欧拉拓扑公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欧拉拓扑公式

答案:

欧拉公式,它们分散在各个数学分支之中.

(1)分式里的欧拉公式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

当r=0,1时式子的值为0

当r=2时值为1

当r=3时值为a+b+c

(2)复变函数论里的欧拉公式:

e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.

它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.

将公式里的x换成-x,得到:

e^-ix=cosx-isinx,然后采用两式相加减的方法得到:

sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.

这两个也叫做欧拉公式.将e^ix=cosx+isinx中的x取作∏就得到:

e^i∏+1=0.

这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0.数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它.

(3)三角形中的欧拉公式:

设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr

(4)拓扑学里的欧拉公式:

V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.

如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h.

X(P)叫做P的拓扑不变量,是拓扑学研究的范围.

(5)初等数论里的欧拉公式:

欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数.n 是一个正整数.

欧拉证明了下面这个式子:

如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众

pj(j=1,2,……,m)都是素数,而且两两不等.则有

φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)

利用容斥原理可以证明它.

此外还有很多著名定理都以欧拉的名字命名.

相关文档
最新文档