微积分II期末模拟试卷3套含答案.docx

合集下载

微积分下册期末试卷及答案

微积分下册期末试卷及答案
评 分
评 阅 人
13、由确定,求.
评 分
评 阅 人
14、用拉格朗日乘数法求 在条件下的极值.
评 分
评 阅 人
15、计算.
评 分
评 阅 人
16、计算二重积分 ,其中 是由 轴及圆周 所围成的在第一象限内的区域.
评 分
评 阅 人
17、解微分方程.
评 分
评 阅 人
18、判别级数的敛散性.
评 分


二、选择题(每小题3分,共15分) 分
卷 人
6、
的值为( ).
(A) (B) (C) (D)不存在
7、和在存在且连续是函数在点可微的( ).
(A) 必要非充分的条件 (C) 充分且必要的条件
(B) 充分非必要的条件 (D) 即非充分又非必要的条件
8、由曲面和及柱面 所围的体积是( ). (A) (B) (C) (D)
, 于是
,所以是函数的极大值点,且
…(4分) 对



, 于是

不是函数的极值点。
…(6分)
5、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资
料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间
的关系有如下的经验公式: .若提供的广告费用为万元,求相应的最优广
告策略.
的反函数为
。且时,。于是
12、求二重极限 .
解:原式
(3分)
(6分)
13、由确定,求.
解:设
,则
, ,
, (3分)
(6分) 14、用拉格朗日乘数法求 在条件下的极值. 解:
令 ,得 , , 为极小值点. (3分)

江西财经大学微积分II期末考试题及答案

江西财经大学微积分II期末考试题及答案
F () lim F ( x)
x


b

其中
F () lim F ( x)
x



f ( x)dx f ( x)dx

c

c
f ( x)dx
其中 c 为任意取定的常数. 当且仅当右端两个广义积分都收敛时,左端的广义积分 才收敛,否则发散.
9.已知f ( x) sin x,则 f ( x)dx •••••• • ;
10.• lim 若
x 0
x
0
arctan xdx x
2
1,则 •••••• ;
x 2n 1 x 12.• e ,则级数 若 ••••••• ; n! n 0 n ! n2 n
五、(1).求 xy 2 dxdy, 其中D ( x, y) |1 x 2 y 2 2
D
(2).求 ( x x 2 y 2 )d,其中D : x 2 y 2 1.
六、1.设D ( x, y ) | ( x 1) y 1, y 2 x, x 2 ,
2 1 1 x2 II : 1.• 2. 3. x x 1 dx•••• •0 4 x 2 dx ••••• •0 arctan xdx
y 2Z 2Z 四、设z arctan ,求dz和 2 2 1. x x y
2.•求分程y y y x的通解
2Z 3.设z f ( x y, x sin y ),求dz和 xy
练习思考题
一、填空题
1.• z x 2 2 x y 2的驻点为•••••••••• 求 ;
2.已知f ( x)的弹性函数为 x,则f ( x) •••••• • ;

微积分下册期末试卷及答案[1]

微积分下册期末试卷及答案[1]

、已知22(,)yf x y x y x +=- 则=),(y x f、已知 则=⎰∞+--dx e x x21π=⎰∞+∞--dx ex 2、函数22(,)1f x y x xy y y =++-+在__________点取得极值 、已知y y x x y x f arctan )arctan (),(++= 则=')0,1(x f、以xe x C C y 321)(+= 21,C C 为任意常数 为通解的微分方程是知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛 则常数p 的取值范围是1p > 1p < 12p << 2p >数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断 是因为该函数在原点无定义 在原点二重极限不存在 在原点有二重极限 但无定义 在原点二重极限存在 但不等于函数值、若2211x y I +≤=⎰⎰22212x y I ≤+≤=⎰⎰22324x y I ≤+≤=⎰⎰则下列关系式成立的是123I I I >> 213I I I >> 123I I I << 213I I I <<、方程xe x y y y 3)1(596+=+'-''具有特解b ax y += xe b ax y 3)(+= x e bx ax y 32)(+= x e bx ax y 323)(+=、设∑∞=12n na收敛,则∑∞=-1)1(n nna绝对收敛 条件收敛 发散 不定 一、填空题 每小题 分 共 分、2(1)1x y y -+、)32,31(- 、 、"6'0y y y -+= 、求由23x y = 4=x 0=y 所围图形绕y 轴旋转的旋转体的体积 解:32y x=的函数为23,0x y y =>。

微积分Ⅱ期末考试试卷总集

微积分Ⅱ期末考试试卷总集

微积分Ⅱ期末考试试卷1一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.若c x g dx x f +=⎰)()(,则=⎰dx x xf )(cos sin ________.2.极限=⎰→xtdt xx 020cos lim________.3.已知xy z =而)tan(t s x +=,)cot(t s y +=则=∂∂sz________. 4.设{}10,10),(≤≤≤≤=y x y x D 则=⎰⎰Dxy d xe σ________.5.微分方程02=+''y y 的通解为________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1.设⎰=+21xdx ________.A. c x +arctanB. c x x +++)1ln(2C. c x ++212D. c x ++)1ln(212.2.下列积分值为0的是________.A. ⎰+∞+0211dx xB. ⎰-1121dx xC. ⎰-++ππdx x x x )cos 1sin (2D. ⎰--1121dx x . 3.函数),(y x f z =在点),(00y x 处可微的充分条件是函数在该点处________. A.有极限 B.连续 C.偏导数存在 D.有连续的偏导数. 4. =⎰⎰10),(xdy y x f dx ________.A. ⎰⎰1010),(dx y x f dy B. ⎰⎰y dx y x f dy 01),(C. ⎰⎰100),(y dx y x f dy D. ⎰⎰101),(ydx y x f dy .5.下列级数收敛的是________.A .∑∞=-+-12123n n n n B. nn n n∑∞=+1)1(C . ∑∞=⎥⎦⎤⎢⎣⎡-1)32(1n n n D. ∑∞=1!n n nn .三、(计算题请写出主要步骤及结果,每小题6分,共18分.) 1. ⎰dx e x x 2 2. ⎰+41)1(x x dx 3.请给出第七章(定积分)的知识小结.四、(请写出主要计算步骤及结果,6分.) 已知方程z x e z xy +=+ 确定函数),(y x z z = 求dz . 五、(请写出主要计算步骤及结果,8分.)求⎰⎰++Dd y x σ)1ln(22,其中D 为圆周122=+y x 围成的区域.六、(请写出主要计算步骤及结果,8分.) 求初值问题的解⎩⎨⎧=+==0)2(0x y dx y x dy 七、(请写出主要计算步骤及结果,8分.) 求幂级数∑∞=-0)1(n nnnx 的收敛半径,收敛区间.并求∑∞=03n nn的和. 八、(请写出主要计算步骤及结果,8分.)求由2x y =与2y x =所围成的平面图形的面积,并求此平面图形分别绕x 轴,y 轴旋转所成的体积.九、经济应用题(请写出主要计算步骤及结果,8分.)某厂生产某种产品的生产函数为y x Q 2005.0=,若甲、乙两种原料的单价分别为1万元和5万元,现用150万元购原料,求两种原料各购多少时,能使生产量最大?最大生产量为多少? 十、证明题(请写出推理步骤及结果,6分.)设)(x f 在],[b a 上连续,在),(b a 内可导,且有M x f ≤'(及0)(=a f ,试证:⎰-≥b adx x f b a M )()(22微积分Ⅱ期末考试试卷1答案一、1.c x g +-)(cos 2.1 3.)(csc )tan()cot()(sec 22t s t s t s t s ++-++4.2-e5.x c x c y 2sin 2cos 21+= 二、1.B 2.C 3.D 4.D 5.D三、1. ce xe e x dxe xe e x xde e x dx xe e x de x dx ex xxxx x x x x x x x x++-=+-=-=-==⎰⎰⎰⎰⎰2222222222222. x t =2t x =⎰⎰⎰=-=+=+-=+=+41212121234ln 221ln 232ln 21ln 2)111(2)1(2)1(t t dt t t t t tdt x x dx四、z x e z xy z y x F +-+=),,(z x x e y F +-= x F y = z x z e F +-=111-+--=---=-=∂∂++z xy zxy y e e y F F x z zx z x Z x 11-+=--=-=∂∂+z xy xe x F F y z z x Z y dy z xy xdx z xy z xy y dy y z dx x z dz 11-++-+--=∂∂+∂∂=五、⎰⎰⎰⎰+=++Drdr r d d y x 122022)1ln()1ln(πθσ⎥⎦⎤⎢⎣⎡+-+=+=⎰⎰⎰1022210221022201)1ln()1ln(21dr r r r r dr r d πθπ 1021021022)1ln(2ln )111ln(2ln r r dr r ++-=⎥⎦⎤⎢⎣⎡+--=⎰ππππ )12ln 2(2ln 22ln 2ln -=-=+-=ππππππ六、x y y 2=-'⎥⎦⎤⎢⎣⎡+⎰=⎰---c dx xe e y dx dxf )1()1(2[]c dx xe exx +=⎰-2[][]⎰⎰++-=+-=---c dx e xee c xde e x xxxx222x ce x +--=22因为00==x y 所以c =2 所求特解为)1(2--=x e y x七、111=+==+n na a R n n 当1±=x 时∑±nn )1(发散 收敛区间为)1,1(- 设∑∑∞=-∞===10)(n n n nnx x nxx S设∑∞=-=1)(n n nxx T则xx xdx nxdx x T n n x n n x n n x-====∑∑⎰∑⎰∞=∞=∞=-11)(012)1(1)(x x T -=所以2)1()()(x xx xT x S -==31=x 时 439431)311(31)31(320==-==∑∞=S n n n 八、31)(102=-=⎰dx x x S()dx x x V x ⎰⎥⎦⎤⎢⎣⎡-=10222)(ππ103=()ππ103)(10222=⎥⎦⎤⎢⎣⎡-=⎰dy y yV y九、解 )1502(005.0),,(2-++=y x y x y x F λλ 0001.0=+=λxy F x02005.02=+=λx F y ⎩⎨⎧==⇒25100y x01502=-+=y x F λ ==25*100*005.02Q 十、b a a x f a f x f x f <<-'=-=ξξ))(()()()(M x f ≤')()()(a x M x f -≤22)(212)()()(a b M a x M dx a x M dx x f baba b a-=-⋅=-≤⎰⎰dx x f dx x f b ab a⎰⎰≥)()(2)(2)(a b Mdx x f b a-≤⎰dx x f b a M b a⎰-≥)()(22微积分Ⅱ期末考试试卷 2一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.)1.已知cos()z xy =,而()y x ϕ=可导,则dzdx=________. 2.若2()1f x xdx c x x =++⎰,则()f x =________.3.p ________时,广义积分22111(1)p dx x --⎰发散.4.若20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑,则函数2sin x 的麦克劳林级数等于________. 5.微分方程0y ay y '''+-=的通解为12x x y c e c e -=+,则a =________.二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.)1.设xy z xe =,则'x z =________.A.xy xyeB.xy e x 2C.xy eD.xy e xy )1(+ . 2.=________.A.x c + B. arcsinc +C.c +3x c +.3.下列结论正确的个数是________.(1)11230x dx x dx <⎰⎰ (2)22211x e e dx e ---<<⎰(3)cos 0x xdx ππ-=⎰(4)2221[sin ]2sin x t dt x x '=⎰A.0B.1C.2D.3. 4.1200(cos ,sin )d f r r rdr πθθθ=⎰⎰ ________.A. 110(,)dy f x y dx ⎰⎰ B. 10(,)dx f x y dy ⎰⎰C. 110(,)dx f x y dy ⎰⎰ D. 1(,)dy f x y dx ⎰⎰.5.微分方程1y y '-=的通解是________. A .x y ce = B. 1x y ce =+ C .1x y ce =- D. (1)x y c e =+.三、(请写出主要计算步骤及结果,每小题8分,共16分.) 1. arctan x xdx ⎰ 2. 41⎰.四、(请写出主要计算步骤及结果,8分.)已知方程sin xy x z yz += 确定函数(,)z f x y = ,求dz . 五、(请写出主要计算步骤及结果,8分.)求2()Dx y d σ-⎰⎰,其中D 是由直线2y =,y x =及2y x =围成的区域.六、(请写出主要计算步骤及结果,8分.)求由y =与3y x =所围成的平面图形的面积,并求此平面图形绕x 轴旋转所形成的立体的体积.七、(请写出主要计算步骤及结果,8分.)判断级数n ∞=的敛散性.八、(请写出主要计算步骤及结果,8分.)求幂级数1(1)nn n e x n∞=-∑的收敛半径,收敛区间.九、经济应用题(请写出主要计算步骤及结果,8分.)某工厂生产A 、B 两种产品,单位成本分别为2元和14元,需求量分别为1Q 件和2Q 件,价格分别为1P 元和2P 元,且满足关系式1214()Q P P =-,2128048Q P P =+-,试求A 、B 两种产品的价格1P ,2P ,使该厂总利润最大(要求利用极值的充分条件). 十、证明题(请写出推理步骤及结果,6分.) 设)(x f 为连续函数,试证:()()(())x x tf t x t dt f u du dt -=⎰⎰⎰.微积分Ⅱ期末考试试卷2答案一、填空题(每小题3分,共15分)1.sin[()][()()]x x x x x ϕϕϕ'-+2. 21x x ⎛⎫ ⎪+⎝⎭ 3.1p ≥4.()()1212121,(2)!n n n n x x n --∞=-∈-∞+∞∑ 5.0二、单项选择题(每小题3分,共15分) 1.D 2.C 3.B 4.B 5.C三、(请写出主要计算步骤及结果,每小题8分,共16分.)1.2222222221arctan arctan (1211arctan (32211111arctan (5221111arctan arctan 22211(1)arctan (822x xdx xdx x x x dx x x x x dx x x x x x c x x x c ==-++-=-+=-++=+-+⎰⎰⎰⎰分)分)分)分)2.44114141(2(42ln(1(632ln(82===+=⎰⎰⎰分)分)分)分).四、(请写出主要计算步骤及结果,8分.)sin (1sin cos (4sin (5cos (6cos sin (8cos cos x y z x z y z F xy x z yz F y z F x z F x z y F z y z x F x z yF z x z y F x z y y z x zdz dx dyx z y x z y=+-'''=+=-=-'∂+=-='∂-'∂-=-='∂-+-=+--分),,分)分)分)分)五、(请写出主要计算步骤及结果,8分.)图(1分)22222220222303420()()(31()(5231()(68211()(7881(8yy Dy y x y d dy x y dx x xy dyy y dy y y σ-=-=-=-=-=-⎰⎰⎰⎰⎰⎰分)分)分)分)分)六、(请写出主要计算步骤及结果,8分.)图(1分)130341201260)(321()(4345(512](75(814x S x dxx x V x dx ππ=-=-==-=⎰⎰分)分)分)分)分)七、(请写出主要计算步骤及结果,8分.)1(4n =分)由比较判别法的极限形式知级数3121,n n n∞∞==∑敛散性相同,因为3121,n n∞=∑所以0n ∞=收敛。

《微积分》(二)期末试卷 A答案

《微积分》(二)期末试卷 A答案

对外经济贸易大学 2007─2008学年第二学期 《微积分二》期末考试试卷A课程课序号:CMP124-0~15学号: 姓 名: 成 绩: 班级: 课序号: 任课教师:一、选择题(每小题2分,共14分): 得分 1.若函数()f x 在区间[a ,b]上可积,则下列不等式中成立的是( A )。

.()().()().()().()()bbb ba aaabbbbaaaaA f x dx f x dxB f x dx f x dxC f x dx f x dxD f x dx f x dx≤≥==⎰⎰⎰⎰⎰⎰⎰⎰2. 设)(x f 为连续函数,='=⎰)(,)()(ln 1x F dt t f x F xx则( A )。

A.)1(1)(ln 12x f x x f x + B . )1()(ln xf x f +C.)1(1)(ln 12x f xx f x -D .)1()(ln x f x f - 3.二元函数(),f x y 在点()00,x y 处的两个偏导数''x00y 00f(x ,y ),f(x ,y )存在是函数 00f(x,y)在点(x ,y )连续的( D )。

A. 必要而非充分条件;B. 充分而非必要条件;C. 充分必要条件;D. 既非充分又非必要条件。

4.设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于( C )。

A .(,).xf x y dy ⎰⎰B.(,).f x y dy ⎰⎰C.(,).yf x y dx ⎰⎰D.(,).f x y dx ⎰⎰5.函数21212(,xx y c e c e c c -=+为任意常数)为下列二阶常系数齐次线性微分方程( D )的通解。

A. 20y y y '''+-= B. 20y y y '''-+=C. 20y y y '''++=D. 20y y y '''--=6.设()1ln(1nn u =-+,则下列结论中正确选项是( B )。

微积分下册期末试卷及答案

微积分下册期末试卷及答案

1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x0 21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分 评分阅卷人6 知dx e x p ⎰∞+- 0 )1(与⎰-e p x x dx 1 1ln 均收敛, 则常数p 的取值范围是( ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ).(A) 在原点无定义(B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若22223111x y I x y dxdy +≤=--⎰⎰,222232121x y I x y dxdy≤+≤=--⎰⎰222233241x y I x y dxdy≤+≤=--⎰⎰,则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) xe b ax y 3)(+= (C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)评分11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.12、求二重极限11lim222200-+++→→y x y x y x . 13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2. 14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 15、计算⎰⎰1 212dxe dy yyyx. 16、计算二重积分22()Dx y dxdy +⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.21、设1133ln()z x y =+,证明:13z z xy xy ∂∂+=∂∂. 22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+.2、π.3、)32,31(-. 4、1. 5、"6'0y y y -+=. 二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。

微积分II期末(A)卷答案

微积分II期末(A)卷答案

《微积分II 》期末考试题(A )答案一、填空题(每小题2分,共16分)1、{(,)0,0}x y y x x y ≤≥+>2、=)1,1(dz 2211(ln 2)22e dx e dy ++ 3、 04、235、sin ()x y x c e-=+ 二、选择题(每小题2分,共16分)1、 D2、D3、C4、B5、D6、C三、解答题(每小题5分,共40分)1、解:令xz e yz xy z y x F --=),,(则 xzz y xz x xe y F z x F ze y F --=-=-=,, 所以 xz xz z x xey ze y F F x z +-=-=∂∂ xzz y xe y z x F F y z +-=-=∂∂ 2、两边求全微分02)(=+---dz e dz xy d ez xy 02)(=+-+--dz e dz xdy ydx e z xy2)(-+=-z xy e xdy ydx e dz3、解:e e x dx e dx e dy xe dx dxdy xe x x xy xy D xy 1)()1()(101001011010=+=-===----⎰⎰⎰⎰⎰⎰ 4、解:因为 11)1(5lim 22=++∞→nn n n n ,又 ∑∞=121n n 收敛,所以∑∞=++12)1(5n n n n 收敛. 5、 313)1(3lim lim 11→+⋅=+∞→+∞→n n n nn n n n a a , 故收敛半径为3.又3=x 时, 级数∑∑∞=∞==⋅11133n n n n n n 发散, 3-=x 时, 级数()∑∑∞=∞=-=⋅-11)1(33n n n n n n n 收敛, 故收敛域为)3,3[- 6、解 1110<=-∑∞=x x x x n∑∑∞=++∞=-=-=-⋅-=-=∴012022233331133)(x n n x n n x x x x x x x x f 收敛域为13<x 即3<x 因此)3,3(330122--=-∑∞=++x n n x x x7、微分方程的特征方程为0522=+-r r特征根i r 211+=,i r 212-=,故方程通解为)2sin 2cos (21x c x c e y x+=。

近十份大学微积分下期末试题汇总(含答案)Word版

近十份大学微积分下期末试题汇总(含答案)Word版

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷一 、填空题(每小题5分,共25分,把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a =,3b =,3a b ⋅=,则a b += . 3.设(,)f u v 可微,(,)yxz f x y =,则dz = . 4.设()f x 在[0,1]上连续,且()f x >0, a 与b 为常数.()}{,01,01D x y x y =≤≤≤≤,则()()()()Daf x bf y d f x f y σ++⎰⎰= .5.设(,)f x y 为连续函数,交换二次积分次序2220(,)x x dx f x y dy -=⎰⎰.二 、选择题(每小题5分,共20分,在每小题给出的四个选项中只有一个是符合题 目要求的,把所选字母填入题后的括号内)6.直线l 1:155121x y z --+==-与直线l 2:623x y y z -=⎧⎨+=⎩的夹角为 (A )2π . (B )3π . (C )4π . (D )6π. [ ] 7.设(,)f x y 为连续函数,极坐标系中的二次积分cos 2d (cos ,sin )d f r r r r πθθθθ⎰⎰可以写成直角坐标中的二次积分为(A)10(,)dy f x y dx ⎰⎰ (B)1(,)dy f x y dx ⎰⎰(C)10(,)dx f x y dy⎰⎰(D)10(,)dx f x y dy ⎰⎰[ ]8.设1, 02()122, 12x x f x x x ⎧≤≤⎪⎪=⎨⎪-≤⎪⎩ ()S x 为()f x 的以2为周期的余弦级数,则5()2S -=(A )12. (B )12-. (C )34. (D )34-. [ ]<9.设,)(0,0),(,)0, (,)(0,0),x y f x y x y ≠==⎩则(,)f x y 在点O (0,0)处(A )偏导数存在,函数不连续 (B )偏导数不存在,函数连续(C )偏导数存在,函数连续 (D )偏导数不存在,函数不连续 [ ] 三、解答题10.(本题满分10分)求曲线L :2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在其上点M (1,-1,2)处的切线方程与法平面方程.11.(本题满分10分)设F 可微,z 是由F (x y -,,)0y z z x --=确定的可微函数,并设23F F ''≠,求z zx y∂∂+∂∂. 12.(本题满分10分)设D 是由曲线3y x =与直线y x =围成的两块有界闭区域的并集,求2[e sin()]d x Dx y σ++⎰⎰. 13.(本题满分10分)求空间曲线L :222920335x y z x y z ⎧+-=⎨++=⎩上的点到xOy 平面的距离最大值与最小值.14.(本题满分10分)设平面区域D ={}(,)01,01x y x y ≤≤≤≤,计算二重积分22 1 d Dxy σ+-⎰⎰.15.(本题满分5分)设当y >0时(,)u x y 可微,且已知222222(,)()(2)y x du x y xy dx x y y dy x y x y=++-++++. 求(,)u x y .浙江大学2007-2008学年春季学期《微积分II 》课程期末考试试卷答案一、填空题(每小题5分,共25分) 1.231421=-++=d .2.22()()2496a b a b a b a b a b +=+⋅+=++⋅=++=3.()()dy xy f x x f dx y y f yx f dz x y x y 121211ln ln --'+⋅'+'+⋅'=4.()()()()()()()()⎰⎰⎰⎰++=++=D Dd x f y f x bf y af d y f x f y bf x af I σσ, ()()⎰⎰+=+=+=∴Db a I b a d b a I 21,2σ.5.()()2220111,,x x dx f x y dy dy f x y dx --=⎰⎰⎰⎰或 ()0111,dy f x y dx -⎰⎰或 ()1101,dy f x y dx -⎰⎰.二、选择题(每小题5分,共20分)6.选(B ). l 1的方向向量{}1,2,1-,l 2的方向向量{}2,1,1--,{}{}3,2163662,1,11,2,1cos πθθ===--⋅-=.7.选(D ). 积分区域(){}0,,22≥≤+=y x y x y x D ,化成直角坐标后故知选(D ).8.选(C ). 511111113()()()((0)(0))(1)222222224S S S f f -=-==-++=+=.9.选(A ). ()()0000,0lim0,0,00x y x f f x→-''===,偏导数存在. 取kx y =,()4411lim,lim kk kk kx x f x x +=+=→→随k 而异,所以不连续.三、解答题(10~14每题10分,15题5分,共55分) 10.由L ,视x 为自变量,有⎪⎩⎪⎨⎧=-+=++.0226,0264dx dz z dx dy y x dx dz z dx dy y x 以()()2,1,1,,-=z y x 代入并解出dxdzdx dy ,,得 87,45==dx dz dx dy , 所以切线方程为87245111-=+=-z y x ,法平面方程为()()()57112048x y z -+++-=,即0127108=-++z y x .11.133212232332,,1y x z z F F F F F F F F z z z z x F F F y F F F x y F F ''''''''--+∂∂∂∂=-=-=-=-+==''''''''∂-+∂-+∂∂-. 12.D 在第一象限中的一块记为D 1,D 在第三象限中的一块记为D 2,()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++++=++2122122sin sin sin D D DD x D x x d y x d y x d e d e d y x eσσσσσ.32222312101xx x x x x xxD D ed e d dx e dy dx e dy σσ-+=+⎰⎰⎰⎰⎰⎰⎰⎰()()()()222210103333011x x x x x x e dx xx e dx x x e dx xx e dx -=-+-=-+-⎰⎰⎰⎰()2111130021()112x uu u u x x e dx e du ue du e ue e e e =-=-=---=--=-⎰⎰⎰()()()()3312101sin sin sin sin x x xxD D x y d x y d dx x y dy dx x y dy σσ-+++=+++⎰⎰⎰⎰⎰⎰⎰⎰()()()()103301cos cos cos cos x x x x dx x x x x dx -⎡⎤⎡⎤=-+-+-+-+⎣⎦⎣⎦⎰⎰ ()()()()13301cos cos cos cos 0x x x x dx x x x x dx ⎡⎤⎡⎤=-+-+++-+=⎣⎦⎣⎦⎰⎰ 所以,原式2-=e .13.L 上的点到平面xoy 的距离为z ,它的最大值点,最小值点与2z 的一致,用拉格朗日乘数法,设()()()53329,,,,2222-+++-++=z y x zy x z z y x F μλμλ,求偏导数,并令其为零有:20F x x λμ∂=+=∂,1830F y x λμ∂=+=∂, 2430F z z z λμ∂=-+=∂,22920Fx y z x∂=+-=∂ , 3350Fx y z μ∂=++-=∂ . 解之得两组解()()1215,,(1,,1);,,(5,,5)33x y z x y z ==--. 所以当31,1==y x 时,1=z 最小;当35,5-=-=y x 时,5=z 最大.14.将分成如图的两块,41的圆记为D 1,另一块记为D 2()⎰⎰⎰⎰--=-+DD d y x d y x 1222211σσ+()⎰⎰-+2122D d y x σ ()()()σσσd y x d y x d y xD DD ⎰⎰⎰⎰⎰⎰-+--++--=11111222222()()()()122221112222211211211()43343D Dx y d x y d d r rdr dy xy dx πσσθππ=--++-=-++-=+-+=-⎰⎰⎰⎰⎰⎰⎰⎰15.由()222222,()(2)y x du x y xy dx x y y dy x y x y=++-++++,有222xy y x y x u ++=∂∂,从而知()()y y x y x y x u ϕ++=2221arctan ,,又由y y x yx x y u 2222+++-=∂∂,推知 ()22222221()xx y x y y x y y x x y y ϕ-'++=-++++, ()()22,y y y y C ϕϕ'==+所以,()2221,arctan2x u x y x y y C y =+++. 注:若用凑的办法亦可:222222()(2)y x xy dx x y y dy x y x y++-++++()()22222211221()ydx xdy ydx xdy xy ydx xdy ydy d xy dy x x y y y--=+++=++++ ()221(arctan)2x d xy y y =++ 所以,()C y y x y x y x u +++=22221arctan,. ()()u f u F ='.浙江大学2006–2007学年春季学期 《 微积分Ⅱ 》课程期末考试试卷开课学院: 理学院 考试形式:闭卷 考试时间: 年 月 日 所需时间:120 分钟 考生姓名: _____学号: 专业: ________一、 填空题(每小题5分,满分30分) 1. 直线63321-==+z y x 在平面0522=--+z y x 上的投影直线方程为.2. 数量场2),,(zye z y x g x +=在)0,3,1(P 点的梯度为 .=u函数)ln(),,(22z y x z y x f ++=在P 点沿u的方向导数为 .3. 设ϕϕ,),2,3(),,(f y x x u u x f z +== 具有二阶连续偏导数,则=∂∂∂yx z 2.4. 设}1,11|),{(3≤≤≤≤-=y x x y x D,则=+⎰⎰+Dy x y x ey x x d d )(222.5. 已知曲面1=z y x 与椭球面193222=++z y x 在第一卦限内相切,则切点坐标为 ,公共切平面方程为.6. 设函数⎪⎩⎪⎨⎧<≤<≤=121,210,)(2x x x x x f ,∑∞=+=10cos 2)(n n x n a a x S π,其中,2,1,0,d cos )(210==⎰n x x n x f a n π,则.)27(=S二、 (满分10分)求直线 ⎩⎨⎧=-++=-+-022012z y x z y x 绕x 轴旋转一周所得的旋转曲面方程.1002 22dd x yex y.三、(满分10分)计算⎰⎰-(满分15分)已知),(y x z z =由方程013=++zxe z y 确定,试求1022==∂∂y x x z.四、 (满分15分)设平面),,(,1:z y x d y x =+π为曲线⎪⎩⎪⎨⎧=++=++014222z y x z y x 上的点),,(z y x 到平面π的距离,求),,(z y x d 的最大,最小值 .五、 (满分15分)如图是一块密度为ρ(常数)的薄板的平面图形(在一个半径为R 的半圆直 径上拼上一个矩形,矩形的另一边为h ),已知平面图形的形心位于原点(0, 0). 试求:1. 长度 h ;2.薄板绕x 轴旋转的转动惯量.六、 (满分5分) 求证:当0,1≥≥s t 时,成立不等式 s e t t t ts +-≤ln .参考解答:一.1.⎩⎨⎧=--+=+-0522043z y x z y x ; 2. 21},0,,3{e e ;3.)3(2))(3(2222122222122212ϕϕϕϕϕϕ''+''⋅'+'+'⋅'⋅''+'''f f f ; 4.;32 5. ;03313,3,1,31=-++⎪⎭⎫⎝⎛z y x 6. 83.二.直线:t z t y t x -=-==1,1,曲面上点→),,(z y x P 直线上点00000001,1),,,(x z x y z y x -=-=22222020220)1()1(,,x x z y z y z y x x -+-=+⇒+=+=则旋转曲面方程:222)1(2x z y -=+三.⎰⎰10222d d x y ex y -⎰⎰⎰-==--212212220142)d 41(d d y y e x e y 2y yy2120202020221d d d d 212212212212212------=-+=+=⎰⎰⎰⎰e y eey y eey y ey y y y y四.,1)1,0(-=z ,032=∂∂++∂∂⋅x z xe e x z z y z z ex z y x 3110-=∂∂∴==,02632222222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂⋅+∂∂⋅x z xe x z xe x z e x z z y x z z y z z z 2102294ex zy x =∂∂∴== 五.|1|21),,(-+=y x z y x d)14()()1(2222-++++++-+=z y x z y x y x L μλ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++='=±===++='==+='-==⇒≠=++-+='=⇒==++-+='014,01302,002)1(20,002)1(22223231221z y x L z y x z y x L x z L xz x y y y x L x y x L z y xμλμλμμλλμμλ,无解最小距离:2236),,(323131-=-d ,最大距离:2236),,(323131+=--d六.形心:01,0=⇒==⎰⎰⎰⎰DDxdxdy xdxdy x y σ即0d cos d d d 220=⋅+⎰⎰⎰⎰---ππθθRhRRr r r y x xR h R h R 320312)21(232=⇒=⋅+-⋅⎰⎰=Dx dxdy y I 2302202)832(d θsin d d d 22R R h r r r y y x RhRR πθππ+=⋅+=⎰⎰⎰⎰--- 七.设0)0,1(,ln ),(=-+-=F ts e t t t s t F s.ln ,0),(t s e t t e s t F s s s ==⇒=-=' 且对固定的1>t , 当,0),(,ln 0<'<<s t F t s s 当,0),(,ln >'>s t F t ss所以,t s ln =取得最小值且为0,则0),(≤s t F ,即s e t t t ts +-≤ln1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________. 6 知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( c ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( b ).(A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值 8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( a).(A)123I I I >> (B) 213I I I >> (C)123I I I << (D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( d ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 23、)32,31(-. 4、1. 5、"6'0y y y -+=.11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x =的函数为23,0x y y =>。

南京大学2010-2012年微积分II期末试卷

南京大学2010-2012年微积分II期末试卷

dydz

zdxdy 其中 : z x 2 y 2 ( 0 z 1) , 取上侧 .
4. 判别级数
(1) n ln 2 n 的敛散性 ( 包含绝对收敛,条件收敛与发散 ) . n n2
2
5. 求函数 f ( x) arc tan( x ) 关于 x 的幂级数展开式 . 6. 在函数 f ( x) x ( 0 x ) 的余弦级数展开式中,求傅里叶系数 a3 . 7. 求微分方程 y 2 y 5 y e
南京大学《微积分 II》 (第一层次)第二学期期末考试试卷 2011.6
一、计算下列各题(本题满分 6 分,共 42 分) 1. 设 f 可微, z f ( xy, x y ) , 求 y
2 2
z z . x x y
2. 交换二次积分 3. 求

1 0
dx
2 x x
f ( x, y )dy 的次序 .
ln(1 2 ) 2 . 三 . 0 a 1 绝 对 收 敛 ,
1 五. y C1 cos x C2 sin x 1 2 cos x ln | sec x tan x | 2 sin x ln | csc x co t x | .
六. (1) 12 / 5 , (2) 32 / 5 .
10. 计算三重积分
zdxdydz ,其中 是区域

x 2 y 2 +z 2 4 z , x 2 y 2 z .
2 2
二、( 8 分 ) 设 区 域 {( x, y, z ) | 0 z t , x y t }(t 0) , 函 数 f (u ) 可 导 并 且
dy f ( x, y )dx dy

2019《微积分II》期末复习题一 - 参考答案

2019《微积分II》期末复习题一 - 参考答案

.
M
gradu

u i x

u y
j

u k z


u x
,
u y
,
u z


2 9
,
4 9
,

4 9

u
2x
x x2 y2 z2
u
2y
y x2 y2 z2
u
2z
z x2 y2 z2
gradu M
S
曲面方程, x用 x替换, 曲面边界方程不变化.
(1)被积函数f ( x, y, z)关于x是奇函数 (即f ( x, y, z) f ( x, y, z)),
则 f ( x, y, z)dS 0;
S
(2)被积函数f ( x, y, z)关于x是偶函数 (即f ( x, y, z) f ( x, y, z)),
x2 y2 1以及平面z 0围成.
法一: 积分区域为圆柱去掉圆锥的部分,
z
用先一后二法
V
:
0

z

x2 y2
Dxy : 0 x2 y2 1
I
2
d
1
rdr
r z r 2dz
0
0
0
2 1 r 3 1 z2 r dr 1 r 5dr

0 0
1 x cos 2x 1

cos 2xd 2x

0 2 0
1 1 sin 2x
2
0
1
11/24
三、设z

xn
f

《微积分》期末考试试卷(含ABC三套)

《微积分》期末考试试卷(含ABC三套)

四、计算题 1、求极限 lim
x 。 (6 分) x 0 2 4 x
B、 lim f (0 x) f (0)
x 0
f (x) f (0) x

D、 lim
x 0
f ( x x) f ( x) x
4、 (ln x)dx =( A、 ln x
2
B、 ln x C )
C、
2
1 x
1 D、 C x
5、定积分为零的是( A、 ( x 3 x 5 )dx
四、计算题 1、求极限 lim
1 cos x 。 (6 分) x 0 x2
2、 y ln( x x 2 a 2 ), 求y 。 (8 分)
3、 y cos x , 求dy 。 (8 分)
4、求 arctan xdx 。 (10 分)
2 sin 3 xdx 。 5、求 (10 分) 2
sin x A、 lim 1 x x
2
sin
B、 lim
x 0
1 x
1 x 1
C、 lim
x

2
tan x 1 x
D、 lim x sin
x
1 1 x

3、若函数 y f ( x) 在点 x=0 处可导,则 f (0) =( A、 f (0) C、 lim
x 0
2 2
B、 ( x 3 x 5 1)dx
2 2
C、 x sin xdx
2
D、 x 2 cos xdx
2
二、填空题(每空 3 分,共 18 分) 1、若函数 y f ( x) 在点 x。连续,则 lim f ( x) f ( x0 ) =

微积分——期末考试模拟试卷以及答案

微积分——期末考试模拟试卷以及答案

《微积分II 》练习题一、 填空题1.函数()y x z +=ln 1的定义域是_______________ 。

2.函数(,)f x y =,则定义域为 。

3. 。

4.设(,)(1)arcsin f x y xy y =+-(,1)x f x = _______ 。

5.设222lny x e z x +=,则=)1,1(dz 。

6.函数yx z =在(2,1)点处的全微分为_______________。

7.22()Dxyf x y dxdy +=⎰⎰。

(其中D :由曲线221y x y ==与所围成)。

8. 改变积分次序210(,)xx dx f x y dy ⎰⎰= _________ 。

9.微分方程'sin cos x y y x e -+=的通解是 。

10.微分方程0=+'y y 满足初始条件10==x y的特解 。

11.计算_________________sin 21231=⎰⎰-dy y dx x12.微分方程02'"=+-y y 的通解是 。

13.差分方程02312=+-++t t t y y y 的通解是 。

14.计算极限.______________________)sin(42lim 00=+-→→xy xy y x二、选择题),(,),( 22=-=-y x f y x yxy x f 则1.极限).(2lim22)0,0(),(=+→yx xyy x(A );0 (B );1 (C );2 (D )不存在。

2.二元函数z=f(x,y)在点),(00y x 处各偏导数存在是全微分存在的( ) (A )充分条件 (B )必要条件 (C )无关条件 (D )充要条件 3.设 f(x,y) 在点(a,b )处的偏导数存在,则=--+→xb x a f b x a f x ),(),(lim 0( )(A) 0 (B) ),2(b a f x ' (C) ),(b a f x ' (D) ),(2b a f x ' 4.若)y , (x f z =在点P (x ,y )处x z ∂∂,yz ∂∂都存在,则下列结论正确的是( )。

微积分II期末模拟试卷三套及答案

微积分II期末模拟试卷三套及答案

微积分II 期末模拟试卷1(满分:100分;测试时间:100分钟) 一、填空题(3X5=15)1、幂级数∑∞=-112n n n n x 的收敛区间为__________2、由曲线23x y -=及直线x y 2=所围成平面区域的面积是____________ 3、改变⎰⎰--21222x x xfdy dx 的积分次序_______________________4、微分方程02=-'+''y y y 的通解=y5、设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于____________ 二、选择题(3X5=15) 6、定积分()dx ex x x⎰-+22的值是( )。

(A ) 0 ; (B ) 2 ; (C ) 2e 2+2; (D ) 26e7、一曲线在其上任意一点),(y x 处的切线斜率等于yx2-,这曲线是( ) (A)直线; (B)抛物线; (C)圆; (D)椭圆 8、设函数()xy f xyz =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 9、设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点.()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点10、设级数10nn na∞==∑,且()11n n n n a a ∞-=-∑收敛,则级数1n n a ∞=∑( )(A )收敛 (B ) 发散 (C )不定 (D ) 与n a 有关 三、计算题(5X10=50)11、计算下列定积分 (1)⎰-2234dx x x ;(2)求抛物线342-+-=x x y 及其在)3,0(-和)0,3(处的切线所围成图形的面积。

6微积分II期末练习解答.doc

6微积分II期末练习解答.doc

1、2、3、A.必要分条件; B•充分条件; C•充分必要条件; D•无关条件。

设/(兀y)=戶(无+ 2y +尸),A•在(1-1)取极大值;C.在(一1)取极大值;幕级数工罕的收敛区间是(n=\3A. (—3,3);则其B.D.在(1-1)取极小值;在(丄1)取极小值。

B.3 3C.(-巧,希);D.A. /(x) = 0 ;B. f (x) = e x;C. /(x) =ce xD. /(无)="+C oA.(X + c)COSB. xcosx + cC. xcos(x + c):D. xcosx o微积分II期末复习题(6)答案一、填空题(将答案直接填在横线上,每小题3分,共5小题)1、过z轴,且过点(-3,1-2)的平面方程是x + 3y = 0。

2、设z = e2x In4- y2 ,则dz(〔门=(— + 21n2)/力+ —。

2 23 交换积分次加畑 y)dy = £ dy^L f(x, y)dx+[ dyj爲,f{x, y)dx。

OO4、一//=1 J25、微分方程(x2 + y2)dx-xydy = 0的通解是丄〒=In兀+ c。

2x二、选择题(每小题3分,共5小题)函数z = f(x.y)在点(兀y)处可微是其在该点偏导存在的(B )4、已知/(劝是连续函数,且/(%)= £,则/(兀)为:(5、方程—+ ytanx = cosx的通解是(dxdz代xzj 兀 2 + y2 + z2 +ydy 一 F (10-1).0,-0yx^2 + / + z 2+z 所以叽)dy = dx- 41dy(10-1)解:计算积分的值,其中D 是由xy n yZy = \^x\x = 2所围成的区域。

血『沪T 叫叫TJ+i 2 -f (1 一 777 - +血=~i+arctan W8.■ ^-^ + arctan28 4三、求解下列各题(每小题5分,共8小题)1、求由xyz + Jx 2 + / + z 2 =42所确定的隐函数z = z(x,y)在(1,0,-1)出的全微 分。

微积分下学期末试卷及答案

微积分下学期末试卷及答案

微积分下期末试题一一、填空题每小题3分,共15分1、 已知22(,)y f x y x yx +=-,则=),(y x f ___2(1)1x y y -+__________.2、 已知, π=⎰∞+∞--dx ex 2则=⎰∞+--dx e x x213、函数22(,)1f x y x xy y y =++-+在 点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f __1______.5、以x e x C C y 321)(+=21,C C 为任意常数为通解的微分方程是 ____________________."6'0y y y -+= 二、选择题每小题3分,共15分6知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是 C .A 1p >B 1p <C 12p <<D 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数 B .A 在原点无定义B 在原点二重极限不存在C 在原点有二重极限,但无定义D 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是 A.A 123I I I >> B213I I I >> C123I I I <<D213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解 D .A b ax y +=B xe b ax y 3)(+=C x e bx ax y 32)(+=D x e bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna D .A 绝对收敛B 条件收敛C 发散D 不定11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x=的函数为23,0x y y =>;且4=x 时,8=y ;于是)6()3(分分24882233837730(4)16(80)33128128(80)775127V y dy y dyy ππππππππ=-=--⎡⎤=-⋅=-⋅-⎢⎥⎣⎦=⎰⎰12、求二重极限11lim22220-+++→→y x y x y x .解:原式11)11)((lim 22222200-++++++=→→y x y x y x y x 3分2)11(lim 220=+++=→→y x y x 6分13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2.解:设(,,)zF x y z z e xy =+-,则x F y=-,y F x=- ,1zz F e =+11x z z z z F y y x F e e ∂-=-=-=∂++, 11y z z z F z x x y F e e ∂-=-=-=∂++ 3分222111(1)1(1)z z z zz z z ze y e z ye xy yx y y e e e e ∂+-⋅⋅∂∂∂⎛⎫===-⎪∂∂∂++++⎝⎭6分14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 解:222(1)1222z x x x x =+-+=-+ 令'420z x =-=,得12x =,"40z =>,12x =为极小值点. 3分故221z x y =++在1y x =-下的极小值点为11(,)22,极小值为326分 15、计算⎰⎰1 212dxe dy yyyx .解:2112123182xyyy I dy e dx e e ==-⎰⎰ 6分 16、计算二重积分22()Dxy dxdy+⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.解:22()Dx y dxdy +⎰⎰=1320d r drπθ⎰⎰=8π6分17、解微分方程x y y +'=''.解:令y p '=,p y '='',方程化为x p p +=',于是])1([1C e x e x x ++-=-x e C x 1)1(++-= 3分 ⇒2121)1(21])1([C e C x dx e C x dx p y x x +++-=++-==⎰⎰ 6分18、判别级数)11(133∑∞=--+n n n 的敛散性.解:=3分因为lim 11n n →∞==19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.解:由于3113131x x -⋅=-,已知 ∑∞==-011n nx x ,11<<-x , 3分 那么 ∑∑∞=+∞===-01031)3(3131n nn n n xx x ,33<<-x . 6分20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R 万元与电台广告费用1x 万元的及报纸广告费用2x 万元之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略 解:公司利润为22212121211028311315x x x x x x x x R L ---++=--= 令⎪⎩⎪⎨⎧=--='=--=',020831,04813211221x x L x x L x x 即⎩⎨⎧=+=+,31208,13842121x x x x得驻点)25.1,75.0()45,43(),(21==x x ,而 3分0411<-=''=x xL A ,821-=''=x x L B ,2022-=''=x x L C , 064802>-=-=B AC D ,所以最优广告策略为:电台广告费用75.0万元,报纸广告费用25.1万元. 6分 四、证明题每小题5分,共10分21、设1133ln()z x y =+,证明:13z z xy x y ∂∂+=∂∂. 证:2233113311113333,x y z z xyx yx y --∂∂==∂∂++22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n n v u 收敛.证:由于)(22)(022222n n n n n n n n v u v u v u v u +≤++=+≤, 3分 并由题设知∑∞=12n nu与∑∞=12n nv都收敛,则)(2212n n n v u∑∞=+收敛,从而∑∞=+12)(n n nv u收敛; 6分微积分下期末试题二一、填空题每小题3分,共15分1、设)(y x f y x z -++=,且当0=y 时,2x z =,则=z ;答案2222x xy y y -++2、计算广义积分⎰+∞13x dx = ;答案12 3、设xye z =,则=)1,1(dz ;答案)(dy dx e +4、微分方程x xe y y y 265=+'-''具有 形式的特解. 答案xe bx ax 22)(+5、设14n n u ∞==∑,则11122n n n u ∞=⎛⎫-=⎪⎝⎭∑_________;答案1二、选择题每小题3分,共15分1、2222003sin()lim x y x y x y →→++的值为 A.0 C D.不存在2、),(00y x f x 和),(00y x f y 存在是函数),(y x f 在点),(00y x 可微的 A ;A.必要非充分的条件;B.充分非必要的条件;C.充分且必要的条件;D.即非充分又非必要的条件; 3、由曲面z x y =--422和z =0及柱面x y 221+=所围的体积是 D ;A.d d θπr r r4222-⎰⎰;B.204d rπθ⎰⎰;C、20d rπθ⎰⎰; D.442012d d θπr r r-⎰⎰4、设二阶常系数非齐次线性方程()y py qy f x '''++=有三个特解x y =1,xe y =2,x e y 23=,则其通解为 C ;A.xx e C e C x 221++; B.x x e C e C x C 2321++;C.)()(221x x x e x C e e C x -+-+;D.)()(2221x e C e e C xx x -+-5、无穷级数∑∞=--11)1(n pn n p 为任意实数 D A 、收敛 B 、绝对收敛 C 、发散 D 、无法判断三、计算题每小题6分,共60分1、求下列极限:00x y →→;解:0x y →→00x y →→= …3分1)112x y →→==+= …6分2、求由x y =与直线1=x 、4=x 、0=y 所围图形绕x 轴旋转的旋转体的体积;解:421d x V xπ=⎰ …4分7.5π= …6分3、求由xyz e z=所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂; 解:方程两边对x 求导得:x z xyyz x z e z∂∂+=∂∂,有)1(-=-=∂∂z x z xy e yz x z z …3分方程两边对y 求导得:y z xy xz y z e z∂∂+=∂∂,有)1(-=-=∂∂z y z xy e xz y z z …6分4、求函数322(,)42f x y x x xy y =-+-的极值;解:322(,)42f x y x x xy y =-+-,则2(,)382x f x y x x y=-+,(,)22y f x y x y=-,(,)68xx f x y x =-,(,)2xy f x y =,(,)2yy f x y =-,求驻点,解方程组23820220x x y x y ⎧-+=⎨-=⎩,,得)0,0(和(2,2). …2分对)0,0(有(0,0)80xx f =-<,(0,0)2xy f =,(0,0)2yy f =-,于是2120B AC -=-<,所以)0,0(是函数的极大值点,且(0,0)0f = …4分对(2,2)有(2,2)4xx f =,(2,2)2xy f =,(2,2)2yy f =-,于是2120B AC -=>, (2,2)不是函数的极值点;6、计算积分⎰⎰D d x y σ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域;解:221x x Dyy d dx dyx x σ=⎰⎰⎰⎰. (4)分213924xdx ==⎰ …6分7、已知连续函数)(x f 满足⎰+=xx x xf dt t f 0)(2)(,且0)1(=f ,求)(x f ;解:关系式两端关于x 求导得:1)(2)(2)(+'+=x f x x f x f 即x x f x x f 21)(21)(-=+' …2分这是关于f )(x 的一阶线性微分方程,其通解为:=1)(1-=+-x c c x x…5分又0)1(=f ,即01=-c ,故1=c ,所以11)(-=xx f …6分8、求解微分方程212y y y '-+''=0 ;解:令y p '=,则dp y pdy ''=,于是原方程可化为:221dp p p dy y +=- …3分即201dp p dy y +=-,其通解为22111(1)dy yp c e c y --⎰==- …5分21)1(-=∴y c dx dy 即dx c y dy 12)1(=-故原方程通解为:2111c x c y +-= …6分9、求级数1n n ∞=的收敛区间; 解:令2t x =-,幂级数变形为1n n ∞=1lim 1n t n n n a R a →∞+===. …3分当1-=t 时,级数为0(1)nn ∞=-∑收敛;当1=t 时,级数为1n ∞=.故1n n ∞=)1,1[-=t I , (5)分那么1n n ∞=的收敛区间为[1,3)x I =. …6分10、 判定级数∑∞=⋅1!)2sin(n n n x 是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛;解:因为sin(2)1!!n x n n ⋅≤ (2)分由比值判别法知11!n n ∞=∑收敛1(1)!lim 01!n n n →∞+=, …4分从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑绝对收敛. …6分四、证明题每小题5分,共10分1、设正项级数1nn u∞=∑收敛,证明级数1n ∞=也收敛;证:)(2111+++≤n n n n u u u u , …3分 而由已知∑++)(211n n u u 收敛,故由比较原则,∑+1n n u u 也收敛; …5分2、设)(22y x f y z -=,其中)(u f 为可导函数, 证明211y zy z y x z x =∂∂+∂∂.证明:因为22f f xy xz '-=∂∂, …2分222f f y f y z '+=∂∂ (4)分所以222212211y zyf yf f y f f f y y z y x z x =='++'-=∂∂+∂∂. …5分微积分下期末试题三一、填空题每小题3分,共15分1、设()z x y f y x =++-,且当0x =时,2z y =,则=z ;答案2222x xy x y -++2、计算广义积分21dxx +∞⎰= ;答案13、设)1ln(22y x z ++=,则(1,2)dz=;答案1233dx dy +4、微分方程x e x y y y 3)1(596+=+'-''具有 形式的特解.xe bx ax 323)(+ 5、级数∑∞=+1913n nn 的和为 ;答案58二、选择题每小题3分,共15分1、2222003sin()lim x y x y x y →→++的值为 BA 、0B 、3C 、2D 、不存在2、),(y x f x 和),(y x f y 在),(00y x 存在且连续是函数),(y x f 在点),(00y x 可微的 BA.必要非充分的条件;B.充分非必要的条件;C.充分且必要的条件;D.即非充分又非必要的条件; 3、由曲面z x y =--422和z =0及柱面224x y +=所围的体积是 BA. 240d rπθ⎰⎰;B.2204d rπθ⎰⎰;C、20d rπθ⎰⎰;D.204d rπθ⎰⎰4、设二阶常系数非齐次微分方程()y py qy f x '''++=有三个特解21y x =,x e y =2,x e y 23=,则其通解为 D A 、22212()()x x x C e e C e x -+-; B 、22123x xC x C e C e ++;C 、2212x xx C e C e ++; D 、)()(22212xx x e x C e e C x -+-+ 5、无穷级数121(1)n pn n -∞=-∑p 为任意实数 A A 、无法判断 B 、绝对收敛 C 、收敛 D 、发散 三、计算题每小题6分,共60分1、求下列极限:00x y →→;解:0000x x y y →→→→=…3分0011224x y →→-===-+ …6分2、求由在区间]2,0[π上,曲线x y sin =与直线2π=x 、0=y 所围图形绕x 轴旋转的旋转体的体积;解:220sin d x V x xππ=⎰ …4分214π= …6分3、求由xy xyz z=-e 所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂;解:一令=),,(z y x F xy xyz z--e 则 y yz x F --=∂∂, x xz y F --=∂∂, xy z F z -=∂∂e利用公式,得xy y yz xy y yz z F x Fx z zz -+=----=∂∂∂∂-=∂∂e e …3分 xy x xz xy x xz z F y Fy z zz -+=----=∂∂∂∂-=∂∂e e …6分二在方程两边同时对x 求导,得解出xy y yz x z z-+=∂∂e , …3分同理解出xy x xz y z z-+=∂∂e …6分4、求函数33812),(y xy x y x f +-=的极值;解:33812),(y xy x y x f +-=,则yx y x f x 123),(2-=,xy y x f y 1224),(2-=,x y x f xx 6),(=,12),(-=y x f xy ,,y y x f yy 48),(=求驻点,解方程组⎪⎩⎪⎨⎧=-=-,,01224012322x y y x 得)0,0(和)1,2(. …2分对)0,0(有0)0,0(=xx f ,12)0,0(-=xy f ,0)0,0(=yy f ,于是01442>=-AC B ,所以)0,0(点不是函数的极值点. …4分对)1,2(有12)1,2(=xx f ,12)1,2(-=xy f ,48)1,2(=yy f ,于是048121442<⨯-=-AC B ,且012>=A ,所以函数在)1,2(点取得极小值,33(2,1)21221818f =-⨯⨯+⨯=- …6分 …5分6、计算二重积分⎰⎰+D d y x σ)2(,其中D 是由x y x y 1,==及2=y 所围成的闭区域; 解:211(2)(2)yyDx y d dy x y dxσ+=+⎰⎰⎰⎰ …4分2221119(21)6y dy y =--=⎰ …6分7、已知连续函数)(x f 满足0)(2)(0=++⎰xx x f dt t f ,求)(x f ;解:关系式两端关于x 求导得:01)(2)(=+'+x f x f 即21)(21)(-=+'x f x f …2分这是关于f )(x 的一阶线性微分方程,其通解为:2221)(x x xce c e e --+-=+-= …5分又0)0(=f ,即c +-=10,故1=c ,所以1)(2-=-xex f …6分8、求微分方程02)1(2='-''+y x y x 的通解;解 这是一个不明显含有未知函数y 的方程作变换 令 dyp dx =,则22d y dp dx dx =,于是原方程降阶为2(1)20dpx px dx +-=…3分, 分离变量221dp xdx p x =+,积分得21ln ln(1)ln p x C =++即 21(1)p C x =+,从而 21(1)dyC x dx =+ …5分再积分一次得原方程的通解y =312()3x C x C ++ …6分9、求级数∑∞=-1)3(n nn x 的收敛区间; 解:令3-=x t ,幂级数变形为∑∞=1n n n t ,11lim 1n tn n n a n R a n →∞++===. …3分当1-=t 时,级数为∑∞=-01)1(n nn 收敛;当1=t 时,级数为∑∞=11n n 发散.故∑∞=1n nn t 的收敛区间是)1,1[-=t I , (5)分那么∑∞=-1)3(n n n x 的收敛区间为)4,2[=x I . …6分 10、 判定级数1cos()!n n x n ∞=⋅∑是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:解:因为cos()1!!n x n n ⋅≤ …2分 由比值判别法知11!n n ∞=∑收敛1(1)!lim 01!n n n →∞+=, …4分从而由比较判别法知1cos()!n n x n ∞=⋅∑收敛,所以级数1cos()!n n x n ∞=⋅∑绝对收敛. …6分四、证明题每小题5分,共10分1、设级数21nn a∞=∑收敛,证明1(0)nn n a a n ∞=>∑也收敛;证:由于)1(21||22n a n a n n +≤, …3分 而∑2na ,∑21n 都收敛,故∑+)1(2122n a n 收敛,由比较原则知 n a n ∑收敛.;…5分 2、设)2(cos 22tx z -=,证明:02222=∂∂∂+∂∂t x z t z ;证明: 因为)2sin()21()2sin()2cos(22t x t x t x t z -=-⋅--⋅-=∂∂, …2分)2cos(22t x t z --=∂∂,22222)2cos(2t zt x x t z t x z ∂∂-=-=∂∂∂=∂∂∂, …4分所以02222=∂∂∂+∂∂t x z t z (5)分微积分下期末试题及答案四一、选择题每题2分1、设x ƒ()定义域为1,2,则lg x ƒ()的定义域为 A 、0,lg2 B 、0,lg2] C 、10,100 D 、1,22、x=-1是函数x ƒ()=()221x x x x --的 A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14 B 、0 C 、1 D 、∞4、若1y xx y +=,求y '等于A 、22x y y x --B 、22y x y x --C 、22y x x y-- D 、22x y x y +-5、曲线221xy x=-的渐近线条数为 A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射A 、2y x = (,)x R y R +-∈∈B 、221y x =-+C 、2y x =D 、ln y x = (0)x > 二、填空题每题2分1、__________ 2、、2(1))lim ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题每题2分1、221x y x=+函数是有界函数 2、有界函数是收敛数列的充分不必要条件 3、limββαα=∞若,就说是比低阶的无穷小4、可导函数的极值点未必是它的驻点5、曲线上凹弧与凸弧的分界点称为拐点 四、计算题每题6分 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求3、2326x xy y y x y -+="已知,确定是的函数,求4、20tan sin lim sin x x xx x→-求 5、计算6、210lim(cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100Rx x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大8分2、描绘函数21y x x=+的图形12分六、证明题每题6分1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则2、证明方程10,1xxe =在区间()内有且仅有一个实数 试题四答案 一、 选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、 2、 3、 解: 4、解: 5、 解:6、解: 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x2、 解:图象六、证明题1、证明:2、证明:。

微积分下学期末试卷及答案

微积分下学期末试卷及答案

微积分下学期末试卷及答案一、填空题(每小题3分,共15分)1、 已知22(,)y f x y x yx +=-,则=),(y x f ___2(1)1x y y -+__________.2、 已知, π=⎰∞+∞--dx ex 2则=⎰∞+--dx e x x21______π_____.3、函数22(,)1f x y x xy y y =++-+在 点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f __1______.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________."6'0y y y -+= 二、选择题(每小题3分,共15分 6知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( C ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( B ).(A) 在原点无定义 (B) 在原点二重极限不存在(C) 在原点有二重极限,但无定义 (D) 在原点二重极限存在,但不等于函数值)32,31(-8、若22223111x y I x y dxdy +≤=--⎰⎰,222232121x y I x y dxdy≤+≤=--⎰⎰,222233241x y I x y dxdy≤+≤=--⎰⎰,则下列关系式成立的是( A).(A) 123I I I >> (B) 213I I I >> (C)123I I I <<(D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( D ). (A) b ax y += (B) xe b ax y 3)(+= (C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( D ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x=的函数为23,0x y y =>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在仙力)内也F\x)<0・
17、求曲线x3-xy+y3=l(x>0,y>0)±的点到坐标原点的最长距离和最短距离。
微积分II期末模拟试卷3(满分:100分;测试时间:100分钟) 三、填空题(3X5=15)
『1-/_“2
1、曲线<X=Joe du在(0, 0)处的切线方程为
y = t2ln(2-r2)
”=i2”=]n
(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与入有关
7、曲线y=y(x)经过点(0,-1),且满足微分方程y'+2y = 4兀,则当兀=1时,y=()
(A)0;(B)l;(C)2;(D)4
8、设q,是圆域D = {(x,y)|/+y2 si}的第£象限的部分,记Ik=^{y-x)dxdy.则
(A)/, >/2>1.(B) l>/j >/2.(C)I2>/j >1.(D)l>/2>/,.
五、计算题(5X10=50)
12、计算下列定积分
1
(1)j2|ycsi:兀力.(2)求y=cos x - sin x, y = 0(0 < x < —) ^ x轴旋转的旋转体体积
12、计算下列多元微积分
(1)设z=f[x2-y.(p{xy)],其中f(〃,0具有二阶连续偏导数,(p(u)二阶可导,求
y = Jo ln(l + u)du
dx cf
2te= 0< dt
x —o = °
16、设非负函数y = y(x)(xnO)满足微分方程尢y"-y+2 = 0,当曲线y = y(x)过原点
时,其与直线x = \&y =0围成平面区域Q的面积为2,求D绕y轴旋转所得旋转体体积。
17^求证:若x+y+z= 6,贝ijx2+y2+z2> 12,(x> 0,y> 0,z > 0).
1 °
3、已知y = /(x)过(0,——),其上任一点处的切线斜率为xln(l + x2),则/(%) =
幕级数为⑺一1)*的和函数为
5、设函数z = z(x,y)由方程z = e2x~3z+2y确定,贝+ $ =四、选择题(3X5=15)
6、设色>0(x1,2,…),且收敛,常数朕(0,彳),贝ij级数£(-l)7^tan-)6/2H
D
(2)计算\\ex^y2dxdy,其中D是由x2+y2= 4所围成的闭区域.D
14、处理下列级数
15、求解下列微分方程
(I)(xy2+x)dx+(y -x2y)dy=0
四、综合题(2X10=20)
16、求函数f(x,y) = xe2的极值.
17、设必(兀),%(力,%(力都是方程/+p(x)y+e(x)y=/(x)的特解,且丄匚比不恒等"力-%
(C)lim/(A-,y)- 7(0,0)_n.
gy)T(0・0) J牙2 +尹2
(D)lim [/;(x,0)-//(0,0)1 = 0,且lim M'(0,y)-/;(0,0)1 = 0・
xtOL」y->0 L '•
9、设函数/(兀)在(0,4-00)上具有二阶导数,Kf\x)>0 ,令un=f(n),则下列结论正确 的是:
2r
7、一曲线在其上任意一点(x,y)处的切线斜率等于——,这曲线是()
8、设函数z其中f可微,则兰李+卑二()
xy ox dy
12、计算下列多元函数微积分
⑴设/;g为连续可微函数,u=f(x,xy\ v=g(x-^-xy),求単单.dx ox
13、计算下列二重积分
(1)计算Jjxydxdy,其中D是由抛物线y2=x及直线y = x-2所围成的闭区域.
(C) y* =ax^ +bx + c + Asinx.(D) y* = or +/zx + c+Acosx
七、综合题(7X10=70)
O r27
11、求函数/(%) = £(x2-t)e-rdt的单调区间与极值。
12、
设函数比二/(x, y)具有二阶连续偏导数,且满足等式4興+12卖~ +5与=0. drdxdy dy^
于常数,证明y= (1 +c?!)y)+(c2-c})y2-c2y3为方程的通解(其111c},c2为任意常数)。
微积分II期末模拟试卷2(满分:100分;测试时间:100分钟) 二、填空题(3X5=15)
2、limln』(l +丄)2(1 + 2)2・・・(1+巴)2用积分形式表示为
心8 Vnnn
a2z
dxdy
J
(2)/(兀+y, y+ z,z + x)= 0,求dz .
13、计算下列二重积分
(1)设平面区域D是由曲线x = 3y,y = 3x,x+ y= 8所围成,求^x2dxdy .
D
(2)求二重积分^{x-y^dxdy,其中D = |(x,y) (x-1)"+(y-l)2<2,y>xJD
微积分
1
2
3
4
5
2
32
3
flrJl-y'+i
y = c}ex+ c2e~2x
3
(l+「)2 -1
6
7
8
9
10
C
D
A
D
A
1、解.lim弘=lim(〃 +¥2""=丄,所以收敛半径为2.ht8 a12
2、—y = 3-x2与y = 2兀交点为(-3-6),(1,2),取兀微积分变量则
S = ^\(3-xຫໍສະໝຸດ )-2x]dx = [3x--x3-x2也
微积分II期末模拟试卷I(满分:100分;测试时间:100分钟)
2、由曲线y = 3-x及直线y= 2兀所围成平面区域的面积是
3、改变fdy的积分次序
4、微分方程)<+y-2y =0的通解
二、选择题(3X5=15)
6、定积分J"2(|x| + x)^dx的值是()。
6
(A)0;(B)2 :(C) 2e2+2;(D)—
14、处理下列级数
(1)试确定兰+(-2)(卄]「的收敛半径、收敛区间和收敛区域。
n=\〃
(2)把/⑴二「山° + %展成x的幕级数。
Jo x
15、求解下列微分方程
(1)yy"+(#)2=y‘;⑵y" + 2)/+y = x£*。
四、综合题(2X10=20)
1cx
16、设/V)在[q刃上连续,在(4勿内可导,ar(x)<0,求证:F(x) =——Ix-aJa
2、设z荷
(X丿
3、微分方程)/ =丄刍满足初始条件y|*o= 1,/I*。= 3的特解y=
1X
8 _
4、ysin(/?7r + -)的敛散性为
„=i
5、设D是顶点分别为(0,0),(1,0),(1,2),(0,1)的直边梯形,计算JJ(1 +x)yd(y=
D
六、选择题(3X5=15)
6、设人=匸/血兀血,伙=1,2,3),则有
(A)1}<12<13(B) /3</2<ZI(0/2<Z3</I(D)72</j<Z3
7、设函数/连续,若F(w,v)= H七厂+厂)力如其中区域D“为图中阴影部分,则嬰
8、二元函数f(x, y)在点(0,0)处可微的一个充要条件是[J
(B)lin/("7(°'叭0,且li訂(0,刃一灿0)“
大t()x)7)y
(A)>0(B) Z2>0(C) /3>0(D) /4>0
9、设函数f(x,y)为可微函数,且对任意的兀,y都有畔2>0,岭”v0,则使不等式oxdy
/(尢I,X ) > /(兀2,丁2)成立的一个充分条件是
(A)X,>X2OJ1<>2(B)兀] >兀2,)'1>〉‘2(C)西 <兀2,必<旳(D)坷 <吃,)[>『2
(A)若w,>u2,则{给}必收敛.(B)若>u2,则{%}必发散
(C)若<u2,则{冷}必收敛.(D)若<u2,则{给}必发散.
10、微分方程y"+y=F+1 +血x的特解形式可设为
(A)y*=ax2+Zzr + c + x(Asin%+Bcosx).
(B)y*二x(or2+ bx + c + 4sinx + Bcosx).
确定g,b的值,使等式在变换§=x + ay.ri=x +by下简化= 0
13、求微分方程/(x+y2)=y满足初始条件y(i)= 7(1)= 1的特解.
14、将函数/(x) = 4在兀=1处展开为幕级数,并求£(一";"
Xn=l2
X =X(t)
15、设函数y = y(x)由参数方程2「「2确定,其中兀⑴是初值问题
相关文档
最新文档