3.1用树状图或表格求概率(2)学生版

合集下载

3.1用树状图和表格求概率

3.1用树状图和表格求概率
牌面的数字
所有可能 (1,1) (1,2) (1,3) (2,1) (2,2)
出现的结果 (2,3) (3,1) (3,2) (3,3)
第二张牌的牌面数字
1
2
3
第一张牌的牌面数字

1
(1,1) (1,2) (1,3)

2
(2,1) (2,2) (2,3)

3
(3,1) (3,2) (3,3)
“石头剪刀布”游戏


A盘
蓝 黄
绿
B盘
第一步 第二步
“配紫色”游戏
解:所有可能出现的结果 如下:
红白
A盘
黄蓝 绿
B盘
第二个 转盘
第一个 转盘

黄 (红,黄)
蓝 (红,蓝)
绿 (红,绿)

(白,黄)
(白,蓝)
(白,绿)
总共有6种结果,每种结果出现的可能性相同,而可以配成 紫色的结果有1种:(红,蓝),因此游戏者获胜的概率为 1/6。
蓝红
用树状图和列表的方法求概率时应 注意各种结果出现的可能性务必相 同.
探究三
准备两组相同的牌,每组三张,三张牌面的数字 分别是1、2、3.从两组牌中各摸出一张为一次 试验,你能列出所有可能出现的结果吗?
1
1
2
2
3
3
第一组
第二组
开始

第一张牌的
1
2
牌面的数字
3
状 图
第二张牌的 1 2 3 1 2 3 1 2 3
解:
开始
A同学
石头
剪刀

B同学
石 剪布石 剪布石 剪布
头刀

3.1.2 用树状图或表格求概率(2)

3.1.2 用树状图或表格求概率(2)

新课推进
1、小明、小颖和小凡做“石头、剪刀、布”游 戏, 游戏规则如下:
由小明和小颖做“石头、剪刀、布”的游戏, 如果两 人的手势相同,那么小凡获胜;如 果两人手势不同, 那么按照“石头胜剪刀, 剪刀胜布,布胜石头”的规则决定小明和小颖 中的获胜者。
假设小明和小颖每次出这三种手势的可能性相同, 你认为这个游戏对三人公平吗?
4.【例2】小明和小红玩抛硬币游戏,连续抛两次.小明说:
“如果两次都是正面,那么你赢;如果两次是一正一反,那
1
1
么我赢.”小红赢的概率是 4 ,小明赢的概率是 2 ,据
此判断该游戏 不公平 (填“公平”或“不公平”).
课堂小结
通过本节课的学习你有什么收获?还有哪 些疑惑?
思考:用树状图或表格求概率时应注意什 么?
开始
小明 石头 剪刀

小颖 石头 剪刀 布 石头 剪刀 布 石头 剪刀 布
所有可能出现的结果 (石头、石头) (石头、剪刀) (石头、布) (剪刀、石头) (剪刀、剪刀)
(剪刀、布) (布、石头) (布、剪刀)
(布、布)
小明 石头
剪刀

小颖
石头 (石头、石头) (石头、剪刀) (石头、布)
剪刀 (剪刀、石头) (剪刀、剪刀)(剪刀、布)
1 用树状图或表格求概率
第2课时 用树状图或表格求概率(2)
北师大版 九年级上册
复习旧知
上节课我们通过了抛硬币的小实验了解了 利用树状图和列表的方法来求概率,请同 学们回顾下我们画树状图和列表的步骤和 方法。
随着试验可能性的增加,你还会继续画树状 图和列表吗?
这节课我们将继续学习用树状图或表格求概 率的有关内容。
解法2:列表

3.1用树状图或表格求概率课件

3.1用树状图或表格求概率课件

了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色
在一起配成了紫色.
w(1)利用树状图或列表 的方法表示游戏者所有 可能出现的结果.
红白
蓝 黄
绿
w(2)游戏者获胜的概率
A盘
B盘
是多少?
第三页,编辑于星期三:十八点 六分。
议一议
w“配紫色〞游戏
w树状图可以是:



绿 开始



绿
w游戏者获胜的概率是1/6.
想一想
w“配紫色〞游戏的变异
w用如下图的转盘进行“配紫色〞游戏.

w小颖制作了以下图,并据此求出游戏者获胜的 1200红
概率是1/2.
红 开始


(红,红)
ቤተ መጻሕፍቲ ባይዱ蓝红

(红,蓝)

(蓝,红)

(蓝,蓝)
w对此你有什么评论?
第六页,编辑于星期三:十八点 六分。
回忆反思
w“配紫色〞游戏的变异
w小亮那么先把左边转盘的红色区域等分成2 蓝 红2 份,分别记作“红色1〞,“红色2〞,然后制作 1200红1 了下表,据此求出游戏者获胜的概率也是1/2.
回忆反思
w概率 w利用树状图或表格可以清晰地表示出某个事 件发生的所有可能出现的结果;
w从而较方便地求出某些事件发生的概率.
第二页,编辑于星期三:十八点 六分。
做一做
w“配紫色〞游戏
w小颖为学校联欢会设计了一个“配紫色〞游戏:下面是两个 可以自由转动的转盘,每个转盘被分成相等的几个扇形.
w游戏规那么是:游戏者同时转动两个转盘,如果转盘A转出
13
2 w游戏规那么是:

3.1用树状图或表格求概率+第1课时+课件-2024-2025学年北师大版数学九年级上册

3.1用树状图或表格求概率+第1课时+课件-2024-2025学年北师大版数学九年级上册

课 [本课时认知逻辑]


结 与 检
实际 试验 问题 操作
频率估 计概率
理论 分析
等可能事件

解决
计算 概率
应用
画树状 图法
列表法
课 [检测]

小 1.一个布袋内装有1个红球和1个黄球,这些球除颜色不同外
结 与 检 测
其余都相同,随机摸出一个球记下颜色后放回搅匀,再随机
1
摸出一个球,则两次摸出的球都是黄球的概率是 4第二枚硬币可能出现哪些结果?它们发生的可能性是
与 否一样?

用 解:掷第二枚硬币可能出现正面朝上或反面朝上两种结果,它们
发生的可能性一样.
探 究
(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪
与 些结果?它们发生的可能性是否一样?如果第一枚硬币反面

用 朝上呢?
件发生的概率.
探 知 方法 究 频率估计概率的普遍性

应 当遇到较复杂的事件无法求得试验的理论概率时,我们可以 用 借用试验频率的稳定值估计事件发生的概率.

应用 用树状图或表格求某些事件发生的概率
究 与
例 现有甲、乙两个不透明的袋子,甲袋子里装有1个红球,1
应 个黄球;乙袋子里装有1个红球,1个白球,这些球除颜色外其
测 其中,甲、乙两人选择的检票通道恰好相同的结果有3种,
∴P(甲、乙两人选择的检票通道相同)=39 = 13.
谢 谢 观 看!

用 上”“一枚正面朝上、一枚反面朝上”这三个事件发生的概率
相同吗?先分组进行试验,然后累计各组的试验数据,分别计
算这三个事件发生的频数与频率,并由此估计这三个事件发

创优设计九年级数学上册 3.1 用树状图或表格求概率(第2课时)教案 (新版)北师大版

创优设计九年级数学上册 3.1 用树状图或表格求概率(第2课时)教案 (新版)北师大版

用树状图或表格求概率【知识与技能】会运用树状图和列表法计算事件发生的概率.【过程与方法】经历试验、探讨过程,在活动中进一步发展学生合作交流的意识和能力.【情感态度】通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.【教学重点】运用树状图和列表法计算事件发生的概率.【教学难点】树状图和表格法的运用方法.一、情境导入,初步认识(1)从黑桃1和2中摸一张牌,摸到几的可能性大?概率是多少?(2)加上红桃1和2,如果摸得黑桃为1,那么摸到红桃数字为几的可能性大?如果摸得黑桃的数字为2呢?【教学说明】学生交流讨论,利用上节课所学知识解答.二、思考探究,获取新知探究1 若同时从两组牌中各摸一张出来,共有几种可能性?每种可能性是否相同?概率分别是多少?可能出现的结果(1,1)(1,2)(2,1)(2,2).从上面的树状图可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2)而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4.探究2 小颖设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,两个转盘停止转动时,若一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜.求游戏者获胜的概率.(指针指在分界线上则重转)用树状图来说明:用表格来说明:所以,配成紫色的概率P(配成紫色)=3/6=1/2,所以游戏者获胜的概率为1/2.【教学说明】思考讨论,由两位学生板书展示他们的思维过程.通过学生互学感受思维的条理性和实施的有序性,为后续的教学做好准备.三、运用新知,深化理解1.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数恰好是13的概率.解:(1)P(抽到奇数)=3/4;(2)解法一:列表所以组成的两位数恰好是13的概率P=2/12=1/6.解法二:树状图所以组成的两位数恰好是13的概率P=2/12=1/6.2.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片上分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)的方法计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?解:(1)利用列表法得出所有可能的结果,如下表:由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率P(甲获胜)=5/16.(2)这个游戏对双方不公平,因为甲获胜的概率P(甲获胜)=5/16,乙获胜的概率P(乙获胜)=11/16,5/16≠11/16,所以,游戏对双方是不公平的.3.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于_______;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.解:(1)1/4(2)正确画出树状图(或列表),图略(表略).任意闭合其中两个开关的情况共有1/2种,其中能使小灯泡发光的情况有6种,所以小灯泡发光的概率是1/2.【教学说明】巩固画树状图求概率的知识,感受概率与生活的密切联系.四、师生互动,课堂小结1.本节课你有哪些收获?有何感想?2.用树状图或表格求概率时应注意什么情况?1.布置作业:教材“习题6.3”中第1 、3题.2.完成创优作业中本课时“课时作业”部分.以现实生活为背景提出问题,激发学生的学习兴趣和主动参与意识.面对这些问题时,鼓励学生主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略,使学生感受数学和生活的密切联系,在解决问题的过程中培养学习兴趣和解题能力.。

3.1 用树状图或表格求概率 第二课时 教学设计(公开课)

3.1 用树状图或表格求概率 第二课时 教学设计(公开课)

第2课时概率与游戏的综合运用教材分析:教科书基于学生对等可能事件概率的求解和利用树状图、表格求“两步”事件经验的累积,提出本节课的具体学习任务:理解树状图和表格法各自的特点,并能根据不同情境选择适当的方法求比较复杂的事件发生的概率。

而更为长远的学习目标应该让本部分知识与实际问题产生联系,凸显数学的实用性。

本课《游戏公平吗(二)》内容从属于“统计与概率”这一板块,因而务必服务于统计教学的远期目标:“发展学生对数据的来源、处理数据的方法以及由此得到的结论进行合理质疑的能力,以切实提高学生统计抉择能力。

教学目标:【知识与技能】经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.【过程与方法】鼓励学生思维的多样性,提高应用所学知识解决问题的能力.【情感态度与价值观】积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力.教学重难点:【教学重点】1.能判断某事件的每个结果出现的可能性是否相等;2能将不等可能随机事件转化为等可能随机事件,求其发生的概率.【教学难点】1.能判断某事件的每个结果出现的可能性是否相等;2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.课前准备:多媒体教学过程:一、复习引入活动内容:“配紫色”游戏.活动过程:游戏1:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.问题:(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?【设计意图】通过这个转转盘“配紫色”游戏,让学生再次经历利用树状图或列表的方法求出概率的过程,并体会求概率时必须使每种事件发生的可能性相同培养学生应用所学知识解决问题的能力.提高学生分析问题解决问题的能力.二、讲授新课游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?小颖做法如下图,并据此求出游戏者获胜的概率为小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是.你认为谁做得对?说说你的理由.(小组合作交流)【设计意图】让学生先自己画树状图或者表格表示出所有可能出现的结果,然后通过合作交流观察A盘和游戏1转盘的区别并做出正确判断.并总结出求一件事情发生的概率必须是所有可能出现的结果都相同。

3.1_用树状图或表格求概率(教案)

3.1_用树状图或表格求概率(教案)
4.数学抽象能力:培养学生将实际问题抽象为数学问题的能力,通过树状图和表格对事件进行抽象表示,理解事件之间的关联性。
5.数学表达能力:通过书写树状图和填写表格,提高学生的数学表达能力,使其清晰、准确地表达自己的思考过程。
本节课将紧密围绕新教材要求,注重培养学生的学科核心素养,提高他们的综合运用能力。
三、教学难点与重点
1.教学重点
(1)理解并掌握树状图和表格在求解概率问题中的应用。
(2)能够运用树状图和表格表示事件的所有可能结果,并进行概率计算。
(3)掌握单一事件和组合事件的概率计算方法。
举例:
-通过抛硬币、掷骰子等简单实例,让学生理解如何利用树状图和表格表示事件的所有可能结果。
-讲解并举例说明如何通过树状图和表格计算单一事件和组合事件的概率。
2.教学难点
(1)树状图的构建:学生在构建树状图时,可能难以把握事件之间的逻辑关系,导致树状图错误。
(2)表格的填写:学生在填写表格时,容易遗漏或重复计算某些结果,影响概率计算的正确性。
(3)条件概率的计算:对于涉及条件概率的问题,学生可能难以理解条件概率的概念,以及如何利用树状图和表格进行计算。
举例:
同学们,今天我们将要学习的是“3.1_用树状图或表格求概率”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断某个事件发生概率的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子的概率、抽卡片的概率等。

初中数学北师大版九年级上册《3.1 用树状图或表格求概率(2)》课件

初中数学北师大版九年级上册《3.1 用树状图或表格求概率(2)》课件

4
(4,1) (4,2) (4,3) (4,4)
由表格可知(x,y)所有可能出现的结果共有16种; (2)这个游戏对双方公平,理由如下:由列表法可知,在16种可能出
现的结果中,它们出现的可能性相等. ∵x+y为奇数的有8种情况,∴P(甲获胜)=
8 16
1, 2
∵x+y为偶数的有8种情况,∴P(乙获胜)= 8 1 ,
红赢;若点数之和是其他数,则两人不分胜负,那么( B )
A.小晶赢的机会大
B.小红赢的机会大
C.小晶、小红赢的机会一样大 D.不能确定
拓展提高
有三张不透明的卡片,除正面写有不同的数字外,其他 均相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张, 并把这张卡片标有的数字记作一次函数表达式y=kx+b中的k,第二次从 中随机抽取一张,上面标有的数字记作一次函数表达式中的b.
布),所以小颖获胜的概率为 3 1 93
因此,这个游戏对三人是公平的.
新知讲解
做一做:小明和小军两人一起做游戏,游戏规则如下: 每人从1、2、…、12中任意选择 一个数,然后两人各掷一次质地均匀 的骰子,谁事先选择的数等于两人掷 得的点数之和谁就获胜;如果两人选 择的数都不等于掷得的点数之和,就 再做一次上述游戏,直至决出胜负。 如果你是游戏者,你会选择哪个数?
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x, y)所有可能出现的结果总数;
(2)你认为这个游戏对双方公平吗?请说明理由.
中考链接
1
2
3
4
1 解:(1)列表如下: 2
(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4)
3

3.1.1用树状图或表格求概率

3.1.1用树状图或表格求概率

1、本节课你有哪些收获?有何感想? 用列表法求随机事件发生的理论概率 (也可借用树状图分析)
2、用列表法求概率时应注意什么情况?
用列表法求概率时应注意各种情况发生的 可能性务必相同
作业: 习题3.1 1、2、3题。
只有一张电影票,通过做这样一个游戏,谁 获胜谁就去看电影。如果是你,你如何选择?
小明从一定高度随机掷一枚质地均匀的硬
币,他已经掷了两次硬币,结果都是“正面朝上 ”。那么,你认为小明第三次掷硬币时,“正面 朝上”与“反面朝上”的可能性相同吗?如果不 同,那种可能性大?说说你的理由,并与同伴交 流。
小明和小颖做掷骰子的游戏,规则如下: ① 游戏前,每人选一个数字: ② 每次同时掷两枚均匀骰子; ③ 如果同时掷得的两枚骰子点数之和,与谁所选 数字相同,那么谁就获胜. (1)在下表中列出同时掷两枚均匀骰子所有可能 出现的结果: (2)小明选的数字是5,小颖选的数字是6.如果 你也加入游戏,你会选什么数字,使自己获胜的 概率比他们大?请说明理由.
试验次数
200 300 400 500 …
两枚正面朝上的次数
两枚正面朝上的频率
两枚反面朝上的次数
两枚反面朝上的频率
一枚正面朝上、一枚反面朝上的次数
一枚正面朝上、一枚反面朝上的频率
(4)由上面的数据,请你分别估计“两枚正面朝 上”“两枚反面朝上”“一枚正面朝上、一枚反 面朝上”这三个事件的概率。由此,你认为这个 游戏公平吗?
想一想,我们刚才都经历了哪些过程?中我们发现,试验次数 较大时,试验频率基本稳定,而且在一般情况下, “一枚正面朝上。一枚反面朝上”发生的概率大 于其他两个事件发生的概率。所以,这个游戏不 公平,它对小凡比较有利。
在上面抛掷硬币试验中, (1)抛掷第一枚硬币可能出现哪些结果? 它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果? 它们发生的可能性是否一样? (3)在第一枚硬币正面朝上的情况下, 第二枚硬币可能出现哪些结果?它们发生 可能性是否一样?如果第一枚硬币反面朝 上呢?

3.1 用树状图或表格求概率(2)教学设计

3.1 用树状图或表格求概率(2)教学设计
用。
评价任务的设计:
会用树状图和表格求概率;并会用概率解决一些简单的实际问题。
设计意图:
使学生适应不同的情境,自主选择合适的方式求事件发生的概率,加强树状图和列表法求概率的熟练程度。进一步,感受概率存在的普遍性,消除对新知的恐惧感。
教学设计
学习
目标
学习活动
评价标准
教师活动
目标达成情况
反思与
评价
学习目标:会用树状图和表格求概率并会用概率解决一些简单的实际问题。
3.学情分析
学生在七年级已经认识了许多随机事件,研究了一些简单的随机事件发生的可能性(概率),并对一些现象作出了合理的解释,对一些游戏活动的公平性作出了自己的评判。本节主要通过对第1课时所做试验进一步分析,体会两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性。
会正确用树状图和表格计算概率,并会用概率解决一些简单的实际问题。
先学生合作交流,教师巡视,参与个别组的讨论并及时指导。
小组展示并解释解法。
教师总结并给出鼓励性评价。
学习目标:会用树状图和表格求概率并会
第四环节:巩固基础,检测自我
内容:有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率。
内容(展示例题,引出新课):小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.

第3章 1 用树状图或表格求概率 第2课时

第3章 1 用树状图或表格求概率 第2课时

解:(1)画树状图如下:
两个数字之和为 3、4、5、
3、5、6、4、5、7、5、6、7 共 12 种,其中大于 4 的共有 8 种,∴P = 小伟胜
182=23,P 小欣胜=13;
(2)若小伟抽取的卡片数字是 1,则小欣可抽取的卡片可能为 2、3、4,∴其 和分别为 3、4、5,故小欣获胜的可能性大.
10.甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中 放有标号为 1,2,3,4,5 的 5 个球,乙口袋中放有标号为 1,2,3,4 的 4 个球.游 戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之 差(甲数字-乙数字)大于 0 时甲胜,小于 0 时乙胜,等于 0 时平局.你认为 这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计 一个对双方都公平的游戏规则.
游戏对双方是否公平? 公平 .
4.如图所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径 相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇
匀,随机地抽取两张纸片,若可以拼成一个圆形(取出的两张纸片都画有半 圆形),则甲方赢;若可以拼成一个蘑菇形(取出的一张纸片画有半圆,一张 纸片画有正方形),则乙方赢,你认为这个游戏对双方公平吗?若不公平, 有利于谁? 不公平,有利于乙 .
解:游戏不公平,理由:列表如下: 12345
1 (1,1) (2,1) (3,1) (4,1) (5,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4)
=83; (2)由于小莉去的概率为83≠12,所以游戏不公平;可将游戏规则改为将小莉 和哥哥抽出的数字相乘,所得的积不大于 14 时,小莉去,否则哥哥去. 【方法归纳】设计游戏公平的方案,必须保证游戏双方获胜的概率相等.

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1 用树状图或表格求概率(分层练习)(解析版)

3.1用树状图或表格求概率分层练习考查题型一列表法或树状图法求概率(1)求:吉祥物“冰墩墩(2)求:吉祥物“冰墩墩【详解】(1)吉祥物1故答案为:考查题型二判断游戏公平性1.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;(1)随机地摸出一张,求摸出牌面图形是轴对称图形的概率;(2)小华和小明玩游戏,规则是:随机地摸出一张,放回洗匀后再摸一张.若摸出两张牌面图形都是轴对称图形的纸牌,则小华赢;否则,小明赢.你认为该游戏公平吗?请用画树状图或列表法说明理由.用A,B,C表示)【详解】(1)解:由题意,随机地摸出一张共有3种等可能的结果,其中摸出牌面图形是轴对称图形的结果有纸牌,A B,共2种,则摸出牌面图形是轴对称图形的概率为23 P=.由图可知,摸出两张牌共有9种等可能的结果,其中摸出两张牌面图形都是轴对称图形的结果有考查题型三概率在转盘游戏的应用(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,请说明理由.【详解】(1)解:由题意可知,转盘中有所以转得非负数的概率为(2)解∶由题意可知,转盘中有9所以转得整数的概率为(1)求转动一次转盘获得购物券的概率;(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200【详解】解:(1)整个圆周被分成了∴获得一等奖的概率为:整个圆周被分成了16份,黄色为∴获得二等奖的概率为:1.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马111,,A B C ,田忌也有上、中、下三匹马222,,A B C ,且这六匹马在比赛中的胜负可用不等式表示如下:121212A A B B C C >>>>>(注:A B >表示A 马与B 马比赛,A 马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(212121,,C A A B B C )获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;。

用树状图或表格求概率-学生版

用树状图或表格求概率-学生版

3. 用树状图或表格求概率【知识导图】【学习目标】1.进一步认识频率与概率的关系,加深对概率的理解;2.会用列表和画树状图等方法计算简单事件发生的概率;3.能利用重复试验的频率估计随机事件的概率;4.学会运用概率知识解决简单的实际问题.【要点梳理】考点一、用频率估计概率1.频率与概率的定义频率:在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值.概率:事件A 的频率接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.要点诠释:(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.3.利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.要点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果nm将较为精确.类型一、频率与概率例题【1】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为( )A .B .C .D . 【变式】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.2.关于频率和概率的关系,下列说法正确的是( )A. 频率等于概率B. 当试验次数很大时,频率稳定在概率附近C. 当试验次数很大时,概率稳定在频率附近D. 试验得到的频率与概率不可能相等类型二、利用频率估计概率4. 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,落在“铅笔”的频率 (2)请估计,当很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到 1°)19182913考点二、用树状图或表格求概率1.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)树形图法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同. 2.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)列表法适用于涉及两步试验的随机事件发生的概率.3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否都相等;(2)如果都相等,再确定所有可能出现的结果的个数n和其中出现所求事件A的结果个数m;(3)用公式计算所求事件A的概率.即P(A)=.1.用树状图或表格求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是()A.B.C.D.【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是()A.B.C.D.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是().A.BCDnm1 31412341 31214341 32.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.2.概率的简单应用把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当张牌面数字相同时,小王胜;当张牌面数字不相同时,小李胜.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.举一反三:【变式】在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【答案】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∵P(小明获胜)==;(2)∵P(小明获胜)=,∵P(小东获胜)=1﹣=,∵这个游戏不公平.3.用树状图或表格求概率巩固练习一、选择题1. 下列说法正确的是( )①试验条件不会影响某事件出现的频率;②在相同的条件下实验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①② B.②③ C.③④ D.①③2. 小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A .对小明有利B .对小亮有利C .游戏公平D .无法确定对谁有利3. 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A . 频率就是概率B . 频率与试验次数无关C . 概率是随机的,与频率无关D . 随着试验次数的增加,频率一般会越来越接近概率4. 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是( )A .B .C .D .5.从标有号码1到100的100张卡片中,随意地抽出一张,其号码是3的倍数的概率是( ) A. B. C. D.不确定二. 填空题6为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.7. 用下面的两个圆盘进行“配紫色”游戏,则配得紫色的概率为______________.8.在一个不透明的盒子中装有2个白球,个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则___________.3310034100310139.为了估计新疆巴音布鲁克草原天鹅湖中天鹅的数量,先捕捉10只,分别作上记号后放飞;待它们完全混合于天鹅群后,重新捕捉40只天鹅,发现其中有2只有标记,据此可估算出该地区大约有天鹅只。

北师大版九年级数学上册《概率的进一步认识——用树状图或表格求概率》教学PPT课件(3篇)

北师大版九年级数学上册《概率的进一步认识——用树状图或表格求概率》教学PPT课件(3篇)
1 小红赢的概率是 4 ,据此判断该游戏 不不公公平平 (填“公平” 或“不公平”).
例题精讲
知识点 1 利用画树状图法或列表法求复杂的等可能事件的概率 例1 (教材 P64 随堂练习)有三张大小一样而画面不同的画片,先将每 一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在 第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个 盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.
知识点 2 不同颜色球的数目不等的摸球游戏中的概 率
例2 (教材 P67 例 2)一个盒子中装有两个红球,两个白球 和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球, 记下颜色后放回,再从中随机摸出一个球,求两次摸到的球 的颜色能配成紫色的概率.
【思路点拨】(红色和蓝色可以配成紫色)画树状图展示 所有 25 种等可能的结果数,再找出红色和蓝色的结果数,根 据概率公式求解.
不遗漏
2. 判断游戏公平性,先计算游戏双方获胜的概率,如果 概率相等,则游戏公平;如果不相等,则游戏不公平.
第三章 概率的进一步认识
3.1 用树状图或表格求概率
第3课时
教学目标
能借助画树状图或列表计算与转盘有关的配色游戏及数 目不等型游戏中的概率.(重难点)
课前预习
预习反馈
1. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两
上的数字之和为 5 的概率是 3 .
例题精讲 知识点 1 转盘配紫色游戏中的概率
例1 小明和小亮用下面两个可以自由转动的转盘做“配 紫色”游戏(红色和蓝色在一起能配成紫色),同时随机转动这 两个转盘,若能配成紫色,则小明胜,否则小亮胜,这个游 戏对双方公平吗?请用列表或画树状图的方法说明理由.

3.1.2 用树状图或表格求概率(2)

3.1.2 用树状图或表格求概率(2)
3.1.2
用树状图或表格求概率(2)
例1.小明、小颖和小凡三做 “石头、剪刀、布 ”游戏。游戏规则如下:由小明和小颖做“石 头、剪刀、布”的游戏,如果两人的手势相同, 那么小凡获胜. 如果两人手势不同那么按照“石 头剪刀, 剪刀胜布, 布胜石头” 的规则决定 小明 和小颖中的获胜者。
假设小明和小颖每次出这三种手势的可能性 相同,你认为这个游戏对三人公平吗? 解:因为小明和小颖每次出这三种手势的可能性 相同,所以可以利用树状图列出所有可能出现 的结果:
解:利用表格列出所有可能的结果:
结果 乙

1
2
3
4
5
6
1 2 3 4 5 6
(1,1)2 (2,1)3 (3,1)4 (4,1)5 (5,1)6 (6,1)7 (1,2)3 (2,2)4 (3,2)5 (4,2)6 (5,2)7 (6,2)8
(1,3)4 (2,3)5 (3,3)6 (4,3)7 (5,3)8 (6,3)9 (1,4)5 (2,4)6 (3,4)7 (4,4)8 (5,4)9(6,4)10
绿
(红,绿) (红,绿) (绿,绿) (绿,绿)
因为共有16种等可能的结果,两次都摸到红球的有4种, 所以两次都摸到红球的概率是 4/16 =1/4 .
随堂练习
2.某人有红、白、蓝三件衬衫和红、 白、蓝三条长裤,该人 任意拿一件 衬衫和一条长裤,求正好是一套白色 的概率.
画树状图得:
∵共有9种等可能的结果,正好是一套 白色有1种情况, ∴正好是一套白色的概率是: 1/9 .
总结: 1、本节课你有哪些收获?有何感想? 2、用列表法和树形图法求概率时应 注意什么情况?
利用树形图或表格可以清晰地表示出 某个事件发生的所有可能出现的结果; 从而较方便地求出某些事件发生的概 率.当试验包含两步时,列表法比较方便, 当然,此时也可以用树形图法,当试验在 三步或三步以上时,用树形图法方便.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高湾中学目标导学案 年级: 九年级 班级 : 科目:数学 编号: (学生版) 使用时间: 2014 年 10 月 10 日 组内评价: 教师评价:
第1页 第2页
3.2用树状图或表格求概率(2)
【学习目标】
1、通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法;
2、通过具体情境,感受一件事情公平与否在现实生活中广泛存在,体现数学的价值;
3、让学生掌握一定判断事件公平性的方法,提高其决策能力。

【重点、难点】
判断事件公平性的方法,提高其决策能力。

【学习过程】
一、温故知新,做好铺垫
提问:上节课,你学会了用什么方法求某个事件发生的概率?
二、创设情景,导入课题(认真阅读课本62页—63页) 试一试:
例1.内容(展示例题,引出新课):小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.
假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?
三、激发兴趣,探求新知 做一做:
例2.小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?
四、巩固基础,检测自我
1.有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率。

五、课堂检测 1.若剪开后,6张卡片放在一个盒子里,摇匀后,随机地取两张,求这两张恰好能拼出原来一幅图的概率。

2.准备两组相同的牌,每组三张且大小一样,三张牌的牌面上的数字分别是1.2.3。

从每组牌中各摸出一张牌。

(1)两张牌的牌面数字和等于1的概率是多少?(2)两张牌的牌面数字和等于2的概率是多少? (3)两张牌的牌面数字和为几的概率最大? (4)两张牌面数字和大于3的概率是多少?
3.经过某路口的行人,可能直行,也可能左拐或右拐。

假设三种可能性相同。

现有两个人经过该路口,求下列事件的概率:(1)两人都左拐;(2)恰有一人直行,另一人左拐;(3)至少有一人直行。

4.掷两枚质地均匀的骰子,求下列事件的概率:
(1)至少一枚骰子的点数为1;
(2)两枚骰子的点数和为奇数; (3)两枚骰子的点数和大于9 (4)第二枚骰子的点数整除第一枚骰子点数。

六、课堂小结 这节课你有什么收获? 七、布置作业 课后作业:习题3.2 1.2.3。

相关文档
最新文档