2020届高三高考物理一轮复习专题突破:动能定理求解多过程问题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能定理求解多过程问题

【典例1】 如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,

BC 是水平的,其宽度d =0.50 m ,盆边缘的高度为h =0.30 m ,在A 处放一个质量为m 的小物块并让其从静

止开始下滑。已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10。小物块在盆内来回滑动,最后停下来,则停的地点到B 点的距离为( )

A .0.50 m

B .0.25 m

C .0.10 m

D .0

【典例2】如图所示,斜面的倾角为θ,质量为m 的滑块与挡板P 的距离为x 0,滑块以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力。若滑块每次与挡板相碰均无机械能损失,滑块经过的总路程是( )

A.1μ⎝ ⎛⎭⎪⎫v 02

2g cos θ+x 0tan θ B.1μ⎝ ⎛⎭⎪⎫v 0

2

2g sin θ+x 0tan θ

C.2μ⎝ ⎛⎭⎪⎫v 02

2g cos θ+x 0tan θ D.1μ⎝ ⎛⎭

⎪⎫v 0

2

2g cos θ+x 0cot θ

【典例3】在某游乐闯关节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,两位同学观看后对此进行了讨论。如图所示,他们将选手简化为质量m =60 kg 的质点,选手抓住绳由静止开始摆动,此时绳与竖直方向的夹角α=53°,绳的悬挂点O 距水面的高度为H =3 m 。不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取重力加速度g =10 m/s 2

,sin 53°=0.8,cos 53°=0.6。

(1)求选手摆到最低点时对绳拉力的大小F ;

(2)若绳长l =2 m ,选手摆到最高点时松手落入水中。设水对选手的平均浮力F 1=800 N ,平均阻力F 2

=700 N ,求选手落入水中的深度d ;

(3)若选手摆到最低点时松手,甲同学认为绳越长,在浮台上的落点距岸边越远;乙同学却认为绳越短,落点距岸边越远。请通过推算说明你的观点。

【跟踪短训】

1.如图所示,AB、CD为两个对称斜面,其上部足够长,下部B、C分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R为

2.0 m,一个物体在离弧底E高度为h=

3.0 m处,以初速度v=

4.0 m/s沿斜面运动,若物体与两斜面间的动摩擦因数均为0.02,则物体在两斜面上(不包括圆弧部分)一共运动的路程是多少?(g取10 m/s2)

2.如图所示,质量m=6.0 kg的滑块(可视为质点),在F=60 N的水平拉力作用下从A点由静止开始运动,一段时间后撤去拉力F,当滑块由平台边缘B点飞出后,恰能从水平地面上的C点沿切线方向落入竖直圆弧轨道CDE,并从轨道边缘E点竖直向上飞出,经过0.4 s后落回E点。已知A、B间的距离L=2.3 m,滑块与平台间的动摩擦因数μ=0.5,平台离地面高度h=0.8 m,B、C两点间水平距离x=1.2 m,圆弧轨道半径R=1.0 m。重力加速度g取10 m/s2,不计空气阻力。求:

(1)滑块运动到B点时的速度大小;

(2)滑块在平台上运动时受水平拉力F作用的时间;

(3)滑块沿圆弧轨道由C到E过程克服摩擦做的功。

3.如图所示,倾斜轨道AB的倾角为37°,CD、EF轨道水平,AB与CD通过光滑圆弧管道BC连接,CD 右端与竖直光滑圆周轨道相连。小球可以从D进入该轨道,沿轨道内侧运动,从E滑出该轨道进入EF水平轨道。小球由静止从A点释放,已知AB长为5R,CD长为R,重力加速度为g,小球与倾斜轨道AB及水平轨道CD、EF的动摩擦因数均为0.5,sin 37°=0.6,cos 37°=0.8,圆弧管道BC入口B与出口C的高度差为1.8R。求:(在运算中,根号中的数值无需算出)

(1)小球滑到斜面底端C时速度的大小;

(2)小球刚到C时对轨道的作用力;

(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R′应该满足的条件。

4.如图甲所示,轻弹簧左端固定在竖直墙上,右端点在O 位置。质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方x 0的P 点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O ′点位置后,A 又被弹簧弹回。A 离开弹簧后,恰好回到P 点。A 与水平面间的动摩擦因数为μ。求:

(1)A 从P 点出发又回到P 点的过程,克服摩擦力所做的功; (2)O 点和O ′点间的距离x 1;

(3)如图乙所示,若将另一个与A 完全相同的物块B (可视为质点)与弹簧右端拴接,将A 放在B 右边,向左推A 、B ,使弹簧右端压缩到O ′点位置,然后从静止释放,A 、B 共同滑行一段距离后分离。分离后A 向右滑行的最大距离x 2。

5. 如图,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态,直轨道与一半径为5

6R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D

均在同一竖直平面内。质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出),随后P 沿轨道被弹回,最高到达F 点,AF =4R ,已知P 与直轨道间的动摩擦因数μ=1

4,重力加速度大小为g 。(取sin

37°=35,cos 37°=45

)

(1)求P 第一次运动到B 点时速度的大小; (2)求P 运动到E 点时弹簧的弹性势能;

(3)改变物块P 的质量,将P 推至E 点,从静止开始释放。已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G 点。G 点在C 点左下方,与C 点水平相距7

2R 、竖直相距R ,求P 运动到D 点时速度的大小和改变

后P 的质量。

6. 如图所示,质量为m =1 kg 的可视为质点的小物体轻轻放在匀速运动的传送带上的P 点,随传送带运动到A 点后水平抛出,小物体恰好无碰撞地沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑,圆弧轨道与质量为M =2 kg 的足够长的小车左端在最低点O 点相切,小物体在O 点滑上小车,水平地面光滑,当小物体运动到障碍物Q 处时与Q 发生无机械能损失的碰撞。碰撞前小物体和小车已经相对静止,而小车可继续向右运动(小物体始终在小车上),小车运动过程中和圆弧无相互作用。已知圆弧半径R =1.0 m ,圆弧对应

相关文档
最新文档