一元一次不等式方程组困难应用题
(完整版)一元一次不等式和一元一次不等式组(经典难题)
一元一次不等式和一元一次不等式组1.某同学说213a a -+一定比21a -大,你认为对吗?说明理由。
2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1) 请列出x>y 成立的关于m 的不等式。
(2) 运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。
3.要使不等式(1)12a x x a ->+-的解集为x<-1,求a 的取值范围。
4.已知关于x 的一元一次方程4131x m x -+=-的解都是负数,求m 的取值范围.5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,322x -的值不小于213x +与1的差。
7.m 取何值时,关于x 的方程6151632x m m x ---=-的解大于1?8.如果方程组24122x y m x y m -=+⎧⎨-=-⎩的解满足3x-y>0,求m 的取值范围.9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是 .11.对于整数a ,b ,c ,d ,定义bd ac c d ba -=,已知3411<<d b,则b +d 的值为_________.12.k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当310)3(2kk -<-时,求关于x 的不等式k x x k ->-4)5(的解集.15.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.16.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.17.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.18.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,3215只有4个整数解,求a 的取值范围.22.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。
10道一元一次不等式应用题和答案过程
10道一元一次不等式应用题和答案过程1.某水产品市场管理部门计划建造2400平方米的大棚,内设有A种和B种店面各80间。
A种店面的平均面积为28平方米,月租费为400元;B种店面的平均面积为20平方米,月租费为360元。
全部店面的建造面积不低于大棚总面积的85%。
现在要确定A种店面的数量。
解:设A种店面为a间,B种店面为80-a间。
根据题意,28a+20(80-a)≥2400×85%,化简得8a≥440,即a≥55.因此,A种店面至少应有55间。
为使店面的月租费最高,设月租费为y元,根据题意可得y=75%a×400+90%(80-a)×360=300a+-24a=-24a。
因为a≥55,所以当a=55时,y取最大值,即月租费最高为元。
2.水产养殖户XXX计划进行大闸蟹与河虾的混合养殖。
每亩地水面租金为500元,每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗。
每公斤蟹苗的价格为75元,饲养费用为525元,当年可获得1400元收益;每公斤虾苗的价格为15元,饲养费用为85元,当年可获得160元收益。
现在要求出每亩水面虾蟹混合养殖的年利润,并确定XXX应租多少亩水面,向银行贷款多少元,才能使年利润达到元。
解:每亩水面的成本包括水面年租金、苗种费用和饲养费用,即成本=500+75×4+15×20+525×4+85×20=4900元。
每亩水面的收益为1400×4+160×20=8800元。
因此,每亩水面的年利润为8800-4900=3900元。
设租a亩水面,贷款为4900a-元。
根据题意,收益为8800a,成本不超过元,即4900a≤,解得a≤10.2亩。
为使年利润达到元,可列出方程3900a+0.1(4900a-)=,解得a≈13.08亩,即XXX应租13亩水面,向银行贷款约为元。
某手机生产厂家决定对一款原售价为2000元的彩屏手机进行调价,按新单价的八折优惠出售。
七年级下册数学一元一次不等式组应用题专项练习附答案
七年级下册数学一元一次不等式组应用题专项练习附答案七年级下册数学一元一次不等式组应用题专项练习附答案一、综合题(共11题;共108分)1.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.3.为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两种型号的污水处理设备共20台,对邛海湿地周边污水进行处理.每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640 t,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1 080 t.(1)求A,B两种型号的污水处理设备每周每台分别可以处理污水多少吨.(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4 500 t,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少.4.某商店需要购进甲、乙两种商品共130件,其进价和获利情况如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于3000元,且销售完这批商品后总获利多于1048元,请问有哪些购货方案?5.某校组织夏令营活动,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则刚好坐满;若只租用42座客车,则能少租一辆,而且还有一辆没有坐满,但超过30人,问:(1)该校有多少人参加夏令营活动?(2)已知36座客车每辆租金400元,42座客车每辆租金440元,请你帮该校设计一种最省钱得租车方案。
一元一次不等式(组)应用题及练习(含答案)
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
一元一次不等式和一元一次不等式组(经典难题)
一元一次不等式和一元一次不等式组1.某同学说一定比大,你认为对吗?说明理由。
213a a -+21a -2.已知方程组23121x y m x y m +=+⎧⎨-=-⎩(1)请列出x>y 成立的关于m 的不等式。
(2)运用不等式的基本性质将此不等式化为m>a 或m<a 的形式。
3.要使不等式的解集为x<-1,求a 的取值范围。
(1)12a x x a ->+-4.已知关于x 的一元一次方程的解都是负数,求m 的取值范围.4131x m x -+=-5.如果关于x 的不等式(1)524.a x a x a -<+<和的解集相同,求的值6.x 取哪些非负整数时,的值不小于与1的差。
322x -213x+7.m 取何值时,关于x 的方程的解大于1?6151632xm m x ---=-8.如果方程组的解满足3x-y>0,求m 的取值范围.24122x y m x y m -=+⎧⎨-=-⎩9.若关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,求a 的取值范围.10.不等式组的解集是x >2,则m 的取值范围是.⎩⎨⎧+>+<+1,159m x x x 11.对于整数a ,b ,c ,d ,定义,已知,则b +d 的值为_________.bd ac c d ba -=3411<<d b12.k 满足______时,方程组中的x 大于1,y 小于1.⎩⎨⎧=-=+4,2y x k y x 13.解下列不等式或不等式组:.15)2(22537313-+≤--+x x x ).1(32)]1(21[21-<---x x x x ⋅->+-+2503.0.02.003.05.09.04.0x x x ⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x14.当时,求关于x 的不等式的解集.310)3(2k k -<-k x x k ->-4)5(15.已知中的x ,y 满足0<y -x <1,求k 的取值范围.⎩⎨⎧+=+=+122,42k y x k y x 16.已知a 是自然数,关于x 的不等式组的解集是x >2,求a 的值.⎩⎨⎧>-≥-02,43x a x 17.关于x 的不等式组的整数解共有5个,求a 的取值范围.⎩⎨⎧->-≥-123,0x a x 18.若关于x 的不等式组只有4个整数解,求a 的取值范围.⎪⎪⎩⎪⎪⎨⎧+<+->+ax x x x 322,321522.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y (元)与所买水性笔支数x (支)之间的函数关系式;(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;x (3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.。
初一数学不等式难题初一数学一元一次不等式应用题
初一数学一元一次不等式应用题列方程组解应用题常用的问题:①行程问题:行程=速度×时间②工程问题:工作量=工作效率×工作时间③浓度问题:溶质的溶量=溶液的质量×浓度浓度溶液的质量④存款问题:本息和=本金+利息利息=本金×利率×期数⑤调配问题⑥方案设计及最佳方案选择问题等⑦利润问题:利润=售价-进价【典型例题】(一)题中含一个未知量,结果求一个未知量例1:某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是?分析:此题中只有一个未知量既某数,可设此未知量根据题意列不等式。
解:设这个数为x 2x+5<=3x-4解得:x>=9 所以此数小于9。
例2:一个长方形足球场的长为X米,宽为70米,如果它的周长大于350米,面积小于7560平方米,求X的取值范围,并判断这个球场是否可以作为国际足球比赛(注:用于国际比赛的足球场的长在100至110米之间,宽在64至75米之间。
)解:2(70+x)>350 70x<7560 解得:105<x<108所以x范围是105到108,可做国际比赛的足球场(二)题中含多个未知量,求一个或多个未知量例3:一次考试共有25道选择题,做对一题得4分,做错一题或不做减2分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?分析:此题有两个未知量,既做对的题和不做做错的题,可设其中一个量,用这个量表示另一个量;解:设作对x到题,则做错或不做(25-x)到题所以可列不等式为: 4x-2(25-x)>=60 解得:x>=55/3所以x至少为19例4:有三个连续自然数,它们的和小于15,问这样的自然数有几组它们分别是多少?分析;三个自然数都是未知量,但它们之间有联系,可设其中一个,用它们之间联系表示另两个;解:设最小的一个为x,则另两个为(x+1),(x+2) x+(x+1)+(x+2)<15x<4 x可为0,1,2,3所以这样的自然数有4组,它们分别是012,123,234,3451、某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,若全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满,问宾馆一楼有多少房间?解:设宾馆一楼有X个房间,则二楼房间为X+5间旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,所以48/5<X<48/4 9.6<X<12全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满所以48/4<X+5<48/3 12<X+5<16 7<X<11 所以X=10宾馆一楼有10个房间2、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
一元一次不等式应用题
一元一次不等式应用题
问题描述
某游乐场门票的价格是每张27元。
小明手头有200元,他想买尽可能多的门票,但不能超过他的预算。
请问,小明最多能买到多少张门票?
解决方案
我们可以通过解一元一次不等式来确定小明最多能够买到的门票数量。
首先,我们设小明最多能买到的门票数量为x。
根据题目中的信息,每张门票的价格为27元。
因此,小明所需支付的总金额为27x元。
题目中还给出了小明手头的预算是200元。
小明不能超出这个预算,即27x 不能大于200。
这个不等式可以表示如下:
27x ≤ 200
接下来,我们进行解不等式的过程。
首先,我们将不等式中的等号变为大于等于号,即27x≥200。
这样做是为了方便求解。
然后,我们将不等式两边同时除以27,得到:
x ≥ 7.4
根据数学规则,我们将不等式的解写成小明最多能够买到门票的整数解。
因为门票数量必须是整数,所以小明最多能买到的门票数量为8张。
结论
根据题目中所给的条件,小明最多能买到8张门票。
解不等式例题50道
解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。
- 计算右边式子得2x>4。
- 两边同时除以2,解得x > 2。
2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。
- 即3x<9。
- 两边同时除以3,解得x<3。
3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。
- 计算得3x≤slant6。
- 两边同时除以3,解得x≤slant2。
4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。
- 即x≥slant8。
5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。
- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。
- 两边同时乘以 - 2,不等号变向,解得x < 8。
6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。
- 计算得(1)/(3)x≤slant3。
- 两边同时乘以3,解得x≤slant9。
7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。
- 移项得2x-3x>-3 - 6。
- 计算得-x>-9。
- 两边同时乘以 - 1,不等号变向,解得x < 9。
8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。
- 移项得3x-2x≤slant2+6。
- 计算得x≤slant8。
专题 解一元一次不等式(计算题50题)(解析版)
七年级下册数学《第九章 不等式与不等式组》专题 解一元一次不等式( 计算题50题 )1.(2023春•南岗区校级月考)解不等式.(1)2(2x +3)≤5(x +1);(2)2x−13−5x 12≥1.【分析】(1)去括号,先移项,合并后再系数化为1即可得到解集;(2)去分母,去括号再移项,合并最后系数化为1即可得到解集.【解答】解:(1)去括号得:4x +6≤5x +5,移项得:4x ﹣5x ≤5﹣6,合并得:﹣x ≤﹣1,系数化为1得:x ≥1,故不等式的解集为:x ≥1;(2)去分母得:2(2x ﹣1)﹣3(5x +1)≥6,去括号得:4x﹣2﹣15x﹣3≥6,移项得:4x﹣15x≥6+2+3,合并得:﹣11x≥11,系数化为1得:x≤﹣1,故不等式的解集为:x≤﹣1;【点评】本题主要考查了解不等式,根据不等式的性质解不等式,掌握解不等式的步骤是解题的关键.2.(2023•漳平市一模)解不等式:3x2−1<4x36.【分析】根据解不等式的一般步骤解答即可,解答的一般步骤为:去分母,去括号,移项及合并同类项,系数化为1.【解答】解:3x2−1<4x36,去分母得:3(3+x)﹣6<4x+3,去括号得:9+3x﹣6<4x+3,移项合并得:﹣x<0,系数化为1得:x>0.【点评】本题考查了解一元一次不等式,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3.解不等式2x−13−5x12<5.【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:去分母得,2(2x﹣1)﹣3(5x+1)<30,去括号得,4x﹣2﹣15x﹣3<30,移项得,4x﹣15x<30+3+2,合并同类项得,﹣11x<35,x的系数化为1得,x>−35 11.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.4.(2022春•霍林郭勒市校级期末)解不等式x16≥2x−54+1.【分析】先去分母,再去括号、移项、合并同类项,然后把x的系数化为1得到不等式的解集.【解答】解:x16≥2x−54+1,去分母,得2(x+1)≥3(2x﹣5)+12,去括号,得2x+2≥6x﹣15+12,移项、合并,得﹣4x≥﹣5,系数化为1,得x≤5 4,【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.解不等式:(1)3x﹣2>4+2(x﹣2)(2)x12≥3(x﹣1)﹣4【分析】(1)先去括号,再移项、合并同类项,即可求出不等式的解集,再在数轴上表示出此解集即可.(2)先去分母、去括号,再移项、合并同类项,系数化为1即可求出不等式的解集,再在数轴上表示出此解集即可.【解答】解:(1)3x﹣2>4+2x﹣4,3x﹣2x>4﹣4+2,x>2.(2)x+1≥6(x﹣1)﹣8,x+1≥6x﹣6﹣8,x﹣6x≥﹣6﹣8﹣1,﹣5x≥﹣15,x≤3.【点评】本题考查的是解一元一次不等式及在数轴上表示一元一次不等式的解集,解答此题时要熟知解一元一次不等式的步骤,即:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.6.解下列不等式,并把它们的解集在数轴上表示出来.(1)2(x+1)>3x﹣4(2)x−12−4x−36>13【分析】(1)去括号,移项,合并同类项,系数化成1,最后在数轴上表示出来即可;(2)去分母,去括号,移项,合并同类项,系数化成1,最后在数轴上表示出来即可【解答】(本题满分(10分),每小题5分)解:(1)2(x+1)>3x﹣4,2x+2>3x﹣4,2x﹣3x>﹣4﹣2,﹣x>﹣6,x<6.(2)x−12−4x−36>13,去分母得:3(x﹣1)﹣(4x﹣3)>2,去括号得:3x﹣3﹣4x+3>2,合并同类项得:﹣x>2,系数化为1得:x<﹣2.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解此题的关键.7.(2023春•雁塔区校级月考)解不等式.(1)4x+5≤2(x+1);(2)2x−13−9x26≤1.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)∵4x+5≤2(x+1),∴4x+5≤2x+2,4x﹣2x≤2﹣5,2x≤﹣3,∴x≤−3 2;(2)∵2x−13−9x26≤1,∴2(2x﹣1)﹣(9x+2)≤6,4x﹣2﹣9x﹣2≤6,4x﹣9x≤6+2+2,﹣5x≤10,则x≥﹣2.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8.解下列不等式:(1)3(x+2)﹣1≤11﹣2(x﹣2);(2)x2−1≤7−x3.【分析】(1)先去括号,再移项合并同类项可得不等式的解集;(2)先去分母、去括号,再移项合并同类项可得不等式的解集.【解答】解:(1)3(x+2)﹣1≤11﹣2(x﹣2),3x+6﹣1≤11﹣2x+4,3x+2x≤11+4﹣6+1,5x≤10,∴x≤2;(2)x2−1≤7−x3,3x﹣6≤2(7﹣x),3x﹣6≤14﹣2x,3x+2x≤14+6,5x≤20,∴x≤4.【点评】本题考查一元一次不等式的解法,能熟练的解一元一次不等式是解题关键.9.(2023春•碑林区校级月考)解下列不等式:(1)2(﹣x+2)>﹣3x+5;(2)7−x3≤x22+1.【分析】(1)先去括号,再移项合并同类项,即可求解;(2)先去分母,再去括号,然后移项合并同类项,即可求解.【解答】解:(1)2(﹣x+2)>﹣3x+5,去括号得:﹣2x+4>﹣3x+5,移项合并同类项得x>1;(2)7−x3≤x22+1,去分母得:2(7﹣x)≤3(x+2)+6,去括号得:14﹣2x≤3x+6+6,移项合并同类项得:﹣5x≤﹣2,解得:x≥2 5.【点评】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解题的关键.10.(2021春•金水区校级月考)解下列不等式:(1)5x﹣12≤2(4x﹣3);(2)x43−3x−12>1.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:5x﹣12≤8x﹣6,移项,得:5x﹣8x≤﹣6+12,合并同类项,得:﹣3x≤6,系数化为1,得:x≥﹣2;(2)去分母,得:2(x+4)﹣3(3x﹣1)>6,去括号,得:2x+8﹣9x+3>6,移项,得:2x﹣9x>6﹣8﹣3,合并同类项,得:﹣7x>﹣5,系数化为1,得:x<5 7.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.(2022秋•工业园区校级月考)解不等式:(1)3(x+2)﹣1≥8﹣2(x﹣1);(2)x22<1−2−3x5.【分析】(1)不等式去括号,移项,合并,把x系数化为1,即可求出解集;(3)不等式去分母,去括号,移项,合并,把x系数化为1,求出解集.【解答】解:(1)去括号得:3x+6﹣1≥8﹣2x+2,移项得:3x+2x≥8+2﹣6+1,合并得:5x≥5,解得:x≥1;(2)去分母得:5x+10<10﹣4+6x,移项得:5x﹣6x<10﹣4﹣10,合并得:﹣x<﹣4,解得:x>4.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.12.(2022春•南关区校级期中)解下列不等式:(1)3(x+1)<x﹣1;(2)1−x3<3−x24.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:3x+3<x﹣1,移项,得:3x﹣x<﹣1﹣3,合并同类项,得:2x<﹣4,系数化为1,得:x<﹣2;(2)去分母,得:4(1﹣x)<36﹣3(x+2),去括号,得:4﹣4x<36﹣3x﹣6,移项,得:﹣4x+3x<36﹣6﹣4,合并同类项,得:﹣x<26,系数化为1,得:x>﹣26.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.13.解不等式:(1)2[x﹣3(x﹣1)]≥4x(2)x−12−23x<1【分析】(1)先去小括号,再去中括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)2(x﹣3x+3)≥4x,2x﹣6x+6≥4x,2x﹣6x﹣4x≥﹣6,﹣8x≥﹣6,x≤3 4;(2)3(x﹣1)﹣4x<6,3x﹣3﹣4x<6,3x﹣4x<6+3,﹣x<9,x>﹣9.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14.解下列不等式.(1)2(x﹣1)+2<5﹣3(x+1)(2)1−x−13≤2x33+x.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:2x ﹣2+2<5﹣3x ﹣3,移项,得:2x +3x <5﹣3+2﹣2,合并同类项,得:5x <2,系数化为1,得:x <25;(2)去分母,得:3﹣(x ﹣1)≤2x +3+3x ,去括号,得:3﹣x +1≤2x +3+3x ,移项,得:﹣x ﹣2x ﹣3x ≤3﹣3﹣1,合并同类项,得:﹣6x ≤﹣1,系数化为1,得:x ≥16.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.(2023春•菏泽月考)解下列不等式.(1)3x +1≥﹣5.(2)5x ﹣1≤3(x +1). (3)1−8x 3≥x 2. (4)x 58−1<3x 22. 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可.(4)去分母,去括号,移项,合并同类项,系数化成1即可;【解答】解:(1)3x +1≥﹣5,移项得,3x ≥﹣5﹣1,合并同类项得,3x ≥﹣6,系数化为1得,x ≥﹣2.(2)去括号得,5x ﹣1≤3x +3,移项得,5x ﹣3x ≤3+1,合并同类项得,2x ≤4,系数化为1得,x ≤2.(3)1−8x 3≥x 2,去分母得,6−(8+x)×2≥x 2×6,去括号得,6﹣16﹣2x ≥3x ,移项得,﹣2x ﹣3x ≥﹣6+16,合并同类项得,﹣5x ≥10,系数化为1得,x ≤﹣2.(4)x 58−1<3x 22,x +5﹣8<4(3x +2),x +5﹣8<12x +8,x ﹣12x <8+8﹣5,﹣11x <11,x >﹣1.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集,数形结合是解题的关键.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【分析】去括号,移项,合并同类项,系数化成1,最后在数轴上表示出来即可.【解答】解:3(x +1)≤5x +7,去括号,得3x +3≤5x +7,移项、合并同类项,得﹣2x ≤4,系数化成1,得x ≥﹣2,在数轴上表示不等式的解集为:.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,解此题的关键是能根据不等式的基本性质求出不等式的解集,难度适中.2.(2022•利辛县校级二模)解不等式11﹣4(x﹣1)≤3(x﹣2),并把它的解集在数轴上表示出来.【分析】利用不等式的基本性质,把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【解答】解:将原不等式去括号得,11﹣4x+4≤3x﹣6移项得:﹣4x﹣3x≤﹣6﹣11﹣4合并同类项得:﹣7x≤﹣21系数化为1得:x≥3故此不等式的解集为:x≥3,在数轴上表示为:【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.3.(2021•榆阳区模拟)解不等式:2x−13−5x12≥1,并把它的解集在数轴上表示出来.【分析】去分母,去括号,移项,合并同类项,系数化成1,即可求出不等式的解集.【解答】解:2x−13−5x12≥1,2(2x﹣1)﹣3(5x+1)≥6,4x﹣2﹣15x﹣3≥6,﹣11x≥11,x≤﹣1,在数轴上表示为.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能根据不等式的性质求出不等式的解集是解此题的关键.4.(2023春•禅城区月考)解不等式,要求写出详细步骤:x−22≤7−x3,并把解集在数轴上表示出来.【分析】先去分母,再去括号,然后移项合并同类项,再把解集在数轴上表示,即可求解.【解答】解:x−22≤7−x3,去分母得:3(x﹣2)≤2(7﹣x),去括号得:3x﹣6≤14﹣2x,移项合并同类项得:5x≤20,解得:x≤4.把解集在数轴上表示出来,如图:【点评】本题主要考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.5.(2021春•龙岗区校级月考)解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)2x−12−5x−14<0.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:5x﹣6≤2x+6,移项,得:5x﹣2x≤6+6,合并同类项,得:3x≤12,系数化为1,得:x≤4,将解集表示在数轴上如下:(2)去分母,得:2(2x﹣1)﹣(5x﹣1)<0,去括号,得:4x﹣2﹣5x+1<0,移项、合并,得:﹣x<1,系数化为1,得:x>﹣1,将解集表示在数轴上如下:.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(2021春•虎林市期末)解下列不等式,并把解集在数轴上表示出来:(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x−32−1>x−53.【分析】(1)去括号、移项、合并同类项,系数化成1即可求解;(2)去分母,去括号、移项、合并同类项,系数化成1即可求解.【解答】解:(1)去括号,得:3x+6﹣8≥1﹣2x+2,移项,得3x+2x≥1+2﹣6+8,合并同类项,得5x≥5,系数化成1得:x≥1,不等式的解集在数轴上表示如下;(2)去分母,得3(x﹣3)﹣6>2(x﹣5),去括号,得3x﹣9﹣6>2x﹣10,移项,得3x﹣2x>﹣10+9+6,合并同类项,得x>5,不等式的解集在数轴上表示如下.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.7.(2023春•南岗区校级月考)解下列不等式并把它们的解集在数轴上表示出来:(1)5(x +2)≥1﹣2(x ﹣1);(2)x−23−x 2≤1.【分析】(1)去括号、移项、合并同类项、系数化为1可得;(2)去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)5(x +2)≥1﹣2(x ﹣1),去括号得:5x +10≥1﹣2x +2,移项并合并得:7x ≥﹣7,系数化为1得解集为:x ≥﹣1,把不等式的解集在数轴上表示为:;(2)x−23−x 2≤1,去分母得:2(x ﹣2)﹣3x ≤6,去括号得:2x ﹣4﹣3x ≤6,移项并合并得:﹣x ≤10,系数化为1得解集为:x ≥﹣10,把不等式的解集在数轴上表示为:.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集的知识,能正确运用不等式的基本性质进行计算是解此题的关键.8.(2023春•灞桥区校级月考)解不等式:2x−14≤3x 22−1.并把它的解集在数轴上表示出来.【分析】根据不等式的性质,求出不等式的解集即可.【解答】解:去分母得:2x ﹣1≤2(3x +2)﹣4,去括号得:2x ﹣1≤6x +4﹣4,移项合并得:﹣4x ≤1,化系数为1:x ≥−14.在数轴上表示为:.【点评】本题主要考查解一元一次不等式和在数轴上表示不等式的解集,熟练掌握不等式的性质是解题的关键.9.(2023春•雁塔区校级月考)解不等式,并把它的解集在数轴上表示出来.(1)2(﹣3+x )>3(x +2);(2)x−12+1≥x .【分析】(1)根据解一元一次不等式的方法求出不等式的解集,然后在数轴上表示出解集即可;(2)根据解一元一次不等式的方法求出不等式的解集,然后在数轴上表示出解集即可.【解答】解:(1)2(﹣3+x )>3(x +2),去括号,得:﹣6+2x >3x +6,移项及合并同类项,得:﹣x >12,系数化为1,得:x <﹣12,其解集在数轴上表示如下:;(2)x−12+1≥x ,去分母,得:x ﹣1+2≥2x ,移项及合并同类项,得:﹣x≥﹣1,系数化为1,得:x≤1,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式(组),在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.10.(2023•绥德县一模)解不等式:4x−13≥3x−16−1,并把它的解集在数轴上表示出来.【分析】先去分母,再去括号,然后移项合并同类项,最后系数化为1,得出不等式的解集即可.【解答】解:4x−13≥3x−16−1,去分母得:2(4x﹣1)≥3x﹣1﹣6,去括号得:8x﹣2≥3x﹣7,移项合并同类项得:5x≥﹣5,不等式两边同除以5得:x≥﹣1,把解集表示在数轴上如图所示:【点评】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解题的关键,注意不等式两边同除以或乘以同一负数时,不等号方向发生改变.11.(2023•灞桥区校级三模)解不等式:3x−25>2x13−1,并在数轴上表示出该不等式的解集.【分析】根据解一元一次不等式的方法可以求得该不等式的解集,然后在数轴上表示出其解集即可.【解答】解:3x−25>2x13−1,去分母,得:3(3x﹣2)>5(2x+1)﹣15,去括号,得:9x﹣6>10x+5﹣15,移项及合并同类项,得:﹣x>﹣4,系数化为1,得:x<4,其解集在数轴上表示如下所示:.【点评】本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.12.(2023春•牡丹区校级月考)解不等式,并把不等式的解集表示在数轴上.(1)2(x +1)﹣1≥3x +2;(2)2x−13−9x 26≤1.【分析】(1)先去括号,再移项、合并同类项,即可求出不等式的解集,再在数轴上表示出此解集即可.(2)先去分母、去括号,再移项、合并同类项,系数化为1即可求出不等式的解集,再在数轴上表示出此解集即可.【解答】解:(1)∵2(x +1)﹣1≥3x +2,∴2x +2﹣1≥3x +2,∴2x ﹣3x ≥2﹣2+1,∴﹣x ≥1,∴x ≤﹣1;将不等式的解集表示在数轴上如下:(2)∵2x−13−9x 26≤1,∴2(2x ﹣1)﹣(9x +2)≤6,∴4x ﹣2﹣9x ﹣2≤6,∴﹣5x ≤10,∴x ≥﹣2,将不等式的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式及在数轴上表示一元一次不等式的解集,解答此题时要熟知解一元一次不等式的步骤,即:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.13.(2023春•越秀区校级月考)解不等式x−33≤7−53x,并把它的解集在数轴上表示出来.【分析】先去分母,再移项,合并同类项,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:去分母,得x﹣3≤21﹣5x,移项,得x+5x≤21+3,合并同类项,得6x≤24,系数化为1,得x≤4,将不等式的解集在数轴上表示如下:【点评】此题考查了解一元一次不等式以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.14.(2022春•明溪县月考)解不等式x−22<7−x3并把解集在数轴上表示出来.【分析】先去分母,再去括号,然后移项合并同类项,再把解集在数轴上表示,即可求解.【解答】解:x−22<7−x3,去分母得:3(x﹣2)<2(7﹣x),去括号得:3x﹣6<14﹣2x,移项合并同类项得:5x<20,解得:x<4.把解集在数轴上表示出来,如图:【点评】本题主要考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.15.(2022春•舒城县校级月考)解不等式;x12≥3(x﹣1)﹣6.5,并把解集在数轴上表示出来.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:x12≥3(x﹣1)﹣6.5,x+1≥6x﹣6﹣13,∴x≤4.数轴表示为:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.(2021秋•驿城区校级期末)解不等式:x6>1−4−x2,并把它的解集在数轴上表示出来.【分析】不等式去分母,去括号,移项合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:去分母得:x>6﹣3(4﹣x),去括号得:x>6﹣12+3x,移项合并得:﹣2x>﹣6,系数化为1得:x<3.把解集在数轴上表示出来:.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.17.(2022春•平潭县期末)解不等式3(x﹣1)<4(x−12)﹣3,并把它的解集在数轴上表示出来.【分析】去括号、移项、合并同类项,化系数为1,依此求解不等式,再把它的解集在数轴上表示出来即可.【解答】解:3(x﹣1)<4(x−12)﹣3,去括号:3x﹣3<4x﹣2﹣3,移项得:3x﹣4x<﹣2﹣3+3,合并同类项得﹣x<﹣2,未知数的系数化为1:x>2,所以原不等式的解集是:x>2,在数轴上表示为:【点评】考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的性质解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.18.(2022•丰顺县校级开学)解下列不等式,并将解集表示在数轴上.(1)7x+10≥4(x+1).(2)x16>2x−54+1.【分析】(1)先根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可;(2)先根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【解答】解:(1)7x+10≥4(x+1),7x+10≥4x+4,7x﹣4x≥4﹣10,3x≥﹣6,x≥﹣2,在数轴上表示为:;(2)x16>2x−54+1,2(x+1)>3(2x﹣5)+12,2x+2>6x﹣15+12,2x﹣6x>﹣15+12﹣2,﹣4x>﹣5,x<5 4,在数轴上表示为:.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解此题的关键.19.(2021春•西城区校级期末)解不等式2x−13+52≥3x12,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20.解不等式3x12−3>2x﹣1,并把解集在数轴上表示出来.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得3x+1﹣6>4x﹣2,移项,得3x﹣4x>﹣2+5,合并同类项,得﹣x>3,系数化为1,得 x <﹣3,不等式的解集在数轴上表示如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.1.(2023•雁塔区校级四模)解不等式:3x−65>2x−4,并写出该不等式的正整数解.【分析】不等式去分母,移项合并,把x 系数化为1,求出解集,找出解集的正整数解即可.【解答】解:去分母得:3x ﹣6>10x ﹣20,移项得:3x ﹣10x >6﹣20,合并得:﹣7x >﹣14,解得:x <2,∴正整数解为1.【点评】本题考查了解一元一次不等式,去分母是解题关键,不含分母的项要乘分母的最小公倍数.2.(2023•贵池区二模)解不等式2x−13−9x 26≤1,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式的解集,将解集表示在数轴上后可知其负整数解.【解答】解:去分母,得:2(2x ﹣1)﹣(9x +2)≤6,去括号,得:4x ﹣2﹣9x ﹣2≤6,移项,得:4x ﹣9x ≤6+2+2,合并同类项,得:﹣5x ≤10,系数化为1,得:x ≥﹣2,将不等式解集表示在数轴上如下:由数轴可知该不等式的负整数解为﹣2、﹣1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.(2022春•德保县期中)解不等式2x3+52≥2x32,并写出它的所有正整数解.【分析】不等式去分母,去括号,移项,合并,把x系数化为1,求出解集,进而确定出正整数解即可.【解答】解:去分母得:4x+15≥3(2x+3),去括号,得:4x+15≥6x+9,移项得:4x﹣6x≥9﹣15,合并得:﹣2x≥﹣6,解得:x≤3,则不等式的正整数解为1,2,3.【点评】此题考查了一元一次不等式的整数解,以及解一元一次不等式,熟练掌握不等式的解法是解本题的关键.4.(2022•王益区一模)解不等式:x52≥3(x−2),并写出它的正整数解.【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:去分母得:x+5≥6(x﹣2),去括号得,x+5≥6x﹣12,移项得,x﹣6x≥﹣12﹣5,合并同类项得,﹣5x≥﹣17,x的系数化为1得,x≤17 5.所以不等式的正整数解为:x=1,2,3.【点评】本题考查了解一元一次不等式,一元一次不等式的整数解等等知识点,能求出不等式的解集是解此题的关键.5.(2021春•绥中县期末)解不等式43x6≤12x3+1,并在数轴上表示解集,并写出它的非正整数解.【分析】先根据不等式的解集求出不等式的解集,再在数轴上表示不等式的解集,最后求出不等式的非正整数解即可.【解答】解:43x6≤12x3+1,去分母,得4+3x≤2(1+2x)+6,去括号,得4+3x≤2+4x+6,移项,得3x﹣4x≤2+6﹣4,合并同类项,得﹣x≤4,系数化成1,得x≥﹣4,在数轴上表示为:,所以不等式的非正整数解是﹣4,﹣3,﹣2,﹣1,0.【点评】本题考查了解一元一次不等式,不等式的整数解,在数轴上表示不等式的解集等知识点,能求出不等式的解集是解此题的关键.6.求不等式2x13≤3x−25+1的非负整数解.【分析】去分母,去括号,移项,合并同类项,即可得出不等式的解集.【解答】解:去分母得:5(2x+1)≤3(3x﹣2)+15,去括号得:10x+5≤9x﹣6+15,移项得:10x﹣9x≤﹣5﹣6+15,合并同类项得x≤4,∴不等式的非负整数解为0、1、2、3、4.【点评】本题考查了不等式的性质和解一元一次不等式,主要考查学生运用不等式的性质解一元一次不等式的能力,题目比较好,难度不大.7.求不等式5(x2)4>2x﹣2的正整数解.【分析】求出不等式的解集后,然后在解集范围内找出符合条件的正整数解即可.【解答】解:5(x+2)>8x﹣8,5x+10>8x﹣8,5x﹣8x>﹣8﹣10,﹣3x>﹣18,x<6,∴它的正整数解是1,2,3,4,5.【点评】本题考查了一元一次不等式的整数解,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.8.求不等式x3≤1+x−12的负整数解【分析】等式两边乘以6去分母后,移项合并,将x系数化为1求出解集,找出解集中的负整数解即可.【解答】解:2x≤6+3(x﹣1),2x≤6+3x﹣3,2x﹣3x≤6﹣3,﹣x≤3,x≥﹣3,∴不等式的负整数解为﹣3、﹣2、﹣1.【点评】此题考查了一元一次不等式的整数解,求出不等式的解集是解本题的关键.9.解不等式x12>2x23−1,并写出它的非负整数解.【分析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:去分母,得:3(x+1)>2(2x+2)﹣6,去括号,得:3x+3>4x+4﹣6,移项,得:3x﹣4x>4﹣6﹣3,合并同类项,得:﹣x>﹣5,系数化为1,得:x<5,所以不等式的非负整数解为0、1、2、3、4.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.10.解不等式1x2≤12x3+1,并写出它的所有负整数解.【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:去分母得:3(1+x)≤2(1+2x)+6去括号得:3+3x≤2+4x+6,移项、合并同类项得:x≥﹣5,∴不整式1x2≤12x3+1的负整数解为﹣1,﹣2,﹣3,﹣4,﹣5.【点评】本题考查了解一元一次不等式,一元一次不等式的整数解的应用,能根据不等式的基本性质求出解不等式的解集是解此题的关键.11.求不等式(3x+4)(3x﹣5)>9(x﹣2)(x+3)的正整数解.【分析】首先利用多项式的乘法法则对不等号两边进行化简,然后移项、合并同类项、系数化为1即可求得不等式的解集,然后确定正整数解即可.【解答】解:(3x+4)(3x﹣5)>9(x﹣2)(x+3)去括号,得9x2﹣15x+12x﹣20>9x2+9x﹣54,移项,得9x2﹣9x2﹣12x>﹣54+20,合并同类项,得﹣12x>﹣34,系数化成1得x<17 6,则正整数解是1,2.【点评】本题考查了一元一次不等式的整数解,正确利用多项式的乘法法则对不等号两边进行化简是关键.12.解不等式1+x12≥2−x73,并求出其最小整数解.【分析】去分母,去括号,移项,合并同类项,系数化成1,即可得出答案.【解答】解:1+x12≥2−x73,去分母,得6+3(x+1)≥12﹣2(x+7),去括号,得6+3x+3≥12﹣2x﹣14,移项、合并同类项,得5x≥﹣11,系数化为1,得x≥−11 5,故不等式的最小整数解为﹣2.【点评】本题考查了解一元一次不等式和一元一次不等式的整数解,能求出不等式的解集是解此题的关键.13.解不等式x12>2x23−1,并写出它的正整数解.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母得:3(x+1)>2(2x+2)﹣6,。
不等式解决问题练习题
不等式解决问题练习题一、一元一次不等式1. 解不等式:3x 5 > 22. 解不等式:4 2x ≤ 13. 解不等式:5x + 8 > 34. 解不等式:7 3x < 45. 解不等式:2x 6 ≥ 4二、一元一次不等式组1. 解不等式组:\[\begin{cases}x 2 > 0 \\3x + 1 < 4\end{cases}\]2. 解不等式组:\[\begin{cases}2x 3 < 5 \\4x + 7 > 11\end{cases}\]3. 解不等式组:\[\begin{cases}5x + 4 > 2x 1 \\3x 2 ≤ 8\end{cases}\]三、一元二次不等式1. 解不等式:x^2 5x + 6 > 02. 解不等式:2x^2 4x 6 < 03. 解不等式:x^2 + 3x 4 ≥ 04. 解不等式:x^2 + 2x + 3 ≤ 05. 解不等式:4x^2 12x + 9 > 0四、分式不等式1. 解不等式:\(\frac{1}{x2} > 0\)2. 解不等式:\(\frac{2}{x+3} < 1\)3. 解不等式:\(\frac{3}{x1} + \frac{1}{x+2} ≥ 0\)4. 解不等式:\(\frac{4}{x+1} \frac{2}{x3} ≤ 2\)5. 解不等式:\(\frac{5}{x^2 4x + 3} > 0\)五、绝对值不等式1. 解不等式:|x 4| < 32. 解不等式:|2x + 1| ≥ 53. 解不等式:|3x 7| > 24. 解不等式:|4 x| ≤ 65. 解不等式:|5x + 3| < 8六、综合应用题1. 某企业生产一种产品,每件产品的成本为50元,售价为80元。
若该企业每月固定开支为2000元,要使企业不亏损,每月至少需要销售多少件产品?2. 一辆汽车以60km/h的速度行驶,行驶过程中,速度每增加10km/h,油耗增加1L/100km。
一元一次不等式中高难度题
一元一次不等式提高篇一、习题精选:1.已知a>b,c≠0,则下列关系一定成立的是()A.a c>bc B.C.c﹣a>c﹣b D.c+a>c+b2.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<aB.b<c<aC.c<a<bD.b<a<c3.下列命题中:①如果a<b,那么ac2<bc2;②若是自然数,则满足条件的正整数x有4个;③关于x的不等式(a﹣1)x>1﹣a的解集是x<﹣1,则a<1.正确的命题个数是()A.0B.1C.2D.34.不等式(a﹣3)x>1的解集是x<,则a的取值范围是()A.a<0 B.a>0 C.a>3 D.a<35.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<46.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<27.若x为任意实数时,二次三项式x2﹣6x+c的值都不小于0,则常数c满足的条件是()A.c≥0 B.c≥9 C.c>0 D.c>98.若x是方程2x+m﹣3(m﹣1)=1+x的解为负数,则m的取值范围是()A.m>﹣1 B.m<﹣1 C.m>1 D.m<19.若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣10.若a<﹣2,则a2﹣2a;不等式ax>b解集是,则a取值范围是.11.已知关于x的不等式(2a﹣b)x>b的解是x<,则=.12.a、b、c在数轴上的位置如图所示.则在中,最大的是.13.解下列不等式,并把解表示在数轴上.(1)5(2x+1)<3(3x﹣1);(2).(3)﹣y﹣;(4).二、例题解析:例1. 若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的A.1个B.2个C.3个D.4个例2.x取哪些正整数值时,代数式(x﹣1)2﹣4的值小于(x+1)(x﹣5)+7的值.例3.已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.例4.已知:a,b是整数,关于x的不等式x>a-2b的最小整数解为8,关于y的不等式y <2a-3b-19的最大整数解为-8.(1)求a,b的值;(2)|x-b|=x-b,|x-a|>a-x,求符合题意的最小整数x.例5.是否存在整数m ,使关于x 的不等式1+m x 3>m x +m9与关于x 的不等式x+1>32m x +-的解集相同?若存在,求出整数m 和不等式的解集;若不存在,请说明理由.例6.设a >0>b >c ,且a+b+c=﹣1,若,试比较M 、N 、P 的大小.例7.已知不等式(a+b )x+(2a ﹣3b )<0的解集是x <,求关于x 的不等式(a ﹣3b )x >2a ﹣b 的解集.例8.已知a 1,a 2,a 3,…a 2011,a 2012是彼此互不相等的负数,且M=(a 1+a 2+a 3+…+a 2011)(a 2+a 3+…+a 2012),N=(a 1+a 2+a 3+…+a 2012)(a 2+a 3+…+a 2011),比较M 与N 的大小.三、能力提升:1.若2a+3b﹣1>3a+2b,则a,b的大小关系为()A.a<b B.a>b C.a=b D.不能确定2.若max{S1,S2,…,S n}表示实数S1,S2,…,S n中的最大者.设A=(a1,a2,a3),b=,记A⊗B=max{a1b1,a2b2,a3b3},设A=(x﹣1,x+1,1),,若A⊗B=x﹣1,则x的取值范围为()A.B.C.D.3.已知a、b、c、d都是正实数,且<,给出下列四个不等式:①<;②<;③;④<其中不等式正确的是()A.①③B.①④C.②④D.②③4.若a+b=﹣2,且a≥2b,则()A.有最小值B.有最大值1C.有最大值2D.有最小值5.已知a,b,c,d是四个不同的数,且a>b,a+b=c+d,c+a<d+b,那么四个数中最大的数是.6.若实数a、b、c满足a2+b2+c2=9,那么代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是.7.已知关于x的分式方程的解为负数,那么字母a的取值范围是.8.定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m的取值范围是.。
(完整版)《一元一次不等式组的应用》典型例题
《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
专题 解一元一次不等式组(计算题50题)(解析版)
七年级下册数学《第九章 不等式与不等式组》专题 解一元一次不等式组(计算题共50题 )1.(2022秋•越秀区校级期末)解不等式组:5x ―1>4x +2x ≥2x ―4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:5x ―1>4x +2①x ≥2x ―4②,由①得:x >3,由②得:x ≤4,则不等式组的解集为3<x ≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2023•>1≤3x+2.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.>1≤3x+2,由3x23>1得x>53,由4x﹣5≤3x+2得x≤7,故不等式组的解集为53<x≤7.【点评】本题考查了解一元一次不等式组.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(2023•3x―1―2<x56.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x≥3x﹣1得:x≥―1 2,解不等式x23―2<x56得:x<3,则不等式组的解集为―12≤x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2023春•1≤―x+1<x+23.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.1≤―x+1①<x+23②,由①得:x≤23,由②得:x>﹣1,则不等式组的解集为﹣1<x≤23.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2023•陕西模拟)解不等式组:2x+5≤3(x+2)x―1<2.【分析】分别解两个不等式,然后根据大小小大中间找确定不等式组的解集.【解答】解:2x+5≤3(x+2)①x―1<2②,解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集为:﹣1≤x<3.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分得到不等式组的解集.6.(2023•安徽模拟)解不等式组2x+1≤4―x x―1<3x2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:2x+1≤4―x①x―1<3x2②,由①得x≤1,由②得:x>﹣2,则不等式组的解集为﹣2<x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023春•≥x+1≤x.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣5≥x+1,得:x≥3,由3x42≤x,得:x≤4,则不等式组的解集为:3≤x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2023春•x―3)≤x ―1>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.x―3)≤x①―1>0②,解不等式①得:x≥113,解不等式②得:x>3,则不等式组的解集为x≥113.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023春•―1)≤4>x―1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:x≥―12,不等式②得:x<4,∴不等式组的解集为:―12≤x<4.【点评】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.10.(2023•3≤13―2<x―1.【分析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.3≤13①―2<x―1②,由①得x≤2,由②得x>﹣2,∴不等式组的解集为﹣2<x≤2.【点评】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023•x+2)≥2x+5―1<x22并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,将解集表示在数轴上,根据数轴求得不等式的解集即可求解.【解答】解:解不等式①得,x≥﹣1,解不等式②得,x>0,所以不等式组的解集为x>0.这个不等式组的解集在数轴上表示如图:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,数形结合是解题的关键.12.(2023•2)>8x+9①+2>x23②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①,得:x<32,解不等式②,得:x>﹣5,则不等式组的解集为﹣5<x<32.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(2023•―7<3(x+1) x―1≥7―32x.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.―7<3(x+1)①x―1≥7―32x②,解不等式①得:x<5,解不等式②得:x≥4,则不等式组的解集为4≤x<5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2023•碑林区校级三模)解不等式组:2(x―2)≤3―x1―2x13>x+1.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:2(x―2)≤3―x①1―2x13>x+1②,解①得:x≤73,解②得x<―15.故不等式组的解集是:x<―15.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,15.(2023•x―1)<7+2≥x.【分析】先解每个不等式,再求两个不等式解集的公共部分即可.x―1)<7①+2≥x②,解不等式①得,x<3,解不等式②得,x≤2,∴不等式组的解集为x≤2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.16.(2023•香洲区校级一模)解不等式组:4x―2≤3(x+1)①1―x12<x4②.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:由①得x≤5,由②得x>2,故不等式组的解集为2<x≤5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(2023•1<―x+2<12x3.【分析】分别将每个一元一次不等式求解,然后求出公共解集即可.【解答】解:解不等式2x﹣1<﹣x+2,得x<1,解不等式x12<12x3,得x>﹣5,故不等式组的解集是:﹣5<x<1.【点评】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(2023•2≥4x+1>x32+1.【分析】分别解两个不等式,求解集的公共部分即可.2≥4x+1①>x32+1②解不等式①得:x≥﹣1,解不等式②得:x <3.∴不等式组的解集为﹣1≤x <3.【点评】本题考查解一元一次不等式组,解题关键是熟练掌握解一元一次不等式的步骤.19.(2023•3)<―1≤【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.<4x①―1≤2x 13②,由①得:x >﹣3,由②得:x ≤1,∴不等式组的解集为﹣3<x ≤1.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.20.(2023•1≤7―32x <x 12+1.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后写出相应的整数解即可.1≤7―32x ①<x 12+1②解不等式①,得:x ≤4,解不等式②,得:x >﹣1,∴不等式组的解集是﹣1<x ≤4.【点评】本题考查解一元一次不等式组,熟练掌握解一元一次不等式的方法是解答本题的关键.请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得 ;(Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .【分析】根据解一元一次不等式组的方法,可以解答本题.【解答】解:2x>―4①x+3≤5②,解不等式①,得x>﹣2,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:故原不等式组的解集为﹣2<x≤2.故答案为:x>﹣2,x≤2,﹣2<x≤2.【点评】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集,掌握解一元一次不等式组的方法是关键.2.(2023•河西区模拟)解不等式组x+5≥4,①4x≥7x―6.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 ;(Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:x+5≥4①4x≥7x―6②,解不等式①,得x≥﹣1,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来:∴原不等式组的解集:﹣1≤x≤2.故答案为:x≥﹣1;x≤2;﹣1≤x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2023•<7①≥x+1②请按下列步骤完成解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)解不等式①,得x<4;(2)解不等式②,得x≥3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为3≤x<4,故答案为:x<4,x≥3,3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2023•南昌模拟)解不等式组3x<92x>―3x+5,并将解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:解不等式3x<9可得:x<3;解不等式2x>﹣3x+5可得:x>1;故原不等式组的解集是1<x<3.其解集在数轴上表示如下所示:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.5.(2023春•+3>x―x13≤1,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2x+3>x得:x>﹣3,由x2―x13≤1得:x≤4,则不等式组的解集为﹣3<x≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2023春•东台市月考)解不等式组并将其解集在数轴上表示:3x―2<42(x―1)≤3x+1.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:3x―2<4①2(x―1)≤3x+1②,由①得:x<2,由②得:x≥﹣3,则不等式组的解集为﹣3≤x<2..【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.7.(2023•2>3(x―1)≤7―x,并把解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.2>3(x―1)①≤7―x②,解不等式①得:x>―12,解不等式②得:x≤5,∴不等式组的解集为:―12<x≤5,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.8.(2023•―1)≤3(1+x)①<x―x12②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①得:x≤5,解不等式②得:x>﹣1,则不等式组的解集为﹣1<x≤5,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023•<6>x12,并把它的解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.<6①>x12②,由①得,x<1,由②得,x>﹣1,故不等式组的解集为﹣1<x<1,在数轴上表示为:【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.10.(2023•>3(x―1)>x.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解;解不等式5x+3>3(x﹣1),得:x>﹣3,解不等式8x29>x,得x<2,则不等式组的解集为﹣3<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2023•蜀山区校级模拟)解不等式组:3x―1≥x+1x+4<4x―2.并在数轴上表示它的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣1≥x+1得:x≥1,由x+4<4x﹣2得:x>2,则不等式组的解集为x>2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(2023春•4≥2x―1,并将解集在数轴上表示出来.【分析】分别计算出方程组中两个不等式的解集,两个解集的公共部分就是不等式组的解集.4≥2x―1①②解不等式①,得:x<﹣1;解不等式②,得:x≤3;在数轴上表示为:∴这个不等式组的解集为x<﹣1.【点评】此题考查一元一次不等式组的解集,在数轴上表示不等式的解集,解题关键在于掌握运算法则.13.(2023•―3<4x①―14≤x12②,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,然后根据数轴上不等式组的解集表示出来即可.―3<4x①―14≤x12②,解不等式①,得:x<3,解不等式②,得:x≥﹣2,∴该不等式组的解集为:﹣2≤x<3,把该不等式组的解集在数轴上表示为:【点评】本题考查了一元一次不等式组的解法以及数轴上表示不等式的解集,解题关键是熟练掌握确定不等式组解集的口诀:同大取大、同小取小、大小小大中间找、大大小小找不到.14.(2022秋•1<3(x―1)―x22≥13,并把解集在数轴上表示出来.【分析】首先解每一个不等式,求得每一个不等式的解集,即可求得该不等式组的解集,再在数轴上表示出来即可.【解答】解:由5x﹣1<3(x﹣1)得:5x﹣1<3x﹣3,解得x<﹣1,由2x3―x22≥13得:4x﹣3x+6≥2,解得x≥﹣4,故原不等式组的解集为﹣4≤x<﹣1,把解集在数轴上表示出来,如下图:【点评】此题主要考查了解一元一次不等式组,关键是正确掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.在数轴上表示解集时,“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(2023•1)<3x―2①―1≤x22②并将其解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.1)<3x―2①―1≤x22②,解不等式①,得:x<2,解不等式②,得:x≥﹣6,∴原不等式组的解集是﹣6≤x<2,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.1.(2023•3)≤x―4<x在数轴上表示出它的解集,并求出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,进而求出整数解即可.3)≤x―4①<x②,由①得:x≤2,由②得:x>﹣2,∴不等式组的解集为﹣2<x≤2,解集表示在数轴上,如图所示:则不等式组的整数解为﹣1,0,1,2.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.2.(2023•鼓楼区一模)解不等式组4(x―1)>3x―22x―3≤5,并写出该不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:4(x―1)>3x―2①2x―3≤5②,解①得x>2,解②得x≤4.则不等式组的解集是:2<x≤4.则整数解是:3,4.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.(2022秋•道县期末)解不等式组3x―2<4①2(x―1)≤3x+1②,并求出它的非负整数解.【分析】【先分别解不等式,求出不等式组的解集,然后找出负整数解.【解答】解:解①得:x<2,解②得:x≥﹣3,∴不等式组的解集为﹣3≤x<2,∴不等式组的非负整数解为0,1.【点评】本题考查了解一元一次不等式组,解题关键是求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小无解了.4.(2022秋•≤3(x +1)≥x ―1的最大整数解.【分析】先求出不等式组的解集,再求出最大整数解即可.【解答】解:由5x ﹣1≤3(x +1),得:x ≤2;由12x 3≥x ―1,得:x ≤4;∴不等式组的解集为:x ≤2,∴不等式组的最大整数解为:2.【点评】本题考查求不等式组的整数解.正确的求出不等式组的解集,是解题的关键.5.(2022秋•湘潭县期末)求不等式组4x ―7<5(x ―1)2x ≤18―3x +7的正整数解.【分析】先求出不等式组的解集,再求出正整数解即可.【解答】解:4x ―7<5(x ―1)①2x ≤18―3x +7②,解不等式①得:x >﹣2,解不等式②得:x ≤5,∴不等式组的解集为:﹣2<x ≤5,其中正整数解是1,2,3,4,5.【点评】本题考查了解不等式组及不等式组的解集,熟练掌握不等式组的解法是解决问题的关键.6.(2023•长清区校级开学)解不等式组:2+―4xx <,并求出所有整数解的和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2+x >7﹣4x ,得:x >1,由x <4x 2,得:x <4,则不等式组的解集为1<x <4,所有整数解的和为2+3=5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023•x ―1)≥1>x ―1,并写出它的所有非负整数解.【分析】分别求出两个不等式的解集,然后求出两个解集的公共部分,再写出范围内的非负整数解即可.x―1)≥1①>x―1②,解不等式①得,x≤1,解不等式②得,x>﹣3,所以不等式组的解集是﹣3<x≤1,所以不等式组的非负整数解是0、1.故答案为:0、1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.(2022秋•鄞州区期末)解不等式组:x―4<2xx+3x2≤1,并求出所有满足条件的整数之和.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣4<2x,得x>﹣4,由x+3x2≤1,得:x≤﹣1,则不等式组的解集为﹣4<x≤﹣1,不等式组的整数解的和为﹣3﹣2﹣1=﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2023•x4≥―1并写出该不等式组的最小整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x﹣3(x﹣2)>4,得:x<1,由2x13≥3x26―1,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,∴该不等式组的最小整数解为﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2023•x1―<1,并写出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出整数解即可.1①―<1②,由①得:x≤1,由②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,则不等式组的整数解为0,1.【点评】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(2022春•>【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可写出这个不等式组的所有负整数解.x①>②,解不等式①,得:x<1,解不等式②,得:x>﹣3,∴该不等式组的解集为﹣3<x<1,∴这个不等式组的所有负整数解是﹣2,﹣1.【点评】本题考查解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.12.(2022春•大兴区校级期中)解不等式组4(x+1)≤7x+10x―5<x83,并求出这个不等式组的所有的正整数解.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:4(x+1)≤7x+10①x―5<x83②,解不等式①得:x≥﹣2,解不等式②得:x<7 2,所以不等式组的解集为:―2≤x<7 2,所以不等式组的所有正整数解为:1,2,3.【点评】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.13.(2023春•―5x12≤1<3(x+1),在数轴上表示它的解集,并写出它的最大整数解和最小整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.―5x12≤1①<3(x+1)②,∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,在数轴上表示不等式组的解集为:,∴不等式组的最大整数解为:1,最小整数解为:﹣1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解题的关键是掌握不等式组的解法.14.(2022•会东县校级模拟)解不等式组3(x―1)<5x+1(x―1)≥2x―4并求它的所有的非负整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.【解答】解:3(x―1)<5x+1①(x―1)≥2x―4②,解①得x>﹣2,解②得x≤3.则不等式组的解集是:﹣2<x≤3.则非负整数解是:0,1、2、3.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(2023•鼓楼区模拟)解关于x的不等式组:4(x+1)≤7x+102x―3<x12,并求出它所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数求其和即可.【解答】解:4(x+1)≤7x+10①2x―3<x12②,解不等式①得,x≥﹣2,解不等式②得,x<5 3,所以不等式组的解集为﹣2≤x<5 3,所以原不等式组的整数解是﹣2、﹣1、0、1,所以所有整数解的和为﹣2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。
一元一次不等式典型例题
一元一次不等式典型例题类型一:一元一次不等式的解集问题1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是.2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是.3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为________4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______ 类型二:一元一次不等式组无解的情况1.若关于x的一元一次不等式组无解,则a的取值范围是.2.已知不等式组无解,则a的取值范围是3.已知关于x的不等式组无解,则a的取值范围是类型三:明确一元一次不等式组的解集求范围1.若不等式的解集为x>3,则a的取值范围是2.若关于x的不等式的解集为x<2,则a的取值范围是.3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________4.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于5.已知不等式组的解集为﹣1<x<2,则(m+n)2008=类型四:一元一次不等式组有解求未知数的范围1.若有解,则a的取值范围是2.若关于x的不等式组有实数解,则a的取值范围是3._______类型五:一元一次不等式组有整数解求范围1.不等式组有3个整数解,则m的取值范围是.2.不等式组有3个整数解,则m的取值范围是.3.已知关于x的不等式组仅有三个整数解,则a的取值范围是.4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.7.已知关于x的不等式组有四个整数解,求实数a的取值范围.类型六:一元一次不等式(组)应用题1.分配问题(1)学校现有若干个房间分配给初三(1)班的男生住宿,已知该班男生不足50人,若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满).那么该班的男生人数是多少人.2.一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若每人分4件,则最后一人最多分3件,问小朋友的人数至少有多少人。
中小学数学_一元一次不等式应用题 答案解析100道【经典数学资料系列】
一元一次不等式(组)应用题练习及答案1.修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保持环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得低于区域总面积的20%,若搬迁农民建房每户占地150m2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户加入建房,若仍以每户占地150m2计算,则这时绿色环境面积只占总面积的15%,为了符合规划要求,又需要退出部分农户。
(1)最初需搬迁的农户有多少户?政府规划的建房区域总面积是多少?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需要退出农户几户?2.某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。
经过预算,本次购买机器所耗资金不能超过34万元。
甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?3.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若使总收入不低于15.6万,则最多只能安排多少人种甲种蔬菜?4.小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多(设为a人,a>8),就站到A窗口队伍的后面. 过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.(1)此时,若小杰继续在A窗口排队,则他到达窗口所花的时间是多少(用含a的代数式表示)?(2)此时,若小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,且到达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围(不考虑其他因素).AB5.小明在上午8:20分步行出发去春游,10:20小刚在同一地骑自行车出发,已知小明每小时走4千米,小刚要在11点前追上小明,小刚的速度应至少是多少?6.某厂原定计划年产某种机器1000台,现在改进了技术,准备力争提前超额完成,但开始的三个月内,由于工人不熟悉新技术,只生产100台机器,问以后每个月至少要生产多少台?7.学校图书馆有15万册图书需要搬迁,原准备每天在一个班级的劳动课上,安排一个小组同学帮助搬运图书,两天共搬了1.8万册。
10道一元一次不等式应用题和答案过程
一元一次不等式解应用题1.某水产品市场管理部门规划建造面积为2400平方米的大棚.大棚设A 种类型和B种类型的店面共80间.每间A种类型的店面的平均面积为28平方米.月租费为400元.每间B种类型的店面的平均面积为20平方米..月租费为360元.全部店面的建造面积不低于大棚总面积的85%。
(1) 试确定A种类型店面的数量?(2)该大棚管理部门通过了解.A种类型店面的出租率为75%.B种类型店面的出租率为90%.为使店面的月租费最高.应建造A种类型的店面多少间?. . . 资料. .解:设A种类型店面为a间.B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55 A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显.a≥55.所以当a=55时.可以获得最大月租费为25920-24x55=24600元. . . 资料. .二、水产养殖户大爷准备进行大闸蟹与河虾的混合养殖.他了解到情况:每亩地水面组建为500元;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元.其饲养费用为525元.当年可获1400元收益;每公斤虾苗的价格为15元.其饲养费用为85元.当年可获160元收益;问题:1、水产养殖的成本包括水面年租金.苗种费用和饲养费用.求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、大爷现有资金25000元.他准备再向银行贷款不超过25000元.用于蟹虾混合养殖.已知银行贷款的年利率为10%.试问大爷应租多少亩水面.并向银行贷款多少元.可使年利润达到36600元?. . . 资料. .解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面.贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=36600. . . 资料. .3900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司.要将300吨物资运往某地.现有A、B两种型号的车可供调用.已知A型车每辆可装20吨.B型车每辆可装15吨.在每辆车不超载的条件下.把300吨物资装运完.问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆.由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .. . . 资料. .由于a是车的数量.应为正整数.所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨.全部由甲.乙两个垃圾厂处理.已知甲厂每小时处理垃圾55吨.需费用550元;乙厂每小时处理垃圾45吨.需费用495元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需要甲种花卉50盆,乙种花卉90盆。 (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本是最低的?最低成本是多少元?
那么就是有5间宿舍,女生有5×5+5=30人
六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
解:手机原来的售价=2000元/部
每部手机的成本=2000×60%=1200元
设每部手机的新单价为a元
a×80%-1200=a×80%×20%
0.8a-1200=0.16a
0.64a=1200
a=1875元
让利后的实际销售价是每部1875×80%=1500元
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
11.水果店进了一批水果,原按50%的利润率定价,销去一半以后为尽快销完,准备打折出售,若要使总利润不低于30%,问余下的水果可按定价的几折出售(精确到0.1折)?
12..学校电化教室准备刻录一批电脑光盘,若到电脑公司刻录,每张光盘付费8元;若租用刻录机,除租金80元外,每张光盘4元;若自行购买刻录机,需450元,此外,每张光盘成本也是4元。
(1)设需刻录X张光盘,分别求出满足条件①、②的X的范围:
①租用刻录机比到电脑公司刻录合算;
②购买刻录机比到电脑公司刻录合算;
(2)如何比较购买刻录机与租用刻录机哪个合算?
13.某城市平均日产垃圾650吨,由甲、乙两个垃圾场处理,已知甲场每小时可处理垃圾50吨,每吨费用10元;乙场每小时可处理垃圾60吨,每吨费用11元。
12x≤108
x≤9
15x+20(20-x)≤365
15x+400-20x≤365
5x≥35
x≤7
解得:7≤ x ≤ 9
∵x为整数∴x = 7,8 ,9 ,∴满足条件的方案有三种.
(2)设建造A型沼气池 x 个时,总费用为y万元,则:
y = 2x + 3( 20-x) = -x+ 60
∵-1< 0,∴y 随x 增大而减小,
3410a=34100
所以a=10亩
贷款(4900x10-25000)=49000-25000=24000元
三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
解:设学生有a人
根据题意
3a+8-5(a-1)<3(1)
3a+8-5(a-1)>0(2)
由(1)
3a+8-5a+5<3
2a>10
a>5
由(2)
3a+8-5a+5>0
2a<13
a<6.5
那么a的取值范围为5<a<6.5
那么a=6
有6个学生,书有3×6+8=26本
8.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?
(1)若规定该城市每天处理垃圾的费用不超过7000元,甲场每天处理垃圾至少花多少时间?
(2)若规定该城市每天处理垃圾的时间不超过7个小时,且费用尽可能节约,则乙场每天处理垃圾至少花多少时间?
14.某服装厂生产一种西服和领带,西装每套定价200元,领带每条40元,厂方在开展促销活动期间,向客户提供两种优惠方案:1.买一套西服送一条领带;2.西服和领带均按定价的90%付款.某商店老板现要到该服装厂购买西服20套,领导x(x>20)条.请你根据x的不同情况,帮助商店老板选择最省钱的购买方案.
二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:
1、每亩地水面组建为500元,。
2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;
4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
9.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?
10.甲乙两班捐款,两班捐款总数相等,均多余300元且少于400元。已知甲班有1人捐6元,其余每人捐9元,乙班有1人捐13元,其余每人捐8元。求甲乙两班学生总人数共是多少人
解:设甲场应至少处理垃圾a小时
550a+(700-55a)÷45×495≤7370
550a+(700-55a)×11≤7370
550a+7700-605a≤7370
330≤55a
a≥6
甲场应至少处理垃圾6小时
五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生?
20万元=200000元
设至少销售b部
利润=1500×20%=300元
根据题意
300b≥200000
b≥2000/3≈667部
至少生产这种手机667部。
七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号的沼气池的占地面积,使用农户数以及造价如下表:
型号 占地面积(平方米/个) 使用农户数(户/个) 造价(万元/个)
A 15 18 2
B 20 30 3
已知可供建造的沼气池占地面积不超过365平方米,该村共有492户.
(1).满足条件的方法有几种?写出解答过程.
(2).通过计算判断哪种建造方案最省钱?
解: (1) 设建造A型沼气池 x 个,则建造B 型沼气池(20-x )个
18x+30(20-x) ≥492
18x+600-30x≥492
问题:
1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);
2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?
一元一次不等式方程组困难应用题
一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。
(1)试确定A种类型店面的数量? (2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?
2、设租a亩水面,贷款为4900a-25000元
那么收益为8800a
成本=4900a≤25000+25000
4900a≤50000
a≤50000/4900≈10.20亩
利润=3900a-(4900a-25000)×10%
3900a-(4900a-25000)×10%=36600
3900a-490a+2500=36600
解:设还需要B型车a辆,由题意得
20×5+15a≥300
15a≥200
a≥40/3
解得a≥13又1/3 .
由于a是车的数量,应为正整数,所以x的最小值为14.
答:至少需要14台B型车.
四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?
⑴解:设A种造型x个,则B种造型有(50-x)个,依据题意得
80x+50(50-x)≦3490
40x+90(50-x)≦2950
解得31≦x≦33
所以有三种方案:第一种A种造型31个时,B种造型19个;
第二种A种造型32个时,B种造型18个;
第三种A种造型33个时,B种造型17个。
⑵第三种方案成本最低,最低成本是800×33+960×17=42720元
解:设A种类型店面为a间,B种为80-a间
根据题意
28a+20(80-a)≥2400×85%
28a+1600-20a≥2040
8a≥440
a≥55
A型店面至少55间
设月租费为y元
y=75%a×400+90%(80-a)×360
=300a+25920-324a
=25920-24a
很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元