第十章__刚体的一般运动分解
第十章:刚体动力学 (4)
所以,滚动摩擦干什么去了?虽然它没有真正的作 负功,但是他把平动动能偷走了,转化成了转动动 能。所以,当然也可以用能量来做这道题,能量守 恒方程后再两边求导。过程如下:
所以,f没有做功,只是调配了平动和转动动能的 分配。
小结:就是转动惯量越大,需要更多的μ,因为μ 的本质就是分配,如果μ =0,那就百分之百分配给 平动动能,如果μ = tanθ,那就百分之百分配给转动 动能。
第十:刚体动力学(4)
分析:
(1)纯滚动,可以把摩擦力画出来,用力矩产生 角加速度,力产生加速度,再利用角加速度和加速 度之间关联,用三个方程就够了,但是不能用到 f=μN.因为它们不相等,没有这个关系,而是要先 求出f和N的大小,反过来确定μ 的取值范围。这个 时候就需要滚动摩擦了,因为光滑的话做不到纯滚 动,会直接滑下来,而且纯滚动对摩擦力有一定要 求,所以摩擦系数要足够大才能满足。选择质心轴, 因为要考虑惯性力,但是以质心为轴,惯性力的力 矩不需要考虑。
分析:质心速度和转动角速度都在摩擦力的作用下 开始减,然后看谁先减到零,然后反向加速去与对 方匹配。如果两个同时减到零,那就停下来了。注 意自己规定的正方向。
分析:第(1)是个大前提,才会有第(2)问的分 为四种情况。如果最终往前纯滚,那一定能撞上, 如果最终往后滚,那就要求向前的最远距离是恰好 撞上。
分析:地面摩擦力会使得v0产生均匀的减小,同时 会使得ω产生均匀的增加,当满足ωR=v0时候就是 纯滚动了,所以它有个互相速度趋于一致的过程,
像这道题是v0减小,而ωR在逐渐增大。达到纯滚之 后摩擦力就消失了。
分析:其实跟上一题类似,现在是角速度开始减小, 质心速度均匀增大,最终两者趋于一致。
其实这个滚动过程是没有机械能损失的,就是重力
大学_理论力学第2版(唐国兴王永廉主编)课后答案_1
理论力学第2版(唐国兴王永廉主编)课后答案理论力学第2版内容简介第2版前言第1版前言第一章静力学基础知识要点解题方法难题解析习题解答第二章平面汇交力系知识要点解题方法难题解析习题解答第三章力矩、力偶与平面力偶系知识要点解题方法习题解答第四章平面任意力系知识要点解题方法难题解析习题解答第五章空间力系知识要点解题方法习题解答第六章静力学专题知识要点解题方法习题解答第七章点的运动学知识要点解题方法难题解析习题解答第八章刚体的基本运动知识要点解题方法习题解答第九章点的合成运动知识要点解题方法难题解析习题解答第十章刚体的平面运动知识要点解题方法难题解析习题解答第十一章质点动力学基本方程知识要点解题方法难题解析第十二章动量定理知识要点解题方法难题解析习题解答第十三章动量矩定理知识要点解题方法难题解析习题解答第十四章动能定理知识要点解题方法难题解析习题解答第十五章动静法知识要点解题方法习题解答参考文献理论力学第2版目录机械工业出版社本书是与唐国兴、王永廉主编的《理论力学》(第2版)配套的教学与学习指导书。
本书按主教材的章节顺序编写,每章分为知识要点、解题方法、难题解析与习题解答四个部分。
其中,“知识要点”部分提纲挈领地对该章的基本概念、基本理论和基本公式进行归纳总结,以方便读者复习、记忆和查询;“解题方法”部分深入细致地介绍解题思路、解题方法和解题技巧,以提高读者分析问题和解决问题的能力;“难题解析”部分精选若干在主教材的例题与习题中没有涉及的典型难题进行深入分析,以拓展读者视野,满足读者深入学习的需要;“习题解答”部分对主教材中该章的全部习题均给出求解思路和答案,但不提供详细解题过程,以期在帮助读者自主学习和练习的同时为他们留出适量的思考空间。
本书继承了主教材的风格特点,结构严谨、层次分明、语言精练、通俗易懂。
本书虽与主教材配套,但其结构体系完整,亦可单独使用。
本书可作为应用型本科院校与民办二级学院工科各专业学生的.学习和应试指导书,同样适合高职高专、自学自考和成人教育的学生使用,对考研者、教师和工程技术人员也是一本很好的参考书。
刚体力学
例、在光滑的水平桌面上有一小孔0,一细绳穿过小孔, 其一端系一小球放在桌面上,另一端用手拉绳, 开始时小球绕孔运动,速率为 v1 ,半径为 r1 ,当半径变 为 r2 时 r2 f拉 求小球的速率 v2 解:小球受力:
f拉
L2 = L1
因f 拉为有心力
r r L2 = L1
r1 mv 1 = r2 mv 2 r1 v 2 = v1 显然 v 2 v1 r2
' 2
m
.
R
m1 Mf
' T1
m2
m
如图
T2'
T2
对m2: m 2 g - T2 = m 2 a
- m1 g = m1a
' 1
T1
m1 g
T 对m: R - T R - M f = J
m2 g
1 2 ' ' a = R , J = mR , T1 = T1 , T2 = T2 2
联立求得: = a
r M
M = rF sin = Fd
o
r r
r M
r F
r F应理解为在垂直于转轴的平面内。 r o 若不在,则将 F 分解为平行 于转轴的分量和垂直于转轴 的分量.只有垂直于转轴的力 的分量才对转轴有力矩.
r 20 F 的方向与转轴平行.
r F
r r
合外力矩 M = r1 F1 sin 1 - r2 F2 sin 2 r3 F3 sin 3
r Fi = m
r dv c
dt
注意各量的 物理意义
质心运动定理说明:不管物体的质量如何分布、外力作用 在什么地方,质心的运动就象物体的全部质量都集中于此, 而且所有的外力都作用于其上的一个质点的运动一样。 (例:炮弹在飞行轨道上爆炸 ……见教材p98--例3)
4.1 刚体平面运动-运动分解
刚体的平面运动-运动分解刚体的平面运动刚体在运动过程中,其上任意一点到某一固定平面的距离保持不变。
M NS A 1A 2 A若用一与固定平面M 平行的平面N 去截割刚体得平面图形S , 该平面图形S 始终在平面N 内运动。
垂直于图形S 的任一条直线A 1A 2作平动。
刚体的平面运动可以简化为平面图形S 在其自身平面内的运动。
研究刚体的平面运动 研究平面图形的运动12()()A A x f t y f t ==刚体平面运动方程点A 、B 是平面图形上的任意两点,AB 位置确定,平面图形的位置也唯一确定。
3()f t φ= 由刚体的平面运动方程可以看到,如果图形中的A 点固定不动,则刚体将作定轴转动;如果线段AB 的方位不变(即ϕ =常数),则刚体将作平动。
用什么方法研究刚体的平面运动?如果汽车沿直线行驶,车轮作平面运动。
建立动参考系x’o’y’,随车身一起平动。
轮相对轮心做转动刚体的平面运动分解为随平动参考系的平动(牵连运动)与绕基点的“定轴”转动(相对运动)。
SA ϕ x ' y ' O ' ϕ' 刚体的平面运动(绝对运动)随同基点的平动(牵连运动) 绕着基点的转动(相对运动) 刚体的平面运动分解与合成xy o S Aϕx ' y 'O ' 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)∆r A ≠ ∆r B , v A ≠ v B , a A ≠ a B—随基点的平动部分与基点的选择有关△ϕ1=△ϕ2=△ϕωA = ω B = ωαA = α B = α—绕基点的转动部分与基点的选择无关基点选择对运动分析有何影响?凡涉及到平面运动图形转动的角速度和角加速度时,不必强调基点,就是平面图形的绝对角速度和角加速度。
O ABθ ϕSA ϕ x ' y ' O ' ϕ' 刚体的平面运动(绝对运动)随同基点的平动(牵连运动) 绕着基点的转动(相对运动) 刚体的平面运动分解与合成xy o S Aϕx ' y 'O '思考题刚体的平动和定轴转动均是刚体平面运动的特例,对吗?有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)。
理论力学刚体的平面运动
车轮的平面运动
刚体的平面运动可以 分解为随基点的平动 和绕基点的转动.
随基点A的平动
绕基点A'的转动
平面图形S在t时间内从位置I运动到位置II
以A为基点: 随基点A平动到A'B''后, 绕基点A'转 1角到A'B' 以B为基点: 随基点B平动到A''B'后, 绕基点B'转 2 角到A'B' 图中看出:AB A'B'' A''B' ,1 2 于是有
3
vC vB vCB
大小 ? l l 2
方向 ?
vC vB2 vC2B 1.299 m s 方向沿BD杆向右
例3 曲柄连杆机构如图所示,OA =r, AB= 3。r 如曲柄OA以匀角速度ω转动。
求:当 60,0,90时点B的速度。
已知:OA r, AB
求:当机构在图示位置时,夹板AB的角速度。
已知:AB 600mm, OE 100mm, 10 rad s , BC GD 500mm, 求:
AB
解: 1 杆GE作平面运动,瞬心为 C1
OG 800mm 500mm sin 15 929.4mm
EC1 OC1 OE 3369mm
解: 1 AB作平面运动。
vB AB vA
vB cos 30 OA
OA
vB cos 30 0.2309 m s
已知
求
OA
vE
100mm,OA
2
rad
s
, CD
3CB, CD
刚体一般运动的描述
第40卷第5期大 学 物 理Vol.40No.52021年5月COLLEGE PHYSICSMay2021 收稿日期:2020-09-11;修回日期:2020-11-18作者简介:邵瀚雍(2000—),男,四川德阳人,北京师范大学物理学系2018级本科生.櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍殻殻殻殻大学生园地 刚体一般运动的描述邵瀚雍(北京师范大学物理学系,北京 100875)摘要:刚体的一般运动是刚体运动学中最复杂的一类运动,其求解通常需要借助欧拉定理或沙勒定理.通过这两个定理,我们可以把刚体的一般运动分解成较简单的定轴转动和平动.本文主要应用代数理论中的正交矩阵描述刚体的运动,并用代数语言分析了定点转动的本征问题,证明了欧拉定理.随后,将刚体的定点转动进行分解,并给出了物理图像和推导结论,完成了对刚体复杂的一般运动的简单描述. 关键词:刚体一般运动;正交矩阵;沙勒定理;欧拉角中图分类号:O31 文献标识码:A 文章编号:1000 0712(2021)05 0062 05【DOI】10.16854/j.cnki.1000 0712.200405一般运动是刚体运动学中最复杂的问题,因此国内的理论力学教材大多对此介绍较少.且由于刚体运动学教学难度大,课时少,故多数同学跳过了刚体一般运动的内容,但这恰是将刚体运动转化成代数知识的极佳机会,不得不说是一种遗憾.事实上,刚体的一般运动总能分解成基点的运动和绕过该点某轴线的定轴转动,国外教材对此用代数语言给出了证明,但也没有就代数理论和刚体运动的关联进行深入的探讨.本文从正交矩阵讲起,力图用清晰简明的语言,论证使用矩阵描述刚体运动的合理性和优越性,并借用代数思想,将刚体运动和线性代数的知识联系起来,希望能对理论力学的相关教学和学生的学习起到一定的补充和帮助作用.1 参考系实验室参考系,即观者所在的惯性参考系;本体参考系,即固连在刚体上,并与之共同运动的参考系,一般是非惯性系.固连在两种参考系上的坐标系各有利弊.在实验室坐标系中,基矢对时间的微商为零,便于建立动力学方程,但许多力学量在该系中较复杂并不断变动;在本体坐标系中,这些力学量虽然直观简单,恒定不变,但其坐标轴的基矢处在变动之中.在研究刚体定点转动的问题时,我们需要寻找这两种系之间的关联,恰当使用它们描述刚体的运动[1].2 刚体的一般运动刚体在空间不受约束自由运动时,其自由度s=6.一般选定广义坐标(xc,yc,zc,φ,θ,ψ)描述刚体的状态,其中xc、yc、zc为刚体质心在实验室系中的笛卡尔坐标,φ、θ、ψ为刚体的本体系和实验室系坐标变换对应的欧拉角.刚体一般运动有4类特殊情况:平动、定轴转动、平面平行运动、定点转动.虽然它们形式各异,但可以证明如下两点[2]:1)定点转动总可以等效于绕过该定点某一轴线的定轴转动.2)刚体一般运动总可以分解为某点的运动和绕过该点某轴线的旋转.换言之,总可以将复杂的一般运动,分解成过一点的定轴转动(或由多个定轴转动合成)与该点的运动.第1点所谈到的内容,正是刚体运动欧拉定理.该定理指出,对于基点固定的刚体,其运动可以分解为绕某个或多个转轴的转动.根据欧拉运动定理,我们可以将之推广,即第2点,沙勒定理.该定理指出,刚体的最广义位移等价于一个平移和一次旋转.它们是本文的重点,在证明前,需要先通过代数的语言,合理描述刚体的运动,以便于后续的证明.第5期邵瀚雍:刚体一般运动的描述63 3 正交矩阵在线性代数理论中,正交矩阵A被定义为行向量、列向量皆正交且值为1的方阵[3],即满足如下的性质(E为单位阵):ATA=AAT=E(1)矩阵乘法等价于一次线性变换,换句话说,在数学里这种特殊的变换(正交变换)可以保持空间中任意两点的欧式距离不变.这意味着若将某向量v乘上正交矩阵A,得到的新向量长度不变,且空间的原点不变.我们通常将这种变换称为欧拉变换[4].此外,由于正交矩阵满足:ATA=A-1A=E(2)正交变换一定存在逆变换,而且该逆变换很容易写出:A-1=AT.正交矩阵的这些特殊性质在描述刚体运动时展现出极大的优越性,因此,我们常用它描述刚体运动.4 刚体运动的代数表达[2]从物理上讲,根据沙勒定理,刚体的运动可以分为两种:定点转动和点的运动.也就是第2节中提到的6个广义坐标.而上一节中提到的正交变换———欧氏距离不变的线性变换,恰好可以准确反映刚体的定点转动.换言之,刚体的定点旋转过程可以由一次欧拉变换来描述.容易得知,这种变换对应的正交矩阵R应是一个含时矩阵,即R(t).仅仅描述旋转过程是不够的,还需要描述点的运动.易知,描述该运动只需在旋转后添上一个简单的平移矢量p即可.从数学上讲,刚体的运动,可以反过来看作是坐标轴的运动.因此,假设两组正交基分别为[e1,e2,e3]和[e′1,e′2,e′3].在这两组基下,某向量v在这两组基下的值分别为[a1,a2,a3]T和[a′1,a′2,a′3]T.因此有|v|=[e1 e2 e3]a1a2a3=[e′1 e′2 e′3]a′1a′2a′3(3)于是,得到a1a2a3=eT1e′1 eT1e′2 eT1e′3eT2e′1 eT2e′2 eT2e′3eT3e′1 eT3e′2 eT3e′3a′1a′2a′3(4)已知a=[a1,a2,a3]T,a′=[a′1,a′2,a′3]T且定义如下:eT1e′1 eT1e′2 eT1e′3eT2e′1 eT2e′2 eT2e′3eT3e′1 eT3e′2 eT3e′3R(5)则可以将上式写为a=Ra′(6)称R是旋转矩阵.可以看到,R矩阵是由两个标准正交基相乘而来,在线性代数中可以很容易证明,这样得到的矩阵R是正交矩阵,或者反过来说,任何正交矩阵都可以拆分为两个标准正交基的矩阵乘积.因此,旋转矩阵R恰好是正交矩阵,而正交矩阵对应的变换也恰好是两组基之间的旋转变换,也就是实验室系和本体系的欧拉变换;并且,任意实正交矩阵都能看作为一个旋转矩阵.值得一提的是,旋转矩阵的集合称之为特殊正交群:SO(n)={R∈瓗n×n|RRT=E,detR=1}这个正交群可以描述n维空间的旋转变换,在此只考虑n=3的情况.再考虑定点的运动,可以将刚体的运动在数学上表示为a′=RTa+p(7)数学的正交矩阵(变换),对应着欧式空间中距离不变的线性变换,而物理的旋转矩阵(旋转),对应着刚体运动时的任意两点保持相对距离不变的属性.这样,在本节和上一节中已经论证了刚体运动的代数表达,这种代数的表达方式是相当合适且严谨的.5 旋转变换的本征问题刚体的定点转动定理指出,对于基点固定的刚体,其一般运动都可以分解为绕某个或多个轴的转动.根据定理,假设转轴对应的空间列向量为p,由于转轴并不会因为刚体转动而发生任何变化(刚体本身就在绕轴转动),因此,当发生旋转变换时,p应当保持不变.这对应着数学中的不变子空间理论.请看定理[4]:设φ是线性空间V上的线性映射(变换),而总能找到V的子空间U,使得φ(U) U即子空间U的任意元素p在线性映射φ的像Imφ中依然是p本身,称U为φ的不变子空间.易得,φ总有两种特殊的不变子空间U,分别是零子空间和64 大 学 物 理 第40卷全空间V,并称之为平凡子空间.可以发现,在三维旋转映射R下,有一个我们最关注的非平凡不变子空间,这个子空间恰好就是转轴所处直线对应的子空间.上述内容也可以在拓扑理论中理解成映射的不动点原理(Brouwer’sFixed-pointTheorem).从物理上讲,这是一类本征值问题.即在旋转后向量p不发生改变,也就是Rp=1p.这与数学物理方法和量子力学中的本征问题有着异曲同工之妙.将线性算符L^作用于某函数ψ,若有[5]L^ψ=λψ(8)则称函数ψ为线性算符L^的本征函数,λ为算符L^的本征值.例如,定态薛定谔方程H^ψ=Eψ.因此,由Rp=1p,得知p为旋转变换φ的本征函数,λ为变换φ的本征值,这恰好就是线性代数中熟知的矩阵特征值问题:Ap=λp(9)所以若要证明欧拉定理,可以将定理的证明等价于证明旋转矩阵R的特征值组中必然有一特征值λ1=1.本征值与本征函数对刻画线性系统的普遍性质和演化规律有着重要意义.它是所有线性体系中最根本的特点.如果能得到线性体系对应的本征值与本征函数,就可以通过线性组合的方法描述或解释这一体系更为普遍的规律.6 欧拉运动定理的证明和推论欧拉运动定理的论证过程在H.Goldstein所著的ClassicalMechanics[6]和BeattyM.F.所著的Prin ciplesofEngineeringMechanics:Kinematics中都有着详细的描述.两本书巧妙利用矩阵和线性代数理论证明了欧拉定理,而我们的证明过程也借鉴了其中的思想.设旋转矩阵为R,欧拉定理中所描述的轴线为p,则有:Rp=p.根据上一节中内容,若需要证明旋转过程中存在始终不变的轴线p,则等价于证明矩阵R具有特征值λ1=+1.容易证明旋转矩阵R为正交矩阵,所以由RTR=RRT=E,可得:(R-E)RT=E-RT(10)|R-E||RT|=|E-RT|(11)设旋转前后两组正交基的基点重合于刚体的定点,且初始基为标准正交基.则可以得出初始旋转矩阵为三阶单位阵E.因此,根据矩阵乘法,后续的旋转矩阵的行列式的值|R|和|RT|仍为+1.由式(11)可得|R-E|=|E-RT|=|E-RT|T=|E-R|(12)因此,有|R-E|=|E-R|=|-1(R-E)|(13)而|-1(R-E)|=(-1)n|R-E|(14)其中n为矩阵维数,也是空间维数.所以得到|R-E|=(-1)n|R-E|(15)刚体所处为三维空间,n=3,所以|R-E|=-|R-E|=0(16)最终得出|R-E|=0,即矩阵R至少有一个特征值λ1=+1,欧拉运动定理得证.需要多谈两个问题:其一[1],如果刚体所处空间不为奇数维度,而是偶数维度,则得不到|R-E|=0的结论,也就是说欧拉运动定理在二维、四维等偶数维空间失效.所以,平面内不存在欧拉定理,因为当坐标系转动时,任何位于平面内的矢量均会发生改变,唯有沿转轴方向的矢量不发生改变,但此时它与平面垂直,并不在平面内.这是一个相当有意思的推论,这意味着我们所处的三维空间并不是随便确定的.其二,是旋转矩阵R是否还存在别的特征值?答案是肯定的.利用矩阵的久期方程:|R-λE|=0(17)可以发现,这是一个关于λ的三次方程.高斯的代数基本定理指出,该一元三次方程在复数域C 中必然存在三个根.在文献[7]中,我们可以根据矩阵的迹tr(R)求得另外两个特征值分别为λ2,3=e±iΩ(18)也就是说,旋转矩阵的另外两个复特征值的辐角,恰好为欧拉定理中绕固定轴线p的旋转角Ω.这里给出两个特殊情况:1)λ1,2,3=+1:此时Ω=0,意味着刚体保持了初始时刻的状态,为平凡解.2)λ1=+1;λ2,3=-1:此时Ω=π,意味着刚体绕轴转过了180°,刚体任意两点之间的矢量p′都做了关于p的空间坐标反演操作.而沙勒定理是欧拉定理的一个直接推论.该定理的证明如下.刚体的一般运动可以分解为刚体中某一点的运第5期 邵瀚雍:刚体一般运动的描述65 动并叠加上刚体对该点的定点运动.而根据欧拉运动定理,后一运动可以认为是绕过该点的某一轴线的转动.因此,刚体的一般运动可以分解为某点的运动和绕过该点某轴线的旋转.沙勒定理得证.至此,我们完成了刚体一般运动中沙勒定理的证明,论证了刚体的任意运动都可以分解为某点运动和定轴转动.矩阵语言虽然简练,但不能直观反映物理实质.这里需要寻找一种物理的描述办法刻画刚体的运动,这就是所谓的欧拉角,也是前面所述的3个广义坐标φ、θ、ψ.7 欧拉角在天体和力学领域里,为了完备、清晰地刻画刚体运动,分别用了章动角θ、进动角φ和自转角ψ来描述.这些称呼来自陀螺的定点运动,如图1所示.图1 陀螺定点运动示意图为了便于描述欧拉角的具体意义,可将刚体的定点转动通过坐标轴的旋转,依次分成3个步骤,如图2—图4,这里在每个步骤后面都写上了对应的旋转矩阵R.每一次的旋转并不是任意的,它们都可以在图1的陀螺运动中找到对应,转动顺序是进动、章动、自转,如下所示.1)绕Oz0轴进动φ:图2(a)→(b)图2 进动示意图从Ox0y0z0到Ox′y′z′的旋转矩阵为Rφ=cosφ-sinφ0sinφcosφ0001(19)2)绕Ox′轴(节线ON)章动θ:图3(a)→(b)图3 章动示意图从Ox′y′z′到Ox″y″z″的旋转矩阵为Rθ=1000cosθ-sinθ0sinθcosθ(20)3)绕Oz″轴自转ψ:图4(a)→(b)图4 自动示意图从Ox″y″z″到Oxyz的旋转矩阵为Rψ=cosψ-sinψ0sinψcosψ0001(21)经过上面的三次旋转变换,可以得到描述刚体的任意旋转的总变换矩阵:R =RψRθRφ(22)由前面的结论可知,所有的变换矩阵都是正交矩阵,均由变换前后的两组基底相乘而来(此处为一组基的转置和另一组基之间的矩阵乘法).在前文中,我们提到过刚体的定点运动可以由一个旋转矩阵R来描述,矩阵的特征值λ2,3=e±iΩ,其中Ω为绕该轴的转角.那么,我们现在找到了一66 大 学 物 理 第40卷种物理的语言,可以将Ω对应的总角速度ω分解为刚体的章动、进动和自转.根据图2—图4中的转动过程,三个欧拉角的角速度方向分别为:φ 沿实验室系z0轴,θ 沿节线ON,ψ 沿本体系z轴,分解如下式:ω=φ k0+θ i′+ψ k(23)将不同的角速度对应的基矢利用旋转矩阵得到的函数关系展开化简,可以得到如下的结论:ω在实验室系的坐标轴投影为ω0x=ψ sinθsinφ+θcosφω0y=ψ sinθcosφ+θsinφω0z=ψcosθ+φ(24)ω在本体系的坐标轴投影为ωx=φ sinθsinψ+θ cosψωy=φ sinθcosψ-θ sinψωz=ψ+φ cosθ(25)这样,我们得到了刚体定点转动中绕某一轴线旋转的角速度ω的实际物理意义,即可以把这一定轴转动对应的转角Ω分解到3个有意义的欧拉角(也就是φ、θ、ψ)上去.不过,需要强调的是,在导出欧拉角的时候,所经历的三次连续旋转的转轴的选取顺序其实存在着随意性.只要每次选定的旋转轴不与上一次相同,便可以任意选取.因此,在右手系中我们有3×2×2=12种不同的旋转方法,这称为欧拉角的顺规.大多数的理论力学教材所采用的是x顺规,即第二次旋转绕x轴(前文中的节线ON),而多数的量子物理、核物理的教材所采用的是y顺规,即第二次旋转绕y轴.在工程中,为了弥补前两种顺规在变换前后的坐标系区分程度低的缺点,常采用第三种常见顺规:xyz顺规[2],这样得到的3个角就分别是飞机的偏航角(Yaw)、俯仰角(Pitch)和滚动角(Roll).8 总结在本文中,我们介绍了正交矩阵在描述刚体运动的优越性,并将之应用到刚体的旋转运动中,随后利用旋转矩阵证明了刚体运动的沙勒定理,这意味着复杂的刚体一般运动可以由定轴转动和点的运动来描述.之后,我们从物理给出了刚体定点运动的图像,并用欧拉角来描述这样的运动.刚体的运动学在数学上和物理上都全部得以描述.参考文献:[1] 秦敢,向守平.力学与理论力学(下册)[M].北京:科学出版社,2017:134 135.[2] BeattyJrMF.PrinciplesofEngineeringMechanics:Kinematics—TheGeometryofMotion[M].SpringerScience&BusinessMedia,2013.[3] 同济大学数学系.工程数学线性代数[M].北京:高等教育出版社,2014:118 119.[4] 姚慕生,吴泉水,谢启鸿.高等代数学[M].上海:复旦大学出版社,2003:202.[5] 杨福家.原子物理学[M].北京:高等教育出版社,2008:125 126.[6] GoldsteinH,PooleC,SafkoJ.ClassicalMechanics[M].2002.[7] 毛文炜.刚体定点转动的欧拉定理[J].大学物理,1988,1(4):15.Descriptionoftherigidbodies generalmotionSHAOHan yong(DepartmentofPhysics,BeijingNormalUniversity,Beijing100875,China)Abstract:Thegeneralmotionofarigidbodyisthemostcomplicatedtypeofmotioninrigidbodykinematics,anditssolutionusuallyrequirestheaidofEuler'stheoremorChasles theorem.Throughthesetwotheorems,wecandecomposethegeneralmotionofarigidbodyintosimplerfixed-axisrotationandtranslation.Thispapermainlyusestheorthogonalmatrixinthealgebratheorytodescribethemotionofarigidbody,andanalyzestheeigenprob lemsoffixed-pointrotation,andprovesEuler stheorem.Thenitdecomposesthefixed-pointrotationofarigidbody.Physicalimagesandderivationconclusionsaregiven,andasimpledescriptionofthecomplexgeneralmotionofrigidbodiesiscompleted.Keywords:rigidbodiesgeneralmotion;orthogonalmatrix;Chasles theorem;EulerAngles。
刚体的一般运动的运动学和与动力学动力学
加速度
刚体在一段时间内速度的 变化率,表示刚体速度变 化的快慢。
刚体的平动
平动
刚体在运动过程中,其上任意两 点都沿着同一直线作等距离的移 动。
平动特点
刚体上各点的速度和加速度都相 等,与参考系的选择无关。
刚体的转动
转动
刚体绕某一定点做圆周运动。
转动特点
刚体上各点的速度和加速度大小相等,方向不同。
阻尼振动
阻尼振动是指由于阻力作用而使振动系统受到损 耗的振动。
受迫振动
受迫振动是指在外力作用下产生的振动。
刚体的稳定性和平衡性
静态平衡
刚体在静止状态下,如果受到微小扰 动后能恢复到原来的平衡位置,则称 该平衡为静态平衡。
动态平衡
刚体在运动状态下,如果受到微小扰 动后能保持原来的运动状态不变,则 称该平衡为动态平衡。
感谢观看
THANKS
刚体的平衡
总结词
刚体的平衡是指刚体在运动或静止时,其上各点的加速度均为零的状态。
详细描述
刚体的平衡可以通过力的合成和分解来分析。当刚体处于平衡状态时,其上各点的加速度均为零,即合外力为零。 根据力的平移定理,可以将力的作用点平移至刚体的质心,从而将刚体平衡问题转化为质点平衡问题。同时,根 据力矩平衡条件,可以得出刚体平衡的条件为合外力矩为零。
力矩和角速度
总结词
力矩是力和力臂的乘积,它描述了力对刚体转动的效应;角速度是描述刚体转动快慢的 物理量。
详细描述
力矩是力和力臂的乘积,其方向垂直于力和力臂所在的平面。力矩可以改变刚体的转动 状态,包括转动方向和角速度大小。角速度是描述刚体绕固定点转动的快慢的物理量, 其方向与转动方向相同。公式表示为M=FL,其中M表示力矩,F表示力,L表示力臂。
刚体平面运动分解为平动和转动
对于平面图形 S 对静坐标系Oxy 做平面运动的一般情况,可在平面
图形上任选一点 A,并以 A点为原点作坐标系 Axy 。平面图形 S 运动时,坐标系随之运动,并保持其原点与 S 上的 A 点重合,并且
坐标轴 Ax ,Ay 的方位不变。为明确起见,令 Ax 和 Ay 轴始终分别
与Ox 和 Oy 轴平行,如图7-6所示。因此,Axy 是一平动坐标系,A
点称为基点。这样,平面图形 S 的运动就可以分解成为:
(1)跟随平动坐标系的平动,简称为随基 点的平动; (2)相对平动坐标系绕基点的转动,简称 为绕基点的转动。
图7-6
在平面图形上选 A点为基点,线段 AC 的转角为A ,如取另一 点 B 为基点,线段 BC的转角B ,如图7-7所示。这两个转角只
理论力学
刚体平面运动分解为平动和转动
从平面运动方程式(7-1)可看出,平面图形 S 的运动有两种特殊情况:
(1)若 常数,即平面图形在运动过程中,线段 B 的方位保持 不变。显然,这是平面图形在平面内做运动,平面图形上任一点的 运动与 A 点的运动相同,而 A 点的运动由运动方程式(7-1a)和式 (7-1b)二式给出。 (2)若 xA 和 yA同为常数,说明 A 点不动,平面图形将绕过 A 点且 垂直于平面图形的固定轴转动,其转动规律由运动方程式(7-1c) 给出。
选 B点为基点,则 AB 先随 B 点平动到 A2B1 ,再绕 B1 点转动 到 A1B1 ,转角为1 ,显然有 A1B2 ∥ A2B1 ,从而 1 ,并且
转向相同。
图7-8
平面图形分解的平动部分与基点选择有关,转动部分 与基点选择无关。
理论力学
在一般情况下,刚体的平面运动可以看成是平动和转动这两种 刚体的基本运动合成的结果。也就是说,平面运动可分解成平 动和转动。例如,轮子在地面上滚动,如图7-5所示,轮子从位 置Ⅰ 到位置Ⅱ 的平面运动可以看成是:① 轮子随轮心 O平动到 假想的中间位置Ⅰ;② 再由该中间位置绕 O轴转动到位置Ⅱ 。 当然轮子的平面运动并不是先平动而后转动,它的运动是一个 连续过程,应当看成为同时进行着平动和转动。
刚体平面运动
第十章刚体的平面运动一、内容提要1、基本概念(1)刚体的平面运动的定义刚体运动时,若其上任一点至某个固定平面的距离保持不变,则称该刚体作平面运动。
(2)刚体的平面运动的简化刚体的平面运动可以简化为平面图形在自身平面内的运动。
(3)刚体平面运动方程为x o'=f1(t) , y o'=f2(t) , ϕ=f3(t) ,(4)刚体平面运动的分解平面图形的运动可以分解为随基点的平动和绕基点的转动。
2、平面图形上各点的速度(1)基点法(速度合成法)V M= V O+V MO(2)速度投影法(V M)MO=(V O)MO(3)速度瞬心法V M=MC∙ω(C点为速度瞬心)3、平面图形上各点的加速度加速度分析主要用基点法(加速度合成法)a M= a O+aτMO+a n MOaτMO =MO∙ε方向垂直于MO,并与ε的转向一致。
a n MO =MO∙ω2 方向由点M指向基点O。
二、基本要求1、熟练掌握平面图形上各点的速度的求解。
2、熟练掌握平面图形上各点的加速度的求解。
三、典型例题例如图所示平面机构,由四杆依次铰接而成。
已知AB=BC=2R,C D=DE=R,AB杆和DE杆分别以匀角速度ω1与ω2绕A、E轴转动。
在图示瞬时,AB与CD铅直,BC与DE水平。
4142 试求该瞬时BC 杆转动的角速度和C 点加速度的大小。
解 AB 杆和DE 杆作定轴转动,BC 杆CD 杆均作平面运动。
(1)求BC 杆的角速度ωBC 因为V B =2R ω1 , V D =R ω2 分别以B 点和D 点为基点,分析C 点速度,有V C = V B + V CB (1)V C = V D + V CD (2) 所以 V B + V CB = V D + V CD (3) 沿BC 方向投影式(3)得V B = V CD则CD 杆的角速度ωCD = V CD /CD=V B /R=2ω1 (逆时针) 沿DC 方向投影式(3)得V CB = V D则BC 杆的角速度ωBC = V CB /BC=V D /2R=0.5ω2 (逆时针)(2)求C 点的加速度a C 因为a B =a B n =2R ω12 ,a D =a D n =R ω22分别以B 点和D 点为基点,分析C 点加速度,有 a C = a B + a CB τ + a CB n (4)a C =a D +a CD τ+a CD n (5)所以 a B + a CB τ + a CB n =a D +a CD τ+a CD n (6) 沿CD 方向投影式(6)得a B n - a CB τ = a CD na CB τ=a B n - a CD n =2R ω12-R(2ω1)2=-2R ω12又将式(4)分别沿x 、y 轴投影式得a Cx =-a CD n =-2R ωBC 2= -0.5R ω22a Cy =-a B n + a CB τ = -2R ω12-2R ω12= - 4R ω12故C 点加速度大小a C =22cy cx a a +=4241642ωω+R43。
刚体的平面运动
由此的结论:平面图形内任一点的速度等于该点随图 形绕瞬时速度中心转动的速度。
vA vAC AC
vB vBC BC
vD vDC DC
7.2
平面运动刚体上各点的速度(瞬心法)
三、确定速度瞬心位臵的方法
1. 平面图形沿一固定表面作无滑动的滚动。
B
v
A
vB
C
例如: 曲柄连杆机构中连杆AB的运 动,A点作圆周运动,B点作直线 运动,因此,AB 杆的运动既不是 平动也不是定轴转动,而是平面运 动.
7.1
刚体平面运动的描述
刚体的平面运动是工程上常见的一种运动,这是 一种较为复杂的运动.对它的研究可以在研究刚体的 平动和定轴转动的基础上,通过运动合成和分解的方 法,将平面运动分解为上述两种基本运动.然后应用 合成运动的理论,推导出平面运动刚体上一点的速度 和加速度的计算公式.
vA vO vAO vO vBO
解:取点O为基点,则点C的速度
vDO
vD
vO
vO
ω vO
vC vO vCO vCO R
vB
因轮纯滚动,所以vC=0,则
vCO
0 vO R
vBO 点D: vDO
点B:
vAO R vO v A 2vO R vO vB 2vO R vO vD 2vO
点A:
vO R
7.2
平面运动刚体上各点的速度(基点法)
例:曲柄长OA=r=40cm,以匀角速度ω=5rad/s转动。连杆 AB长l=200cm,求当曲柄与水平线成45º 角时,滑块B的速 度及连杆AB的角速度。
7.2
vA
平面运动刚体上各点的速度(基点法)
第十章 质点及刚体的运动微分方程
§10-3 刚体绕定轴转动的微分方程及转动惯量
解 分别取圆轮和物块A为研究对象 设滑块A有向下加速度a,圆轮有角加速度ε。由运动学知 a=rε 即a =0.4ε 取物块A为研究对象,受力图如图所示,物块有向下的加速 度a做平移运动。列出动力学基本方程
再取圆轮为研究对象,受力图如 图所示, 列出动力学基本方程
F=ma
质点动力学 基本方程
F表示作用于质点上力系的合力,加速 度a的方向与质点合力F的方向相同。
第十章 质点及刚体的运动微分方程
§10-1 动力学基本定律
质点动力学基本方程具有下列几个方面的含义:
(1)作用在质点上的力与质点的加速度是 瞬时关系。两者同瞬时产生,同瞬时 消失;力变化时,加速度随着变化; 若合力为零,质点作惯性运动。
第十章 质点及刚体的运动微分方程
§10-3 刚体绕定轴转动的微分方程及转动惯量
转动惯量 I. 转动惯量的概念
mi代表各质点的质量,ri为各质点 到转动轴线的距离
飞轮
刚体的质量愈大,或质量分布离转轴愈 远,则转动惯量就愈大;反之,则愈小。
第3 刚体绕定轴转动的微分方程及转动惯量
式中,Fx表示作用于质点上的合力沿x轴方向的投影,Fy 表示合力沿y轴方向的投影, ax为加速度在x轴方向的投 影, ay为加速度在y轴方向的投影。 第十章 质点及刚体的运动微分方程
§10-2 质点运动微分方程及其应用
求解质点动力学的两类问题
1.质点动力学的第一类问题---已知运动 求作用力
已知质点的运动(运动方程、速度方程和 加速度),将运动方程或速度方程对时间求 导得到加速度,将加速度代入基本方程,可 求解出质点上的作用力。求解较容易。
刚体的运动方程
(欧勒运动学方程)
若:已知 ω 1 , ω 2 , ω 3
& & & 则:计算 ϕ , ψ , θ
讨论:对于对称陀螺,两个主轴可在平面 x1 x 2 上任意 选取,则:取 ox1 沿oN方向 ⇒
& ψ =0& 于是有: ω Nhomakorabea = θ
& & & ω 2 = φ sin θ ω 3 = φ sin θ + ψ
又
rc
∑m r = ∑m
a a a
a a
=0
⇒ 则
∑m r
a
a a
=0
d & 0 + ∑ (ra × ma ra ) = ∑ ra × Fa 外 dt a a
⇒
d & ∑ (ra × mara ) = ∑ ra × Fa 外 dt a a
令
& L( o ) = ∑ ra × ma ra
a
M ( o ) = ∑ ra × Fae
ϕ :刚体绕固定轴oz转过的角度——进动角; & ϕ :进动角速度——沿oz方向
& ψ
ψ :刚体绕 ox3 转过的角度——自转角;
:自转角速度——沿 ox3 方向。
ox θ : 3 和oz间的夹角——章动角; θ& :章动角速度——沿oN方向。
1. & 在 x1 x 2平面, 在 θ 由图:
x1 , x 2 , x3 的分量 θ&1 , θ&2 , θ&3 。
dω d ' ω d 'ω = + ω×ω = [ ] dt dt dt
⇒
dv 0 & = w + a + 2ω × v + ω × r + ω × (ω × r ) dt
第十章刚体的平面运动
理论力学
如图 10-2 所示,刚体运动方式为平面运动,刚体上点 A 的运动轨迹为圆弧,点 B 的运动轨迹为直线,可见刚体上各 点的运动轨迹各不相同。
图 10-2
第10章 刚体的平面运动
理论力学
为了研究刚体的运动情况,将刚体的运动分解为平动和
转动两种基本运动方式,平动部分可任选一点作为基点来研
究。例如 A 点,在基点建立动坐标系 o1x1y1。注意,动坐标系 原点 o1 与刚体上的 A 点是“铰接”关系,即 o1 与 A 点仅仅保 持坐标始终相等,运动轨迹始终相同,但刚体上的 A 点显然 还有与刚体一起旋转的运动,而动坐标系的原点 o1 始终不产 生任何转动,其 x1 轴和 y1 轴的指向始终不变,这样的动坐标 系随 A 点运动时必然只存在平动方式,而且只反映刚体平面 运动中的平动部分,接下来在动坐标系中研究刚体的运动时,
令(υM)O′M、(υO′)O′M、(υMO′)O′M 分别表示 υM、υO′、υMO′ 在 O′M 上的投影,则根据式(10-1)可得:
(υM)O′M=(υO′+υMO′)O′M=(υO′)O′M+(υMO′)O′M
=(υO′)O′M
(10-2)
第10章 刚体的平面运动
理论力学
式(10-2)在推导时,利用了 υMO′始终与 O′M 所具有的 垂直关系,故 υMO′在 O′M 上的投影(υMO′)O′M=0。速度投 影定理的成立主要是由于刚体不可变形的假设而存在的。试 想,如果刚体上两点的速度在其连线上的投影不相等,那么 这两点之间的距离必然发生变化,这与刚体不可变形的假定 相矛盾。
第10章 刚体的平面运动
理论力学
10.2 刚体平面运动时的速度
10.2.1 基点法 根据前面的分析,刚体的任何平面运动都可以分解为两个简
刚体的基本运动
三、刚体平面运动的运动方程 刚 体 平 面 运 动 建立如图的静坐标系, 建立如图的静坐标系, 基点。 点称为基点 将 O′点称为基点。 当刚体作平面运动时, 当刚体作平面运动时, xO′,yO′ 和 均随时间连续变 化,它们均为时间的单值连 续函数, 续函数,即 x = f (t ) (t
1 O′ yO′ = f 2 (t ) = f 3 (t )
O
vO
O
ω
A B
O
ω
O1
二、刚体平面运动的简化 刚 体 平 面 运 动 如图所示, 如图所示,刚体作平面 运动时, 运动时,刚体上所有与空间 某固定平面距离相等的点所 构成的平面图形就保持在它 自身所在的平面内运动。 自身所在的平面内运动。
A1
π
A
S
经分析可得如下结 论:
π0
A2
刚体的平面运动可以简化为平面图形S 刚体的平面运动可以简化为平面图形 在其自身所在的平面内运动。 在其自身所在的平面内运动。
静 平 面 动
z
= (t )
平 面
这就是刚体的转动方程。 开门 这就是刚体的转动方程。(开门 转动方程 开门)
刚体上任意一点的轨迹都为圆。
O
二、角速度、角加速度 角速度、
刚体绕定轴转动的角速度等于其位置角对时 8.2 间的一阶导数,用ω 表示,即 间的一阶导数, 表示,
刚 体 的 定
d ω= = dt
绝对运动中,动点的速度与加速度称为绝对速度 va 与绝对加速度
aa
相对运动中,动点的速度和加速度称为相对速度 vr 与相对加速度 ar 牵连运动中,牵连点的速度和加速度称为牵连速度 ve与牵连加速度 ae
牵连点:在任意瞬时,动坐标系中与动点相重合的点,也就是 牵连点 设想将该动点固结在动坐标系上,而随着动坐标系一起运动时 该点叫牵连点。 四.动点的选择原则: 动点的选择原则: 一般选择主动件与从动件的连接点,它是对两个坐标系都有 运动的点。 五.动系的选择原则: 动系的选择原则 动点对动系有相对运动,且相对运动的轨迹是已知的, 或者能直接看出的。
第十章刚体的定点运动及一般运动_理论力学
章动角 等于或近似于常数, 且进动角速度
动称为规则进动。用欧拉角描述规则进动十分方便。 §10-4 刚体绕相交轴转动的合成 刚体绕相交轴转动的合成运动是绕定点运动。
1.
刚体绕两相交轴转动之合成
图 10-7 所示为一两自由度陀 转动, 转子相对于框架绕 CD 轴以 转动, 两轴交点 O 固
螺, 框架 ABCD 绕定轴 Az 以
107角加速度见图106所以108规则进动欧拉角的实际重要性在于有许多力学系统其刚体的运动学方程式中章动角等于或近似于常数且进动角速度和自转角速度等于或近似于常数这种运动称为规则进动
第十章 刚体的定点运动及一般运动 1. 刚体绕固定点运动时,具有三个自由度(见图 10-1)用欧拉角描述其在空间的方位。
角→x'y'z',形成如图 10-3 所示之欧拉角。 四轴共面,且与 Oz' 正交。
3.
刚 体 绕 定 点 运 动 方 程 式
(10-1) 是时间的单值连续函数。 由式(10-1)可见,定点运动一般具有三个自由度。 角速度矢量 , 和 如图 10-4 所示。则 (10-2) 可见,定点运动的绝对角速度是一个变矢量,即
A 点的向轴加速度为
最后得 A 点的加速度为
矢量 aA 在 Oy1z1 平面内,且与 Oy1 轴的夹角为
2、 以上是利用瞬时转动轴及瞬时角速度方法求解。下面利用点的合成运动的方法求 A 点的 速度及加速度。 作动坐标系 固结在轴 OO1 上,则牵连运动即为刚体绕 Oz 轴以公转角速度的
转动,A 点相对于动坐标系的速度可由刚体自转角速度决定。 由于公转角速度 和瞬时转动轴位置 OC 已知,不难求出自转角速度 为(图 b)
这样, 定点 O 和瞬时速度为零的 C 点连线 OC 就是碾轮的瞬时转动轴。 由碾轮牵连角
刚体平面运动的分解
理论力学
间t的单值连续函数,即
xA xt yA yt t
上式就是刚体平面运动的运动方程。
目录
刚体的运动\刚体平面运动的分解
显然,上述刚体平面运动的运动方程 是由刚体平移的运动方程和刚体定轴转动
的运动方程所组成。 当为常数时,表明
平面图形在运动过程中,线段AB的方向始 终保持不变,显然这时图形在平面内作平 移;当xA、yA同为常数时,表明A点始终不 动,平面图形绕过A点且与图形垂直的固 定轴转动。在一般情况下,刚体的平面运 动可以看作是刚体平移和转动这两种基本 运动的合成。
向都是相同的,故有
lim lim
t0 t t0 t
得
A B
又由 d ,得
dt
A B
目录
刚体的运动\刚体平面运动的分解 以上两式表明,在任意瞬时,平面图形绕自身平面内任一点转
动的角速度和角加速度都是相同的。这样就可以将该角速度和角加 速度直接称为平面图形的角速度和角加速度,而不必再专门指出是 绕哪一个基点转动的了。此外,由于平移坐标系相对固定坐标系不 存在转动,因此上述角速度和角加速度也就是平面图形即平面运动 刚体相对固定坐标系的角速度和角加速度。
目录
刚体的运动\刚体平面运动的分解
为具体描述平面图形在自身平面内的运动, 在该平面上建立一个固定的直角坐标系Oxy, 在平面图形上任选一点A,并以A为原点作直 角坐标系Ax'y', 如图所示。平面图形S运动时 坐标系Ax' y'随之运动,令Ax'和Ay'始终分别与 固定坐标系的Ox和Oy轴平行,这样,Ax' y'是 一平移坐标系,A点称为基点。于是,平面图 形S的运动就可以分解为两部分:
第十章 刚体的平面运动分解
S A1 a
A2
固定平面
10.2平面运动分解为平动和转动
1.刚体的平面运动方程 如图 :由平面图形上任一 其中 O’ 的位置 线段O’A 的位置代 xo’ = f1(t) 表平面的位置 yo’ = f.2(t) O’A的方位 φ = f3(t)
Y A
O’ X xo’
O
φ
X
yo’
代表刚体的 平面运动的 平面图形
15°
B
VB
VBA
(VA ) AB = (VB ) AB 再以连杆AB作为研究对象, 选连杆上的 点作为基点 VB A = VA / cos15° 根据图中矢量关系得 : = 163cm/s VB = VA /cos15° 可以求出 B点的速度: 两种方法结果相同 =163cm/s VB = VBA + VA 方向水平向左
理论力学:第十章
刚体的平面运动
第十章 刚体的平面运动
理论力学电子教案:张建辉制作
第十章刚体的平面运动
研究内容 1.刚体平面运动的特性 2.刚体平面运动各点速度的计算
10.1平面运动的概念
1.刚体平面运动:刚体内各点分别保持在与某一 固定平面平行的平面内运动
如图: 2. 刚体的平面运动可以简化为 : S 为刚体上任一平行于 根据平面运动的定义: 平面图形 S在其所 S平动 →Ⅰ A的平面 A 固定平面 1 2平动, → Ⅱ 在平面内的运动 → A A2上各点运动情况 A1A2 1 为任一垂直于固定 相同 .所以 S上a,点代表 (即 :只要知道了平面图形 1A 平面 Ⅰ 的直线 并交SA 于 a2 点 上各点运动平面 S上各点 S的运动 ,就可以知道整个 代表整个刚体的运动 刚体的运动 ) Ⅰ
2.平面运动的分解
理论力学 刚体的一般运动
即:刚体绕两平行轴的转动可合成为绕瞬轴的转动, 瞬轴与原两轴共面且平行,到两轴的距离与两角速 度大小成反比。同向转动时,瞬轴在两轴之间,
a e r ,转向与两者相同;反向转动时, 瞬轴
在两轴之外, 在角速度值大的一侧, a e r ,转 向与大者的相同。
8
[例1] 齿轮、半径均为R, 齿轮半径为 r ,依次互啮合, 轮 固 定不动,轮 和轮 装在曲柄O1O3上,可分别绕O2、O3轴转
第十章 刚体的一般运动
§10–1 刚体绕平行轴转动的合成
1
第十章 §10-1
刚体的一般运动
刚体绕平行轴转动的合成
刚体绕平行动。前面 所研究的平面运动是把它看成为平动和转动的合成运 动,但是在分析行星轮系的传动问题时,将行星轮的
a e r
d a d e d r dt dt dt
a e r
即:平面图形(这里指行星轮)的绝对角速度a等于牵连角速 度e 与相对角速度r的代表和. 当e 与r 转向相同时 a e r 转向与两者相同. 当e与r 转向相异时 a e r 转向与大者的相同.
动。设曲柄O1O3以 0顺时针转动.试求齿轮III相对于曲柄转
动的角速度3 r 和齿轮的绝对角速度3 以及图示瞬时A、
B 两点的速度。
9
解:取系杆O1O3 为动系,
1 r 、2 r 、 3r 分别是 、 、
轮相对于系杆的角速度, 根据传动比公式, 可得
1r R r 1 1r 3 r 3r r R 由平行轴转动的合成理论,得
1 e 1r 0 1r o
3r 1r 0 ; 3 e 3r 0 0 0
10
由此可知,齿轮作平动,平动刚体上各点的速度相同,故
理论力学 第10章 达朗贝尔原理(动静法)
解: 取轮为研究对象
虚加惯性力系:
RQ maC mR
M QC JC m 2
O
由动静法,得:
23
X 0 , F T RQ 0
(1)
Y 0 , N mg S 0
(2)
mC (F )
0
, M
FR M QC
0
(3)
2
2
M F( R) T (4)
4
二、质点的达朗贝尔原理
非自由质点M,质量m,受主动力 F, 约束反力 N ,合力 R F N ma
F N ma 0
F N Q 0
质点的达朗贝尔原理
该方程对动力学问题来说只是 形式上的平衡,并没有改变动力学 问题的实质。采用动静法解决动力 学问题的最大优点,可以利用静力 学提供的解题方法,给动力学问题 一种统一的解题格式。
方向。 ④虚加惯性力。在受力图上画上惯性力和惯性力偶,一定要
在 正确进行运动分析的基础上。熟记刚体惯 性力系的简化结果。
26
⑤列动静方程。选取适当的矩心和投影轴。 ⑥建立补充方程。运动学补充方程(运动量之间的关系)。 ⑦求解求知量。
[注] RQ , MQO 的方向及转向已在受力图中标出,建立方程时, 只需按 RQ maC , MQO JO 代入即可。
5
[例1] 列车在水平轨道上行驶,车厢内悬挂一单摆,当车厢向
右作匀加速运动时,单摆左偏角度 ,相对于车厢静止。求车
厢的加速度 a 。 a
6
解: 选单摆的摆锤为研究对象 虚加惯性力 Q ma ( Q ma )
由动静法, 有
X 0 , mg sin Qcos 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
k0
( A E) p 0
2 2 p12 p2 p3 1
i0
j0
解得 由
3 p1 p2 p3 3 1 arccos ( trA 1) 2
O
i k
y
x
j
解得
120
3 n (i j k ), 120 3
3. 瞬时转动轴、角速度、角加速度
刚体定点运动的工程实例与基本概念
§10-1 刚体绕定点运动
1 运动方程
ON-节线:O坐标面与 Oxy坐标面的交线;
-进动角: ON与O轴的
夹角;
-章动角: O与Oz轴的
夹角;
-自转角: ON与Ox轴的
夹角;
、 、 -三者相互独立。
刚体作定点运动时, 三个欧拉角一般都随着 时间的变化而变化:
解:由图示转动关系有
i0
j0
e0 A e1
i0 0 1 0 i j0 0 0 1 j k 1 0 0 k 0
O
i k
y
x
j
0 1 0 A 0 0 1 1 0 0
由于e1 是e0 绕一次转动轴作定轴转动后到达的位置,则一次转 动轴基矢量 p 相对e1 和 e0 必有相同的坐标p1 , p2, p3 ,即
p
(1)
p
( 0)
Ap
(1)
或写作 ( A E ) p
(1)
0
转动轴的位置由下列方程解得
( A E) p
2 1 2 2
(1)
0
2 3
p p p 1
规则进动
= e+ r= +
对于规则进动, 相对于动系为常矢量,
~ dω dω α ωe ω dt dt
dr v dt
v v
dω α dt
v v r r
O r
ห้องสมุดไป่ตู้
O
定点运动刚体在不同瞬时的角速度矢量形成轨迹,不 同瞬时角加速度矢量沿着这一轨迹的切线方向。
例 题 2
高度为h、底半径为r的 圆锥体,以顶点O为定点 在水平面上作纯滚动。若 已知锥底圆心C处的vC为 常数。 求:圆锥体的角速度和角 加速度. 解:圆锥体绕定点O作定点运动。 定系Oηξζ 动系O x y z 绝对运动-定点运动 牵连运动- O x y z绕ζ轴作定轴转动: 1= e 相对运动- 圆锥体绕 O z 轴作定轴转动: 2= r
z x
y
解:圆锥体绕定点O作 定点运动。
纯滚动 y OC*上各点速度为0
z
x
OC*为瞬轴,ξ
vC vC = AC rcos
r 2 h2 vC =常数 rh
z
y
x
= e = 0 = r
= e=常数
π = - 2 = r =常数
角加速度
定点运动刚体角速度矢量 对时间的导数 称为定点运动刚体的角加速度。
根据变矢量的导数定义
~ dω dω α ωe ω dt dt
~ dω -相对导数, 相对于动系的变化率; dt
ωe -动系的转动角速度。
定点运动刚体角速度矢量与角加速度矢量 一般 情形下不共线。
角加速度矢量的方向
转动角有以下计算公式
1 arccos ( trA 1) 2
有限转动次序的一可交换性
z z y x z
绕 z 轴转900
y x
绕 x 轴转900
y
x
z
x
y z y z
y
x
x
绕 x 轴转900 绕 z 轴转900
例 题 1
矩形板由铅垂位置转到水平位置,如图所示。
z
k0
求:(1)连体在转动前后位置间的 方向余弦矩阵; (2)有限转动轴的位置及转过的角度。
第10章 刚体定点运动、刚体一般运动 刚体运动的合成
刚体定点运动的工程实例与基本概念
刚体绕定点运动
自由刚体运动 刚体绕相交轴转动的合成
结论与讨论
刚体定点运动的工程实例与基本概念
刚体定点运动的工程实例与基本概念
刚体定点运动的工程实例与基本概念
刚体定点运动的工程实例与基本概念
假设从 t 到 t+t 的 t 时间间隔内定点 运动刚体绕通过定点O的OC轴转过, 这时转动角速度为 ´;当t →0时,转 动轴则由 OC 轴→ OC* 轴。 OC* 轴称为 t 瞬时的瞬时转轴或瞬轴。这时的角速度 就是定点运动刚体在 t 瞬时的角速度。
C* C
O
´
瞬时转轴通过定点,但在不同的瞬时,瞬时转轴在 空间的方位以及刚体上的位置各不相同。 定点运动刚体在每一瞬时的真实运动,就是绕每一 瞬时的瞬轴转动;定点运动刚体的运动过程,就是刚 体绕一系列瞬轴的转动过程。
转动轴矢量 p 可用不同的连体基 e0 和 e1 表示为
pe p
T 0
(0)
e p
T 1
(1)
p
( 0)
Ap
(1)
i0 i1 i0 j1 i0 k1 T A e0 e1 j0 i1 j0 j1 j0 k1 k0 i1 k0 j1 k0 k1
O
x
O
2. 欧拉定理 刚体定点运动的任何有限位移,都可以由绕通过定 点的某一轴的一次转动实现。 有限转动轴位置和有限转动角
设刚体在转动前的连体坐标系(Oxyz)与定参考系 ( Ox0y0z0 )重合,刚体作有限转动后,随刚体到达的新位置 为( Ox1y1z1 )。将( Oxyz )各坐标轴的基矢量i,j,k排成的 矢量列阵记作e,称为刚体的连体基。连体基的转动前位置, 即定坐标系( Ox0y0z0 )各坐标轴的基矢量i0,j0,k0排成的列 阵为e0 。转动后的连体基,即( Ox1y1z1 )的基矢量i1,j1,k1 排成的列阵为e1 。
= (t), = (t), = (t).
运动方程
(t), (t), (t)确定了瞬时 t 定点运动刚体
在空间的位置。
欧拉角及其在刚体定点运动分析中的应用
O
O
欧拉角及其在刚体定点运动分析中的应用
O
O
欧拉角及其在刚体定点运动分析中的应用