的坐标为( )A. (0,2)B. (2,0)C. (0,4)D. (0,-2)16.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A. 向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位17.下列命题中,是假命题的是( )A 两点之间,线段最短 B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等18.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A. 3个B. 2个C. 1个D. 0个19.把一张对面互相平行的纸条折成如图所示那样,EF 是折痕,若∠EFB=32°则下列结论正确的有( )(1)∠C ′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A. 1个B. 2个C. 3个D. 4个20.一个数的立方根是 4,这个数的平方根是 ( )A. 8B. -8C. 8 或 -8D. 4 或 -421.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A -3 B. -1 C. 1 D. -3或122.16平方根与-8的立方根的和是( )A. -4或6B. -6或2C. -2或6D. 4或623.下列各对数值中不是二元一次方程x +2y=2的解是( )A. 20x y =⎧⎨=⎩B. 22x y =-⎧⎨=⎩C. 01x y =⎧⎨=⎩D. 10x y =-⎧⎨=⎩ 24.已知a<b<0 , 则点A(a-b ,b )在第( )象限A. 一B. 二C. 三D. 四三.解答题25.求下列各式中的值(1)252x =36(2)-3=3826.解方程组25{437x y x y +=+=. 27.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?28.如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG的度数.29.根据下列证明过程填空:如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°( )∴BD∥EF ( )∴∠4=_____( )∵∠1=∠4∴∠1=_____( )∴DG∥BC( )∴∠ADG=∠C( )答案与解析一.填空题1.一个数的平方根等于它本身,这个数是_______;一个数的算术平方根等于它本身,这个数是_______;一个数的立方根等于它本身,这个数是___________.[答案](1). 0 (2). 0,1 (3). 0,1,-1[解析][分析]利用平方根,算术平方根,以及立方根定义判断即可.[详解]解:一个数的平方根等于它本身,这个数是0;一个数算术平方根等于它本身,这个数是0,1;一个数的立方根等于它本身,这个数是0,1,−1;故答案为:0;0,1;0,1,-1.[点睛]此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.2.如果一个数的两个平方根分别是a+3与2a-15,那么这个数是_______.[答案]49[解析][分析]根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.[详解]解:∵一个数的两个平方根分别是a+3与2a-15,∴(a+3)+(2a﹣15)=0,a=4,a+3=4+3=7,7的平方是49,∴这个数是49,故答案为:49.[点睛]此题考查平方根,解题关键在于求出a的值._________;(-14)2 的算术平方根是_________.[答案](1). (2). 1 4[解析] [分析]21()4-的值,再分别计算它们的算术平方根即可得解.[详解5=,5211()416-=,116的算术平方根是14,14.[点睛]本题主要考查了求一个数的平方及算术平方根,熟练掌握相关计算方法是解决本题的关键.4.若3x+是4的平方根,的立方根是1y-,则x y+=_________.[答案]-2或-6[解析]32x+==±,可得x=-1或-5;12y-==-,可得y=-1.所以x+y=-2或-6.5.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.6.如图,直线a∥b,点B在直线b上,AB BC⊥,若255∠=︒,则1∠=___度.[答案]35[解析]⊥[详解]试题分析:因为直线a∥b,根据同位角的知识可知,∠2等于∠3,因为AB BC ∠+∠=︒⇒∠=︒所以1390135点评:本题综合考查了对顶角,同旁内角互补等基本知识的运用7.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为____.[答案]165°[解析][分析]根据三角形的一个外角等于与它不相邻的两个内角的和求解即可.[详解]解:∵∠x为下边小三角形外角,∴∠x=30°+(180°-45°)=165°,故答案为:165°.[点睛]本题考查了三角形外角定理,通过三角板拼装来求角度数,将问题实际化.8.如图,已知直线a∥b,c∥d,∠1=115°,则∠2=__________,∠3=__________.[答案](1). 115°(2). 115°[解析]∵a∥b,∠1=115°,∴∠2=∠1=115°.∵c∥d,∴∠3=∠2=115°.点睛:本题考查了平行线的性质,①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.根据平行线的性质解答即可.9.120_____,小数部分是_____.[答案](1). 10 (2). 120[解析][分析]利用二次根式的估算,先找出离被开方数最近的两个完全平方数,得出二次根式所在的范围即可.[详解]100120121,∴120,12010,120,故答案为:10120.[点睛]本题主要考查的是二次根式的估算,掌握二次根式的估算方法是解题的关键.10.,34,,0 有理数集合:_______________;无理数集合: _______________;正数集合:__________________;负数集合:_________________.[答案] (1).34,0 (2). , (3). ,34 , [解析][分析]根据有理数、无理数、正负数的定义判断即可.[详解]解:有理数:340;,34负数:故答案为:有理数集合:340 ,34[点睛]本题考查实数的分类,其中0是有理数,但不是正数也不是负数.二.选择题11.与数轴上的点成一一对应关系的数是( )A. 有理数B. 整数C. 无理数D. 实数[答案]D[解析][分析]根据数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示进行回答.[详解]解:因为数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示,所以实数与数轴上的点成一一对应.故选:D .[点睛]此题考查实数与数轴,解题关键在于掌握其定义.12.在下列四个图中,∠1与∠2是同位角的图是( )A. ①②B. ①③C. ②③D. ③④[答案]B[解析][分析] 根据同位角的定义判断即可.[详解]由图可知①③中的∠1与∠2有公共边,为同位角,故选B.[点睛]此题主要考察同位角的定义.13.下列运算中,正确的是( ) A. 55-=- B. 3.60.6-=- C. 2(13)13-= D. 366=± [答案]C[解析][分析]根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.[详解]因为-5<0,故A 项的表达式无意义,故A 项错误;-0.36=-0.6,故B 2(13)-169,故C 366=,故D 项错误.故答案为C.[点睛]本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.坐标平面上,在第三象限内有一点P ,且点P 到X 轴的距离是4,到Y 轴的距离是5,则点P 的坐标为( )A. (-5,-4)B. (-4 ,5)C. (4,5)D. (5,-4) [答案]A[解析][分析]根据各象限内点的坐标特征,可得答案.[详解]解:由题意,得|y|=4,|x|=5,又∵在第三象限内有一点P,∴x=−5,y=−4,∴点P的坐标为(−5,−4),故选:A.[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).15.若点P(m+3,m+1) 在y轴上,则点P的坐标为()A. (0,2)B. (2,0)C. (0,4)D. (0,-2)[答案]D[解析][分析]根据点P在y轴上,即x=0,可得出m的值,从而得出点P的坐标.[详解]解:∵点P(m+3,m+1)在y轴上,∴x=0,∴m+3=0,解得m=−3,∴m+1=−3+1=-2,∴点P的坐标为(0,-2).故选:D.[点睛]本题考查平面直角坐标系中,坐标轴上的点的坐标的有关性质,解题关键在于得出m的值.16.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A. 向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位[答案]D[解析]分析]根据向下平移,纵坐标相减,横坐标不变解答.[详解]∵将三角形各点的纵坐标都减去3,横坐标保持不变,∴所得图形与原图形相比向下平移了3个单位.故选D.[点睛]本题考查了坐标与图形的变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.下列命题中,是假命题的是( )A. 两点之间,线段最短B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等[答案]B[解析][分析]根据线段、对顶角、补角、平行线的性质判断即可.[详解]A. 两点之间,线段最短是真命题;B. 如果两直线不平行,同旁内角不互补,所以同旁内角互补是假命题;C. 直角的补角仍然是直角是真命题;D. 对顶角相等是真命题;故选B[点睛]掌握线段、对顶角、补角、平行线的性质是解题的关键.18.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A. 3个B. 2个C. 1个D. 0个[答案]C[解析] ①由∠1=∠2,得到AD ∥BC ,不合题意;②由∠BAD=∠BCD ,不能判定出平行,不合题意;③由∠ABC=∠ADC 且∠3=∠4,得到∠ABC-∠4=∠ADC-∠3,即∠ABD=∠CDB ,得到AB ∥CD,符合题意;④由∠BAD+∠ABC=180°,得到AD ∥BC ,不合题意,则符合题意的只有1个,[点睛]本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.19.把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有( ) (1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.[详解]解:(1)∵AE∥BG,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE∥BG,∠EFB=32°,∴∠GEF=∠C′EF=32°,∴∠AEC=180°-32°-32°=116°,故本小题正确;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故选D.[点睛]本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.20.一个数的立方根是4,这个数的平方根是 ( )A. 8B. -8C. 8 或-8D. 4 或-4[答案]C因一个数的立方根是 4,可得这个数为64,64的平方根是±8,故选C. 21.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A. -3B. -1C. 1D. -3或1 [答案]D[解析][分析]根据平方根的性质列方程求解即可;[详解]当24=31m m --时,3m =-;当24310m m +=--时,1m =;故选:D.[点睛]本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.22.16的平方根与-8的立方根的和是( )A. -4或6B. -6或2C. -2或6D. 4或6 [答案]B[解析][分析]先求16的平方根,再求−8的立方根,然后求和.[详解]4,∴它们的和是−6或2,故选:B .[点睛]本题主要考查了平方根和立方根的定义,掌握知识点是解题关键.23.下列各对数值中不是二元一次方程x +2y=2的解是( )A. 20x y =⎧⎨=⎩B. 22x y =-⎧⎨=⎩C. 01x y =⎧⎨=⎩D. 10x y =-⎧⎨=⎩ [答案]D[解析][分析]将四个选项中的x 与y 的值代入已知方程检验,即可得到正确的选项.[详解]解:A、将x=2,y=0代入方程左边得:x+2y=2+2×0=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;B、将x=-2,y=2代入方程左边得:x+2y=-2+2×2=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;C、将x=0,y=1代入方程左边得:x+2y=0+1×2=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;D、将x=-1,y=0代入方程左边得:x+2y=-1+2×0=-1,右边为2,故本选项不是方程的解,符合题意,本选项正确;故选:D.[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.24.已知a<b<0 ,则点A(a-b,b )在第( )象限A. 一B. 二C. 三D. 四[答案]C[解析][分析]根据a<b<0,判断出a−b和b的取值范围,再根据点的坐标特点判断其所在象限.[详解]解:∵a<b<0,∴a−b<0,b<0,∴点A(a−b,b)第三象限,故选:C.[点睛]本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,−);第二象限(−,+);第三象限(−,−);第四象限(+,−).三.解答题25.求下列各式中的值(1)252x=36(2)-3=3 8[答案](1)x=65;(2)x=32[解析][分析](1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.[详解]解:(1)25x 2=36x 2=3625∴x=56±; (2)x 3−3=38x 3=278∴x=32. [点睛]本题考查了平方根与立方根的定义,理解相关定义是解决本题的关键,注意一个正数的平方根有两个,它们互为相反数,不要漏解.26.解方程组25{437x y x y +=+=. [答案]4{3x y ==-,;[解析] 解:①×3﹣②得,28x =,解得4x =.把4x =代入①得,85y +=,解得3y =-所以原方程组的解为4{ 3.x y ==-, 27.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?[答案]甲的速度是4千米/时,乙的速度是2千米/时.[解析][分析]设甲的速度是x 千米/时,乙的速度是y 千米/时,根据甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,可列方程组求解.[详解]设甲的速度是x 千米/小时,乙的速度是y 千米/小时,由题意,得6336x y x y +=⎧⎨-=⎩,解得:42 xy=⎧⎨=⎩.故甲的速度是4千米/时,乙的速度是2千米/时.[点睛]本题考查理解题意的能力,有两种情景,一种是相遇,一种是追及,根据两种情况列出方程组求解.28.如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG的度数.[答案]55︒[解析][分析]根据题意求出∠DOB,OG平分∠BOF,得∠BOG=∠FOG,等量代换即可求解.[详解]由题意知:CD⊥EF,∠AOE=70︒∵∠AOE+∠EOD+∠DOB= 180︒,∴∠DOB=20︒.又∵∠BOF和∠AOE是对顶角∴∠BOF=∠AOE=70︒.∵OG平分∠BOF,∠BOF=70︒∴∠BOG=∠FOG=35︒.∠DOG=∠DOB+∠BOG=55︒.[点睛]本题主要考查了角平分线的性质和对顶角相等,正确掌握角平分线的性质和对顶角相等是解题的关键.29.根据下列证明过程填空:如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°( )∴BD∥EF ( )∴∠4=_____( )∵∠1=∠4∴∠1=_____( )∴DG∥BC( )∴∠ADG=∠C( )[答案]答案见解析[解析][详解]解:∵BD⊥AC,EF⊥AC(已知),∴∠2=∠3=90°,∴BD∥EF(同位角相等,两直线平行),∴∠4=∠5(两直线平行,同位角相等);∵∠1=∠4(已知),∴∠1=∠5(等量代换),∴DG∥BC(内错角相等,两直线平行),∴∠ADG=∠C(两直线平行,同位角相等).[点睛]本题考查平行线的性质与判定,解决问题要熟悉平行线的性质和判定,能正确运用语言叙述理由,还要注意平行线的性质和判定的综合运用.。

江西省赣州市南康区2023-2024学年七年级下学期期中考试数学试卷(含答案)

江西省赣州市南康区2023-2024学年七年级下学期期中考试数学试卷(含答案)

2023—2024学年度第二学期期中联考试卷七年级数学一、选择题(本大题共6小题,每小题3分,共18分)1. 化简的结果是()A. B. 4 C. D. 2答案:B2. 下列图形中,由,能得到的是( )A. B.C. D.答案:D3. 将两把相同的直尺如图放置.若,则的度数等于()A. B. C. D.答案:D4. 下列命题中,①过直线外一点有且只有一条直线与已知直线平行;②不带根号的数一定是有理数;③垂直于同一条直线的两条直线互相平行;④内错角相等.真命题的个数是()A. 1B. 2C. 3D. 4答案:A5. 如图,每个小正方形的边长为2,剪一剪,并拼成一个大正方形,则这个大正方形的边长在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间答案:C6. 如图,在平面直角坐标系中,动点P从原点O出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点,…,按此作法进行下去,则点的坐标为()A. (1012,1012)B. (2011,2011)C. (2012,2012)D. (1011,1011)答案:A二、填空题(本大题共6小题,每小题3分,共18分)7. 写出一个比2大且比3小的无理数:______.答案:答案不唯一:如只要即可.8. 如图,现要在马路l上设立一个健康检测点为方便该村庄的居民参加体检,检测点最好设在C处,理由是______________.答案:垂线段最短9. 在平面直角坐标系中,已知点在y轴上,则a值是______.答案:110. 利用计算器,得,按此规律,可得的值约为_____________答案:22.3611. 一大门的栏杆如图所示,垂直地面于点A,平行于地面,则_____.答案:12. 如图,在正方形网格中有两个直角三角形,顶点都在格点上,把先横向平移x格,再纵向平移y 格,就能与拼合成一个四边形,那么_______.答案:4或5或6三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:.(2)求下列式中值:.答案:(1)(2)或解:(1)原式;(2),,∴,∴或.14. 已知一个正数的两个平方根分别是和,的相反数为.(1)求a,b的值;(2)求的立方根.答案:(1),(2)【小问1详解】解:一个正数的两个平方根分别是和,的相反数为,,,解得:,;【小问2详解】,,,,的立方方根为.15. 完成下面的证明:已知:如图,CD⊥AB,FG⊥AB,垂足分别为D、F,∠1=∠2.求证:DE∥BC.证明:∵CD⊥AB,FG⊥AB(已知),∴∠BDC=∠BFG=90°(垂直的定义),∴CD∥ ( )∴∠2=∠3( )又∵∠1=∠2(已知),∴∠1=∠3( ),∴DE∥ ( ).答案:GF,同位角相等,两直线平行;两直线平行,同位角相等;等量代换;BC,内错角相等,两直线平行证明:∵CD⊥AB,FG⊥AB(已知),∴∠BDC=∠BFG=90°(垂直的定义),∴CD∥GF(同位角相等,两直线平行)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DE∥BC(内错角相等,两直线平行).故答案为:GF,同位角相等,两直线平行;两直线平行,同位角相等;等量代换;BC,内错角相等,两直线平行.16. 如图,在网格中,每个小正方形边长为1个单位长度,我们把每个小正方形的顶点称为格点;,,均为格点;请按要求仅用一把无刻度的直尺作图.(1)在图1中,作(在下方),且为格点;(2)在图2中找一格点(在上方),画出三角形,使得.答案:(1)见详解(2)见详解【小问1详解】解:如下图所示,即为所求.【小问2详解】如下图所示,三角形即为所求..17. 已知点,解答下列各题.(1)点Q的坐标为,直线轴,求出点P的坐标;(2)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.答案:(1)(2)2025【小问1详解】点的坐标为,直线轴,,解得:,,点的坐标为;【小问2详解】点在第二象限,且它到轴、轴的距离相等,,解得:,.四、(本大题共3小题,每小题8分,共24分)18. 如图是一种躺椅及其结构示意图,扶手与底座都平行于地面,前支架与后支架分别与交于点G和点D,与交于点N,.(1)请对说明理由;(2)若平分,,求扶手与靠背的夹角的度数.答案:(1)详见解析(2)【小问1详解】理由如下:∵,∴,∴;【小问2详解】∵与底座都平行于地面,∴,∴,∵,∴,∵平分,∴,∴,∵,∴.19. 在平面直角坐标系中,给出如下定义:点到轴、轴的距离的较大值称为点的“长距”,点到轴、轴的距离相等时,称点为“完美点”.(1)点的“长距”为______;(2)若点是“完美点”,求的值;(3)若点的长距为4,且点在第二象限内,点的坐标为,试说明:点是“完美点”.答案:(1)5 (2)1或3(3)见详解【小问1详解】解:根据题意,得点到轴的距离为5,到轴的距离为3,∴点的“长距”为5.故答案:5;【小问2详解】∵点是“完美点”,∴,∴或,解得或;【小问3详解】解:∵点的长距为4,且点在第二象限内,∴,解得,∴,∴点的坐标为,∴点到轴、轴的距离都是5,∴点是“完美点”.20. 某市在招商引资期间,把土地出租给外地某投资商,该投资商为更好地利用土地,将土地的一部分从原来的正方形改建成的长方形,且其长、宽的比为.(1)求原来正方形场地的周长;(2)如果把原来正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.答案:(1)28(2)够用,理由见详解【小问1详解】解:∵原来正方形场地的面积为,∴原来正方形场地的边长为,∴原来正方形场地的周长为;【小问2详解】解:这些铁栅栏够用,理由如下:设新长方形场地的长和宽分别为,,由题意得,∴(负值舍去),∴新长方形场地的长和宽分别为,,∴新长方形场地的周长为,∵,∴,∴这些铁栅栏够用.五、(本大题共2小题,每小题9分,共18分)21. 有一个数值转换器.原理如图.(1)当输入的为25时,输出的______;(2)是否存在输入有效的值后,始终输不出值?如果存在.请写出所有满足要求的的值;如果不存在,请说明理由;(3)小明输入数据,在转换器运行程序时,屏幕显示“该操作无法运行”,请你推算输入的数据可能是什么情况?请说明理由;(4)若输出的是,试判断输入的值是否唯一?若不唯一,请写出其中的3个不同的值.答案:(1)(2)0和1 (3)输入的数据可能是负数,理由见详解(4)3,9,81【小问1详解】解:当时,,是无理数,∴输出的.故答案为:;【小问2详解】当或1时,始终输不出值,因为0,1的算术平方根是0,1,一定是有理数,所以,始终输不出值;【小问3详解】∵负数没有算术平方根,∴输入的数据可能是负数;【小问4详解】81的算术平方根是9,9的算术平方根是3,3的算术平方根是,故输入的值不唯一,例如3,9,81.22. 【学科融合】射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,是平面镜,若入射光线与水平镜面夹角为,反射光线与水平镜面夹角为,则.【应用探究】有两块平面镜,,入射光线经过两次反射,得到反射光线.(1)如图2,有两块平面镜,,且,入射光线经过两次反射,得到反射光线.求证.(补充:三角形内角和为)(2)如图3,光线与相交于点,若,求的度数.【深入思考】(3)如图4,有两块平面镜,,且,入射光线经过两次反射,得到反射光线,光线与所在的直线相交于点,,与之间满足的等量关系是______.(直接写出结果)答案:(1)见详解(2)(3)解析:(1)证明:∵,∴,∴,∵,,∴,∴,∴;(2)解:∵,∴,∵,,∴,∴;(3)∵,,,∴,∴.六、(本大题共12分)23. 如图,在平面直角坐标系中,点,且满足,点从点出发沿轴正方向以每秒2个单位长度的速度匀速移动,点从点出发沿轴负方向以每秒1个单位长度的速度匀速移动.(1)点的坐标为__________,和位置关系是__________;(2)当分别是线段上时,连接,使,求出点的坐标;(3)在的运动过程中,当时,请探究和的数量关系,并说明理由.答案:(1)(2)(3)或,理由见详解【小问1详解】解:故答案为:;【小问2详解】过点作于,设时间经过秒,,则,,∴∵∴,∵∴解得,∴∴∴点的坐标为;【小问3详解】解:或,理由如下:①当点在点的上方时,过点作,如图2所示,∴∵∴∴∴∴,即;②当点在点的下方时;过点作,如图3所示,∴∵∴∴∴∴即.综上所述,或.。

山东省烟台市龙口市2023-2024学年七年级下学期期中考试数学试卷(含答案)

山东省烟台市龙口市2023-2024学年七年级下学期期中考试数学试卷(含答案)

2023—2024学年第二学期期中阶段性测试初二数学试题(120分钟)注意事项:1.答题前,请务必将自己的学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.答选择题时,必须使用2B铅笔填涂答题卡上相应题目的正确答案字母代号,如需改动,用橡皮擦干净后,再选涂其他答案.3.答非选择题时,必须使用0.5毫米黑色签字笔书写;做图、添加辅助线时,必须用2B铅笔.4.保证答题卡清洁、完整.严禁折叠、严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修正带.5.请在题号所指示的答题区域内作答,写在试卷上或答题卡指定区域外的答案无效.一、书写与卷面(3分)书写规范卷面整洁二、选择题(本题共10个小题,每小题3分,满分30分)每小题有且只有一个正确答案,请把正确答案的字母代号涂在答题卡上1. 下列是二元一次方程的是( )A. B. C. D.答案:A2. 下列语句所描述的事件中,是不可能事件的是( )A. 一岁一枯荣B. 黄河入海流C. 明月松间照D. 白发三千丈答案:D3. 如图,下列选项不能判断的是()A. B. C. D.4. 下列选项中,可以用来说明命题“若,则”是假命题的反例是( )A. B. C. D.答案:C5. 已知有理数,满足方程组,则的值为()A. B. 0 C. 1 D. 2答案:A6. 在不透明布袋中装有除颜色外完全相同的红、白玻璃球,已知白球有6个.同学们通过多次试验后发现摸到红色球的频率稳定在0.25左右,则袋中红球个数可能为()A. 1B. 2C. 3D. 4答案:B7. 某市区今年共购买了13辆电动清洁能车,至少在同一个月购买车的辆数为()A. 1B. 2C. 3D. 4答案:B8. 如图,与的边,相交,则与的数量关系为()A. B.C D. 无法确定答案:C9. 如图,在中,是角平分线,,,的度数为()A. B. C. D.10. 如图,直线和直线相交于点,则方程组的解是( )A. B. C. D.答案:A三、填空题(本大题共6个小题,每小题3分,满分18分)11. 已知方程,适用含 x 的代数式表示 y ,则____.答案:12. 将命题“同角的补角相等”改写成“如果……,那么……”的形式为_________________.答案:如果两个角是同一个角的补角,那么这两个角相等.13. 如图,有一块含有45°角的直角三角板两个顶点放在直尺对边上,如果∠1=20°,那么∠2的度数是_____.答案:25°14. 如图,三根同样的绳子、、穿过一块木板,姐妹两人分别站在木板的左、右两侧,每次各自选取本侧的一根绳子,每根绳子被选中的机会相等,若姐姐在左侧随机选中绳子,则妹妹在右侧随机恰好选中绳子的概率为__________.答案:15. 方程组的解为,则被遮盖的■表示的数为___________.答案:16. 我国古代数学著作《九章算术》有一道关于买田的问题:“今有善田一亩,价三百;恶田一亩,价五十.今并买顷,价钱一万,问善田恶田各几何?”其意思是“好田300钱一亩,坏田50钱一亩,合买好田、坏田100亩,共需10000钱,问好田、坏田各买了多少亩?”设好田买了x亩,坏田买了y亩,可列方程组为_______ .答案:四、解答题(本大题共9个小题,满分69分)17. 解方程组:(1);(2).答案:(1)(2)【小问1详解】解:把①代入②,得,解得.将代入①,得,∴原方程组的解为【小问2详解】①+②,得,解得.将代入①,得,解得.∴原方程组的解为18. 若关于x,y的方程组的一个解为,求k的值.答案:解:,把代入②可得,,解得:,把,代入①可得,,,解得:,的值为1.19. 在某次主题班会课上的一个抢答环节中,为了吸引同学,班长设立了一个可以自由转动的转盘(如图所示),并规定:每答对1道题的同学,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄或绿色区域,该同学就可以分别获得一等奖、二等奖、三等奖的奖品(转盘被等分成20个扇形).(1)甲同学参与了抢答环节并答对了1道题,求他获得奖品的概率;(2)在原转盘的基础上将空白扇形涂色来增大三等奖的获奖概率,且使得每次转动转盘获奖的概率为,则需要再将几个空白扇形涂成绿色答案:(1)(2)7【小问1详解】解:由题意可知,指针正好对准红、黄或绿色区域,其中红色区域1个,黄色区域2个,绿色区域4个,该同学就可以分别获得一等奖、二等奖、三等奖的奖品(转盘被等分成20个扇形),∴他获得奖品的概率为;【小问2详解】解:由题意可得,,答:需要再将7个空白扇形涂成绿色.20. 如图,已知,,求证:.下面是小明同学不完整的证明过程,请你在横线上补充完整,并在括号里填上每一步的推理依据.证明:∵(已知),∴_________,∵(_________),∴(_________),∴(_________),∴_________(两直线平行,同旁内角互补),∵(_________),∴(_________).答案:;已知;等量代换;同位角相等,两直线平行;;对顶角相等;等量代换证明:∵(已知),∴,∵(已知),∴(等量代换),∴(同位角相等,两直线平行),∴(两直线平行,同旁内角互补),∵(对顶角相等),∴(等量代换).故答案为:;已知;等量代换;同位角相等,两直线平行;;对顶角相等;等量代换.21. 在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是.(1)求任意摸出一个球是黑球的概率;(2)小明从盒子里取出个白球(其他颜色球的数量没有改变),使得从盒子里任意摸出一个球是红球的概率为,请求出的值.答案:(1)(2)3【小问1详解】解:球的总数(个),黑球个数(个),∴任意摸出一个球是黑球的概率为;【小问2详解】由题意得:,解得,经检验:是方程的解,∴m的值为3.22. 如图,C,E分别在,上,小明想知道和是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接,再找出的中点O,然后连接并延长与直线相交于点B,经过测量,他发现,因此他得出结论:和互补,请写出证明过程.答案:见解析证明:是的中点,.,,...和互补.23. 如图,直线分别与x轴、y轴交于点,.直线分别与x轴、y轴交于点,,与直线交于点E.求四边形的面积.答案:解:设直线的函数表达式为,将点,代入得:,解得:,∴直线的函数表达式为,设直线的函数表达式为,将点,代入得:,解得:,∴直线的函数表达式为,联立得,解得:,∴,∴.24. 如图,,分别平分和.(1)如果,,请直接写出的度数;(2)判断,,三者之间有何等量关系?请写出证明过程.答案:(1)(2),证明见解析.【小问1详解】解:∵,分别平分和,∴,,∵,,∴,,∴,即,∵,∴.【小问2详解】证明:∵,分别平分和,∴,,∵,,∴,,∴,即25. 某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.[毛利润=(售价﹣进价)×销售量]A B进价(万元/套) 1.5 1.2售价(万元/套 1.65 1.4(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)现商场决定再用30万同时购进A,B两种设备,共有哪几种进货方案?答案:(1)购进A品牌的教学设备20套,购进B品牌的教学设备30套(2)有4种方案,方案见解析【小问1详解】解:设购进A品牌的教学设备x套,购进B品牌的教学设备y套,得,,解得,,经检验,符合题意,答:购进A品牌的教学设备20套,购进B品牌的教学设备30套;【小问2详解】设再用30万购进A品牌的教学设备a套,购进B品牌的教学设备b套,由题意得,,∵a,b均为正整数,∴此方程的解为:,或,或,或,综上所述,有4种方案:①购进A品牌教学设备4套,购进B品牌的教学设备20套;②购进A品牌的教学设备8套,购进B品牌的教学设备15套;③购进A品牌的教学设备12套,购进B品牌的教学设备10套;④购进A品牌的教学设备16套,购进B品牌的教学设备5套.。

人教版数学七年级下册《期中检测试题》及答案

人教版数学七年级下册《期中检测试题》及答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列方程中,一元一次方程共有( )个.①4x-3=5x-2;②131x x +=;③3x-4y=5;④311045x -+=;⑤x²+3x+1=0;⑥x-1=12 A. 5B. 2C. 3D. 4 2.方程123x x -+=的解是( ) A. 13 B. 13- C. 1 D. -13.下列各式变形正确的是( )A 由1233x y -=得2x y = B. 由3222x x -=+得 4x =C. 由233x x -=得3x =D. 由357x -=得375x =- 4.下列不等式一定成立的是( )A. 54a a >B. 23x x +<+C. 2a a ->-D. 42a a > 5.若关于x 的方程2x-4=3m 的解满足方程x+2=m ,则m 的值为( )A. 10B. 8C. -10D. -86.若-72a 2b 3与101a x+1b x+y 是同类项,则x.y 的值为( )A. x=1y=3⎧⎨⎩B. x=2y=2⎧⎨⎩C. x=1y=2⎧⎨⎩D. x=2y=3⎧⎨⎩7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A. 95元B. 90元C. 85元D. 80元8.下列说法中,错误的是( )A. 不等式x <2的正整数解中有一个B. -2是不等式2x-1<0的一个解C. 不等式-3x >9的解集是x >-3D. 不等式x <10的整数解有无数个9. 不等式-3x+6>0的正整数解有( ).A. 1个B. 2个C. 3个D. 无数多个10.解方程21101136x x ++-=时,去分母正确的是( ) A. 421016x x +-+= B. 421011x x +--=C. 421016x x +--=D. 411011x x +-+= 11.如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( )A. B. C. D. 12.不等式()22m x ->解集是22x m <-那么( ) A. 2m < B. 2m >C. 0m >D. 0m < 13.古题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空”那么有_______间房,有_____位客人.( )A. 9,72B. 8,63C. 2,16D. 2,17 14.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是( )A. 11岁B. 12岁C. 13岁D. 14岁15.方程2x-3y=7,用含x 的代数式表示y 为( )A. 72x y 3-=B. 2x 7y 3-=C. 73y x 2+=D. 73y x 2-= 16.若4x-3y=0且x≠0,y≠0,则4543x y x y-+的值为( ) A. 131 B. 13- C. 14- D. 3217.在等式y kx b =+中,当2x =时,4y =-;当2x =-时,8y =,则这个等式是( )A. 32y x =+B. 32y x =-+C. 32y x =-D. 32y x =-- 18.复兴中学七年级(1)班学生参加植树活动,一部分学生抬土,另一部分学生担土.已知全班共用土筐 59 个,扁担 36 个,求抬土、担土学生各多少人?如果设抬土的学生 x 人,担土的学生 y 人,则可得方程组( )A. 2()592362y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩B. 2592362x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C. 2592236x y x y ⎧+=⎪⎨⎪+=⎩D. 259236x y x y +=⎧⎨+=⎩ 二.填空题19.据花都气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t (℃)的范围是_________20.若方程kx -12=2的解是x=2,则k=________ 21.已知□x -2y=8中,x 的系数已经模糊不清(用“□”表示),但已知21x y =⎧⎨=⎩是这个方程的一个解,则□表示的数为___22.m 取整数值_______时,方程组2441x my x y +=⎧⎨+=⎩的解x 和y 都是整数 23.某省今年高考招生17万人,比去年增加了18%,设该省去年招生x 万人,则可以列方程 ________ . 24.当x=_____时,代数式4x+2与3x ﹣9的值互为相反数. 25.125,2x x -==___________ 三.解答题26.用适当方法解下列方程或方程组:(1)5-x=18(2)4x+3=2(x-1)+1(3)0.3210.30.4x x -=- (4)22314m n m n =+⎧⎨+=⎩(5)37235x y x y +=⎧⎨-=⎩ 27.(1)解不等式并把解集在数轴上表示.①2132x x -<+②3136x x -≥- (2)求不等式5412x -<1的非正整数解.28.已知xyz≠0,且4360270 x y zx y z--=⎧⎨+-=⎩.(1)用含z的代数式表示x,y;(2)求23657x y zx y z+-++值29.已知方程组340x yx y k-=⎧⎨++=⎩的解也是方程3x-5y = 5的解,求k的值30.在解方程组51044ax yx by+=⎧⎨-=-⎩时,由于粗心,甲看错了方程组中的,而得解为31xy=-⎧⎨=-⎩,乙.看错了方程组中的,而得解为54 xy=⎧⎨=⎩.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.31.一个工程队原定在10天内至少要挖掘600m3的土方,在前两天共完成了120m3后,又要求提前2天完成挖掘任务,问以后几天内,平均每天至少要挖掘多少土方?(用不等式解答)32.一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度(用方程或方程组解答)33.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种工作服150套,按这样的生产进度,在客户要求的期限内只能完成订货量的45;现在工厂改进了人员结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求要订做的工作服是多少套,要求的期限是多少天.答案与解析一.选择题1.下列方程中,一元一次方程共有()个.①4x-3=5x-2;②131xx+=;③3x-4y=5;④31145x-+=;⑤x²+3x+1=0;⑥x-1=12A. 5B. 2C. 3D. 4 [答案]C[解析][分析]根据一元一次方程的定义,分别进行判断,即可得到答案.[详解]解:①属于一元一次方程,符合题意;②属于分式方程,不符合题意;③属于二元一次方程,不符合题意;④属于一元一次方程,符合题意;⑤属于一元二次方程,不符合题意;⑥属于一元一次方程,符合题意;∴是一元一次方程共有3个;故选:C.[点睛]本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.2.方程123x x-+=的解是( )A. 13B.13- C. 1 D. -1[答案]B[解析][分析]方程去分母,移项合并,将x系数化为1,即可求出解.[详解]解:去分母得:-1+3x=6x,移项合并得:3x=-1,解得:x=1 3 -.故选B.[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解. 3.下列各式变形正确的是( )A. 由1233x y -=得2x y =B. 由3222x x -=+得 4x =C. 由233x x -=得3x =D. 由357x -=得375x =- [答案]B[解析][分析]A 同时乘3,再移项即可,B 移项化简即可,C 移项化简即可,D 移项即可.[详解]A 、得x=-2y ,错误;B 、正确;C 、x=-3,错误;D 、3x=7+5,错误,所以答案选择B 项.[点睛]本题考察了等式的移项和化简,熟练掌握是解决本题的关键.4.下列不等式一定成立的是( )A. 54a a >B. 23x x +<+C. 2a a ->-D. 42a a > [答案]B[解析][详解]A 、因为5>4,不等式两边同乘以a ,而a≤0时,不等号方向改变,即5a≤4a ,故错误;B 、因为2<3,不等式两边同时加上x ,不等号方向不变,即x+2<x+3正确;C 、因为﹣1>﹣2,不等式两边同乘以a ,当a≤0时,不等号方向改变,即﹣a≤﹣2a ,故错误;D 、因为4>2,不等式两边同除以a ,当a≤0时,不等号方向改变,即42a a≤,故错误. 故选B .[点睛]本题考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.若关于x 的方程2x-4=3m 的解满足方程x+2=m ,则m 的值为( )A. 10B. 8C. -10D. -8[答案]D[解析][分析]解出第一个方程的解代入第二个方程可得关于m 的一元一次方程,解出即可得出m 的值.[详解]解:由题意得:2x−4=3m ,解得:x =342m +, ∵此解满足方程x +2=m , ∴342m ++2=m ,解得:m =−8. 故选:D .[点睛]本题考查同解方程的知识,在解答此题时关键要将m 看作常数得出x 的值,然后再求解m 的值. 6.若-72a 2b 3与101a x+1b x+y 是同类项,则x.y 的值为( )A. x=1y=3⎧⎨⎩B. x=2y=2⎧⎨⎩C. x=1y=2⎧⎨⎩D. x=2y=3⎧⎨⎩[答案]C[解析][分析]根据同类项的定义可知x+1=2,x+y=3,求出x 、y 的值即可解答.[详解]解:根据题意得12,3x x y +=⎧⎨+=⎩ 解得1.2x y =⎧⎨=⎩故选:C .[点睛]本题考查了同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A. 95元B. 90元C. 85元D. 80元[答案]B[解析]解:设商品的进价为x 元,则:x (1+20%)=120×0.9,解得:x =90.故选B .点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.8.下列说法中,错误是( )A. 不等式x <2的正整数解中有一个B. -2是不等式2x-1<0的一个解C. 不等式-3x >9的解集是x >-3D. 不等式x <10的整数解有无数个 [答案]C[解析][分析]由不等式整数解的知识,即可判定A 与D ,解不等式求得B ,C 的解集,可判断B ,C ,从而可得答案.[详解]解:A 、不等式x <2的正整数解只有1,故A 正确;B 、2x-1<0的解集为x <12,所以-2是不等式2x-1<0的一个解,故B 正确; C 、不等式-3x >9的解集是x <-3,故C 错误;D 、不等式x <10的整数解有无数个,故D 正确.该题选择错误的,故选:C .[点睛]此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.9. 不等式-3x+6>0的正整数解有( ).A. 1个B. 2个C. 3个D. 无数多个 [答案]A[解析]试题分析:解不等式得到x <2,所以x 可取的正整数只有1.故选A .考点:不等式的解法.10.解方程21101136x x ++-=时,去分母正确的是( ) A. 421016x x +-+= B. 421011x x +--=C. 421016x x +--=D. 411011x x +-+= [答案]C[解析][分析]两边同乘分母的最小公倍数.[详解]解:方程两边同乘分母的最小公倍数6得:()()2211016x x +-+=即421016x x +--=,故选C .[点睛]本题考查解方程中的变形.11.如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( )A.B. C. D.[答案]C[解析][分析] 根据跷跷板示意图列出不等式,表示在数轴上即可.[详解]解:根据题意得:50kg <甲的体重<60kg , 表示在数轴上为, 故选:C .[点睛]此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 12.不等式()22m x ->的解集是22x m <-那么( ) A. 2m <B. 2m >C. 0m >D. 0m < [答案]A[解析][分析]在不等式两边都除以2m -后,不等号的方向改变了,可得到20,m -<从而可得答案.[详解]解: ()22m x ->的解集是22x m <-, 在不等式的两边都除以:2m -,不等号的方向发生了改变,20,m ∴-<2,m ∴<故选A .[点睛]本题考查的是不等式的基本性质以及解不等式,掌握以上知识是解题的关键.13.古题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空”那么有_______间房,有_____位客人.( )A. 9,72B. 8,63C. 2,16D. 2,17[答案]B[解析][分析]本题中的等量关系为:7×客房数+7=客人总数;(客房数-1)×9=客人数,据此可列方程组求解.[详解]解:设有x 间房,y 位客人, 则 77,9(1)x y x y +=⎧⎨-=⎩解得8,63x y =⎧⎨=⎩ 答:有8间房,63位客人.故选B .[点睛]二元一次方程组解答实际问题,找准等量关系是关键.14.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是( )A. 11岁B. 12岁C. 13岁D. 14岁 [答案]B[解析][分析]设现在孙子的年龄是x ,则爷爷现在的年龄是5x .12年后爷爷的年龄是5x+12,孙子的年龄是12+x ,根据题目中的相等关系列出方程求解.[详解]解:设现在孙子的年龄是x 岁,根据题意得5x+12=3(12+x ),解得x=12,即现在孙子的年龄是12岁.故选B .[点睛]本题考查一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.15.方程2x-3y=7,用含x 的代数式表示y 为( ) A. 72x y 3-= B. 2x 7y 3-= C. 73y x 2+= D. 73y x 2-= [答案]B[解析]移项,得-3y=7-2x,系数化为1,得723x y -=-,即273x y -=. 故选B.16.若4x-3y=0且x≠0,y≠0,则4543x y x y-+的值为( ) A. 131 B. 13- C. 14- D. 32[答案]B[解析][分析]由4x-3y=0得4x=3y ,代入所求的式子化简即可.[详解]解:由4x-3y=0,得4x=3y ,∴ 453521.433363x y y y y x y y y y ---===-++ 故选:B .[点睛]解题关键是用到了整体代入的思想,注意:利用分式的性质变形时,所乘的(或所除的)整式不为零. 17.在等式y kx b =+中,当2x =时,4y =-;当2x =-时,8y =,则这个等式是( )A. 32y x =+B. 32y x =-+C. 32y x =-D. 32y x =--[答案]B[解析][分析]分别把当2x =时,4y =-;当2x =-时,8y =代入等式y kx b =+,得到关于k 、b 的二元一次方程组,求出k 、b 的值即可.[详解]解:分别把当2x =时,4y =-;当2x =-时,8y =代入等式y kx b =+,得4282k b k b -=+⎧⎨=-+⎩①②,①+②,得2b =4,解得b =2, 把b =2代入①,得-4=2k +2,解得k =-3,把k =-3,b =2代入等式y kx b =+,得32y x =-+.故选B.[点睛]本题主要考查了二元一次方程组的解法,理解题意,熟练解法是解题的关键.18.复兴中学七年级(1)班学生参加植树活动,一部分学生抬土,另一部分学生担土.已知全班共用土筐 59 个,扁担 36 个,求抬土、担土学生各多少人?如果设抬土的学生 x 人,担土的学生 y 人,则可得方程组( ) A. 2()592362y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩ B. 2592362x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ C. 2592236x y x y ⎧+=⎪⎨⎪+=⎩ D. 259236x y x y +=⎧⎨+=⎩ [答案]B[解析][分析] 根据题意可以列出相应的方程组,本题得以解决.[详解]解:由题意可得,2592362x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 故选B.[点睛]本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.二.填空题19.据花都气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t (℃)的范围是_________[答案]17≤t≤25[解析][分析]读懂题意,找到最高气温和最低气温即可.[详解]解:因为最低气温是17℃,所以17≤t,最高气温是25℃,t≤25,则今天气温t(℃)的范围是17≤t≤25.故答案为:17≤t≤25.[点睛]解答此题要知道,t包括17℃和25℃,符号是≤,≥.20.若方程kx-12=2的解是x=2,则k=________[答案]5 4[解析] [分析]由于方程122kx-=的解是x=2,那么x=2一定满足方程,所以代入已知方程即可得到关于k的方程,然后解此方程就可以求出k的值.[详解]解:∵方程kx-12=2的解是x=2,∴2k-12=2,∴k=54.故填空答案:54.[点睛]本题求k思路是根据方程的解的定义,可把方程的已知解代入方程的中,使未知数转化为已知数,从而建立起未知系数的方程,通过解未知系数的方程即可求出未知数系数.21.已知□x-2y=8中,x的系数已经模糊不清(用“□”表示),但已知21xy=⎧⎨=⎩是这个方程的一个解,则□表示的数为___ [答案]5 [解析] [分析]设a=□,即方程为ax-2y=8,把21xy=⎧⎨=⎩代入方程,得到一个含有未知数的一元一次方程,从而可以求出a的值.[详解]解:设a=□,即方程为ax-2y=8,把方程的解21xy=⎧⎨=⎩代入方程ax-2y=8,得2a-2=8,解得a=5.即□表示的数为5.故答案为5.[点睛]本题考查的是方程的解的含义,解题关键是把方程的解代入原方程,把关于x 和y 的方程转化为关于□的一元一次方程,求解即可.22.m 取整数值_______时,方程组2441x my x y +=⎧⎨+=⎩的解x 和y 都是整数 [答案]6,7,9,10[解析][分析]首先解方程组,利用m 表示出x ,y 的值,然后根据x 、y 都是整数即可求得m 的值.[详解]解:解方程组得: 168,28m x m y m -⎧=⎪⎪-⎨⎪=⎪-⎩当y 是整数时,m-8=±1或±2,解得:m=7或9或6或10.当m=7时,x=9;当m=9时,x=-7;当m=6时,x=5;当m=10时,x=-3.故m=7或9或6或10.故答案是:7或9或6或10.[点睛]本题考查了二元一次方程组的解,正确解关于m 的方程组是关键.23.某省今年高考招生17万人,比去年增加了18%,设该省去年招生x 万人,则可以列方程 ________ .[答案]x(1+18%)=17[解析][分析]根据某省今年高考招生比去年增加了18%,可用含x 的代数式表示出今年的招生,继而可得出方程.[详解]解:由题意得,今年的招生人数为x (1+18%),故可得方程:x (1+18%)=17.故答案为:x (1+18%)=17.[点睛]此题考查了由实际问题抽象一元一次方程的知识,属于基础题,关键是表示出今年的招生人数. 24.当x=_____时,代数式4x+2与3x ﹣9的值互为相反数.[答案]1[解析][分析]因为相反数的两个数之和是0,那么(4x+2)+(3x-9)=0.[详解]解:根据题意得(4x+2)+(3x-9)=0化简得:4x+2+3x-9=0解得:x=1故答案为:1. 25.125,2x x -==___________ [答案]94或114 [解析][分析]由绝对值的含义,把方程转化为不含绝对值符号的一元一次方程,求解一元一次方程即可.[详解]解:125,2x -= 1252x ∴-=或 125,2x -=- 解得:114x =或9.4x = 故答案为:94或114 [点睛]本题考查的是绝对值方程,利用绝对值的含义把绝对值方程转化为不含绝对值符号的一元一次方程是解题的关键.三.解答题26.用适当的方法解下列方程或方程组:(1)5-x=18(2)4x+3=2(x-1)+1(3)0.3210.30.4x x -=-(4)22314m n m n =+⎧⎨+=⎩(5)37235x y x y +=⎧⎨-=⎩ [答案](1)x=-13;(2)x=-2;(3)1255x =;(4)42m n =⎧⎨=⎩;(5)41x y =⎧⎨=⎩[解析][分析](1)直接移项、化系数为1即可解答;(2)先去括号,移项,合并同类项,再化系数为1即可;(3)先去分母、移项、合并同类项、化系数为1即可;(4)利用代入消元法即可解答;(5)利用加减消元法即可解答.[详解]解:(1)5-x=18-x=18-5x=-13;(2)4x+3=2(x-1)+14x+3=2x-2+12x=-1-3x=-2;(3)0.3210.30.4x x -=- 32010134x x -=- 12803012x x -=-11024x -=-1255x = (4)22314m n m n =+⎧⎨+=⎩将m=2+n 代入2m+3n=14得:2(2+n)+3n=14,解得n=2,将n=2代入m=2+n 得m=4,所以原方程组解为:42m n =⎧⎨=⎩; (5)37235x y x y +=⎧⎨-=⎩①②①+②得3x=12,解得x=4,将x=4代入x+3y=7中得:4+3y=7,解得y=1,∴原方程组的解为:41x y =⎧⎨=⎩ [点睛]本题考查了一元一次方程和二元一次方程组的解法,解题的关键是掌握基本的解法. 27.(1)解不等式并把解集在数轴上表示.①2132x x -<+② 3136x x -≥- (2)求不等式5412x -<1的非正整数解. [答案](1)①x>-3,数轴见详解;② x≥3;数轴见详解;(2)-1,0[解析][分析](1)①先求出不等式的解集,然后把解集表示在数轴上即可;②先求出不等式的解集,然后把解集表示在数轴上即可;(2)先求出不等式的解集,然后得到非正整数解即可;[详解]解:(1)①2132x x -<+,∴3x -<,∴3x >-;数轴如下:②3136x x -≥-, ∴263x x ≥-+,∴39x ≥,∴3x ≥;数轴如下:(2)54112x -<, ∴5412x -<, ∴74x >-, ∴不等式的非正整数解有、0;[点睛]此题考查了一元一次不等式的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.已知xyz≠0,且4360270x y z x y z --=⎧⎨+-=⎩. (1)用含z 代数式表示x ,y ;(2)求23657x y z x y z+-++的值 [答案](1)32x z y z=⎧⎨=⎩;(2)310 [解析][分析](1)由加减消元法解方程组,消去x 和y ,即可得到答案;(2)由(1)的结论,代入计算,即可得到答案. [详解]解:(1)4360270x y z x y z --=⎧⎨+-=⎩①② 由②4⨯-①,得:11220y z -=,∴2y z =;把2y z =代入②,得470x z z +-=,∴3x z =;∴32x z y z=⎧⎨=⎩;236(2)576663107620310x y zx y zz z z z z z z z+-+++-=++== [点睛]本题考查了解二元一次方程组,求代数式的值,解题的关键是熟练掌握加减消元法解方程组. 29.已知方程组340x y x y k -=⎧⎨++=⎩的解也是方程3x -5y = 5的解,求k 的值 [答案]22k =-[解析][分析]先把方程x−y =3与3x−5y =5联立,求出x 、y 的值,再代入方程4x +y +k =0中即可求出k 的值. [详解]把方程x−y =3与3x−5y =5联立得,3355x y x y -⎧⎨-⎩=①=②, ①×3−②得,y =2,代入①得,x =5,把x =5,y =2代入方程4x +y +k =0,得4×5+2+k =0, 解得k =−22.[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组两方程成立的未知数的值. 30.在解方程组51044ax y x by +=⎧⎨-=-⎩时,由于粗心,甲看错了方程组中的,而得解为31x y =-⎧⎨=-⎩,乙.看错了方程组中的,而得解为54x y =⎧⎨=⎩. (1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.[答案](1)看成-5,看成6;(2)158x y =⎧⎨=⎩[解析][分析](1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a 、b ,然后用适当的方法解方程组.[详解](1)把31x y =-⎧⎨=-⎩代入51044ax y x by +=⎧⎨-=-⎩中得: 3510124a b --⎧⎨-+-⎩== ,解得:58a b -⎧⎨⎩==, 再把54x y =⎧⎨=⎩代入51044ax y x by +=⎧⎨-=-⎩中得: 520102044a b +⎧⎨--⎩== ,解得:26a b ==-⎧⎨⎩, 所以甲把a 看成-5;乙把b 看成6;(2)∵正确的a 是-2,b 是8,∴方程组为:2510484x y x y -+⎧⎨--⎩== , ∴158x y =⎧⎨=⎩, 即原方程的解为158x y =⎧⎨=⎩. [点睛]考查的是解二元一次方程组、二元一次方程组的解,掌握二元一次方程组的解法是解题的关键. 31.一个工程队原定在10天内至少要挖掘600m 3的土方,在前两天共完成了120m 3后,又要求提前2天完成挖掘任务,问以后几天内,平均每天至少要挖掘多少土方?(用不等式解答)[答案]平均每天至少挖80立方米[解析][分析]设平均每天挖x 立方米,根据题目意思列出不等式求解即可得出结果.[详解]解:设平均每天挖x 立方米,由题意得:120+x(10-2-2)≥600x≥80答:平均每天至少挖80立方米.[点睛]本题主要考查的是一元一次不等式的应用,根据题目意思列出不等式是解题的关键.32.一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度(用方程或方程组解答)[答案]速度为10千米每小时,水流的速度2千米每小时[解析][分析]设船在静水中的速度为x 千米/小时,水流的速度为y 千米/小时,根据船顺水行驶36千米和逆水行驶24千米的时间都是3小时,列方程组求解.[详解]解:船在静水中的速度为x 千米每小时,水流的速度千米每小时,由题意得3()363()24x y x y +=⎧⎨-=⎩, 解方程组,得:102x y =⎧⎨=⎩; 答:船在静水中的速度为10千米每小时与水流的速度2千米每小时.[点睛]本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.33.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种工作服150套,按这样的生产进度,在客户要求的期限内只能完成订货量的45;现在工厂改进了人员结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求要订做的工作服是多少套,要求的期限是多少天.[答案]要订做的工作服是3375套,要求的期限是18天.[解析][分析]设订做的工作服是x 套,要求的期限是y 天,根据题意所述等量关系可得出方程组,解出即可.[详解]设要订做的工作服是x 套,要求的期限是y 天, 由题意得41505200(-1)25y x y x ⎧=⎪⎨⎪=+⎩, 解得337518x y =⎧⎨=⎩, 答:要订做的工作服是3375套,要求的期限是18天.[点睛]本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据等量关系得出方程组.。

人教版数学七年级下册《期中检测题》含答案解析

人教版数学七年级下册《期中检测题》含答案解析

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共12小题,每小题3分,共36分)1. 在平面直角坐标系中,点P(2,﹣3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如图所示,点P到直线l距离是( )A. 线段PA的长度B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度3. 下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.4. 下列各数中,不是无理数的是()A. 7B. 0.5C. 2πD. 335. 如图,已知直线AB,CD 相交于点O,EF⊥AB 于点O,若∠BOC=55°,则∠DOF=()A. 35°B. 45°C. 55°D. 90°6. 已知12xy=-⎧⎨=⎩是二元一次方程组3+21x y mnx y=⎧⎨-=⎩的解,m n-=()A. ﹣3B. 1C. 2D. 47. 如图,已知 AB ∥CD ,BC 平分∠ABE ,∠C=35°,则∠C EF=( )A. 35°B. 55°C. 70°D. 110°8. 已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A. 18030x y x y +=⎧⎨=-⎩B. 180+30x y x y +=⎧⎨=⎩C. 9030x y x y +=⎧⎨=-⎩D. 90+30x y x y +=⎧⎨=⎩9. 在平面直角坐标系中,若//AB y 轴,3AB =,点A 的坐标为()2,3-,则点B 的坐标为( )A. ()2,6-B. ()1,3C. ()2,6-或()2,0-D. ()1,3或()5,3- 10. 如图,由点测量点方向,得到( )A. 点在点北偏西30°的方向上B. 点在点南偏东30°的方向上C. 点在点南偏东60°方向上D. 点在点北偏西60°的方向上 11. 已知关于x ,y 二元一次方程组321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k =( ) A. ﹣2 B. ﹣1 C. 1 D. 212. 甲、乙、丙、丁一起研究一道数学题,如图,已知 EF ⊥AB ,CD ⊥AB ,甲说:“如果还知道∠CDG=∠BFE ,则能得到∠AGD=∠ACB .”乙说:“如果还知道∠AGD=∠ACB ,则能得到∠CDG=∠BFE .”丙说:“∠AGD 一定大于∠BFE .”丁说:“如果连接 GF ,则 GF ∥AB .”他们四人中,正确是( )A. 0 个B. 1 个C. 2 个D. 3 个二、填空题(本大题共6小题,每小题3分,共18分)13. 3的算术平方根是___.14. 点 A 的坐标(﹣3,4),它到 y 轴的距离为_____.15. 较大小:37__________2. 16. 二元一次方程2=5x y +的正整数解为___________.17. 如图,AB ∥CD ,∠B=160°,∠D=120°,则∠E=_________18. 如图,长方形BCDE 各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是____.三、解答题(本大题共6小题,共计46分)19. 计算:239(0.5)8116-+-- 20. 解方程组:23321x y x y -=⎧⎨+=⎩. 21. 小明在拼图时,发现8个一样大小的长方形如图1那样,恰好可以拼成一个大的长方形.小红看见了,说:“我来试一试.”结果小红七拼八凑,拼成如图2那样的一个洞,恰好是边长为2mm 的小正方形!求每个长方形的长、宽.22. 如图,AB ∥CD .∠1=∠2,∠3=∠4,试说明 AD ∥BE ,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().23. 如图,△A'B'C'是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P'(x1+6,y1﹣5).(1)请写出△ABC平移的过程;(2)分别写出点A',B',C'的坐标;(3)△ABC的面积为.24. 嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE,经研究发现(1)如图2,当AB与DE重合时,∠CDF=°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=°;拓展(3)如图4,继续旋转使得AC垂直DE于点G,此时AC与EF位置关系,此时∠AED=°;探究(4)如图5,图6继续旋转,使得AC∥DF图5中此时∠AED=°,图6中此时∠AED=°.答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1. 在平面直角坐标系中,点P (2,﹣3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]D[解析][分析]根据各象限内点的坐标特征解答即可.[详解]∵横坐标为正,纵坐标为负, ∴点()23P -,在第四象限, 故选:D .[点睛]本题考查的是点的坐标与象限的关系,熟记各象限内点的坐标特征是解答本题的关键. 2. 如图所示,点P 到直线l 的距离是( )A. 线段PA 的长度B. 线段PB 的长度C. 线段PC 的长度D. 线段PD 的长度[答案]B[解析] 由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度, 故选B.3. 下列图形中,不能通过其中一个四边形平移得到的是( ) A. B. C. D.[答案]D[解析][分析][详解]解:A 、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.4. 下列各数中,不是无理数的是()A. 7B. 0.5C. 2πD. 33[答案]B[解析]分析]根据无理数的定义及无理数的三种表现形式依次作出判断.[详解]解:A.7是无理数,故该选项不符合题意;B.0.5是有理数,不是无理数,故该选项符合题意;C.2π是无理数,故该选项不符合题意;D.33是无理数,故该选项不符合题意.故选:B.[点睛]本题考查无理数的定义,算术平方根和立方根.熟记初中阶段无理数的三种表现形式是解决此题的关键.无理数的三种表现形式:①开方开不尽的数;②无限不循环小数;③含有π的数.5. 如图,已知直线AB,CD 相交于点O,EF⊥AB 于点O,若∠BOC=55°,则∠DOF=()A. 35°B. 45°C. 55°D. 90°[答案]A[解析][分析]已知∠BOC=55°,利用对顶角相等可求∠AOD,因为EF⊥AB,则∠AOD+∠DOF=90°,即可求∠DOF.[详解]解:∵直线AB 、EF 相交于点O ,∴∠AOD=∠BOC=55°,∵AB ⊥CD ,∴∠DOF=90°-∠AOD=90°-55°=35°.故选:A .[点睛]本题考查了垂直的定义和对顶角的性质.能正确识别对顶角并理解对顶角相等是解决此题的关键. 6. 已知12x y =-⎧⎨=⎩是二元一次方程组3+21x y m nx y =⎧⎨-=⎩的解,那么m n - =( ) A. ﹣3B. 1C. 2D. 4 [答案]C[解析][分析]将12x y =-⎧⎨=⎩代入3+21x y m nx y =⎧⎨-=⎩求得m 和n 的值,再将值代入m n -求解即可. [详解]解:将12x y =-⎧⎨=⎩代入3+21x y m nx y =⎧⎨-=⎩得 3(1)+2221m n ⨯-⨯=⎧⎨--=⎩,解得13m n =⎧⎨=-⎩, ∴1(3)42m n -=--==.故选:C .[点睛]本题考查二元一次方程组的解.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.7. 如图,已知 AB ∥CD ,BC 平分∠ABE ,∠C=35°,则∠C EF=( )A. 35°B. 55°C. 70°D. 110°[答案]C[解析][分析]先根据两直线平行内错角相等得∠ABC=∠C=35°,再根据角平分线定义得∠ABF=2∠ABC=70°,然后根据两直线平行,同位角相等可得∠CEF=∠ABF=70°.[详解]解:∵AB ∥CD ,∴∠ABC=∠C=35°,∵BC 平分∠ABE ,∴∠ABF=2∠ABC=70°,∵AB ∥CD ,∴∠CEF=∠ABF=70°.故答案为70°.[点睛]本题考查平行线的性质定理和角平分线的有关计算.熟记平行线的性质定理并能正确识图完成角度之间的转换是解决此题的关键.8. 已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A. 18030x y x y +=⎧⎨=-⎩B. 180+30x y x y +=⎧⎨=⎩C. 9030x y x y +=⎧⎨=-⎩D. 90+30x y x y +=⎧⎨=⎩[答案]D[解析] 试题解析:∠A 比∠B 大30°, 则有x=y+30,∠A,∠B 互余,则有x+y=90.故选D .9. 在平面直角坐标系中,若//AB y 轴,3AB =,点A 的坐标为()2,3-,则点B 的坐标为( )A. ()2,6-B. ()1,3C. ()2,6-或()2,0-D. ()1,3或()5,3-[答案]C[解析][分析]直接利用已知画出图形,进而得出符合题意答案.[详解]解:如图所示:点的坐标为(2,3)-,//AB y 轴,∴点B 的横坐标为,又∵3AB =,∴点B 的纵坐标为336+=或330-=,∴点B 的坐标为()2,6-或(2,0)-.故选C .[点睛]此题主要考查了坐标与图形的性质,正确分类讨论是解题关键. 10. 如图,由点测量点方向,得到( )A. 点在点北偏西30°的方向上B. 点在点南偏东30°的方向上C. 点在点南偏东60°的方向上D. 点在点北偏西60°的方向上[答案]C[解析][分析]根据方向角的大小不变,方向正好相反,可得答案.[详解]解:∵A 在B 店的北偏西60°,∴B 点在A 点南偏东60°的方向上,故选:C . [点睛]本题考查了方向角,利用方向角大小不变,方向正好相反是解题关键. 11. 已知关于x ,y 的二元一次方程组321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k =( ) A. ﹣2 B. ﹣1 C. 1 D. 2[答案]A[解析][分析]根据已知条件x,y互为相反数知x+y=0,得出关于k的方程,解方程即可.[详解]解:由题意得:x+y=0,则21 x yx y+=⎧⎨+=-⎩,解得:11 xy=⎧⎨=-⎩,∴1﹣3=k,k=﹣2,故选:A.[点睛]本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于k的方程是解决问题的关键.12. 甲、乙、丙、丁一起研究一道数学题,如图,已知EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”乙说:“如果还知道∠AGD=∠ACB,则能得到∠CDG=∠BFE.”丙说:“∠AGD 一定大于∠BFE.”丁说:“如果连接GF,则GF∥AB.”他们四人中,正确的是( )A. 0 个B. 1 个C. 2 个D. 3 个[答案]C[解析][分析]根据EF⊥AB,CD⊥AB,可得EF//CD,①根据∠CDG=∠BFE结合两直线平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根据两直线平行,同位角相等可得甲的结论;②根据∠AGD=∠ACB可得DG//BC,再根据平行线的性质定理可得乙的结论;③根据已知条件无法判断丙的说法是否正确;④根据已知条件无法判断丁的说法是否正确.[详解]解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠BFE=∠BCD,①∵∠CDG=∠BFE,∴∠CDG=∠BCD,∴DG∥BC,∴∠AGD=∠ACB,∴甲正确;②∵∠AGD=∠ACB,∴DG∥BC,∴∠CDG=∠BCD,∴∠CDG=∠BFE,∴乙正确;③DG不一定平行于BC,所以∠AGD不一定大于∠BFE;④如果连接GF,则只有GF⊥EF时丁的结论才成立;∴丙错误,丁错误;故选:C.[点睛]本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13. 3的算术平方根是___.[答案[解析]试题分析:3考点:算术平方根.14. 点A 的坐标(﹣3,4),它到y 轴的距离为_____.[答案]3[解析][分析]根据点到y轴的距离是点的横坐标的绝对值,可得答案.[详解]解:点A 的坐标(-3,4),它到y 轴的距离为|-3|=3,故答案为:3.[点睛]本题考查了求点到坐标轴的距离.理解点到y 轴的距离是点的横坐标的绝对值,点到x 轴的距离是点的纵坐标的绝对值是解决此题的关键.15. 2.[答案]<[解析][分析]2分别求其立方的值,立方数大的则原数也大.[详解]∵)3=7,23=8,故答案是:<.[点睛]考查了实数的大小比较,和2分别求其立方的值,再根据立方数大的则原数也大进行比较.16. 二元一次方程2=5x y +的正整数解为___________.[答案]13x y =⎧⎨=⎩,21x y =⎧⎨=⎩[解析][分析][详解]试题分析:将x 看做已知数求出y ,即可确定出正整数解.解:方程2x+y=5,解得:y=﹣2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解为13x y =⎧⎨=⎩,21x y =⎧⎨=⎩, 故答案为13x y =⎧⎨=⎩,21x y =⎧⎨=⎩点评:此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.17. 如图,AB ∥CD ,∠B=160°,∠D=120°,则∠E=_________[答案]40°[解析][分析]延长AB交DE于F,由平行线的性质得出同位角相等∠EFB=∠D=120°,再由三角形的外角性质即可求出∠E 的度数.[详解]解:延长AB交DE于F,∵AB∥CD,∠D=120°,∴∠EFB=∠D=120°,∴∠E=∠B-∠EFB=40°.故答案为40°.[点睛]本题考查平行线的性质、三角形的外角性质;熟练掌握平行线的性质,并能进行推理计算是解题关键.18. 如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是____.[答案](﹣1,﹣1)[解析][分析]利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.[详解]解:矩形边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2018÷3=672…2,故两个物体运动后的第2018次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1).[点睛]此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.三、解答题(本大题共6小题,共计46分)19.9 1 16[答案]1 316 -[解析][分析]根据算术平方根和立方根的性质计算即可.[详解]解:原式9 0.5(2)116 =+--1316=-[点睛]本题考查了算术平方根和立方根的性质,正确运用算术平方根和立方根的性质是解决本题的关键,注意算术平方根是非负数.20. 解方程组:23 321 x yx y-=⎧⎨+=⎩.[答案]11 xy=⎧⎨=-⎩.[解析][分析]①×2+②后即可消去y ,求出x ,将x 的值代入①式即可求出y ,由此可得方程组的解. [详解]解:23321x y x y -=⎧⎨+=⎩①② 由 ①×2+②,得 7x=7, 解之得x=1,把x=1代入①式,得2﹣y=3,解得y=﹣1,所以原方程组的解为11x y =⎧⎨=-⎩. [点睛]本题考查解二元一次方程组.熟练掌握解二元一次方程组的两种方法,并灵活运用是解题的关键. 21. 小明在拼图时,发现8个一样大小的长方形如图1那样,恰好可以拼成一个大的长方形.小红看见了,说:“我来试一试.”结果小红七拼八凑,拼成如图2那样的一个洞,恰好是边长为2mm 的小正方形!求每个长方形的长、宽.[答案]10、6[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个加2长的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设长方形的长为x ,宽为y ,则35222x y x x y ⎧⎨++⎩== 解得:106x y ==⎧⎨⎩.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.22. 如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.23. 如图,△A'B'C'是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P'(x1+6,y1﹣5).(1)请写出△ABC平移过程;(2)分别写出点A',B',C'的坐标;(3)△ABC的面积为.[答案](1)见解析;(2)A′(2,﹣1),B′(1,﹣4),C′(5,﹣2);(3)5[解析][分析](1)根据点的坐标的变化规律可得△ABC向右平移6个单位,向下平移5个单位得到△A′B′C′;(2)首先确定A、B、C三点坐标,然后再每个点的坐标横坐标加6,纵坐标减5即可;(3)根据(2)中A′,B′,C′的坐标画出图形即可.[详解]解:(1)∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1﹣5).∴△ABC向右平移6个单位,向下平移5个单位得到△A′B′C′;(2)如图:∴A',B',C'的坐标为:A′(2,﹣1),B′(1,﹣4),C′(5,﹣2);(3)如图,S△ABC=S长方形BEGF-S△AEB-S△BCF-S△AGC=111 34314231 222⨯-⨯⨯-⨯⨯-⨯⨯=5.故答案为:5.[点睛]本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.24. 嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE,经研究发现(1)如图2,当AB与DE重合时,∠CDF=°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=°;拓展(3)如图4,继续旋转使得AC垂直DE于点G,此时AC与EF位置关系,此时∠AED=°;探究(4)如图5,图6继续旋转,使得AC∥DF图5中此时∠AED=°,图6中此时∠AED=°.[答案](1)105°;(2)24°;(3)平行,30°;(4)75°,105°.[解析][分析](1)根据度数求和即可;(2)根据∠ABC+∠DEF=∠CEF+∠DEA=180°求解;(3)①根据∠CGE=∠DEF=90°来说明;②在直角△CDE中计算∠CED,根据∠CEA=90°求解;(4)图5在三角形DBH中求解,图6根据∠AED=∠D+∠A求解.[详解]解:(1)∵∠CAB=60°,∠EDF=45°,∴∠CDF=105°,故答案为:105°;(2)∵∠ACB+∠DEF=∠CEF+∠DEA=180°,∠CEF=156°, ∴∠DEA=24°;故答案为:24°;(3)①平行∵∠CGE=∠DEF=90°,∴AC∥EF;②∵∠C=30°,∠CGE=90°,∴∠CEG=60°,又∠CBA=90°,∴∠AED=30°;故答案为:平行,30°;(4)如图5,∵AC∥DF,∴∠DHB=∠A=60°,又∠D=45°,∴∠AED=75°;如图6,∵AC∥DF,∴∠AED=∠D+∠A=105°.故答案为:75°,105°.[点睛]本题考查三角形和平行线性质,熟练应用三角形内角和及平行线性质是解答关键.。

2023年人教版七年级数学下册期中测试卷附答案

2023年人教版七年级数学下册期中测试卷附答案

2023年人教版七年级数学下册期中测试卷附答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .923.若整数x 满足19x ≤45+2,则x 的值是( )A .8B .9C .10D .114.一5的绝对值是( )A .5B .15C .15-D .-55.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤77.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .89.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .30°D .25°10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.分解因式:4ax2-ay2=_____________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解不等式组:3(2)421152x xx x--≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.2.解不等式组并求出它所有的非负整数解.3.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a2|b40++-=,点C的坐标为(0,3).(1)求a,b的值及S三角形ABC;(2)若点M在x轴上,且S三角形ACM =13S三角形ABC,试求点M的坐标.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别次数购买A商品数量(件)购买B商品数量(件)消费金额(元)第一次 4 5 320解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、A5、C6、A7、C8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、如果两个角是等角的补角,那么它们相等.2、105°3、0.4、40或805、a(2x+y)(2x-y)6、2或-8三、解答题(本大题共6小题,共72分)1、-7<x≤1.数轴见解析.2、0,1,2.3、(1)9(2)(0,0)或(-4,0)4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件。

七年级数学下册期中测试卷(附答案)

七年级数学下册期中测试卷(附答案)

七年级数学下册期中测试卷(附答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的倒数是()A. B. C. D.2.如图是由4个相同的小正方形组成的网格图, 其中∠1+∠2等于()A. 150°B. 180°C. 210°D. 225°3.如图, , 且. 、是上两点, , .若, , , 则的长为()A. B. C. D.4.下列图形中, 由AB∥CD, 能得到∠1=∠2的是A. B.C. D.5.如图, 数轴上有三个点A、B、C, 若点A、B表示的数互为相反数, 则图中点C对应的数是()A. ﹣2B. 0C. 1D. 46.已知一次函数y=kx+b随着x的增大而减小, 且kb<0, 则在直角坐标系内它的大致图象是()A. B. C. D.7.在同一平面内, 设a、b、c是三条互相平行的直线, 已知a与b的距离为4cm, b与c的距离为1cm, 则a与c的距离为()A. 1cmB. 3cmC. 5cm或3cmD. 1cm或3cm8.比较2, , 的大小, 正确的是()A. B.C. D.9.一次函数满足, 且随的增大而减小, 则此函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图, 下列各式中正确的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是________.2.如图, , 设, 那么, , 的关系式________.3. 如图, 在△ABC中, ∠A=60°, BD.CD分别平分∠ABC.∠ACB, M、N、Q分别在DB.DC.BC的延长线上, BE、CE分别平分∠MBC.∠BCN, BF、CF分别平分∠EBC.∠ECQ, 则∠F=________.4. 一个等腰三角形的两边长分别为4cm和9cm, 则它的周长为______cm.5. 若一个多边形的内角和等于720度, 则这个多边形的边数是________.6. 如果a、b互为倒数, c、d互为相反数, 且, 则___________.三、解答题(本大题共6小题, 共72分)1. 解二元一次方程组(1)31529x yx y+=⎧⎨-=⎩(2)3523153232x yx y x+=⎧⎪-+⎨-=-⎪⎩2. 已知: 关于x的方程=m的解为非正数, 求m的取值范围.3. 如图, 直线AB, CD相交于点O. OF平分∠AOE, OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角: ______.(2)若∠AOD=150°, 求∠AOE的度数.4. 如图1, P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动, 点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动, 在直角三角形ABC中, ∠A=90°, 若AB=16厘米, AC=12厘米, BC=20厘米, 如果P、Q同时出发, 用t(秒)表示移动时间, 那么:(1)如图1, 若P在线段AB上运动, Q在线段CA上运动, 试求出t为何值时, QA=AP(2)如图2, 点Q在CA上运动, 试求出t为何值时, 三角形QAB的面积等于三角形ABC面积的;(3)如图3, 当P点到达C点时, P、Q两点都停止运动, 试求当t为何值时, 线段AQ的长度等于线段BP的长的5. 某小学为了了解学生每天完成家庭作业所用时间的情况, 从每班抽取相同数量的学生进行调查, 并将所得数据进行整理, 制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生, 请估计其中有多少名学生能在1.5小时内完成家庭作业?6. 为保护环境, 我市公交公司计划购买A型和B型两种环保节能公交车共10辆. 若购买A型公交车1辆, B型公交车2辆, 共需400万元;若购买A型公交车2辆, B型公交车1辆, 共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次. 若该公司购买A型和B型公交车的总费用不超过1200万元, 且确保这10辆公交车在该线路的年均载客总和不少于680万人次, 则该公司有哪几种购车方案?(3)在(2)的条件下, 哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、B3、D4、B5、C6、A7、C8、C9、A10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1、22、90x y z +-=︒3.15°4、225、66、3三、解答题(本大题共6小题, 共72分)1.(1) (2)2、34m ≥.3.(1)∠BOD, ∠DOE ;(2)∠AOE =120°.4.(1) 4s;(2) 9s;(3) t= s 或16s5.(1)补图见解析;(2)27°;(3)1800名6.(1)购买A 型公交车每辆需100万元, 购买B 型公交车每辆需15 0万元.(2)三种方案:①购买A 型公交车6辆, 则B 型公交车4辆;②购买A 型公交车7辆, 则B 型公交车3辆;③购买A 型公交车8辆, 则B 型公交车2辆;(3)购买A 型公交车8辆, B 型公交车2辆费用最少, 最少费用为1100万元.。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。

人教版数学七年级下册《期中检测题》附答案

人教版数学七年级下册《期中检测题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列方程中:①470x -=;②3x y z +=;③27x x -=;④43xy =;⑤23x y x +=;⑥31x =,属于一元一次方程的个数有( )A. 0个B. 1个C. 2个D. 3个 2. 已知31x y =⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A B. 13- C. 1 D. 53. 把不等式2x -<1的解集在数轴上表示正确的是A. B. C. D. 4. 把方程23x y -=改写成用含的式子表示的形式,正确的是( )A. 23y x =-+B. 23y x =--C. 23y x =-D. 23y x =+ 5. 下列方程的变形中正确的是A. 由7x=4x-3移项得7x-4x=3B. 由2x 1x 3132--=+去分母得2(2x-1)=1+3(x-3) C. 由2(2x-1)-3(x-3)=1去括号得4x-2-3x-9=1D. 由2(x+1)=x+7解得x=56. 若01m <<,则21,,m m m 的大小关系是 ( ) A. 21m m m << B. 21m m m << C. 21m m m << D. 21m m m<< 7. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为( )A. 4.5112y x y x -=⎧⎪⎨-=⎪⎩B. 4.5112x y y x -=⎧⎪⎨-=⎪⎩C. 4.5112x y x y -=⎧⎪⎨-=⎪⎩D. 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 8. 关于的方程211x a -=+的解是12x =-,则()21a +的值是( ) A. 14 B. 4 C. 1 D. 09. 已知不等式组213{0x x a -≥->解集是2x ≥,则实数的取值范围是( ) A. 2a > B. 2a ≥C. 2a <D. 2a ≤ 10. 利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A. 84cmB. 85cmC. 86cmD. 87cm二、填空题11. 如果23x -和4x -互为相反数,则2020x 的值为______.12. 不等式 4153x x +≤+ 的最大负整数解为________.13. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=_____.14. 在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场扣1分.某队预计在2019-2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛.则这个队至少要胜__场才有希望进入季后赛. 15. 对于有理数,我们规定[]m 表示不大于最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数的取值是__________. 三、解答题16. 解方程或方程组(1)331123x x+-+=(2)3131632x yx y-=-⎧⎨+=⎩17. 解不等式组()3241213x xxx⎧--≤-⎪⎨+>-⎪⎩①②并把解集在数轴上表示出来.18. 老师在黑板上写了一道解方程的题:212134x x--=-,小明马上就举起了手,要求到黑板上去做,他是这样做的:()()421132x x-=-+①84136x x-=--②111x=-③111x=-④老师说:小明解一元一次方程的一般步骤都掌握了,但是解题时有一步做错了.请你指出他错在第______步(填写编号),然后再细心解下面的方程,相信你一定能做对.(1)3157146 a a---=(2)253210 0.60.8x x+--=19. 2020年春节,新型冠状病毒肆虐,小明一家响应国家的号召防疫在家不出门.这天,小明和爸爸在家里玩起了“投乒乓球”的游戏,商定规则:小明投中一个得3分,爸爸投中一个得1分.结果两人一共投中了20个,经过计算,发现两人的得分恰好相同,你能知道他们两人各投中几个吗?20. 若m是整数,且关于x,y的方程组2-2,-5x y mx y+=⎧⎨=⎩的解满足x≥0,y<0,试确定m的值.21. 重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?22. 在解方程组2628mx yx ny+=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n,得解为7323xy⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m,得解为24xy=-⎧⎨=⎩.(1)则m,n的值分别是多少?(2)正确的解应该是怎样的?23. 根据下面两种移动电话计费方式表,解答下列问题:(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?答案与解析一、选择题1. 下列方程中:①470x -=;②3x y z +=;③27x x -=;④43xy =;⑤23x y x +=;⑥31x =,属于一元一次方程的个数有( )A. 0个B. 1个C. 2个D. 3个 [答案]B[解析]分析]根据一元一次方程的定义解答即可.[详解]解:①4x-7=0符合一元一次方程的定义,故正确;②3x+y=z 是三元一次方程,故错误;③x-7=x 2是一元二次方程,故错误;④4xy=3是二元二次方程,故错误; ⑤23x yx+=属于二元一次方程,故错误; ⑥31x =属于分式方程,故错误.故选:B .[点睛]本题考查了一元一次方程的概念.解答关键是根据定义解答问题.2. 已知31x y=⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A. B. 13- C. 1D. 5[答案]C[解析]分析]把x 与y 的值代入方程计算即可求出m 的值.[详解]解:把31x y =⎧⎨=⎩代入方程得:3m-1=2,解得:m=1,故选C.[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3. 把不等式2x -<1的解集在数轴上表示正确的是 A.B. C. D. [答案]A[解析][分析]先解不等式2x -<1得到1<x ,根据数轴表示数的方法得到解集在1的右边.[详解]由2x -<1,移项得1<x ,根据数轴表示数的方法得到解集在1的右边.故选A.[点睛]本题考查在数轴上表示不等式的解集和解一元一次不等式,解题的关键是掌握在数轴上表示不等式的解集和解一元一次不等式.4. 把方程23x y -=改写成用含的式子表示的形式,正确的是( )A. 23y x =-+B. 23y x =--C. 23y x =-D. 23y x =+ [答案]C[解析]分析]把x 看做已知数求出y 即可.[详解]方程2x−y =3,解得:y =2x−3,故选:C .[点睛]此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.5. 下列方程的变形中正确的是A. 由7x=4x-3移项得7x-4x=3B. 由2x 1x 3132--=+去分母得2(2x-1)=1+3(x-3) C. 由2(2x-1)-3(x-3)=1去括号得4x-2-3x-9=1D. 由2(x+1)=x+7解得x=5[答案]D[解析][分析]根据等式的基本性质,即可得到答案.[详解]∵由7x=4x-3移项得7x-4x=-3,∴A 错误, ∵由2x 1x 3132--=+去分母得2(2x-1)=6+3(x-3),∴B 错误, ∵由2(2x-1)-3(x-3)=1去括号得4x-2-3x+9=1,∴C 错误,∵由2(x+1)=x+7解得x=5,∴D 正确,故选D.[点睛]本题主要考查一元一次方程的移项,去分母,去括号法则,熟练掌握解一元一次方程的步骤和方法是解题的关键.6. 若01m <<,则21,,m m m 的大小关系是 ( ) A. 21m m m <<B. 21m m m <<C. 21m m m <<D. 21m m m << [答案]B[解析][分析]根据01m <<时,可得越平方越小,11m >,从而得到大小关系式.[详解]01m <<,11m> 21m m <<,1m m <, 21m m m<<, 故选:B .[点睛]本题考查了简单的实数的比较,可利用特殊值法即可比较大小,也可利用当01m <<时,的指数越大则数值越小解题.7. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为( ) A. 4.5112y x y x -=⎧⎪⎨-=⎪⎩B. 4.5112x y y x -=⎧⎪⎨-=⎪⎩C. 4.5112x y x y -=⎧⎪⎨-=⎪⎩D. 4.5112y x x y -=⎧⎪⎨-=⎪⎩ [答案]B[解析][分析]本题的等量关系是:绳长木长 4.5=;木长12-绳长1=,据此可列方程组求解. [详解]设绳长尺,长木为尺, 依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B .[点睛]此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.8. 关于的方程211x a -=+的解是12x =-,则()21a +的值是( ) A. 14 B. 4 C. 1 D. 0[答案]B[解析][分析] 把12x =-代入方程,得出一个关于的方程,求出方程的解,再代入求出答案即可. [详解]解:把12x =-代入方程211x a -=+得:111a --=+, 解得:3a =-,所以22(1)(31)4a +=-+=,故选:.[点睛]本题考查了解一元一次方程和一元一次方程的解,能得出一个关于的一元一次方程是解此题的关键.9. 已知不等式组213{0x x a -≥->的解集是2x ≥,则实数的取值范围是( ) A. 2a >B. 2a ≥C. 2a <D. 2a ≤ [答案]C[解析][分析]应先求出不等式组中两个不等式的解集,根据所给的解集进行判断.[详解]解不等式组得2x x a≥⎧⎨⎩>∵已知解集为解集是2x ≥,∴2a <.故选C .[点睛]主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向相同,数字相同时情况.(如:x >a ,x >a ,其解集也是x >a ),在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10. 利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A. 84cmB. 85cmC. 86cmD. 87cm[答案]B[解析][分析] 设长方体长x cm ,宽y cm ,高a cm ,由图象建立方程组求出其解就可以得出结论.[详解]设长方体长x cm ,宽y cm ,高a cm ,由题意,得9080x a y y a x +=+=-⎧⎨-⎩,解得:2a =170,∴a =85.故选B.[点睛]本题考查的是三元一次方程组的应用,熟练掌握三元一次方程组是解题的关键.二、填空题11. 如果23x -和4x -互为相反数,则2020x 的值为______.[答案][解析][分析]根据相反数的定义计算出x 的值,再代入2020x 即可作答.[详解]解:(23)(4)0x x -+-=从而有1x =-,代入2020x 有:20202020(1)1x-==;故答案为:1.[点睛]本题主要考查了相反数定义以及积的乘方运算,其中根据相反数的定义计算出x 的值是解题的关键. 12. 不等式 4153x x +≤+ 的最大负整数解为________.[答案]-1[解析][分析]先根据不等式的性质求出不等式的解集,然后在不等式的解集中找出最大负整数即可.[详解]解: 4x+1≤5x+3,则4x-5x≤3-1,-x≤2,∴x≥-2.∴最大的负整数为-1.[点睛]本题主要考查了一元一次不等式的特殊解,掌握一元一次不等式的解是解题的关键.13. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=_____.[答案]18°[解析][分析]根据题意结合图形列出方程组,解方程组即可求解.[详解]解:由题意得:12901254︒︒⎧∠+∠=⎨∠-∠=⎩,解得∠1=72°,∠2=18°.故答案为18°.[点睛]此题主要考查二元一次方程组的应用,解题的关键是根据图形找到等量关系进行列式.14. 在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场扣1分.某队预计在2019-2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛.则这个队至少要胜__场才有希望进入季后赛.[答案]20[解析][分析]本题需要设未知数,设胜的场次为x ,则负的场次为32-x .根据题意列出不等式.[详解]设胜的场次为x ,则负的场次为32-x ,则根据题意可得:3(1)(32)48x x ⋅+-⋅-≥,解得不等式为20x ≥,故这个队至少要胜20场才有希望进入季后赛.[点睛]本应用题关键学会利用方程的思想解不等式.15. 对于有理数,我们规定[]m 表示不大于的最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数的取值是__________. [答案]-17,-16,-15. [解析][分析] 根据[x]表示不大于x 的最大整数,列出不等式组,再求出不等式组的解集即可.[详解]∵[x]表示不大于x 的最大整数,∴-5≤23x +<-5+1, 解得-17≤x <-14.∵x 是整数,∴x 取-17,-16,-15.故答案为:-17,-16,-15.[点睛]本题考查的是有理数的大小比较,关键是根据[x]表示不大于x 的最大整数,列出不等式组,求出不等式组的解集.三、解答题16. 解方程或方程组(1)331123x x +-+= (2)3131632x y x y -=-⎧⎨+=⎩[答案](1)19x =-;(2)11x y . [解析][分析](1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程组利用加减消元法求出解即可.[详解]解:(1)去分母得:()()332316x x ++-=,去括号得:976x +=移项合并得:91x =-, 解得:19x =-; (2)3131632x y x y -=-⎧⎨+=⎩①②, ②×3-①得:22y =22, 解得:y =1,把y =1代入②得:x =-1,则方程组的解为11x y =-⎧⎨=⎩. [点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17. 解不等式组()3241213x x x x ⎧--≤-⎪⎨+>-⎪⎩①②并把解集在数轴上表示出来.[答案]14x ≤<,在数轴上表示解集见解析.[解析][分析]先分别解出各个不等式的解集,再利用‘大小小大取中间’写出不等式组的解集,然后将解集表示在数轴上即可.[详解]解:(1)解不等式①,得:1≥x ,解不等式②,得:4x <,则不等式组的解集为14x ≤<,将不等式组的解集表示在数轴上如下:[点睛]本题考查了解一元一次不等式组、用数轴表示不等式的解集,属于基础题,关键是正确解出不等式(组)的解集,注意不等号的方向.18. 老师在黑板上写了一道解方程的题:212134x x --=-,小明马上就举起了手,要求到黑板上去做,他是这样做的: ()()421132x x -=-+①84136x x -=--②111x =-③111x =-④ 老师说:小明解一元一次方程的一般步骤都掌握了,但是解题时有一步做错了.请你指出他错在第______步(填写编号),然后再细心解下面的方程,相信你一定能做对.(1)3157146a a ---= (2)2532100.60.8x x +--= [答案]小明错在第①步;(1)1a =-;(2) 2.x =[解析][分析]观察发现,第①步没有分母的项1没有乘以分母的最小公倍数,所以第①步错误;(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.[详解]解:第(1)步小明错在去分母时,等式两边各项都应该乘以公分母,但是小明等号右边的1还是1.(1)3157146a a ---= ()()63124457a a --=-186242028a a --=-22830a -=-+22a -=1a =-.(2)2532100.60.8x x +--= 2532168x x +--= ()()825632)48x x +--=1640181248x x +-+=24x -=-2x =.[点睛]此题考查了解一元一次方程,去分母时注意各项都要乘以各分母的最小公倍数.19. 2020年春节,新型冠状病毒肆虐,小明一家响应国家的号召防疫在家不出门.这天,小明和爸爸在家里玩起了“投乒乓球”的游戏,商定规则:小明投中一个得3分,爸爸投中一个得1分.结果两人一共投中了20个,经过计算,发现两人的得分恰好相同,你能知道他们两人各投中几个吗?[答案]小明和爸爸分别投中了5个和15个.[解析][分析]根据题干,设小明投进了x 个,则小明爸爸投进了(20-x )个,根据两个人的得分相等,即可列出方程解决问题.[详解]解:设小明和爸爸分别投中了个和个.由题意得:203x y x y +=⎧⎨=⎩,解得515x y =⎧⎨=⎩答:小明和爸爸分别投中了5个和15个.[点睛]本题考查了二元一次方程的应用,解题关键是找到关键描述语,得到等量关系:小明投中球的个数+爸爸投中球的个数=20,小明得分=爸爸得分.是解决此题的关键.20. 若m 是整数,且关于x,y 的方程组2-2,-5x y m x y +=⎧⎨=⎩的解满足x≥0,y<0,试确定m 的值. [答案]m=-1,0,1,2,3.[解析][分析]]把m 当作已知数,解方程组求出方程组的解(x 、y 的值)根据已知得出不等式组,求出m 的取值范围即可.[详解]2-2-5x y m x y +=⎧⎨=⎩①②,①+②,得2x=2m+3,解得x=2m32+,把x=2m32+代入②,解得y=2m-7 2,∵x≥0,y<0,∴2m32+≥0,即m≥-32,2m-72<0,即m<72,∴解集为-32≤m<72,∵m是整数,∴m=-1,0,1,2,3.[点睛]本题综合考查了解方程组和解不等式组的应用,关键是根据题意求出关于m的不等式组.21. 重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?[答案](1)200元和100元(2)至少6件[解析][分析](1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.[详解]解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得4600351100x yx y+=⎧⎨+=⎩,解得:200100xy=⎧⎨=⎩,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.22. 在解方程组2628mx yx ny+=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n,得解为7323xy⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m,得解为24xy=-⎧⎨=⎩.(1)则m,n值分别是多少?(2)正确的解应该是怎样的?[答案](1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩[解析][分析](1)将第一组解代入方程组的第一个方程求出m的值,将第二组解代入方程组的第二个方程求出n的值即可;(2)确定出正确的方程组,求出解即可.[详解](1)将7,32,3xy⎧=⎪⎪⎨⎪=⎪⎩代入方程组的第一个方程得:74633m+=,解得:m=2;将2,4.xy=-⎧⎨=⎩代入方程组的第二个方程得:−4+4n=8,解得:n=3;(2)方程组3238x yx y+=⎧⎨+=⎩①②,②−①×2得:y=2,将y=2代入①得:x=1,则方程组正确的解为12. xy=⎧⎨=⎩[点睛]考查二元一次方程组的解以及解二元一次方程组,熟练掌握加减消元法是解题的关键.23. 根据下面的两种移动电话计费方式表,解答下列问题:(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?[答案](1) 250分钟;(2) 选择全球通比较合算[解析]试题分析:(1)从表格中可知道全球通月租25元,每打一分钟0.2元,神州行没有月租,每分钟0.3元,因此可设一个月内本地通话x分钟时,两种通讯方式的费用相同;(2)根据第一问求得数据后可知,大于这个数据,应该用全球通,小于这个数据应该用神州行.试题解析:解:(1)设一个月内本地通话x分钟时,两种通讯方式的费用相同.25+0.2x=0.3x,x=250,故一个月内本地通话250分钟时,两种通讯方式的费用相同.(2)若使用全球通时,90元可以使用的时间为:(90﹣25)÷0.2=375(分钟)若使用神州行时,90元可以使用的时间为:90÷0.3=300(分钟)因为375>300,故选择全球通合适.点睛:本题考查理解题意的能力,关键是求出两种通讯方式的费用相同时,一个月内的本地通话是多少分钟,找到此临界点,其他问题就能回答.。

山东省潍坊市潍城区2023-2024学年七年级下学期期中数学试题(含答案)

山东省潍坊市潍城区2023-2024学年七年级下学期期中数学试题(含答案)

试卷类型:A2023—2024学年度第二学期期中质量检测七年级数学试题注意事项:1.考试时间120分钟,试卷满分150分;2.答卷前,请将试卷密封线内和答题纸上的项目填涂清楚;3.请在答题纸相应位置作答,不要超出答题区域,不要答错位置.第Ⅰ卷(选择题共52分)一、单选题(本大题共8小题,共32分.在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,错选、不选均记0分)1.巨噬细胞是人体的“清道夫”,它是由单核细胞演变而来,一直在为我们的身体做清洁工作,其直径可达0.00008米.将0.00008用科学记数法可表示为()A .B .C .D .2.如图,已知OB 是内部的一条射线,下列说法一定正确的是()A .B .C .可以用表示D .与表示同一个角3.下列方程是二元一次方程的是()A .B .C .D .4.如图,从旗杆AB 的顶端A 处向地面拉一条绳子,绳子底端恰好在地面P 处,若旗杆的高度为13.8米,则绳子AP的长度不可能是()40.810-⨯50.810-⨯4810-⨯5810-⨯AOC ∠2AOC BOC ∠=∠BOC AOB∠<∠AOC ∠O ∠1∠AOB ∠20x y -=10xy +=223x x +=8y x=A .16米B .15米C .14米D .13米5.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,,则的值为()A .B .C .D .6.小亮在做“化简,并求时的值”一题时,错将看成了,但结果却和正确答案一样.由此可知k 的值是()A .2B .3C .4D .57.某校预安排若干间宿舍给七年级男寄宿生住,若每间宿舍住6人,则有4人住不下,若每间住7人,则有1间只住2人且空余8间宿舍.设该校七年级男寄宿生有x 人,预安排给七年级男寄宿生的宿舍有y 间,则下列方程组正确的是()A .B .C .D .8.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若,且,则的度数是()A .B .C .D .二、多选题(本大题共4小题,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,错选、多选均记0分)9.如图,下列说法正确的是()140,2120∠=︒∠=︒34∠+∠160︒150︒100︒90︒()()()23263516x k x x x x +⋅+-⋅+++6x =6x =6x =-()647812y x y x +=⎧⎪⎨--+=⎪⎩()64782y x y x -=⎧⎪⎨-+=⎪⎩()64782y x y x +=⎧⎪⎨-+=⎪⎩()647812y x y x-=⎧⎪⎨---=⎪⎩CD BE ∥125∠=︒2∠60︒75︒80︒85︒A .与是对顶角B .与是内错角C .与是同位角D .与是同旁内角10.下列运算正确的是()A .B .C .D .11.解方程组时,下列消元方法正确的是()A .②×3-①,消去xB .①×3+②×2,消去yC .②×2-①×3,消去yD .由②得:,然后代入①中消去x12.如图,的平分线BE 交AC 于点E ,的平分线CD 交AB 于点D ,BE ,CD 相交于点F ,,且于点G ,下列结论中正确的是()A .B .CA 平分C .D .第Ⅱ卷(非选择题共98分)三、填空题(本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分)13.计算:________.14.如图,点O 在直线AB 上,,OE 平分,则的度数为_____°.1∠2∠1∠4∠1∠B ∠4∠D ∠2327a a a a -⋅÷=22(2)(2)222b a b a b ab a ---⋅+=2336(3)27ab a b ---=()122112323nn n n n n a a aa a a a --+⋅-+=-+3216331x y x y +=⎧⎨-=⎩①②313x y =+ABC ∠ACB ∠90,A EG BC ∠=︒∥CG EG ⊥2CEG DCB ∠=∠BCG ∠ADC GCD ∠=∠45DFB ∠=︒109287031︒'-︒'=118,AOC OC OD ∠=︒⊥BOC ∠DOE ∠15.对任意有理数x ,等式总成立,那么________.16.如图,直线,一块三角板ABC ()按如图所示放置.若,则的度数为________°.17.如图,在四边形ABCD 中,,对角线AC ,BD 交于点O ,若三角形AOB 的面积为6,且,则三角形AOD 的面积是_________.18.如图,将一个大长方形ABCD 分割成5个正方形①②③④⑤和1个小长方形⑥,若,则大长方形ABCD 的面积是_______.()()236x x n x mx -+=+-m n =a b ∥60,90A C ∠=︒∠=︒150∠=︒2∠AD BC ∥:1:2AO OC =3,4GF EF ==四、解答题(本题共7小题,满分74分.解答应写出文字说明、证明过程或推演步骤)19.(本题满分8分)计算下列各题:(1);(2).20.(本题满分8分)解下列方程组:(1),(2)21.(本题满分9分)按下列要求画图并填空.如图,P 是的边OB 上一点,(1)过点P 作射线OA 的垂线,垂足为H ;(2)过点P 作射线OB 的垂线,交OA 于点C ;(3)过点P 作直线(点D 在点P 的右侧);(4)与的数量关系是_________.(5)线段PC ,PH ,OC 这三条线段大小关系是________(用“<”号连接),依据是________.22.(本题满分10分)我们知道,一般的数学公式,法则、定义可以正向运用,也可以逆向运用.例如,“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为:;;;其中m ,n 为正整数.结合以上材料解决下列问题.(1)已知,请把a ,b ,c 用“<”连接起来;(2)若,求的值;(3)化简:.23.(本题满分12分)如图,已知射线,连接AB ,点P 是射线AM 上的一个动点(与点A 不重合),BC ,BD 分别平分和,分别交射线AM 于点C ,D.()23155a a b ⎛⎫-⋅- ⎪⎝⎭()()21241x x x -⋅-+-21327x y x y -=⎧⎨+=⎩()111231211x y x y ⎧+=-⎪⎨⎪+-=⎩AOB ∠PD OA ∥HPC ∠DPC ∠m n m n a a a +=⋅()nmn m a a =()m mm a b ab =5544332,3,4a b c ===2,5a b x x ==32a b x +1031001021384⎛⎫⨯⨯ ⎪⎝⎭AM BN ∥ABP ∠PBN ∠(1)当时,求的度数;(2)试判断与之间的数量关系,并说明理由.24.(本题满分13分)已知用2辆A 型车和1辆B 型车载满货物—次可运货10吨;用3辆A 型车和2辆B 型车载满货物一次可运货17吨.某物流公司现有货物35吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,请选出最省钱的租车方案,并求出最少租车费.25.(本题满分14分)已知,直线,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB ,CD 之间,当时,求的度数;(2)如图2,点P 在直线AB ,CD 之间,与的角平分线相交于点K ,写出与之间的数量关系,并说明理由;(3)如图3,点P 落在直线CD 的下方,与的角平分线相交于点K ,与有何数量关系?请说明理由.40A ∠=︒CBD ∠APB ∠ADB ∠AB CD ∥56,24BAP DCP ∠=︒∠=︒APC ∠BAP ∠DCP ∠AKC ∠APC ∠BAP ∠DCP ∠AKC ∠APC ∠2023-2024学年度第二学期期中学情诊断七年级数学试题参考答案及评分标准一、单选题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来每小题选对得4分,错选、不选均记0分)题号12345678答案DDADCBAC二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)题号9101112答案ADADABDACD三、填空题(本大题共6小题,每小题4分,共24分.只填写最后结果)13.14.15.16.17.318.99四、解答题(本题共6小题,共74分.请写出必要的文字说明、证明过程或演算步骤)19.解:(本题8分,1、2小题每题4分)(1) 4分(2)6分8分20.解:(本题8分,1、2小题每题4分)(1)①+②得:1分解得:2分将代入①得:3分解得:,所以4分(4)化简方程组得:①×2得:③③-②得: 6分将代入①得:3857︒'59︒12110︒()()23627211525555a a b a a b a b ⎛⎫⎛⎫-⋅-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()()2322124124241x x x x x x x x --+-=-+-+-+⋅322651x x x =-+-+48x =2x =2x =221y -=12y =212x y =⎧⎪⎨=⎪⎩24328x y x y -=-⎧⎨-=⎩①②428x y -=-16x =-16x =-()2164y ⨯--=-解得:7分所以 8分21.解:(本题9分)(1)如图所示 1分(2)如图所示 2分(3)如图所示3分(4)互余5分(5),垂线段最短9分22.解:(本题10分)(1)∵3分∴ 4分(2 6分∵∴原式7分(3)10分23.解:(本题12分)(1)∵∴,1分28y =-6281x y =-=-⎧⎨⎩PH PC OC <<()55511112232a ===44411113(3)81b ===()13331114464c ===a c b <<()()323232a baba b xx x xx +=⋅=⋅2,5a b x x ==3225200=⨯=1031003100102100100211138388444⎛⎫⎛⎫⎛⎫⨯⨯=⨯⨯⨯⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭100310010010021001113883816444⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯=⨯⨯⨯=⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,40AM BN A ∠=︒∥180140ABN A ∠=︒-∠=︒∵BC ,BD 分别平分和,∴,3分∴5分(2),7分∵BD 平分,∴,9分∵,∴,∴.12分24.解:(本题13分)(1)设每辆A 型车、B 型车都载满货物一次可以分别运货x 吨、y 吨,根据题意,得,2分解得,3分经检验,方程组的解符合题意.答:1辆A 型车载满货物一次可运3吨,1辆B 型车载满货物一次可运4吨.(2)由(1),得,5分∴,∵a ,b 都是正整数,∴,或,或,∴有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆:8分方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,∴方案一需租金:(元);方案二需租金:(元);方案三需租金:(元). 11分∵12分∴最省钱的租车方案是方案三答:租A 型车1辆,B 型车8辆,最少租车费为1140元.25.解:(本题14分)(1)如图1,过P 作,ABP ∠PBN ∠11,22CBP ABP DBP PBN ∠=∠∠=∠1111140702222CBD CBP DBP ABP PBN ABN ∠=∠+∠=∠+∠=∠=⨯︒=︒2APB ADB ∠=∠PBN ∠2PBN DBN ∠=∠AM BN ∥,APB PBN BDP DBN ∠=∠∠=∠2APB ADB ∠=∠2103217x y x y +=⎧⎨+=⎩34x y =⎧⎨=⎩3435a b +=3543ba -=92a b =⎧⎨=⎩55a b =⎧⎨=⎩ 1 8a b =⎧⎨=⎩910021301160⨯+⨯=510051301150⨯+⨯=110081301140⨯+⨯=116011501140>>PE AB ∥∵,∴,∴, 2分∵∴4分(2).理由如下: 5分如图2,过K 作,∵,∴,∴,∴,过P 作,同理可得,,∵与的角平分线相交于点K ,∴, 8分∴,∴;9分(3).理由如下:10分如图3,过K 作,AB CD ∥PE AB CD ∥∥,APE BAP CPE DCP ∠=∠∠=∠56,24BAP DCP ∠=︒∠=︒562480APC APE CPE BAP DCP ∠=∠+∠=∠+∠=︒+︒=︒2AKC APC ∠=∠KE AB ∥AB CD ∥KE AB CD ∥∥,AKE BAK CKE DCK ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠+∠=∠+∠PF AB ∥APC BAP DCP ∠=∠+∠BAP ∠DCP ∠11,22DCK DCP BAK BAP ∠=∠∠=∠11112222()BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠2AKC APC ∠=∠2AKC APC ∠=∠KE AB ∥∵,∴,∴,∴,…分过P 作同理可得,,12分∵与的角平分线相交于点K ,∴,3分∴,∴.14分AB CD ∥KE AB CD ∥∥,BAK AKE DCK CKE ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠-∠=∠-∠PF AB∥APC BAP DCP ∠=∠-∠BAP ∠DCP ∠11,22BAK BAP DCK DCP ∠=∠∠=∠()11112222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠2AKC APC ∠=∠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下学期期中测试卷考试时间:120分钟;总分:100分题号一二三四总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. √ 16的算术平方根是( )A. 4B. ±4C. 2D. ±22. 将如图所示的图案通过平移后可以得到的图案是( )A. B. C. D.3. 若点A(1,2),B(−1,2),则点A与点B的关系是( )A. 关于x轴对称B. 关于y轴对称C. 关于直线x=1对称D. 关于直线y=1对称4. 如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是( )A. −√ 2B. √ 2C. √ 5D. π5. 在平面直角坐标系中,将点A(−2,3)向右平移4个单位长度,得到的对应点A′的坐标为( )A. (2,7)B. (−6,3)C. (2,3)D. (−2,−1)6. 下列图形中,∠1和∠2是内错角的是( )A. B. C. D.7. 如图,下列条件中,能判定AD//BC的是( )A. ∠DAC=∠BCAB. ∠DCB+∠ABC=180°C. ∠ABD=∠BDCD. ∠BAC=∠ACD8. 如图AB//CD,PF⊥CD于点F,∠EPF的度数是()A. 120°B. 130°C. 140°D. 150°9. 如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,内错角相等10. 如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 15°B. 20°C. 25°D. 30°11. 下列句子中,是命题且是真命题的是( )A. 同位角相等B. 直线AB垂直于CD吗C. 若a2=b2,则a=bD. 同角的补角相等12. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°二、填空题(本大题共4小题,共12.0分)13. 若√ x+1+(y−1)2=0,则x+y=.14. 比较大小:−√ 13−3(填“>”、“<”、“=”).15. 下列三个命题:①对顶角相等;②同旁内角互补;③两直线平行,同位角相等.其中是假命题的有(填序号).16. 在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,-n),如f(2,1)=(2,-1)(2)g(m,n)=(-m,-n),如g(2,1)=(-2,-1)按照以上变换有:f[g(3,4)=f(-3,-4)=(-3,4),那么g[f(-3,2)]=________三、解答题(本大题共7小题,共52.0分。

解答应写出文字说明,证明过程或演算步骤)3−√ (−3)2.17. 计算(本小题6.0分):−12022+√ 16−|1−√ 2|+√−2718. (本小题6.0分)已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标.A1______;B1______;C1______;(3)求出△ABC的面积.19.(本小题8.0分)如图,AB//DE,∠1=∠2,求证:∠AEB=∠C,完成下面的推理过程:解:∵AB//DE(_________)∴∠1=∠AED(_________)∵∠1=∠2(已知)∴∠2=∠______(_________)∴AE//DC(_________)∴∠AEB=∠C(_________)20. (本小题8.0分)在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,在三角形ABC中,已知∠ADE=∠B.∠1=∠2,FG⊥AB于点G,求证:CD⊥AB.证明:∵∠ADE=∠B(已知)∴DE//______ (______ )∴∠1=______ (______ )又∵∠1=∠2(∴______ =已知)______ (等量代换)∴CD//______ (______ )∵FG⊥AB(已知)∴∠FGB=90°(垂直的定义)即∠CDB=∠FGB=90°∴CD⊥AB(垂直的定义)21. (本小题8.0分)阅读下面的文字,解答问题:√ 2是一个无理数,而无理数是无限不循环小数,因此√ 2的小数部分无法全部写出来,但是我们可以想办法把它表示出来.因为√ 1<√ 2<√ 4即1<√ 2<2,所以√ 2的整数部分为1,将√ 2减去其整数部分后,得到的差就是小数部分,于是√ 2的小数部分为√ 2−1.(1)求出√ 6的整数部分和小数部分;(2)求出1+√ 3的整数部分和小数部分;(3)如果2+√ 5的整数部分是a,小数部分是b,求出a−b的值.22.(本小题8.0分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3=60°,∠CBD=70°.(1)求证:AB//CD(2)求∠C的度数23.(本小题8.0分)已知一个角的两边与另一个角的两边分别平行,结合图①②,试探索这两个角之间的数量关系,并说明你的结论.(1)如图①,AB//EF,BC//DE,则∠1与∠2的数量关系是________(2)如图②,AB//EF,BC//DE,则∠1与∠2的数量关系是________(3)由(1)(2)得出的结论是_______(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角的度数分别是_________答案1.【答案】C2.【答案】A3.【答案】B4.【答案】B5.【答案】C6.【答案】B7.【答案】A8.【答案】B9.【答案】A10.【答案】C11.【答案】D12.【答案】C13.【答案】014.【答案】<15.【答案】②16.【答案】(3,2)3−√ (−3)2 17.【答案】解:−12022+√ 16−|1−√ 2|+√−27=−1+4−(√ 2−1)−3−3=−1+4−√ 2+1−3−3=−2−√ 2.18.【答案】解:(1)如图,△A1B1C1即为所求(2)(4,−2),(1,−4),(2,−1)(3)S△ABC=3×3−12×1×3−12×1×2−12×2×3=7219.【答案】已知两直线平行,内错角相等;AED;等量代换;内错角相等,两直线平行;两直线平行,同位角相等;20.【答案】解:BC;同位角相等,两直线平行;∠DCB;两直线平行,内错角相等;∠DCB;∠2;FG;同位角相等,两直线平行.21.【答案】解:(1)∵√ 4<√ 6<√ 9,即2<√ 6<3∴√ 6的整数部分为2,√ 6的小数部分为√ 6−2(2)∵√ 1<√ 3<√ 4,即1<√ 3<2∴√ 3的整数部分为1∴1+√ 3的整数部分为2∴1+√ 3小数部分为1+√ 3−2=√ 3−1(3)∵√ 4<√ 5<√ 9,即2<√ 5<3∴√ 5的整数部分为2,2+√ 5的整数部分为4,即a=4∴2+√ 5的小数部分为2+√ 5−4=√ 5−2即b=√ 5−2∴a−b=4−(√ 5−2)=6−√ 522.【答案】(1)证明:∵AE⊥BC,FG⊥BC∴AE//GF∴∠2=∠A(两直线平行,同位角相等)∵∠1=∠2(已知)∴∠1=∠A(等量代换)∴AB//CD(内错角相等,两直线平行)(2)解:∵AB//CD∴∠D+∠CBD+∠3=180°(两直线平行,同旁内角互补)∵∠D=∠3+60°,∠CBD=70°∴∠3=25°∵AB//CD∴∠C=∠3=25°23.【答案】解:(1)∠1=∠2理由:如图,∵AB//EF∴∠3=∠2∵BC//DE∴∠3=∠1∴∠1=∠2(2)∠1+∠2=180∘理由:如图,∵AB//EF∴∠3+∠2=180∘∵BC//DE∴∠3=∠1∴∠1+∠2=180∘(3)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补(4)设“另一个角”的度数为x∘根据以上结论得,2x−30=x或2x−30+x=180解得x=30或x=70则2x−30=30或2x−30=110故这两个角的度数分别为30∘、30∘或70∘、110∘。

相关文档
最新文档