含未知信息的轮式移动机器人编队确定学习控制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含未知信息的轮式移动机器人编队确定学习控制
彭滔;刘成军
【摘要】This paper investigates the formation control of wheeled mobile robots(WMR)with unknown information under nonholonomic constraints.Firstly,based on the leader-follower method and the virtual structure method,the forma-tion control is transformed into the problem that the followers track their virtual leader. Secondly,a radial basis function neural network(RBF NN)is used to learning the unknown
information(closed-loop system dynamics)of WMR,and a stable adaptive RBF NN controller and the stable adaptive tuning law of RBF NN parameters are derived in the sense of the Lyapunov stability
theory.According to deterministic learning,a partial persistent
excitation(PE)condition of some inter-nal signals in the closed-loop system is satisfied in the control process of tracking a recurrent reference trajectory,and an accurate approximation of the unknown closed-loop system dynamics is achieved by the RBF NN parameters convergence to their optimal weights. Finally,a RBF NN learning controller which effectively utilizes the learned knowledge without re-adapting the RBF NN parameters is proposed to achieve the closed-loop stability and improve the control performance, and simulation studies are included to demonstrate the correctness and effectiveness of the proposed approach.%本文研究含未知信息的轮式移动机器人(wheeled mobile robots,WMR)的编队控制问题.首先,基于领航-跟随法和虚拟结构法,将WMR编队控制问题转化为跟随机
器人对参考虚拟机器人的跟踪控制问题.然后,利用径向基函数神经网络(radial basis function neural networks,RBF NN)对WMR的未知系统动态进行学习,以及根据李雅普诺夫稳定性理论设计了稳定的自适应RBF NN控制器和RBF NN权值估计的学习率.依据确定学习理论,闭环系统内部信号在对回归轨迹实现跟踪控制的过程中满足部分持续激励(persistent excitation,PE)条件.随着PE条件的满足,RBF NN权值估计收敛到其理想权值,实现了对未知闭环系统动态的准确学习.最后,利用学习结果设计了RBF NN学习控制器,保证了控制系统的稳定与收敛,实现了闭环稳定性和改进了控制性能,并通过仿真验证了所提控制方法的正确性和有效性.【期刊名称】《控制理论与应用》
【年(卷),期】2018(035)002
【总页数】9页(P239-247)
【关键词】未知信息;移动机器人编队;非完整约束;系统动态;学习控制
【作者】彭滔;刘成军
【作者单位】重庆理工大学电气与电子工程学院,重庆400054;重庆理工大学电气与电子工程学院,重庆400054
【正文语种】中文
【中图分类】TP242
1 引言(Introduction)
近30年来,移动机器人编队因具有广泛的应用前景,使其成为机器人领域中的研究热点[1–2].经过多年的研究,现在已经形成了领航–跟随法(leader-follower)[3–4]、
基于行为法(behavior based)[5–7]和虚拟结构法(virtual structure)[8–9]3种最常用的方法,其中领航–跟随法具有数学分析简单,机器人编队运动安全高效和易于形成和保持队形等优点,已广泛应用于移动机器人编队控制研究的各领域.
现有的研究结果主要是基于机器人的线速度和角速度为控制输入的运动学模型,设计运动学控制器完成编队控制.这使得跟踪速度控制器决定了系统控制的稳定性,为达到编队控制目标需要“完美的”速度跟踪控制[10].这些研究结果大多没有考虑移动机器人的动力学特性,缺乏对高度非线性,不确定性和系统干扰等的鲁棒性;而在实际情况中存在诸多的非线性、扰动和不确定性等因素,例如作用于移动机器人的噪声、扰动、摩擦、负载变化以及未建模动态等.为保证移动机器人跟踪期望速度达到编队控制误差收敛到零,需要考虑机器人的动力学特性.在文献[11]和[12]
中,Dierks等通过联合多层神经网络将单移动机器人的轨迹跟踪控制扩展到编队领航跟随控制,该方法用神经网络学习机器人编队的完整动力学和神经网络观测器估计机器人的线速度和角速度,设计了神经网络输出反馈控制器实现了稳定.在文献[13]中,Hou等利用反步技术(backsteping)和模糊逻辑方法为含有不确定动力学和外部扰动的移动机器人提出了自适应控制方法,该方法通过模糊系统在线学习机器人平台的动力学和运动学,使得这些信息不再为必须的先验知识;在文献[14]中利用神经网络对含有不确定动力学和外部扰动的多智能体一致性问题提出了鲁棒自适应控制方法,并将该方法推广到多智能体的编队控制中.在文献[15]中,Defoort等对含有界不确定扰动时变机器人编队问题设计了二阶滑模鲁棒控制器,该方法只需要测量机器人之间的相对构形而不必要测量或估计领航机器人的速度.在文献[16]中,申动斌等对打滑状态下的多机器人编队控制采用领导者–跟随者策略协调各机器人的运动,利用二阶滑模控制方法设计了控制器,使得机器人编队在运动过程中能够形成期望的队形.在文献[17]和[18]中,李艳东等利用神经网络对动力学不确定部分进行了在线估计,设计了自适应控制器和滑模控制器.这些研究结果包含了移动机器人的动力