北京四中2014~2015学年初二上期中考试数学试题及答案

合集下载

北京四中2014-2015学年八年级上学期期中数学试卷 (解析版)

北京四中2014-2015学年八年级上学期期中数学试卷 (解析版)

北京四中2014-2015学年八年级上学期期中数学试卷一、选择题(本题共30分,每小题3分)1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.2.下列各式不能分解因式的是()A.2x2﹣4x B.C.x2+9y2D.1﹣m23.点P(﹣3,5)关于y轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cm B.4cm C.3cm D.2cm5.下列各式中,正确的是()A.B.C.D.6.下列命题是真命题的是()A.等底等高的两个三角形全等B.周长相等的直角三角形都全等C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等7.如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A按逆时针方向旋转到△ACD′的位置,则∠ADD′的度数是()A.25°B.30°C.35°D.45°8.在等腰△ABC中,已知AB=2BC,AB=20,则△ABC的周长为()A.40 B.50 C.40或50 D.无法确定9.已知三角形的两边长分别为5和7,则第三边的中线长x的取值范围是()A.2<x<12 B.5<x<7 C.1<x<6 D.无法确定10.如图,在△ABC中,BC=AC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,垂足为E.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE其中正确结论的个数是()A.1B.2 C.3 D.4二、填空题(本题共20分,每小题2分)11.若式子有意义,则x的取值范围是.12.计算= .13.如图,等腰三角形ABC中AB=AC,∠A=20°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE= .15.若a+b=7,ab=5,则a2﹣ab+b2= .16.当x取值时,x2+6x+10有最小值,最小值是.17.某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,如果设原计划每天挖x米,那么根据题意可列方程为.18.如图,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分线与AD 相交于点P,连结PC,若BD=2CD,△ABC的面积为2cm2,则△DPC的面积为.19.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=90°,则∠2的度数为.20.如果满足条件“∠ABC=30°,AC=1,BC=k(k>0)”的△ABC是唯一的,那么k的取值范围是.三、解答题21.把多项式分解因式:(1)3a3b﹣12ab3;(2)(x2﹣x)2﹣4(x2﹣x)+4.22.(1)计算:;(2)解方程:.23.已知:如图,A、B、C、D四点在同一直线上,AB=CD,AE∥BF且AE=BF.求证:EC=FD.24.(1)先化简,再求值:(),其中m=9;(2)已知=3,求代数式的值.25.列分式方程解应用题:(温馨提示:你可借助图示、表格等形式“挖掘”等量关系)赵老师为了响应市政府“绿色出行”的号召,上下班由自驾车方式改为骑自行车方式.已知赵老师家距学校20千米,上下班高峰时段,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多小时.求自驾车速度和自行速度各是多少.四、解答题26.某地区要在区域S 内 (即∠COD 内部) 建一个超市M ,如图所示,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等,到两条公路OC ,OD 的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)27.阅读下列材料:如图1,在四边形ABCD 中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求证:CD=AB .小刚是这样思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求证及特殊角度数可联想到构造特殊三角形.即过点A 作AE ⊥AB 交BC 的延长线于点E ,则AB=AE ,∠E=∠D . 在△ADC 与△CEA 中,∵∴△ADC ≌△CEA , 得CD=AE=AB .请你参考小刚同学思考问题的方法,解决下面问题:如图2,在四边形ABCD 中,若∠ACB+∠CAD=180°,∠B=∠D ,请问:CD 与AB 是否相等?若相等,请你给出证明;若不相等,请说明理由.28.在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.(1)如图1,若点D在线段BC上.求证:①AD=DE;②BC=DC+2CF;(2)如图2,若点D在线段BC的延长线上,(1)中的两个结论是否仍然成立?请说明理由.29.已知a2﹣3a﹣1=0,求a6+120a﹣2=.30.如图中,∠ABC=∠BCD=∠DAB=45°,BD=2,求四边形ABCD的面积为.31.已知:m2=n+2,n2=m+2(m≠n),求:m3﹣2mn+n3的值.32.已知:△ABC中,∠ABC=2∠ACB,∠ABC的平分线BD与∠ACB的平分线CD相交于点D,且CD=AB,求证:∠A=60°.北京四中2014-2015学年八年级上学期期中数学试卷一、选择题(本题共30分,每小题3分)1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.解答:解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.点评:此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列各式不能分解因式的是()A.2x2﹣4x B.C.x2+9y2D.1﹣m2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:A、提取公因式分解因式,本选项不合题意;B、利用完全平方公式分解因式,本选项不合题意;C、本选项不能分解因式,符合题意;D、利用平方差公式分解因式,本选项不合题意.解答:解:A、2x2﹣4x=2x(x﹣2),本选项不合题意;B、x2+x+=(x+)2,本选项不合题意;C、x2+9y2不能分解因式,本选项符合题意;D、1﹣m2=(1+m)(1﹣m),本选项不合题意.故选C.点评:此题考查了因式分解﹣运用公式法及提公因式法,熟练掌握公式是解本题的关键.3.点P(﹣3,5)关于y轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)分析:根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y)即可得出答案.解答:解:根据关于纵轴的对称点:纵坐标相同,横坐标变成相反数,∴点P(﹣3,5)关于y轴的对称点的坐标是(3,5),故选:A.点评:本题主要考查了关于横轴的对称点:横坐标相同,纵坐标变成相反数;关于纵轴的对称点:纵坐标相同,横坐标变成相反数,比较简单.4.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cm B.4cm C.3cm D.2cm考点:角平分线的性质.分析:过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.解答:解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选C.点评:本题主要考查角平分线的性质;作出辅助线是正确解答本题的关键.5.下列各式中,正确的是()A.B.C.D.考点:分式的基本性质.专题:计算题.分析:利用分式的基本性质化简各项得到结果,即可作出判断.解答:解:A、﹣=,本选项错误;C、=,本选项错误;D、﹣=,本选项正确.故选:D.点评:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.[来源:学§科§网Z§X§X§K]6.下列命题是真命题的是()A.等底等高的两个三角形全等B.周长相等的直角三角形都全等C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等考点:命题与定理;全等三角形的判定.分析:根据全等三角形的判定方法对各选项分析判断利用排除法求解.解答:解:A、等底等高的两个三角形全等,是假命题,故本选项错误;B、周长相等的直角三角形都全等,是假命题,故本选项错误;C、有两边和一角对应相等的两个三角形全等,是假命题,因为一角没有说明是两边的夹角,故本选项错误;D、有一边对应相等的两个等边三角形全等是真命题,故本选项正确.故选D.点评:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A按逆时针方向旋转到△ACD′的位置,则∠ADD′的度数是()A.25°B.30°C.35°D.45°考点:旋转的性质.分析:根据旋转的性质结合三角形的性质作答.解答:解:∵将△ABD绕点A按逆时针方向旋转到△ACD′的位置,∴AD=AD′,∠DAD′=∠BAC=90°,即△ADD′是等腰直角三角形,∴∠ADD′=45°.故选D.点评:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.8.在等腰△ABC中,已知AB=2BC,AB=20,则△ABC的周长为()A.40 B.50 C.40或50 D.无法确定分析:先求出BC的长为10,再分腰长是10或20,两种情况都可能出现,因而分两种情况确定三角形的边长,即可求出周长.解答:解:∵AB=2BC,AB=20,∴BC=10,三角形的腰长是10时,三角形的三边长是:10,10,20,不能构成三角形;当三角形的腰长是20时,三角形的三边长是:10,20,20,则周长是:10+20+20=50.故选B.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.9.已知三角形的两边长分别为5和7,则第三边的中线长x的取值范围是()A.2<x<12 B.5<x<7 C.1<x<6 D.无法确定考点:全等三角形的判定与性质;三角形三边关系.分析:延长AD至E,使AD=DE,即可求证△BDE≌△CDA,在△ABE中,根据任意两边之和大于解答:解:延长AD至E,使AD=DE,第三边,任意两边之差小于第三边,即可求解.如图所示,AB=5,AC=7,设BC=2a,AD=x,在△BDE与△CDA中,,∴△BDE≌△CDA,(SAS)∴AE=2x,BE=AC=7,在△ABE中,BE﹣AB<AE<AB+BE,即7﹣5<2x<7+5,∴1<x<6.故选C.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BDE≌△CDA是解题的关键.10.如图,在△ABC中,BC=AC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,垂足其中正确结论的个数是()为E.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BEA . 1B . 2C . 3D . 4考点: 线段垂直平分线的性质;全等三角形的判定与性质.专题: 探究型. 分析: ①根据BC=AC ,∠ACB=90°可知∠CAB=∠ABC=45°,再由AD 平分∠BAC 可知∠BAE=∠EAF=22.5°,在Rt △ACD 与Rt △BFC 中,∠EAF+∠F=90°,∠FBC+∠F=90°,可求出∠EAF=∠FBC ,由BC=AC 可求出Rt △ADC ≌Rt △BFC ,故可求出AD=BF ; ②由①中Rt △ADC ≌Rt △BFC 可直接得出结论;③由①中Rt △ADC ≌Rt △BFC 可知,CF=CD ,故AC+CD=AC+CF=AF ,∠CBF=∠EAF=22.5°,在Rt △AEF 中,∠F=90°﹣∠EAF=67.5°,根据∠CAB=45°可知,∠ABF=180°﹣∠EAF ﹣∠CAB=67.5°,即可求出AF=AB ,即AC+CD=AB ;④由③可知,△ABF 是等腰三角形,由于BE ⊥AD ,故BE=BF ,在Rt △BCF 中,若BE=CF ,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE ≠CF ;⑤由③可知,△ABF 是等腰三角形,由于BE ⊥AD ,根据等腰三角形三线合一的性质即可解答. 解答: 解:①∵BC=AC ,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AD 平分∠BAC ,∴∠BAE=∠EAF=22.5°,∵在Rt △ACD 与Rt △BFC 中,∠EAF+∠F=90°,∠FBC+∠F=90°,∴∠EAF=∠FBC ,∵BC=AC ,∠EAF=∠FBC ,∠BCF=∠AEF ,∴Rt △ADC ≌Rt △BFC ,∴AD=BF ; 故①正确;②∵①中Rt △ADC ≌Rt △BFC ,[来源:学.科.网Z.X.X.K]∴CF=CD , 故②正确;③∵①中Rt △ADC ≌Rt △BFC ,∴CF=CD ,AC+CD=AC+CF=AF ,∵∠CBF=∠EAF=22.5°,∴在Rt △AEF 中,∠F=90°﹣∠EAF=67.5°,∵∠CAB=45°,∴∠ABF=180°﹣∠F ﹣∠CAB=180°﹣67.5°﹣45°=67.5°,∴AF=AB ,即AC+CD=AB , 故③正确;④由③可知,△ABF 是等腰三角形,∵BE ⊥AD , ∴BE=BF ,∵在Rt △BCF 中,若BE=CF ,则∠CBF=30°,与②中∠CBF=22.5°相矛盾, 故BE ≠CF ,故④错误;⑤由③可知,△ABF 是等腰三角形,[来源:学&科&网Z&X&X&K]∵BE ⊥AD ,∴BF=2BE , 故⑤正确.所以①②③⑤四项正确.故选D.点评:本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知线段垂直平分线的性质及等腰三角形的判定与性质是解答此题的关键.二、填空题(本题共20分,每小题2分)11.若式子有意义,则x的取值范围是x≠4.考点:分式有意义的条件.分析:根据分母为零,分式无意义;分母不为零,分式有意义.就可以求解.解答:解:根据题意得:x﹣4≠0,解得:x≠4.故答案是:x≠4.点评:本题考查的知识点为:分式有意义,分母不为0.12.计算=.考点:分式的加减法.分析:先通分,再根据同分母的分数相加减的法则进行计算即可.解答:解:原式=﹣==﹣.故答案为:﹣.点评:本题考查的是分式的加减法,熟知同分母的分式想加减,分母不变,把分子相加减是解答此题的关键.13.如图,等腰三角形ABC中AB=AC,∠A=20°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE=60°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE是线段AB的垂直平分线,根据线段垂直平分线的性质,可求得AAE=BE,然后由等边对等角,可求得∠ABE的度数,又由等腰三角形ABC中AB=AC,∠A=20°,即可求得∠ABC的度数,继而求得答案.解答:解:∵DE是线段AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=20°,∵等腰三角形ABC中,AB=AC,∠A=20°,∴∠ABC=∠C==80°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故答案为:60°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.14.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为﹣1.考点:因式分解的意义.专题:计算题.分析:将因式分解的结果利用多项式乘以多项式法则计算,合并后根据多项式相等的条件求出k与b 的值,即可求出k+b的值.解答:解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故答案为:﹣1点评:此题考查了因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.15.若a+b=7,ab=5,则a2﹣ab+b2=34.考点:完全平方公式.分析:先根据完全平方公式变形,再整体代入求出即可.解答:解:∵a+b=7,ab=5,∴a2﹣ab+b2=(a+b)2﹣3ab=72﹣3×5=34,故答案为:34.点评:本题考查了完全平方公式的应用,注意:完全平方公式是:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.16.当x取﹣3值时,x2+6x+10有最小值,最小值是1.考点:配方法的应用;非负数的性质:偶次方.分析:把多项式x2+6x+10凑成完全平方式加常数项的形式.解答:解:x2+6x+10,=x2+6x+9+1,=(x+3)2+1,所以当x+3=0,即x=﹣3时,多项式x2+6x+10有最小值1.故答案是:﹣3,1.点评:此题主要考查了配方法的应用和非负数的性质,即完全平方式的值是大于等于0的,它的最小值为0.所以在求一个多项式的最小值时常常用凑完全平方式的方法进行求值.17.(2分)某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,如果设原计划每天挖x米,那么根据题意可列方程为﹣=4.考点:由实际问题抽象出分式方程.分析:如果设原计划每天挖x米,根据某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务可列出方程.解答:解:设原计划每天挖x米,﹣=4.故答案为:﹣=4.点评:本题考查理解题意的能力,关键是设出未知数,根据时间做为等量关系列方程求解.18.如图,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分线与AD 相交于点P,连结PC,若BD=2CD,△ABC的面积为2cm2,则△DPC的面积为.考点:等腰直角三角形;等腰三角形的性质.分析:根据等腰三角形三线合一的性质可得AP=PD,然后根据等底等高的三角形面积相等求出△BPC 的面积等于△ABC面积的一半,根据不同底等高的△DPC的面积等于△BPC的面积的代入数据计算即可得解.解答:解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC的面积为2cm2,∴S△BPC=×2=1cm2,∵BD=2CD,∴3DC=BC,=S△BPC=.故答案为.点评:本题考查了等腰三角形三线合一的性质,三角形的面积,利用等底等高的三角形的面积相等求出△BPC的面积与△ABC的面积的关系是解题的关键.19.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=90°,则∠2的度数为30°.考点:三角形内角和定理;翻折变换(折叠问题).分析:根据三角形的内角和等于180°列式求出∠B′+∠C′,∠AEF+∠AFE,再利用四边形的内角和定理列式计算即可得解.解答:解:∵∠A=60°,∴∠B′+∠C′=∠AEF+∠AFE=180°﹣60°=120°,在四边形B′EFC′中,∠2=360°﹣120°×2﹣90°=30°.故答案为:30°.点评:本题考查了三角形的内角和定理,翻折变换的性质,四边形的内角和等于360°,熟记定理并准确识图是解题的关键.20.如果满足条件“∠ABC=30°,AC=1,BC=k(k>0)”的△ABC是唯一的,那么k的取值范围是k=2或0<k≤1.考点:全等三角形的判定.分析:要对三角形解得各种情况进行讨论即:无解、有1个解、有2个解,从中得出恰有一个解时k 满足的条件.解答:解:当AC<BCsin∠ABC,即1<ksin30°,即k>2时,三角形无解;当AC=BCsin∠ABC,即1=ksin30°,即k=2时,有一解;当BCsin∠ABC<AC<BC,即ksin30°<1<k,即1<k<2,三角形有2个解;当0<BC≤AC,即0<k≤1时,三角形有1个解.综上所述,k的取值范围是k=2或0<k≤1.故答案是:k=2或0<k≤1.点评:本题属于解三角形的题型,主要考查了三角形解个数的问题,重在分情况分类讨论.易错点在于可能漏掉k=2的情况.三、解答题21.把多项式分解因式:(1)3a3b﹣12ab3;(2)(x2﹣x)2﹣4(x2﹣x)+4.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式提取公因式后,利用平方差公式分解即可;(2)原式利用完全平方公式分解,计算即可.解答:解:(1)原式=3ab(a2﹣4b2)=2ab(a+b)(a﹣2b);(2)原式=(x2﹣x﹣2)2=[(x﹣2)(x+1)]2=(x﹣2)2(x+1)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.(1)计算:;(2)解方程:.考点:解分式方程;分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=•﹣=﹣==﹣;(2)去分母得:x﹣5=8x﹣12,移项合并得:7x=7,解得:x=1.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.已知:如图,A、B、C、D四点在同一直线上,AB=CD,AE∥BF且AE=BF.求证:EC=FD.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线的性质得到∠A=∠FBD,由AB=CD可得到AC=BD,然后根据三角形全等的判定解答:解:∵AE∥BF,方法可证出△AEC≌△BFD,再根据全等的性质即可得到结论.∴∠A=∠FBD,又∵AB=CD,∴AB+BC=CD+BC.即AC=BD,在△AEC和△BFD中,∴△AEC≌△BFD(SAS),∴EC=FD.点评:本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角对应相等,那么这两个三角形全等;全等三角形的对应边相等,对应角相等.24.(1)先化简,再求值:(),其中m=9;(2)已知=3,求代数式的值.考点:分式的化简求值.分析:(1)先化简,再代入求值即可;(2)先得出x﹣y与xy,再化简求值即可.解答:解:(1)()=,=.当m=9时,原式=.(2)∵,∴x﹣y=﹣3xy∴=.点评:本题主要考查了分式的化简求值,解题的关键是正确的分简.25.列分式方程解应用题:(温馨提示:你可借助图示、表格等形式“挖掘”等量关系)赵老师为了响应市政府“绿色出行”的号召,上下班由自驾车方式改为骑自行车方式.已知赵老师家距学校20千米,上下班高峰时段,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多小时.求自驾车速度和自行速度各是多少.考点:分式方程的应用.分析:根据题目中的关键语句“骑自行车所用时间比自驾车所用时间多小时”,找到等量关系列出分式方程求解即可.解答:解:设自行车速度为x km/h,则汽车的速度为2x km/h,依题意得:,解方程得:180﹣90=5x∴x=18,经检验:x=18是所列方程的解,且符合实际意义,∴2x=36答:自行车速度为18km/h,汽车的速度为36km/h.点评:此题考查列分式方程解应用题,寻找题中的相等关系是关键.四、解答题26.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)考点:作图—基本作图.专题:作图题.分析:根据角平分线上的点到角的两边的距离相等可得,超市M建在∠COD的平分线上,再根据线段垂直平分线上的点到线段两端点的距离相等可知超市应建在AB的垂直平分线上,所以作出两线的交解答:解:点即可.如图所示,点M就是所要求作的建立超市的位置.点评:本题主要考查了基本作图,有作线段的垂直平分线,角的平分线,是基本作图,需要熟练掌握.27.阅读下列材料:如图1,在四边形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求证:CD=AB.小刚是这样思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求证及特殊角度数可联想到构造特殊三角形.即过点A 作AE ⊥AB 交BC 的延长线于点E ,则AB=AE ,∠E=∠D . 在△ADC 与△CEA 中,∵∴△ADC ≌△CEA , 得CD=AE=AB .请你参考小刚同学思考问题的方法,解决下面问题:如图2,在四边形ABCD 中,若∠ACB+∠CAD=180°,∠B=∠D ,请问:CD 与AB 是否相等?若相等,请你给出证明;若不相等,请说明理由.考点: 全等三角形的判定与性质.分析: 作AE=AB 交BC 延长线于E 点,则∠B=∠E ,而∠B=∠D ,得到∠D=∠E ,由∠ACB+∠DAC=180°,∠ACB+∠ECA=180°可得到∠DAC=∠ECA ,然后根据“AAS ”可判断△DAC ≌△ECA ,根据全等的性质得CD=AE ,于是有CD=AB .解答: 答:CD 与AB 相等.证明如下:作AE=AB 交BC 延长线于E 点, ∴∠B=∠E∵∠B=∠D∴∠D=∠E ,∵∠ACB+∠DAC=180°,∠ACB+∠ECA=180°,∴∠DAC=∠ECA ,∵在△DAC 和△ECA 中,,∴△DAC ≌△ECA (AAS ),∴CD=AE∴CD=AB .点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.28.在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.(1)如图1,若点D在线段BC上.求证:①AD=DE;②BC=DC+2CF;(2)如图2,若点D在线段BC的延长线上,(1)中的两个结论是否仍然成立?请说明理由.考点:全等三角形的判定与性质;等边三角形的性质.分析:(1)过D作DG∥AC交AB延长线于G,证得△AGD≌△DCE,得出:①AD=DE;进一步(2)证明方法同(1)得出①成立;②不成立.利用GD=CE,BD=CE得出②BC=DC+2CF;解答:证明:(1)如图,①过D作DG∥AC交AB于G∵△ABC是等边三角形,AB=BC,∴∠B=∠ACB=60°∴∠BDG=∠ACB=60°,∴∠BGD=60°∴△BDG是等边三角形,∴BG=BD∴AG=DC∵CE是∠ACB外角的平分线,∴∠DCE=120°=∠AGD∵∠ADE=60°,∴∠ADB+∠EDC=120°=∠ADB+∠DAG∴∠EDC=∠DAG,在△AGD和△DCE中,,∴△AGD≌△DCE(SAS)∴AD=DE②∵△AGD≌△DCE,∴GD=CE,∴BD=CE∴BC=CE+DC=DC+2CF(2)过D作DG∥AC交AB延长线于G,①成立;∵DG∥ACAG=DC∠BFGD=∠BDG=∠B=60°∠AGD=180°﹣60°=120°∵∠ACB=60,CE是∠ACB的外角平分线∴∠ACE=×(180°﹣∠ACB)=60°∠DCE=120°∵∠GAD=∠BGD﹣∠ADG=60°﹣∠ADG∵∠CDE=180°﹣∠GDB﹣∠ADE﹣∠ADG=180°﹣60°﹣60°﹣∠ADG=60°﹣∠ADG 在△AGD和△DCE中,,∴△AGD≌△DCE(ASA),AD=DE②不成立,此时BC=2CF﹣CD∵△AGD≌△DCE,∴GD=CE,∴BD=CE∴BC=BD﹣CD=CE﹣DC=2CF﹣CD.点评:此题主要考查了等边三角形的性质以及全等三角形的判定,利用边角关系以及等量代换求得结论.29.已知a2﹣3a﹣1=0,求a6+120a﹣2=1309.考点:分式的混合运算.专题:计算题.分析:由已知等式得到a2=3a+1,化简a6的值,利用a2﹣3a=1化简120a﹣2,再相加即可求出结果.解答:解:∵a2﹣3a﹣1=0,∴a2=3a+1,a6=(a2)3=(3a+1)2(3a+1)=(9a2+6a+1)(3a+1)=[9×(3a+1)+6a+1](3a+1)=(33a+10)(3a+1)=99a2+63a+10=99(3a+1)+63a+10=360a+109,∵a2﹣3a=1,120a﹣2=(a2﹣3a)=120﹣=120﹣×(a2﹣3a)=120﹣360a+1080,∴a6+120a﹣2=360a+109+120﹣360a+1080=1309.点评:本题主要考查了分式的混合运算,解题的关键是利用a2=3a+1及a2﹣3a=1化简求和.30.如图中,∠ABC=∠BCD=∠DAB=45°,BD=2,求四边形ABCD的面积为2.[来源:学&科&网Z&X&X&K]考点:等腰直角三角形;三角形的面积;勾股定理.分析:分别延长AD、CD,交BC、AB于点E、F,设DE=x,BE=y,可分别表示出BC、DF、AB,可表示出四边形ABCD的面积,整理可求得其面积.解答:解:延长AD交BC于点E,延长CD交AB于点F,设DE=x,BE=y,∵∠C=∠A=∠ABC=45°,∴AE⊥BC,CF⊥AB,∴CE=DE=x,CD=x,∴AD=AE﹣DE=y﹣x,∴AB=BE=y,DF=(y﹣x)∴S四边形ABCD=S△BCD+S△ABD=BC•DE+AB•DF=x(y+x)+×(y﹣x)×y=(xy+x2+y2﹣xy)=(x2+y2),在Rt△BDE中,x2+y2=BD2=4,∴S四边形ABCD=×4=2.故答案为:2.点评:本题主要考查等腰直角三角形的性质,利用条件构造出等腰直角三角形,设出边长表示出四边形的面积是解题的关键.31.已知:m2=n+2,n2=m+2(m≠n),求:m3﹣2mn+n3的值.考点:因式分解的应用;因式分解-提公因式法.专题:因式分解.分析:用降次的方法把m3和n3降次,m3=m•m2=m(n+2),n3=n•n2=n(m+2),达到降次的目的,然后再因式分解.解答:解:∵m2=n+2,n2=m+2∴m2﹣n2=(n+2)﹣(m+2)=n﹣m又∵m2﹣n2=(m+n)(m﹣n)∴(m+n)(m﹣n)=n﹣m∵m≠n∴m+n=﹣1∴m3﹣2mn+n3=m(n+2)﹣2mn+n(m+2)=2(m+n)=2×(﹣1)=﹣2.点评:运用平分差公式和提公因式法因式分解,然后求出代数式的值.32.已知:△ABC中,∠ABC=2∠ACB,∠ABC的平分线BD与∠ACB的平分线CD相交于点D,且CD=AB,求证:∠A=60°.考点:全等三角形的判定与性质.专题:证明题.分析:过点A作AE∥BC交BD延长线于E,连接CE,设AC、BE相交于点O.构建全等三角形:解答:证明:过点A作AE∥BC交BD延长线于E,连接CE,设AC、BE相交于点O.△AOB≌△EOC,利用该全等三角形的性质和等腰三角形的性质来去∠A的度数即可.则∠1=∠ACB,∠2=∠3.∵∠ABC=2∠ACB,∴∠3=∠ACB,∴OB=OC,∠1=∠2,∴OA=OE.在△AOB与△EOC中,,∴△AOB≌△EOC(SAS).∴∠BAC=∠CED,∠5=∠4=∠3,AB=CE∵CD=AB,∴CD=CE,∴∠CED=∠CDE=∠3+∠6,又∵∠DCE=∠5+∠7,∠6=∠7,∴∠CED=∠CDE=∠DCE=60°,∴∠BAC=∠CED=60°.点评:本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边、公共角、对顶角,必要时添加适当辅助线构造三角形.。

2014-2015学年北京版八年级数学上期中检测题及答案

2014-2015学年北京版八年级数学上期中检测题及答案

期中检测题(本试卷满分:120分,时间:120分钟)一、选择题(每小题4分,共32分)1.化简()22422+÷⎪⎪⎭⎫ ⎝⎛-+-m m m m 的结果为( )A.0B.1C.D.2.两码头相距千米,一船顺水航行需小时,逆水航行需小时,那么水流速度为( ) A.22s s a b ⎛⎫- ⎪⎝⎭千米/时B.22s s b a ⎛⎫- ⎪⎝⎭千米/时 C .b a ab -2千米/时 D .a b ab -2千米/时 3.分式方程123-=x x 的解为( ) A. B. C. D.4.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值 为( )A.5B.6C.7D.85.下列二次根式,不能与12合并的是( ) A.48 B.18 C.311 D.75-6.等式2111x x x -⋅+=-成立的条件是( )A.1x >B.1x <-C. D .≤7.若a 错误!未指定书签。

,b 为实数,且满足|,则的值为( )A.2 B .0 C .-2 D .以上都不对8.下列说法错误的是( )A.5是25的算术平方根B.1是1的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0二、填空题(每小题4分,共16分) 9.化简:mm m -+-2242=______________. 10.已知111x =-,则211x x +--=______.11.已知:一个正数的两个平方根分别是22-a 和4-a ,则a 的值是 .12.计算:________; 22512+________.三、解答题(共72分)13.(5分)当<0时,化简:++14.(5分)若x 1y1, 求y xy x y xy x ---+2232的值. 15.(5分)甲、乙两地相距,骑自行车从甲地到乙地,出发3小时20分钟后,骑摩托车也从甲地去乙地.已知的速度是的速度的3倍,结果两人同时到达乙地.求两人的速度.16.(5分)已知,,124-=-=+xy y x 求1111+++++y x x y 的值. 17.(5分)先化简,再求值:a a a a a -+-÷⎪⎭⎫ ⎝⎛--2244111,其中.1-=a 18. (5分)计算:211.2x x x x x x--⎛⎫-÷ ⎪⎝⎭- 19.(5分)先化简,再求值:(3)(3)(6)a a a a +---,其中1122a =+. 20.(5分)已知0)2(12=-+-ab a ,求 )2004)(2004(1...)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值. 21.(5分)小东在学习了b a b a=后, 认为ba b a =也成立, 因此他认为一个化简过程:545520520-⨯-=--=--545-⋅-==24=是正确的. 你认为他的化简对吗?如果不对请说明理由并改正.22.(5分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知的小数部分是, 的整数部分是b ,求的值.23.(7分)已知28-++=b a a M 是()8+a 的算术平方根,423+--=b a b N 是()3-b 的立方根,求N M +的平方根.24.(7分)先阅读下列的解答过程,然后再解答: 形如n m 2±的化简,只要我们找到两个数,使m b a =+,n ab =, 即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >. 例如:化简:347+. 解:首先把347+化为1227+,这里7=m ,12=n ,由于,, 即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+. 根据上述例题的方法化简:42213-.25.(8分)阅读下面问题:12)12)(12()12(1211-=-+-⨯=+; ();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+. 试求:(1)671+的值;(2)n n ++11(n 为正整数)的值. (3)计算:11111122334989999100+++⋅⋅⋅+++++++.期中检测题参考答案1.B 解析:()224412 1.2222m m m m m m m ⎛⎫-+÷+=⋅= ⎪---+⎝⎭2.A 解析:因为两码头相距千米,一船顺水航行需小时,逆水航行需小时, 所以这艘船顺水航行的速度为时千米as ,逆水航行的速度为时千米b s . 所以水流的速度为()().222121时千米逆水航行的速度顺水航行的速度⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=-b s a s b s a s 3.C 解析:方程两边同乘,得x x 233=-,解得 3=x .经检验:3=x 是原方程的解.所以原方程的解是3=x .4.B 解析:由题意,得,解得.5.B 解析:因为122348431832===,,,14231,33 3== 所以只有与不是同类二次根式,所以不能与合并.6.C 解析:由题意知,所以7.C 解析:∵ ,∴ ,,∴ .故选C .8.C 解析:A.因为=5,所以本说法正确;B.因为±=±1,所以1是1的一个平方根,本说法正确;C.因为±=±=±4,所以本说法错误;D.因为,,所以本说法正确.故选C . 9.2--m 解析:.22)2)(2(2422422--=-+-=--=-+-m m m m m m m m m 10.3 解析:因为111x =-,所以,所以211x x +-- 11.2 解析:由一个正数的两个平方根互为相反数,知,所以 12.3,13 解析:221232333,51216913.-=-=+==13.解:++=. 因为所以原式=-14.解:因为x 1y1所以所以()23232431.2()22244x y xy x xy y xy xy xy x xy y x y xy xy xy xy -++--+-====-------15.解:设的速度为千米/时,则的速度为千米/时. 根据题意,得方程.6020335050=-x x 解这个方程,得.经检验是原方程的根.所以.答:两人的速度分别为千米/时千米/时.16.解:()()()()12)(211112222+++++++=+++++=y x xy y x y x y x x y 原式().12)(222++++++-+=y x xy y x xy y x 把124-=-=+xy y x ,代入,得.15341412282416-=+--+-+=原式 17.解:.2)2()1(1244111222-=--⋅--=-+-÷⎪⎭⎫ ⎝⎛--a a a a a a a a a a a a 当1-=a 时,.31211=---=原式18.解:(1)2211= 1.22x x x x x x x x x x x x⎛⎫ ⎪⎝⎭-----÷∙=--- 19.解:(3)(3)(6)a a a a +--- 当1122a =+1222=+时,原式6 20.解:因为,所以,从而. 所以)2004)(2004(1...)2)(2(1)1)(1(11++++++++++b a b a b a ab 200620051...431321211⨯++⨯+⨯+⨯= 2006120051...41313121211-++-+-+-= .20062005200611=-= 21.解:不正确.理由:因为只有正数有平方根,负数是没有平方根的,所以520520--=--这一步是错误的. 注意ba b a=的前提条件是. 正确的化简过程是:.24545545520520520==⨯=⨯===-- 22. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴ =-2.又∵ -2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴ , ∴23. 解:因为是的算术平方根,所以又是的立方根,所以解得所以,,所以.所以的平方根为24.解:由题意可知,由于,所以.25.解:(1)671+1(76)(76)(76)⨯-=+-=76-. (2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-. (3)11111122334989999100+++⋅⋅⋅+++++++。

2014—2015学年度北京市西城区第一学期数学期中试题(附答案)

2014—2015学年度北京市西城区第一学期数学期中试题(附答案)

APNMO北京市西城区2014—2015学年度第一学期数学期中试题(附答案)第Ⅰ卷(选择题 共30分)一、选择题(本题共30分,每小题3分) 1.下列因式分解结果正确的是( )。

A .3221055(2)a a a a a +=+B .249(43)(43)x x x -=+- C .2221(1)a a a --=- D .256(6)(1)x x x x --=-+2.如图,OP 平分∠MON,PA⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为( )。

A. 1 B.2 C.3 D. 43.下列分式中,无论x 取何值,分式总有意义的是( )。

A .211x +B .21x x +C .311x - D .5x x -4.若分式2aa b+中的a 、b 的值同时扩大到原来的10倍,则分式的值( )。

A .是原来的20倍 B .是原来的10倍C .是原来的110D .不变 5.在数学活动课上,小明提出这样一个问题:如右图, ∠B =∠C = 90︒,E 是BC 的中点, DE 平分∠ADC, ∠CED = 35︒, 则∠EAB 的度数是 ( )。

A .65︒B .55︒C .45︒D .35︒6.某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x 棵,那么下面所列方程中,正确的是( )。

A .x x 45050600=- B .x x 45050600=+ C .50450600+=x x D .50450600-=x x 7.若分式112--x x 的值为0,则x 的值为( )。

A .1B .-1C .0D . 1±8.如果一个等腰三角形的两边长分别是4cm 和8cm ,那么此三角形的周长是( )。

A. 12cm B.16cm C. 20cm D. 16cm 或20cm 9.如图,在△ABC 中,BD 、CE 分别是AC 、AB 边上的中线,分别延长BD 、CE 到F 、G ,使DF =BD ,EG =CE ,则下列结论:①GA =AF ,②GA ∥BC ,③AF ∥BC ,④G 、A 、F 在一条直线上, ⑤A 是线段GF 的中点,其中正确的有( )。

201北京四中4~2015学年度第一学期期中测试初三年级数学试卷

201北京四中4~2015学年度第一学期期中测试初三年级数学试卷

北京四中2014~2015学年度第一学期期中测试初三年级数学试卷(考试时间为120分钟,试卷满分为120分)期中试卷一、选择题(每小题4分,共32分.下列各题均有四个选项,其中只有一个是符合题意的.)1.中国疾病预防控制中心食品安全专家推算出,一个7千克重的婴幼儿,如果每天吃150克奶粉,那么奶粉中的三聚氰胺含量不能超过0.00225克,将这个含量表示成科学记数法为().A.克B.克C.克D.克2.已知∽,若对应边,则它们的面积比等于().A.B.C.D.3.如图,CD是的直径,AB是弦,,则的度数为().A.B.C.D.4.如果一个圆锥的侧面积为,母线长为5cm,那么这个圆锥的底面直径为( ).A.4cm B.5cm C.3cm D.6cm5.抛物线的顶点坐标是( ).A.(1,2) B.(-1,2)C.(1,-2)D.(-1,-2)6.已知抛物线上有三个点A(1,)、B(2,)、C(,),则、、的大小关系为( ).A.B.C.D.7.函数与在同一坐标系的图象可能是().8.已知⊙A的圆心为点A(-1,0),且半径为1.现在⊙A沿x轴向右运动,当⊙A第一次与:有公共点时,点A移动的距离是().A.B.2 C.D.二、填空题(每小题4分,本题共16分)9.已知正方形的半径为2cm,则它的边心距为___________cm.10.一个多边形有9条对角线,则这个多边形有___________条边.11.已知两圆相切,且圆心距是1cm.若其中一圆的半径是3cm,那么另一个圆的半径是________cm.12.如图所示,已知抛物线经过点(-1,2),且与x轴交点的横坐标分别为、,其中,,则下列结论中:(1),(2),(3),(4);正确的有___________.三、解答题(每小题5分,本题共25分)13.计算:.14.用配方法解关于的方程:.15.已知:如图,中,,,,,求的长.16.已知:如图,的顶点坐标分别为(2,-2)、(3,1)、(1,2).试以原点为位似中心,作出相似比为2的,并写出各对应点的坐标.17.已知:如图,在⊙O中,CD经过圆心O,且于点D,弦CF交AB于点E.求证:.四、解答题(第18题7分,第19题5分,本题共12分)18.已知二次函数.(1)用配方法将函数解析式化为的形式;(2)当为何值时,函数值;(3)列表描点,在所给坐标系中画出该函数的图象;(4)观察图象,指出使函数值时自变量的取值范围.19.如图,这是从正方形剪裁下一个最大圆形材料后剩下的一块废料,其中AO=BO,并且AO⊥OB,当AO=1时,求在此图形中可裁剪出的最大的圆的面积.五、解答题(每小题6分,本题共12分)20.2008年奥运会结束后,某奥运场馆每天都吸引着大量的游客前来观光.事实表明,如果游客过多,不利于保护场馆设施,为了实施可持续发展,兼顾社会效益和经济效益,该场馆拟采用浮动门票价格的方法来控制参观人数.已知每张门票原价为40元,现设浮动门票为每张元,且,经市场调研发现,每天参观的人数与票价(元)之间存在着如图所示的一次函数关系.(1)根据图象,求与之间的函数关系式;(2)设该场馆一天的门票收入为元,试写出关于的函数关系式;(3)试问:当门票定为多少时,该场馆一天的门票收入最高?最高门票收入是多少元?21.已知关于的方程.(1)求证:无论取任何实数,方程总有实数根;(2)若等腰的一边长,另两边恰好是这个方程的两个根,求的周长.六、解答题(本题共5分)22.在四边形ABCD中,∠DAB=120°,对角线AC平分∠DAB.(1)如图1,当∠B=∠D=90°时,求证:AB+AD=AC;(2)如图2,当∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.七、解答题(本题满分6分)23.在中,,O为AB上一动点.以为圆心,为半径的圆交于点,过作于点,当O为的中点时,如图①,我们可以证得是的切线.(1)若点沿向点移动,如图②,那么与是否仍相切?请写出你的结论并证明;(2)若与相切于点,交于点(如图③).设的半径长为3,,求的长.八、解答题(本题满分6分)24.如图,对称轴为直线的抛物线经过点(6,0)和(0,4).(1)求抛物线的解析式;(2)设点()是抛物线上一动点,且位于第四象限,四边形OEAF是以为对角线的平行四边形.求的面积与之间的函数关系式,并写出自变量的取值范围;(3)当(2)中的的面积为24时,请判断是否为菱形?九、解答题(本题满分6分)25.抛物线交轴于两点,交轴于点,已知抛物线的对称轴为,.(1)求二次函数的解析式;(2)在抛物线对称轴上是否存在一点,使点到两点距离之差最大?若存在,求出点坐标;若不存在,请说明理由;(3)平行于轴的一条直线交抛物线于两点,若以为直径的圆恰好与轴相切,求此圆的半径.数学试卷答案一、选择题1.C 2.D 3.A 4.D 5.D 6.D 7.B 8.C二、填空题9.10.6 11.4或2 12.(1)(3)三、解答题13..14.当k≤1时,;当k﹥1时,x无实根.15.12.16.图略,A′(4,-4),B′(6,2),C′(2,4).17.提示:利用垂径定理证出弧相等,在证∠CBA=∠F,从而证出△CBE和△CFB相似,再证明比例关系.四、解答题18.(1)(2)3或(3)略(4)0﹤x﹤2.19.由题意,过点A、B作AO、BO的垂线交于点C.则可证四边形CBOA是正方形且是大正方形的四分之一.所以点C是的圆心.连结CO,设点D是CO上一点,以点D为圆心作圆切AO、BO于E、F,切于N点.则⊙D是最大的圆.过D点作DM⊥CA于M,连结DE、DF,则可证四边形MDEA是矩形.设⊙D半径为x,则.解得,(不合题意,舍去).答:最大圆的半径为.五、解答题20.(1)设函数解析式为,由图象知:直线经过,两点,则解得函数解析式为.(2),即.(3),当票价定为60元时,该景点门票收入最高,此时门票收入为180000元.21.(1)方法一:,所以无论k取任何实数,方程总有实数根.方法二:,,,,即无论k取任何实数,方程总有实数根.(2)分两种情况考虑:若,则,方程为,所以,.此时,,不能构成三角形,舍去.若,则,所以,方程为,.此时可以构成三角形.综上所述,的周长为.六、解答题22.(1),AC平分,.又,,,.(2)作的延长线于M,作于N.又AC平分,,可证≌(AAS)..七、解答题23.(1)与相切.证明:连结,,.又,,.,与相切.(2)解法一:连结,是的切线,.又,四边形为矩形..设,则,.与相切,.即,解得.的长度为4.解法二:(上同解法一)设,则,,,即,解得.的长度为.解法三:(上同解法一).在中,,.又与相切,,.,,即的长度为4.八、解答题24.(1)由抛物线的对称轴是,可设解析式为.把两点坐标代入上式,得解之,得.故抛物线解析式为,顶点为.(2)点在抛物线上,位于第四象限,且坐标适合,,即,表示点到的距离.是的对角线,.因为抛物线与轴的两个交点是和,所以,自变量的取值范围是.(3)根据题意,当时,即.化简,得.解之,得.故所求的点有两个,分别为,.点满足,是菱形;点不满足,所以不是菱形.九、解答题25.(1)设抛物线的解析式为,∵点、在抛物线上,∴解得∴抛物线的解析式为.(2),∴A(,0),B(3,0).∴.∴PA=PB,∴.如图1,在△PAC中,,当P在AC的延长线上时,.设直线AC的解析式为,∴解得∴直线AC的解析式为.当时,.∴当点P的坐标为(1,)时,的最大值为.(3)如图2,当以MN为直径的圆与轴相切时,.∵点N的横坐标为,∴.∴.解得,.。

2015北京四中初二(上)期中数 学

2015北京四中初二(上)期中数    学

2015北京四中初二(上)期中数学一、选择题(本题共30分,每小题3分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣43.(3分)使分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≤1 D.x≥14.(3分)点A(2,3)关于y轴成轴对称的点的坐标是()A.(3,﹣2)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)5.(3分)在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′6.(3分)下列各式中,正确的是()A.B.C.=D.7.(3分)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.188.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°9.(3分)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()A.30°B.45°C.60°D.75°10.(3分)如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于()A.50°B.75°C.80°D.105°二、填空题(本题共20分,每小题2分)11.(2分)已知某种植物花粉的直径为35000纳米,即0.000035米,把0.000035用科学记数法表示为.12.(2分)因式分解:3x2﹣6x+3=.13.(2分)计算的结果是.14.(2分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于D,DE⊥AB于E.若DE=1cm,则BC= cm.15.(2分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.16.(2分)如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则△OMN的周长=.17.(2分)已知,则代数式的值为.18.(2分)如图△ABC中,AD平分∠BAC,AB=4,AC=2,且△ABD的面积为3,则△ACD的面积为.19.(2分)如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=°.20.(2分)如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A﹣D﹣C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点,在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有个.三、解答题21.(8分)分解因式.(1)x2(m﹣2)+9y2(2﹣m)(2)(x2+1)2﹣4x2.22.(8分)计算:(1).(2).23.(5分)先化简,再求值:(1﹣)÷,其中a=﹣1.24.(5分)解方程:.25.(5分)已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.26.(5分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字?27.(6分)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.28.(8分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是直线l上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:DF=EF.附加题(满分20分,计入总分)29.(4分)已知:a﹣b=2,2a2+a﹣4=0,则=.30.(4分)已知:,则(b﹣c)x+(c﹣a)y+(a﹣b)z的值为.31.(12分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C点的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.数学试题答案一、选择题(本题共30分,每小题3分)1.【解答】A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.2.【解答】a2﹣4a=a(a﹣4),故选:A.3.【解答】根据题意得:x﹣1≠0,解得:x≠1.故选:A.4.【解答】点A(2,3)关于y轴成轴对称的点的坐标是(﹣2,3).故选:B.5.【解答】A、∠A=∠A′,AB=A′B′AC=A′C′,根据SAS能推出△ABC≌△A′B′C′,故A选项错误;B、具备∠A=∠A′,AB=A′B′,BC=B′C′,不能判断△ABC≌△A′B′C′,故B选项正确;C、根据ASA能推出△ABC≌△A′B′C′,故C选项错误;D、根据AAS能推出△ABC≌△A′B′C′,故D选项错误.故选:B.6.【解答】A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.7.【解答】①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.故选B.8.【解答】∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选A.9.【解答】要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选:C.10.【解答】∵MP和QN分别垂直平分AB和AC,∴BP=AP,CQ=AQ,∴∠B=∠PAB,∠C=∠QAC,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=130°﹣50°=80°,故选:C.二、填空题(本题共20分,每小题2分)11.【解答】0.000035米=3.5×10﹣5米.故答案为:3.5×10﹣5米.12.【解答】3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.13.【解答】原式=2﹣1+3=4.14.【解答】∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE=1,∵∠B=30°,∴BD=2DE=2,∴BC=1+2=3,故答案为:3.15.【解答】∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.16.【解答】∵BO平分∠ABC,∴∠ABO=∠DBO,又OM∥AB,∴∠ABO=∠MOB,∴∠MBO=∠MOB,∴OM=BM,同理ON=CM,∵BC=10cm,则△OMN的周长c=OM+MN+ON=BM+MN+NC=BC=10cm.故答案为10cm.17.【解答】解法一:∵﹣=﹣=3,即x﹣y=﹣3xy,则原式===4.解法二:将原式的分子和分母同时除以xy,===4故答案为:4.18.【解答】过点D作DE⊥AB,DF⊥AC,∵AD平分∠BAC,∴DE=DF,∵AB=4,△ABD的面积为3,∴S△ABD=AB•DE=×4×DE=3,解得DE=;∴DF=,∵AC=2,∴S△ACD=A C•DF=×2×=.故答案为:.19.【解答】∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°,∴∠PCD=45°.故答案为:45°.20.【解答】分为三种情况:①以BC为底时,有两个,是BC的垂直平分线与以B为圆心BA为半径的圆的交点;②以BP为底,C为顶点时,有两个,是以B为圆心BA为半径的圆与以C为圆心BC为半径的圆的交点;③以CP为底,B为顶点时,没有,∵是以B为圆心BA为半径的圆与以B为圆心BC为半径的圆没有交点;综上满足要求的P有4个,故答案为:4.三、解答题21.【解答】解:(1)原式=x2(m﹣2)+9y2(m﹣2)=(m﹣2)(x2﹣9y2)=(m﹣2)(x﹣3y)(x+3y)(2)原式=(x2+1+2x)(x2+1﹣2x)=(x﹣1)2(x+1)2.22.【解答】解:(1)原式=••=﹣;(2)原式===.23.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.24.【解答】解:去分母得:(x+3)(x+1)﹣8=x2﹣1,去括号得:x2+4x+3﹣8=x2﹣1,移项合并得:4x=4,解得::x=1,经检验x=1是原方程的增根,分式方程无解.25.【解答】证明:∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠EAC﹣∠BAE,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC.26.【解答】解:设乙每分钟打x个字,则甲每分钟打(x+5)个字,由题意得,=,解得:x=45,经检验:x=45是原方程的解.答:甲每分钟打50个字,乙每分钟打45个字.27.【解答】解:(1)PC∥a(两直线平行,同位角相等);(2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA(对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.28.【解答】解:(1)∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)成立∵∠BDA=∠AEC=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;(3)由(2)知,△ADB≌△CAE,∴BD=EA,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.∴DF=EF.附加题(满分20分,计入总分)29.【解答】∵a﹣b=2,∴b=a﹣2.∴=+==.∵2a2+a﹣4=0,∴.∴=.故答案为:﹣2.30.【解答】设=k,则b+c﹣a=①,c+a﹣b=②,a+b﹣c=③.由①+②+③得:a+b+c=④,由④﹣①得:a=,由④﹣②得:b=,由④﹣③得:c=,则原式=•x+•y+•z==0.故答案为0.31.【解答】(1)解:过点C作CF⊥y轴于点F,∴∠AFC=90°,∴∠CAF+∠ACF=90°.∵△ABC是等腰直角三角形,∠BAC=90°,∴AC=AB,∠CAF+∠BAO=90°,∠AFC=∠BAC,∴∠ACF=∠BAO.在△ACF和△ABO中,,∴△ACF≌△ABO(AAS)∴CF=OA=1,AF=OB=2∴OF=1∴C(﹣1,﹣1);(2)证明:过点C作CG⊥AC交y轴于点G,∴∠ACG=∠BAC=90°,∴∠AGC+∠GAC=90°.∵∠CAG+∠BAO=90°,∴∠AGC=∠BAO.∵∠ADO+∠DAO=90°,∠DAO+∠BAO=90°,∴∠ADO=∠BAO,∴∠AGC=∠ADO.在△ACG和△ABD中,∴△ACG≌△ABD(AAS),∴CG=AD=CD.∵∠ACB=∠ABC=45°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;(3)解:在OB上截取OH=OD,连接AH由对称性得AD=AH,∠ADH=∠AHD.∵∠ADH=∠BAO.∴∠BAO=∠AHD.∵BD是∠ABC的平分线,∴∠ABO=∠EBO,∵∠AOB=∠EOB=90°.在△AOB和△EOB中,,∴△AOB≌△EOB(ASA),∴AB=EB,AO=EO,∴∠BAO=∠BEO,∴∠AHD=∠ADH=∠BAO=∠BEO.∴∠AEC=∠BHA.在△AEC和△BHA中,,∴△ACE≌△BAH(AAS)∴AE=BH=2OA∵DH=2OD∴BD=2(OA+OD).。

北京四中2015-2016学年八年级上期中数学试卷含答案解析

北京四中2015-2016学年八年级上期中数学试卷含答案解析

6.下列各式中,正确的是(
)
A.
B.
C.
=
D.
7.等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为(
)
A.12 B.15 C.12 或 15 D.18
8.如图,△ABC 中,AB=AC,∠A=36°,BD 是 AC 边上的高,则∠DBC 的度数是( )
三、解答题 21.分解因式. (1)x2(m﹣ 2)+9y2(2﹣)m (2)(x2+1)2﹣ 4x.2
2015-2016 学年北京四中八年级(上)期中数学试卷
一、选择题(本题共 30 分,每小题 3 分)
1.下列图形中,不是轴对称图形的是(
)
A.
B.
C.
D.
2.把 a2﹣ 4a 多项式分解因式,结果正确的是( ) A.a(a﹣ 4) B.(a+2)(a﹣ 2) C.a(a+2)(a﹣ 2) D.(a﹣ 2)2﹣ 4
3.使分式
有意义,则 x 的取值范围是(
)
A.x≠1 B.x=1 C.x≤1 D.x≥1
4.点 A(2,3)关于 y 轴成轴对称的点的坐标是( ) A.(3,﹣ 2) B.(﹣ 2,3) C.(﹣ 2,﹣ 3) D.(2,﹣ 3)
5.在△ABC 和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使 △ABC≌△A′B′C′一定成立的是( ) A.AC=A′C′ B.BC=B′C′ C.∠B=∠B′ D.∠C=∠C′
22.计算:
(1)

(2)

23.先化简,再求值:(1﹣ )÷
,其中 a=25.已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.

北京四中2014~2015学年度第二学期期中考试初二年级数学学科试题及答案

北京四中2014~2015学年度第二学期期中考试初二年级数学学科试题及答案

ACB (第4题图)数学试卷(时间:100分钟满分:120分) 姓名:班级:成绩: ____________一、选择题(每小题3分,共30分)1.□ABCD 中,∠A :∠B =1:2,则∠A 的度数为(). A .30° B .45° C .60° D .120°2.某服装店试销一款女式防晒服,试销期间对不同颜色的防晒服的销售情况做了统计. 如果服装店经理最关心的是哪种颜色的防晒服最畅销,那么对经理最有意义的统计量是().A .平均数B .众数C .中位数D .方差3.关于x 的一元二次方程222310x x a ---=的一个根为2,则a 的值是(). A .0 B .1 C .-1 D .1±4.如图,一棵大树在离地面9米高的B 处断裂,树顶A 落在离树底部C 点12米处,则大树断裂之前的高度为(). A .9米 B .15米 C .21米 D .24米 5.某城2012年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2014年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是(). A .300(1+x )=363 B .300(1+x )²=363 C .300(1+2x )=363 D .363(1-x )²=3006.如图,□ABCD 中,AB=10,BC=6,E 、F 分别是AD 、DC 的中点,若EF=7,则四边形EACF 的周长是(). A .20 B .22 C .29 D .31 7.不能..判定为平行四边形的是(). A .一组对边平行,一组对角相等的四边形B .一组对边平行,一条对角线被另一条对角线平分的四边形C .一组对边相等,另一组对边平行的四边形D .两条对角线互相平分的四边形8.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是().A .2.5B .2 9.如果关于x 的一元二次方程210ax x +-=有实数根,则a 的取值范围是().A .14a >-B .14a ≥-C .14a ≥-且a ≠0D .14a >-且a ≠0A BD CEF (第6题图)(第8题图)10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC上,且13AE AB =,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( ). A .①②B .②③C .①③D .①④ 二、填空题(每小题2分,共20分)11.已知a 是方程22430x x +-=的一个根,则代数式22a a +=_______. 12.矩形的两条对角线所夹的锐角为60º,较短的边长为12,则对角线长为______. 13.如果把代数式223x x -+化成2()x h k -+的形式,其中h ,k 为常数,那么h+k 的值是.14.如图,把两块相同的含30角的三角尺如图放置,若AD =,则三角尺的最长边长为__________cm . 15.样本数据3,6,a ,4,2的平均数是5,则a =_____;这个样本的方差是______. 16.等腰ABC ∆两边的长分别是一元二次方程2560x x -+=的两个解,则这个等腰三角形的周长是____________. 17.如图,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线 AC 上的一个动点,则PE+PB 的最小值是__________.18.在实数范围内定义一种运算“※”,其规则为♢※△=♢²-2△,根据这个规则,方程(x -3)※x 21=0的解为__________. (第14题图)(第17题图)(第19题图)19.如图,正方形ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE =30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ =AE ,则AP 等于 cm .20.如图,在平面直角坐标系xOy 中,有一边长为1的正方形OABC ,点B 在x 轴的正半轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB 1为边作第三个正方形OB 1 B 2C 2,…,(第10题图)照此规律作下去,则B2的坐标是;B2015的坐标是.三、解答题21.(每小题3分)解下列关于x的方程(1)3x(x-2)=2x-4;(2)x2-3x-28=0;(3)3x2-4x=2;(4)x2+mx+2=mx2+3x.(m≠1)22.(本题5分)如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,求四边形ACBD的面积.D23.(本题5分)如图,四边形ABCD 中,AB//CD ,AC 平分∠BAD ,CE//AD 交AB 于E.(1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断△ABC 的形状,并说明理由.24.(本题5分)已知关于x 的方程.022)13(2=+++-m x m mx(1) 求证:无论m 取任何实数,方程恒有实数根;(2) 若该方程有两个整数根,且m 为整数,求m 的值. 25.(本题5分)列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园ABCD ,为了节约材料,花园的一边AD 靠着原有的一面墙,墙长为8米(AD <8),另三边用栅栏围成,已知栅栏总长为24米,求花园一边AB 的长.A26.(本题5分)四中在开展“好算手”系列活动中,为了解本校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该1200名学生共参加了多少次活动.27.(本题6分)已知,矩形ABCD 中,延长BC 至E ,使BE=BD ,F 为DE 的中点,连结AF .(1) 若AB =3,AD =4,求 DE 的长; (2) 求证:∠ADB=2∠510152012345次数EA28.(本题7分)如图1,在△ABC 中,AD 是BC 上的高,EF 是中位线,AD 与EF 相交于点O .若将△AEO 与△AFO 分别绕E 、F 两点旋转180°,可与梯形EBCF 构成矩形PBCQ ,我们把这样形成的矩形称为△ABC 的一个等积矩形. (1)若△ABC 的边BC =5,高AD =6,则等积矩形PBCQ 的长为________,宽为________;(2)如图2,在△ABC 中,∠C =90°,BC =2,AC =4,试求△ABC 的所有等积矩形的长和宽;(3)如图3,矩形ABCD 中,AB =2,BC =3,那么能形成这样的等积矩形的三角形有多少个?试探究其中周长最小的三角形的三边长.A B C DP Q E F O A C B B C A D 图1 图2 图3四、附加题1.(本题6分)如图在矩形ABCD 中,AB =3,AD =1,点P 在线段AB 上运动设AP =x ,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E ,F 为折痕与矩形边的交点),再将纸片还原.(1)当点E 与点A 重合时,折痕EF 的长为; (2)当四边形EPFD 为菱形时,x 的取值范围为; (3)当x =2时,菱形EPFD 的边长为_____________.2.(本题7分)已知:α,β(α>β)是一元二次方程x 2-x -1=0的两个实数根,设s 1=α+β,s 2=α2+β2,…,s n =αn+βn.根据根的定义,有α2-α-1=0,β2-β-1=0,将两式相加,得(α2+β2)-(α+β)-2=0,于是,得s 2-s 1-2=0.根据以上信息,解答下列问题:(1)利用配方法求α,β的值,并直接写出s 1,s 2的值;(2)猜想:当n ≥3时,s n ,s n -1,s n -2之间满足的数量关系,并证明你的猜想的正确性;(3)根据(2)中的猜想,求(1+52)5+(1-52)5的值.PECC3.(本题7分)如图1,P为正方形ABCD的边CD上一点,E在CB的延长线上,BE=DP,∠CEP的平分线交正方形的对角线AC于点F.(1)求证:AE=AF;(2)如图2,AM⊥PE于M,FN⊥PE于N,求证:AM+FN=AD;(3)在(2)的条件下,若正方形ABCD的边长为a,N为PM的中点,求线段FN的长(用含a的代数式表示).A B D CEFP图1 图2ABDCEFPMN一、选择题1.C.2.B.3.D4.D5.B6.C7.C8.B9.C 10.D 二、填空题11.32 12.24 13.3 14.12 15. 10,8 16.7或819.2或120.,(22- 三、解答题 21.(1)1222,3x x == ; (2)127,4x x ==-(3)12x x ==;(4)1221,1x x m ==- 22.36 23.直角三角形 24.(1)略 (2)1m =±.25.x=10.26.(1)平均数=3.3 众数4, 中位数3. (2)3960(2)略 28.(1)5 3(2)△ABC 可形成如下三个等积矩形:A A A图①中的矩形的长为2,宽为2 图②中的矩形的长为4,宽为1 图③中的矩形的长为42+22=25,宽为 4×2 2×25=255(3)能形成这样的等积矩形的三角形有无数个其中,当以BC 为底时,构成已知等积矩形的三角形的高是4则这样的三角形的另一顶点P 在图④中的四个矩形拼成的图形中的EF 上 当P 为EF 的中点时,△PBC 的周长最小 PB +PC +BC =3+32+82=3+73当以AB 为底时,构成已知等积矩形的三角形的高是6, 这样的三角形的另一顶点P 在图⑤中的EF 上 同理当P 为EF 的中点时,△P AB 的周长最小 PB +P A +AB =2+22+122=2+237∵3+73<12,2+237>14∴能形成这样的等积矩形的三角形的周长最小值为3+73 三角形的三边长分别为3,732,732BCAD图⑤FE BACDE F PP图④-11-附加题:53;(3)4x ≤≤ 2. 解:(1)移项,得x2-x =1配方,得x2-2×x ×1 2+(1 2)2=1+(1 2)2即(x - 12)2= 54开平方,得x - 12=± 52,即x =1±52∵α>β,∴α=1+52,β=1-52································································ 3分 于是s 1=α+β=1,s 2=s 1+2=3 ···································································· 5分 (2)猜想:s n =s n -1+s n -2························································································· 6分 证明:根据根的定义,有α2-α-1=0两边都乘以αn -2,得αn -αn -1-αn -2=0 ①同理,βn -βn -1-βn -2=0 ②①+②,得(αn +βn )-(αn -1+βn -1)-(αn -2+βn -2)=0∵s n =αn +βn ,s n -1=αn -1+βn -1,s n -2=αn -2+βn -2∴s n -s n -1-s n -2=0,即s n =s n -1+s n -2 ····························································· 10分 (3)由(1)知,s 1=1,s 2=3由(2)中的关系式可得:s 3=s 2+s 1=4,s 4=s 3+s 2=7,s 5=s 4+s 3=11,3.(1)连接AP∵正方形ABCD ,∴AB =AD ,∠ABE =∠D =90° 又BE =DP ,∴△ABE ≌△ADP ∴AE =AP ,∠BAE =∠DAP ∵∠BAP +∠DAP =90° ∴∠BAP +∠BAE =90°,即∠EAP =90° ∴∠AEP =∠APE =45°A BD CEFP∵正方形ABCD,∴∠ACB=45°∴∠AEP=∠ACB∵∠AEF=∠AEP+∠PEF,∠AFE=∠ACB+∠CEF 又∠PEF=∠CEF,∴∠AEF=∠AFE∴AE=AF(2)过F作FH⊥AM于H则四边形MHFN是矩形,∴FN=MH由(2)知,AE=AP,AE=AF∴AF=AP易知△AEP是等腰直角三角形又AM⊥PE,∴AM=PM,∠MAP=45°∴∠HAF=∠DAP=45°-∠PAF又∠AHF=∠D=90°,∴△AHF≌△ADP∴AD=AH=AM+MH=AM+FN即AM+FN=AD(3)设FN=x,则PM=AM=a-x,AP=2(a-x)∵△AHF≌△ADP,∴DP=FH=MN=12PM=12(a-x)在Rt△ADP中,a2+[12(a-x)]2=[2(a-x)]2整理得:7x2-14ax+3a2=0解得:x1=a+277a(舍去),x1=a-277a即FN=a-277aABDCEFPMNH-12-。

2014-2015年北京市教育学院附中八年级上学期数学期中试卷与答案

2014-2015年北京市教育学院附中八年级上学期数学期中试卷与答案

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

DBC2014-2015学年北京市教育学院附中八年级(上)期中数学试卷一.用心选一选:(每小题3分,共30分)1.(3.00分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3.00分)下列各式中,正确的是()A.=B.+=C.=D.=3.(3.00分)如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6 cm B.7 cmC.8 cm D.9 cm4.(3.00分)下列因式分解结果正确的是()A.15a3+10a2=5a(3a2+2a) B.9﹣4x2=(3+4x)(3﹣4x)C.a2﹣10a﹣25=(a﹣5)2D.a2﹣3a﹣10=(a+2)(a﹣5)5.(3.00分)如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上依画法证明△POM≌△PON根据的是()A.SSS B.SAS C.AAS D.HL6.(3.00分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x个零件,那么下面所列方程中正确的是()A.=B.=C.=D.=7.(3.00分)如图,已知△ABC,则甲、乙、丙三个三角形中和△ABC全等的是()A.只有乙B.甲和乙C.只有丙D.乙和丙8.(3.00分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.下列结论中正确的有()(1)ED=EC;(2)OD=OC;(3)∠ECD=∠EDC;(4)EO平分∠DEC;(5)OE⊥CD;(6)直线OE是线段CD的垂直平分线.A.3个 B.4个 C.5个 D.6个9.(3.00分)如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.(3.00分)在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是()A.35°B.45°C.55°D.65°二.细心填一填:(每小题3分,共24分).11.(3.00分)计算:20142﹣20132=.12.(3.00分)点A(2,﹣1)关于x轴对称的点的坐标是.13.(3.00分)如果分式的值是零,那么x的值是.14.(3.00分)计算:﹣=.15.(3.00分)如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.(3.00分)如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.17.(3.00分)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.18.(3.00分)如图,正方形ABCD的边长为2,M、N分别为AB、AD的中点,在对角线BD上找一点P,使△MNP的周长最小,则此时PM+PN=.三.用心做一做(每题5分,共35分)19.(5.00分)因式分解:4a2﹣32a+64.20.(5.00分).21.(5.00分)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.22.(5.00分)解方程:﹣=1.23.(5.00分)先化简:后,再选择一个你喜欢的x 值代入求值.24.(5.00分)如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?25.(5.00分)a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留作图痕迹.四.解答题(26题5分,27题各6分,共11分)26.(5.00分)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.27.(6.00分)如下图,在△ABC中,AP平分∠CAB(∠CAB<60°)(1)如图(1)点P在BC上,若∠CAB=42°,∠B=32°,确定AB,AC,PB之间的数量关系,并证明.(2)如图(2),点P在△ABC内,若∠CAB=2α,∠ABC=60°﹣α,且∠CBP=30°,求∠APC的度数(用含α的式子表示).2014-2015学年北京市教育学院附中八年级(上)期中数学试卷参考答案与试题解析一.用心选一选:(每小题3分,共30分)1.(3.00分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.2.(3.00分)下列各式中,正确的是()A.=B.+=C.=D.=【解答】解:A、,不能再化简,故本选项错误;B、+=+=,故本选项错误;C、=,故本选项错误;D、=,故本选项正确;故选:D.3.(3.00分)如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6 cm B.7 cmC.8 cm D.9 cm【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=5cm,BC=4cm,∴△DBC的周长是:BD+CD+BC=AD+CD+BC=AC+BC=5+4=9(cm).故选:D.4.(3.00分)下列因式分解结果正确的是()A.15a3+10a2=5a(3a2+2a) B.9﹣4x2=(3+4x)(3﹣4x)C.a2﹣10a﹣25=(a﹣5)2D.a2﹣3a﹣10=(a+2)(a﹣5)【解答】解:A、15a3+10a2=5a2(3a+2),故此选项错误;B、9﹣4x2=(3+2x)(3﹣2x),故此选项错误;C、a2﹣10a﹣25无法因式分解,故此选项错误;D、a2﹣3a﹣10=(a+2)(a﹣5),正确.故选:D.5.(3.00分)如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上依画法证明△POM≌△PON根据的是()A.SSS B.SAS C.AAS D.HL【解答】解:∵OM=ON,OP=OP,∠OMP=∠ONP=90°∴△OPM≌△OPN所用的判定定理是HL.故选:D.6.(3.00分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x个零件,那么下面所列方程中正确的是()A.=B.=C.=D.=【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选:D.7.(3.00分)如图,已知△ABC,则甲、乙、丙三个三角形中和△ABC全等的是()A.只有乙B.甲和乙C.只有丙D.乙和丙【解答】解:在△ABC和乙三角形中,有两边a、c分别对应相等,且这两边的夹角都为50°,由SAS可知这两个三角形全等;在△ABC和丙三角形中,有一边a对应相等,和两组角对应相等,由AAS可知这两个三角形全等,所以在甲、乙、丙三个三角形中和△ABC全等的是乙和丙,故选:D.8.(3.00分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.下列结论中正确的有()(1)ED=EC;(2)OD=OC;(3)∠ECD=∠EDC;(4)EO平分∠DEC;(5)OE⊥CD;(6)直线OE是线段CD的垂直平分线.A.3个 B.4个 C.5个 D.6个【解答】解:∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=ED,故(1)正确;在Rt△OCE和Rt△ODE中,,∴Rt△OCE≌Rt△ODE(HL),∴OD=OC,∠ECD=∠EDC,故(2)(3)正确;∴EO平分∠DEC,故(4)正确;∵OC=OD,OE平分∠AOB,∴OE⊥CD,故(5)正确;直线OE是线段CD的垂直平分线,故(6)正确;综上所述,6个结论都正确.故选:D.9.(3.00分)如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.4【解答】解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,在△AEB和△AFD中∴△AEB≌△AFD(ASA),=S△AFD,∴S△AEB∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=16.故选:A.10.(3.00分)在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是()A.35°B.45°C.55°D.65°【解答】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,即∠CDA=110°,∠DAB=70°,∴∠EAB=35°.故选:A.二.细心填一填:(每小题3分,共24分).11.(3.00分)计算:20142﹣20132=4027.【解答】解:20142﹣20132=(2014+2013)×(2014﹣2013)=4027.故答案为:4027.12.(3.00分)点A(2,﹣1)关于x轴对称的点的坐标是(2,1).【解答】解:点A(2,﹣1)关于x轴对称的点的坐标是(2,1),故答案为:(2,1).13.(3.00分)如果分式的值是零,那么x的值是5.【解答】解:依题意得x﹣5=0且x+2≠0.解得x=5.故答案是:5.14.(3.00分)计算:﹣=.【解答】解:原式==.故答案为:.15.(3.00分)如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.16.(3.00分)如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是3.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AC于点E,PE=3,∴点P到AB的距离=PE=3.故答案为:3.17.(3.00分)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标(1,5)或(1,﹣1)或(5,﹣1).【解答】解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,﹣1),(5,﹣1),故答案为:(1,5)或(1,﹣1)或(5,﹣1).18.(3.00分)如图,正方形ABCD的边长为2,M、N分别为AB、AD的中点,在对角线BD上找一点P,使△MNP的周长最小,则此时PM+PN=2.【解答】解:∵DN=AM=AN=1,∠A=90°,∴由勾股定理求出MN=,即MN值一定,∴要使△MNP的周长最小,只要MP+NP最小即可,过N作NG⊥BD交BD于G,交CD于F,连接MF交BD于P,∵四边形ABCD是正方形,∴∠NDB=∠FDB=∠ADC=45°,∴∠DNG=∠DFG=90°﹣45°=45°,∴∠DNG=∠NDG,∠DFG=∠FDG,∴NG=DG=FG,即N、F关于BD对称,∴PN=PF,∴MP+NP=MP+PF=MF,即此时的PN+PM的值最小,∵BD⊥NF,NG=FG,∴DN=DF=1=AM,∵四边形ABCD是正方形,∴AM∥DF,∴四边形AMFD是平行四边形,∴MF=AD=2,即MP+NP=2,故答案为:2.三.用心做一做(每题5分,共35分)19.(5.00分)因式分解:4a2﹣32a+64.【解答】解:4a2﹣32a+64=4(a2﹣8a+16)=4(a﹣4)2.20.(5.00分).【解答】解:原式=+=x+x﹣1=2x﹣1.21.(5.00分)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.22.(5.00分)解方程:﹣=1.【解答】解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.23.(5.00分)先化简:后,再选择一个你喜欢的x 值代入求值.【解答】解:原式=(2分)=(4分)=(5分)=;(7分)当x=3时,原式=.(9分)注:本题答案不唯一,只要x的取值不为0、2、4,计算正确均可得分.24.(5.00分)如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?【解答】证明:∵BA⊥AC,DA⊥AE,∴∠BAC=∠DAE=90°,在Rt△ABC和Rt△ADE中,,∴Rt△ADE≌Rt△ABC,∴∠E=∠C,AC=AE,∴在△ACM和△AEN中,∴△ACM≌△AEN(ASA),∴AM=AN.25.(5.00分)a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留作图痕迹.【解答】解:点O或O′就是所求的点.四.解答题(26题5分,27题各6分,共11分)26.(5.00分)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.【解答】证明:如图,过点P作PE⊥BA于E,∵∠1=∠2,PF⊥BC于F,∴PE=PF,∠PEA=∠PFB=90°,在Rt△PEA与Rt△PFC中,∴Rt△PEA≌Rt△PFC(HL),∴∠PAE=∠PCB,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.27.(6.00分)如下图,在△ABC中,AP平分∠CAB(∠CAB<60°)(1)如图(1)点P在BC上,若∠CAB=42°,∠B=32°,确定AB,AC,PB之间的数量关系,并证明.(2)如图(2),点P在△ABC内,若∠CAB=2α,∠ABC=60°﹣α,且∠CBP=30°,求∠APC的度数(用含α的式子表示).【解答】解:(1)AB﹣AC=PB;证明:在AB上截取AD,使AD=AC.连PD(如图1)∵AP平分∠CAB,∴∠1=∠2在△ACP和△ADP中,,∴△ACP≌△ADP(SAS),∴∠C=∠3.∵△ABC中,∠CAB=42°,∠ABC=32°,∴∠C=180°﹣∠CAB﹣∠ABC=180°﹣42°﹣32°=106°.∴∠3=106°.∴∠4=180°﹣∠3=180°﹣106°=74°,∠5=∠3﹣∠ABC=106°﹣32°=74°.∴∠4=∠5.∴PB=DB.∴AB﹣AC=AB﹣AD=DB=PB.(2)延长AC至M,使AM=AB,连接PM,BM.(如图2)∵AP平分∠CAB,∠CAB=2α,∴∠1=∠2=•2α=α.在△AMP和△ABP中,,∴△AMP≌△ABP(SAS),∴PM=PB,∠3=∠4.∵∠ABC=60°﹣α,∠CBP=30°,∴∠4=(60°﹣α)﹣30°=30°﹣α.∴∠3=∠4=30°﹣α.∵△AMB中,AM=AB,∴∠AMB=∠ABM=(180°﹣∠MAB)÷2=(180°﹣2α)÷2=90°﹣α.∴∠5=∠AMB﹣∠3=(90°﹣α)﹣(30°﹣α)=60°.∴△PMB为等边三角形.∵∠6=∠ABM﹣∠ABC=(90°﹣α)﹣(60°﹣α)=30°,∴∠6=∠CBP.∴BC平分∠PBM.∴BC垂直平分PM.∴CP=CM.∴∠7=∠3=30°﹣α.∴∠ACP=∠7+∠3=(30°﹣α)+(30°﹣α)=60°﹣2α.∴△ACP中,∠APC=180°﹣∠1﹣∠ACP=180°﹣α﹣(60°﹣2α)=120°+α.。

北京四中2013-2014学年八年级(上)期中数学试题(含答案)

北京四中2013-2014学年八年级(上)期中数学试题(含答案)

北京四中2013-2014学年初二第一学期期中考试数学试卷(考试时间为100分钟,A 卷满分为100分,B 卷满分为20分) 班级________ 学号_______ 姓名 分数_________A 卷一、选择题(每小题3分,共30分). 1.要使分式15-x 有意义,则x 的取值范围是( ). A .1x ≠ B .1x > C .1x < D . 1x ≠-2.下列从左边到右边的变形,是因式分解的是( ).A .29)3)(3(x x x -=+- B .xz xy x z y x x 333)(32+--=-+-C .))((23n m n m m mn m -+=- D .z yz z y z z y yz +-=+-)2(22423.下列运算中,正确的是( ).A.x x x 236⋅= B .235222x x x += C .()x x 238= D .222)(y x y x +=+ 4.两个三角形只有以下元素对应相等,不能..判定两个三角形全等的是( ). A .两角和它们的夹边 B .三条边C .两边和一角D . 两条边和其中一边上的中线5.若分式2aa b+中的a 、b 的值同时扩大到原来的10倍,则分式的值( ). A .是原来的20倍 B .是原来的10倍 C .是原来的110D .不变6.若a 、b 、c 是三角形三边的长,则代数式a 2+b 2-c 2-2ab 的值( ). A .小于零 B .等于零 C .大于零 D .非正数7.有3张边长为a 的正方形纸片,4张边长分别为a 、b (b >a )的长方形纸片,5张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为( ). A .a +bB . 2a +bC .3a +bD .a +2b8.如图,AB =AC ,CF ⊥AB 于F ,BE ⊥AC 于E ,CF 与BE 交于点D .有下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.以上结论正确的第8题图A B FCE D ( ) .A .只有①B .只有②C .只有③D .有①和②和③9.△ABC 和△A'B'C'中,AB =A'B',AC =A'C',∠C =60°,AD 、A'D'分别为BC 、B'C'边上的高,且AD =A'D',则∠C'的度数为( ).A .60°B .120°C .60°或30°D .60°或120° 10. 以右图方格纸中的3个格点为顶点,有多少个不全等的三角形( ) A .6 B .7 C .8 D .9 二、填空题(每空2分,共20分).11.已知a +b =4,a -b =3,则a 2-b 2=____________.12.若一多项式除以2x 2﹣3,得到的商式为7x ﹣4,则此多项式为______________. 13.如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连结AD 、CD .若∠B =65°,则∠ADC 的大小为 °. 14.如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,若CD =6,则点D 到AB 的距离为 . 15.已知5922=-+b a b a ,则a :b = .16.若分式)3)(2(2+--a a a 的值为0,则a = .17.已知如图点D 是△ABC 的两外角平分线的交点,下列说法: ①AD =CD ②D 到AB 、BC 的距离相等 ③D 到△ABC 的三边的距离相等 ④点D 在∠B 的平分线上第14题图DC第13题图第17题图DBA第10题图其中正确的说法的序号是_____________________.18.在下表中,我们把第i 行第j 列的数记为,i j a (其中i ,j 都是不大于5的正整数),对于表中的每个数,i j a ,规定如下:当i ≥j 时,,i j a =1;当i <j 时,,i j a = -1.例如:当i =2,j =1时,,2,1i j a a ==1.按此规定,1,3a = ;表中的25个数中,共有 个1;1,1,11,2,21,3,31,4,41,5,5i i i i i a a a a a a a a a a ⋅+⋅+⋅+⋅+⋅的最小值为 .三、解答题(共46分).19.分解因式:(共6分,每小题3分). (1)782+-x x(2))()(22x y b y x a -+-解:原式= 解:原式=20.(本题4分)解分式方程:131x x x x .+=--21.计算题(共6分,每题3分).(1))32)(12()1(-+-+x x x x (2)2(2)(3)(3)x x x --+-解:原式= 解:原式=22.计算题(共6分,每题3分).(1)()32227812393x x y y x y --⎡⎤⋅÷⎢⎥⎣⎦(2)22214()2442a a a a a a a a ----÷++++解:原式= 解:原式=23.(本题4分)(1)已知0142=--x x ,求代数式22))(()32(y y x y x x --+--的值.第24题图NM(本题4分)(2)化简求值: )11(2)2(yx y x xy y x y y x x +÷+⋅+++,其中3,2=-=y x .24.(本题3分)已知:如图,∠MON 及边ON 上一点A . 在∠MON 内部求作:点P ,使得P A ⊥ON ,且点P 到 ∠MON 两边的距离相等.(请尺规作图,保留作图痕迹, 不要求写出作法,不必证明).25.(本题4分)已知:如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =26.(本题4分)如图,在方格纸中,△PQR 的三个顶点及A 、B 、C 、D 、E 五 个点都在小方格的顶点上.现以A 、B 、C 、D 、E 中的三个点为顶点画三角形. (1)在图甲中画出一个三角形与△PQR 全等;(2)在图乙中画出一个三角形与△PQR 面积相等但不全等....图甲图乙27.(本题5分)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问: (1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.28.(本题4分)在△ABC中,O为内心,点E、F都在大边BC上.已知BF=BA,CE=CA.C第28题图B 卷29.(本题3分)有一个整数,加上100则为一个完全平方数,如果加上168,则为另一个完全平方数,则这个数为 .30.(本题3分)已知n 是正整数,且2422-+n n 是质数,则n =_________. 31.(本题7分)计算11111111111111(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a c a b d a b c a b c d+++++++++-++++ 解:原式=32.(本题7分)问题1:如图1,在四边形ABCD中,AD∥BC,∠A=∠D,AB=BC=CD,点M,N分别在AD,CD上,若∠MBN=12∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若∠MBN=12∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎样的数量关系?写出你的猜想,并给予证明.解:(1)猜想:____________________(2)猜想:____________________证明:参考答案A 卷一.选择题A CBCD A D D D C二. 填空题11、12 12.321482112x x x --+ 13、65 14、6 15、19:13 16、2- 17、②③④ 19、1-,15,3-三. 解答题19.(1)(1)(7)x x -- (2)()()()x y a b a b -+- 20. 3x =-21.(1)2353x x -++ (2)413x -+ 22.(1)14162x y (2)212a a+ 23.(1)原式=23129x x -+=12 (2)原式=222()x y x y +=36 24. 过点A 作AP ⊥ON ,交∠MON 的平分线于点P .25.证明:∵在△ABC 中,AD 是中线,∴BD =CD ,∵CF ⊥AD ,BE ⊥AD ,∴∠CFD =∠BED =90°,在△BED 与△CFD 中,∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD ,∴△BED ≌△CFD ,∴BE =CF .26.27. 解:(1)设苹果进价为每千克x 元,根据题意得:400x +10%x (3000x ﹣400)=2100,解得:x =5, 经检验x =5是原方程的解,答:苹果进价为每千克5元.(2)由(1)得,每个超市苹果总量为:=600(千克),大、小苹果售价分别为10元和5.5元,则乙超市获利600×(﹣5)=1650(元), ∵甲超市获利2100元,∴甲超市销售方式更合算.28. 提示:连接AO 、BO 、CO ,内心即角平分线的交点,易证△AOB ≌△FOB (SAS ). 则∠BAO =∠BFO. 同理,△AOC ≌△EOC (SAS ),则∠CAO =∠CEO. 所以∠EOF =180o -∠CEO -∠BFO=180o -∠BAC =∠ABC+∠ACB .B 卷29. 156,提示:设这个数是n ,则n +100=a 2,n +168=b 2,两式作差,则(b +a )(b -a )=68, 所以b +a =34,b -a =2,解得a =16,则n =156.30.5,提示:2224(6)(4)n n n n +-=+-是质数,则41, 5.n n -==31. 1-,提示:方法一,从后向前,首先最后两项提公因式,再逐项提公因式;方法二,将第一项变形11(1)1a a=+- 32.(1)猜想的结论:MN =AM +CN .(2)猜想的结论:MN =CN -AM .证明: 在 NC 截取 CF = AM ,连接BF .。

北京四中 上学期初中八年级期中考试数学试卷

北京四中 上学期初中八年级期中考试数学试卷
已知:直线l和l外一点P.(如图1)
求作:直线l的垂线,使它经过点P.
作法:如图2
(1)在直线l上任取两点A,B;
(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;
(3)作直线PQ.
所以直线PQ就是所求的垂线.
请回答:该作图的依据是_________________________________________.
(1)请你利用尺规作图作出点D;
(2)过点D作DE⊥AB于E,DF⊥AC于F,若AB=6,AC=3,则BE=________.
25.列方程或方程组解应用题:
为了响应市政府“绿色出行” 号召,小张上下班由自驾车方式改为骑自行车方式.已知小张单位与他家相距20千米,上下班高峰时段,自驾车的平均速度是自行车平均速度的2倍,骑自行车所用时间比自驾车所用时间多 小时.求自驾车平均速度和自行车平均速度各是多少?
A. B.
C. D.
9.对于非零实数 ,规定 ,若 ,则 的值为
A. B. C. D.
10.如图,AD为∠CAF的角平分线,BD=CD,∠DBC=∠DCB,∠DCA=∠ABD,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )
29.若关于x的分式方程 无解,则实数m=_______.
30.阅读下面材料,并解答问题
将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母 x2-1,可设x4+x2-3=(x2-1)(x2+a)+b.
则x4+x2-3=(x2-1)(x2+a)+b=x4-x2+ax2-a+b=x4+(a-1)x2-a+b

【精品】2014-2015年北京市教育学院附中八年级(上)期中数学试卷带答案

【精品】2014-2015年北京市教育学院附中八年级(上)期中数学试卷带答案

2014-2015学年北京市教育学院附中八年级(上)期中数学试卷一.用心选一选:(每小题3分,共30分)1.(3.00分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3.00分)下列各式中,正确的是()A.=B.+=C.=D.=3.(3.00分)如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6 cm B.7 cmC.8 cm D.9 cm4.(3.00分)下列因式分解结果正确的是()A.15a3+10a2=5a(3a2+2a) B.9﹣4x2=(3+4x)(3﹣4x)C.a2﹣10a﹣25=(a﹣5)2D.a2﹣3a﹣10=(a+2)(a﹣5)5.(3.00分)如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上依画法证明△POM≌△PON根据的是()A.SSS B.SAS C.AAS D.HL6.(3.00分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x个零件,那么下面所列方程中正确的是()A.=B.=C.=D.=7.(3.00分)如图,已知△ABC,则甲、乙、丙三个三角形中和△ABC全等的是()A.只有乙B.甲和乙C.只有丙D.乙和丙8.(3.00分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.下列结论中正确的有()(1)ED=EC;(2)OD=OC;(3)∠ECD=∠EDC;(4)EO平分∠DEC;(5)OE⊥CD;(6)直线OE是线段CD的垂直平分线.A.3个 B.4个 C.5个 D.6个9.(3.00分)如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.(3.00分)在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是()A.35°B.45°C.55°D.65°二.细心填一填:(每小题3分,共24分).11.(3.00分)计算:20142﹣20132=.12.(3.00分)点A(2,﹣1)关于x轴对称的点的坐标是.13.(3.00分)如果分式的值是零,那么x的值是.14.(3.00分)计算:﹣=.15.(3.00分)如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.(3.00分)如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.17.(3.00分)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.18.(3.00分)如图,正方形ABCD的边长为2,M、N分别为AB、AD的中点,在对角线BD上找一点P,使△MNP的周长最小,则此时PM+PN=.三.用心做一做(每题5分,共35分)19.(5.00分)因式分解:4a2﹣32a+64.20.(5.00分).21.(5.00分)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.22.(5.00分)解方程:﹣=1.23.(5.00分)先化简:后,再选择一个你喜欢的x 值代入求值.24.(5.00分)如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?25.(5.00分)a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留作图痕迹.四.解答题(26题5分,27题各6分,共11分)26.(5.00分)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.27.(6.00分)如下图,在△ABC中,AP平分∠CAB(∠CAB<60°)(1)如图(1)点P在BC上,若∠CAB=42°,∠B=32°,确定AB,AC,PB之间的数量关系,并证明.(2)如图(2),点P在△ABC内,若∠CAB=2α,∠ABC=60°﹣α,且∠CBP=30°,求∠APC的度数(用含α的式子表示).2014-2015学年北京市教育学院附中八年级(上)期中数学试卷参考答案与试题解析一.用心选一选:(每小题3分,共30分)1.(3.00分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.2.(3.00分)下列各式中,正确的是()A.=B.+=C.=D.=【解答】解:A、,不能再化简,故本选项错误;B、+=+=,故本选项错误;C、=,故本选项错误;D、=,故本选项正确;故选:D.3.(3.00分)如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6 cm B.7 cmC.8 cm D.9 cm【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=5cm,BC=4cm,∴△DBC的周长是:BD+CD+BC=AD+CD+BC=AC+BC=5+4=9(cm).故选:D.4.(3.00分)下列因式分解结果正确的是()A.15a3+10a2=5a(3a2+2a) B.9﹣4x2=(3+4x)(3﹣4x)C.a2﹣10a﹣25=(a﹣5)2D.a2﹣3a﹣10=(a+2)(a﹣5)【解答】解:A、15a3+10a2=5a2(3a+2),故此选项错误;B、9﹣4x2=(3+2x)(3﹣2x),故此选项错误;C、a2﹣10a﹣25无法因式分解,故此选项错误;D、a2﹣3a﹣10=(a+2)(a﹣5),正确.故选:D.5.(3.00分)如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上依画法证明△POM≌△PON根据的是()A.SSS B.SAS C.AAS D.HL【解答】解:∵OM=ON,OP=OP,∠OMP=∠ONP=90°∴△OPM≌△OPN所用的判定定理是HL.故选:D.6.(3.00分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x个零件,那么下面所列方程中正确的是()A.=B.=C.=D.=【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选:D.7.(3.00分)如图,已知△ABC,则甲、乙、丙三个三角形中和△ABC全等的是()A.只有乙B.甲和乙C.只有丙D.乙和丙【解答】解:在△ABC和乙三角形中,有两边a、c分别对应相等,且这两边的夹角都为50°,由SAS可知这两个三角形全等;在△ABC和丙三角形中,有一边a对应相等,和两组角对应相等,由AAS可知这两个三角形全等,所以在甲、乙、丙三个三角形中和△ABC全等的是乙和丙,故选:D.8.(3.00分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.下列结论中正确的有()(1)ED=EC;(2)OD=OC;(3)∠ECD=∠EDC;(4)EO平分∠DEC;(5)OE⊥CD;(6)直线OE是线段CD的垂直平分线.A.3个 B.4个 C.5个 D.6个【解答】解:∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=ED,故(1)正确;在Rt△OCE和Rt△ODE中,,∴Rt△OCE≌Rt△ODE(HL),∴OD=OC,∠ECD=∠EDC,故(2)(3)正确;∴EO平分∠DEC,故(4)正确;∵OC=OD,OE平分∠AOB,∴OE⊥CD,故(5)正确;直线OE是线段CD的垂直平分线,故(6)正确;综上所述,6个结论都正确.故选:D.9.(3.00分)如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.4【解答】解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,在△AEB和△AFD中∴△AEB≌△AFD(ASA),∴S=S△AFD,△AEB∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=16.故选:A.10.(3.00分)在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是()A.35°B.45°C.55°D.65°【解答】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,即∠CDA=110°,∠DAB=70°,∴∠EAB=35°.故选:A.二.细心填一填:(每小题3分,共24分).11.(3.00分)计算:20142﹣20132=4027.【解答】解:20142﹣20132=(2014+2013)×(2014﹣2013)=4027.故答案为:4027.12.(3.00分)点A(2,﹣1)关于x轴对称的点的坐标是(2,1).【解答】解:点A(2,﹣1)关于x轴对称的点的坐标是(2,1),故答案为:(2,1).13.(3.00分)如果分式的值是零,那么x的值是5.【解答】解:依题意得x﹣5=0且x+2≠0.解得x=5.故答案是:5.14.(3.00分)计算:﹣=.【解答】解:原式==.故答案为:.15.(3.00分)如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.16.(3.00分)如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是3.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AC于点E,PE=3,∴点P到AB的距离=PE=3.故答案为:3.17.(3.00分)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标(1,5)或(1,﹣1)或(5,﹣1).【解答】解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,﹣1),(5,﹣1),故答案为:(1,5)或(1,﹣1)或(5,﹣1).18.(3.00分)如图,正方形ABCD的边长为2,M、N分别为AB、AD的中点,在对角线BD上找一点P,使△MNP的周长最小,则此时PM+PN=2.【解答】解:∵DN=AM=AN=1,∠A=90°,∴由勾股定理求出MN=,即MN值一定,∴要使△MNP的周长最小,只要MP+NP最小即可,过N作NG⊥BD交BD于G,交CD于F,连接MF交BD于P,∵四边形ABCD是正方形,∴∠NDB=∠FDB=∠ADC=45°,∴∠DNG=∠DFG=90°﹣45°=45°,∴∠DNG=∠NDG,∠DFG=∠FDG,∴NG=DG=FG,即N、F关于BD对称,∴PN=PF,∴MP+NP=MP+PF=MF,即此时的PN+PM的值最小,∵BD⊥NF,NG=FG,∴DN=DF=1=AM,∵四边形ABCD是正方形,∴AM∥DF,∴四边形AMFD是平行四边形,∴MF=AD=2,即MP+NP=2,故答案为:2.三.用心做一做(每题5分,共35分)19.(5.00分)因式分解:4a2﹣32a+64.【解答】解:4a2﹣32a+64=4(a2﹣8a+16)=4(a﹣4)2.20.(5.00分).【解答】解:原式=+=x+x﹣1=2x﹣1.21.(5.00分)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.22.(5.00分)解方程:﹣=1.【解答】解:方程两边同乘(x+1)(x﹣1),得(x+1)2﹣4=(x+1)(x﹣1),整理得2x﹣2=0,解得x=1.检验:当x=1时,(x+1)(x﹣1)=0,所以x=1是增根,应舍去.∴原方程无解.23.(5.00分)先化简:后,再选择一个你喜欢的x值代入求值.【解答】解:原式=(2分)=(4分)=(5分)=;(7分)当x=3时,原式=.(9分)注:本题答案不唯一,只要x的取值不为0、2、4,计算正确均可得分.24.(5.00分)如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?【解答】证明:∵BA⊥AC,DA⊥AE,∴∠BAC=∠DAE=90°,在Rt△ABC和Rt△ADE中,,∴Rt△ADE≌Rt△ABC,∴∠E=∠C,AC=AE,∴在△ACM和△AEN中,∴△ACM≌△AEN(ASA),∴AM=AN.25.(5.00分)a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留作图痕迹.【解答】解:点O或O′就是所求的点.四.解答题(26题5分,27题各6分,共11分)26.(5.00分)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.【解答】证明:如图,过点P作PE⊥BA于E,∵∠1=∠2,PF⊥BC于F,∴PE=PF,∠PEA=∠PFB=90°,在Rt△PEA与Rt△PFC中,∴Rt△PEA≌Rt△PFC(HL),∴∠PAE=∠PCB,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.27.(6.00分)如下图,在△ABC中,AP平分∠CAB(∠CAB<60°)(1)如图(1)点P在BC上,若∠CAB=42°,∠B=32°,确定AB,AC,PB之间的数量关系,并证明.(2)如图(2),点P在△ABC内,若∠CAB=2α,∠ABC=60°﹣α,且∠CBP=30°,求∠APC的度数(用含α的式子表示).【解答】解:(1)AB﹣AC=PB;证明:在AB上截取AD,使AD=AC.连PD(如图1)∵AP平分∠CAB,∴∠1=∠2在△ACP和△ADP中,,∴△ACP≌△ADP(SAS),∴∠C=∠3.∵△ABC中,∠CAB=42°,∠ABC=32°,∴∠C=180°﹣∠CAB﹣∠ABC=180°﹣42°﹣32°=106°.∴∠3=106°.∴∠4=180°﹣∠3=180°﹣106°=74°,∠5=∠3﹣∠ABC=106°﹣32°=74°.∴∠4=∠5.∴PB=DB.∴AB﹣AC=AB﹣AD=DB=PB.(2)延长AC至M,使AM=AB,连接PM,BM.(如图2)∵AP平分∠CAB,∠CAB=2α,∴∠1=∠2=•2α=α.在△AMP和△ABP中,,∴△AMP≌△ABP(SAS),∴PM=PB,∠3=∠4.∵∠ABC=60°﹣α,∠CBP=30°,∴∠4=(60°﹣α)﹣30°=30°﹣α.∴∠3=∠4=30°﹣α.∵△AMB中,AM=AB,∴∠AMB=∠ABM=(180°﹣∠MAB)÷2=(180°﹣2α)÷2=90°﹣α.∴∠5=∠AMB﹣∠3=(90°﹣α)﹣(30°﹣α)=60°.∴△PMB为等边三角形.∵∠6=∠ABM﹣∠ABC=(90°﹣α)﹣(60°﹣α)=30°,∴∠6=∠CBP.∴BC平分∠PBM.∴BC垂直平分PM.∴CP=CM.∴∠7=∠3=30°﹣α.∴∠ACP=∠7+∠3=(30°﹣α)+(30°﹣α)=60°﹣2α.∴△ACP中,∠APC=180°﹣∠1﹣∠ACP=180°﹣α﹣(60°﹣2α)=120°+α.。

北京四中14-15学年高二上学期期中考试数学理试题_(Word版含答案)

北京四中14-15学年高二上学期期中考试数学理试题_(Word版含答案)

北京四中2014-2015学年上学期高二年级期中考试数学试卷(理科)试卷分为两卷,卷(Ⅰ)100分,卷(Ⅱ)50分,满分共计150分考试时间:120分钟卷(Ⅰ)一、选择题(本大题共8小题,每小题5分,共40分。

) 1. 抛物线x y 82-=的准线方程为( ) A. x =2B. x =-2C. x =4D. x =-42. 若双曲线方程为1222=-y x ,则其渐近线方程为( ) A. x y 2±= B. x y 2±= C. x y 21±= D. x y 22±= 3. 已知点M 的一个极坐标为⎪⎭⎫⎝⎛3,5π,下列给出的四个极坐标仍能表示点M 的是( ) A. ⎪⎭⎫⎝⎛-3,5π B. ⎪⎭⎫⎝⎛34,5πC. ⎪⎭⎫ ⎝⎛-32,5πD. ⎪⎭⎫ ⎝⎛-35,5π 4. “8<m ”是“方程181022=---m y m x 表示双曲线”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件5. 若椭圆)0(12222>>=+b a b y a x 的右焦点与抛物线x y 82=的焦点相同,离心率为21,则此椭圆的方程为( )A.1161222=+y xB.1121622=+y x C.1644822=+y xD.1486422=+y x 6. 设椭圆C :)0(12222>>=+b a by a x 两个焦点分别为F 1,F 2,若C 上存在点P 满足1PF :21F F :2PF =4:3:2,则椭圆C 的离心率等于( )A.21B.32C.43 D.317. 已知点P 是抛物线x y 22=上的动点,且点P 在y 轴上的射影是M ,点A ⎪⎭⎫⎝⎛4,27,则PM PA +的最小值是( )A.27 B. 4 C.29 D. 58. 若有两个焦点1F ,2F 的圆锥曲线上存在点P ,使213PF PF =成立,则称该圆锥曲线上存在“α”点,现给出四个圆锥曲线:①112422=-y x ②11522=-y x ③17922=+y x ④141222=+y x 其中存在“α”点的圆锥曲线有( ) A. ①③ B. ①④ C. ②③ D. ②④二、填空题(本大题共6小题,每小题5分,共30分。

2014-2015年北京市通州四中八年级(下)期中数学试卷(解析版)

2014-2015年北京市通州四中八年级(下)期中数学试卷(解析版)

2014-2015学年北京市通州四中八年级(下)期中数学试卷一、选择题:(共8个小题,每小题3分,共24分)1.(3分)多边形的每一个外角都等于72°,则其边数为()A.7B.6C.5D.42.(3分)点P(﹣1,5)关于x轴对称的点的坐标是()A.(1,﹣5)B.(﹣1,﹣5)C.(1,5)D.(5,1)3.(3分)平行四边形的一边长为6cm,周长为28cm,则这条边的邻边长是()A.22cm B.16cm C.11cm D.8cm4.(3分)对角线互相平分的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.(3分)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)6.(3分)正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限B.第二象限C.第三象限D.第一、三象限7.(3分)一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<08.(3分)直线y=x﹣1与两坐标轴分别交于A、B两点,点C在坐标轴上,若△ABC为等腰三角形,则满足条件的点C最多有()A.4个B.5个C.6个D.7个二、填空题(每题3分,共24分)9.(3分)函数y=中,自变量x的取值范围是.10.(3分)若菱形的两条对角线的长是6cm和8cm,那么这个菱形的周长是cm.11.(3分)当b<0时,函数y=﹣x+b的图象不经过第象限.12.(3分)矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为cm,矩形的面积为cm2.13.(3分)若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).14.(3分)直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为.15.(3分)一次函数的图象如图所示,当x>0时,y.16.(3分)如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F 是AC上的一动点,则EF+BF的最小值为.三、解答题(17-22题每题5分,23,24题每题7分,25题8分)17.(5分)已知:如图,▱ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.18.(5分)在平面直角坐标系中,点A,B分别在x轴,y轴上,且线段OA=6,OB=3,(1)请你画出过A、B两点的一次函数图象并求出表达式.(2)然后根据图象解答下列问题:①求方程y=0的解;②求不等式y>0的解.19.(5分)如图所示,在矩形ABCD中,对角线AC、BD相交于点O,CE∥DB,交AD的延长线于点E,试说明AC=CE.20.(5分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC21.(5分)如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F 分别为垂足,若CF=3,CE=4,求AP的长.22.(5分)如图,已知直线y=x与双曲线y=(k>0)交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线y=(k>0)上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线y=(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.23.(7分)如图,在平行四边形ABCD中,∠BAD的平分线与BC边相交于点E,∠ABC的平分线与AD边相交于点F.请证明四边形ABEF是菱形.24.(7分)如图,在直角坐标系中,A(0,1),B(0,3),P是x轴上一动点,在直线y=x上是否存在点Q,使以A、B、P、Q为顶点的四边形为平行四边形?若存在,画出所有满足情况的平行四边形,并求出对应的P、Q的坐标;若不存在,请说明理由.25.(8分)如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去….(1)记正方形ABCD的边长为a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,求出a2,a3,a4的值.(2)根据以上规律写出第n个正方形的边长a n的表达式.2014-2015学年北京市通州四中八年级(下)期中数学试卷参考答案与试题解析一、选择题:(共8个小题,每小题3分,共24分)1.(3分)多边形的每一个外角都等于72°,则其边数为()A.7B.6C.5D.4【解答】解:边数n=360°÷72°=5.故选:C.2.(3分)点P(﹣1,5)关于x轴对称的点的坐标是()A.(1,﹣5)B.(﹣1,﹣5)C.(1,5)D.(5,1)【解答】解:点P(﹣1,5)关于x轴对称的点的坐标是(﹣1,﹣5),故选:B.3.(3分)平行四边形的一边长为6cm,周长为28cm,则这条边的邻边长是()A.22cm B.16cm C.11cm D.8cm【解答】解:∵平行四边形周长为28,∴一边长与另一边长和为14,∴另一边长=14﹣6=8cm.故选:D.4.(3分)对角线互相平分的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【解答】解:对角线互相平分的四边形一定是平行四边形,故选:A.5.(3分)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)【解答】解:∵反比例函数y=的图象经过点(2,3),∴k=2×3=6,A、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B、∵1×6=6,∴此点在反比例函数图象上;C、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上.故选:B.6.(3分)正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限B.第二象限C.第三象限D.第一、三象限【解答】解:∵正比例函数y=6x的图象过一、三象限,反比例函数y=的图象在第一、三象限,∴两函数图象的交点在一、三象限,故选:D.7.(3分)一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<0【解答】解:∵y=(m+1)x+5,y的值随x的增大而减小,∴m+1<0,∴m<﹣1.故选:A.8.(3分)直线y=x﹣1与两坐标轴分别交于A、B两点,点C在坐标轴上,若△ABC为等腰三角形,则满足条件的点C最多有()A.4个B.5个C.6个D.7个【解答】解:直线y=x﹣1与y轴的交点为A(0,﹣1),直线y=x﹣1与x轴的交点为B(1,0).①以AB为底,C在原点;②以AB为腰,且A为顶点,C点有3种可能位置;③以AB为腰,且B为顶点,C点有3种可能位置.所以满足条件的点C最多有7个.故选:D.二、填空题(每题3分,共24分)9.(3分)函数y=中,自变量x的取值范围是x≠2.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.10.(3分)若菱形的两条对角线的长是6cm和8cm,那么这个菱形的周长是20 cm.【解答】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×8=4cm,OB=×6=3cm,又∵菱形的对角线AC⊥BD,∴AB===5cm,∴这个菱形的周长=5×4=20cm.故答案为:20.11.(3分)当b<0时,函数y=﹣x+b的图象不经过第一象限.【解答】解:∵k=﹣1<0,∴一次函数经过二四象限;∵b<0,∴一次函数又经过第三象限,∴一次函数y=﹣x+b的图象不经过第一象限.故答案为:一.12.(3分)矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为40cm,矩形的面积为400cm2.【解答】解:∵已知矩形的两条对角线所夹锐角为60°,矩形的对边平行且相等.∴根据矩形的性质可求得由两条对角线所夹锐角为60°的三角形为等边三角形.又∵这个角所对的边长为20cm,所以矩形短边的边长为20cm.∴对角线长40cm.根据勾股定理可得长边的长为20cm.∴矩形的面积为20×20=400cm2.故答案为400.13.(3分)若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1>y2(填“>”、“<”或“=”).【解答】解:∵点A(1,y1)和点B(2,y2)在反比例函数y=的图象上,∴y1==1,y2=,∵1>,∴y1>y2.故答案为:>.14.(3分)直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为(0,﹣3).【解答】解:直线直线y=3x+2沿y轴向下平移5个单位可得y=3x+2﹣5,即y=3x﹣3,则平移后直线与y轴的交点坐标为:(0,﹣3).故答案为:(0,﹣3).15.(3分)一次函数的图象如图所示,当x>0时,y>﹣2.【解答】解:当x>0时,y>﹣2.故答案为>﹣2.16.(3分)如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F 是AC上的一动点,则EF+BF的最小值为3.【解答】解:∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,连接ED,则ED就是所求的EF+BF的最小值的线段,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴ED===3,∴EF+BF的最小值为3.故答案为:3.三、解答题(17-22题每题5分,23,24题每题7分,25题8分)17.(5分)已知:如图,▱ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,∵DE⊥AC,BF⊥AC∴∠DEA=∠BFC在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴DE=BF.18.(5分)在平面直角坐标系中,点A,B分别在x轴,y轴上,且线段OA=6,OB=3,(1)请你画出过A、B两点的一次函数图象并求出表达式.(2)然后根据图象解答下列问题:①求方程y=0的解;②求不等式y>0的解.【解答】解:(1)如图:;(2)①由图象与x轴交点的横坐标为6,得方程y=0的解是x=6;②由图象位于x轴上方的部分,得不等式y>0的解是x<6.19.(5分)如图所示,在矩形ABCD中,对角线AC、BD相交于点O,CE∥DB,交AD的延长线于点E,试说明AC=CE.【解答】解:在矩形ABCD中,AC=BD,(2分)AD∥BC,(4分)又∵CE∥DB,∴四边形BDEC是平行四边形.(6分)∴BD=EC.(8分)∴AC=CE.(10分)20.(5分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2.(2)设点C的坐标为(x,y),=2,∵S△BOC∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C的坐标是(2,2).21.(5分)如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F 分别为垂足,若CF=3,CE=4,求AP的长.【解答】解:连接PC∵四边形ABCD是正方形,∴AD=DC,∠ADP=∠CDP,∵PD=PD,∴△APD≌△CPD,(4分)∴AP=CP,(5分)∵四边形ABCD是正方形,∴∠DCB=90°,∵PE⊥DC,PF⊥BC,∴四边形PFCE是矩形,(8分)∴PC=EF,(9分)∵∠DCB=90°,∴在Rt△CEF中,EF2=CE2+CF2=42+32=25,∴EF=5,(11分)∴AP=CP=EF=5.(12分)22.(5分)如图,已知直线y=x与双曲线y=(k>0)交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线y=(k>0)上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线y=(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.【解答】解:(1)∵点A横坐标为4,把x=4代入y=x中得y=2,∴A(4,2),∵点A是直线y=x与双曲线y=(k>0)的交点,∴k=4×2=8;(2)解法一:如图,∵点C在双曲线上,当y=8时,x=1,∴点C的坐标为(1,8).过点A、C分别做x轴、y轴的垂线,垂足为M、N,得矩形DMON.=32,S△ONC=4,S△CDA=9,S△OAM=4.∵S矩形ONDM∴S=S矩形ONDM﹣S△ONC﹣S△CDA﹣S△OAM=32﹣4﹣9﹣4=15;△AOC解法二:如图,过点C、A分别做x轴的垂线,垂足为E、F,∵点C在双曲线上,当y=8时,x=1,∴点C的坐标为(1,8).∵点C、A都在双曲线上,∴S△COE=S△AOF=4,∴S△COE +S梯形CEFA=S△COA+S△AOF.∴S△COA=S梯形CEFA.∵S梯形CEFA=×(2+8)×3=15,∴S△COA=15;(3)∵反比例函数图象是关于原点O的中心对称图形,∴OP=OQ,OA=OB,∴四边形APBQ是平行四边形,∴S△POA=S平行四边形APBQ×=×24=6,设点P的横坐标为m(m>0且m≠4),得P(m,),过点P、A分别做x轴的垂线,垂足为E、F,∵点P、A在双曲线上,∴S△POE=S△AOF=4,若0<m<4,如图,∵S△POE +S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=6.∴(2+)•(4﹣m)=6.∴m1=2,m2=﹣8(舍去),∴P(2,4);若m>4,如图,∵S△AOF +S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=6.∴(2+)•(m﹣4)=6,解得m1=8,m2=﹣2(舍去),∴P(8,1).∴点P的坐标是P(2,4)或P(8,1).23.(7分)如图,在平行四边形ABCD中,∠BAD的平分线与BC边相交于点E,∠ABC的平分线与AD边相交于点F.请证明四边形ABEF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠4=∠5,∵∠ABC的平分线BF,∴∠3=∠4,∴∠3=∠5,∴AF=AB,∵AD∥BC,∴∠1=∠AEB,∵∠BAC的平分线AE,∴∠1=∠2,∴∠2=∠AEB,∴BE=AB,∴AF=BE,∵AF∥BE,∴四边形ABEF是平行四边形,∵AF=AB,∴平行四边形ABEF是菱形.24.(7分)如图,在直角坐标系中,A(0,1),B(0,3),P是x轴上一动点,在直线y=x上是否存在点Q,使以A、B、P、Q为顶点的四边形为平行四边形?若存在,画出所有满足情况的平行四边形,并求出对应的P、Q的坐标;若不存在,请说明理由.【解答】解:如1,∵P是x轴上一动点,点Q在直线y=x上,∴设P(x,0),Q(a,a),当AB是平形四边形的边时,∵AB=3﹣1=2,∴PQ=AB=2,∴a=±2,∴P1(﹣2,0),Q1(﹣2,﹣2)或P2(2,0),Q2(2,2);如图2,当AB是平形四边形的对角线时,BQ=AP是a2+(a﹣3)2=x2+12,即2a2﹣6a=x2﹣8①;PB=AQ是a2+(a﹣1)2=32+x2,即2a2﹣2a=x2﹣9②.①﹣②得a=4,把a=4代入①得,17=1+x2,解得x=±4,∴P3(﹣4,0),Q3(4,4)或P4(4,0),Q4(4,4)(舍去).25.(8分)如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去….(1)记正方形ABCD的边长为a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,求出a2,a3,a4的值.(2)根据以上规律写出第n个正方形的边长a n的表达式.【解答】解:(1)a2=AC,且在直角△ABC中,AB2+BC2=AC2,∴a2=a1=,同理a3=a2=a1=2,a4=a3=a1=2;(2)由(1)结论可知:a2=a1=,a3=a2=a1=2,a4=a3=a1=2;…故找到规律a n=a1=.。

2014北京四中初二(上)期中数 学

2014北京四中初二(上)期中数    学

2014北京四中初二(上)期中数学一、选择题(本题共30分,每小题3分)1.(3分)剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.2.(3分)下列各式不能分解因式的是()A.2x2﹣4x B. C.x2+9y2D.1﹣m23.(3分)点P(﹣3,5)关于y轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.(3分)如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cm B.4cm C.3cm D.2cm5.(3分)下列各式中,正确的是()A.B. C.D.6.(3分)下列命题是真命题的是()A.等底等高的两个三角形全等B.周长相等的直角三角形都全等C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等7.(3分)如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A按逆时针方向旋转到△ACD′的位置,则∠ADD′的度数是()A.25°B.30°C.35°D.45°8.(3分)在等腰△ABC中,已知AB=2BC,AB=20,则△ABC的周长为()A.40 B.50 C.40或50 D.无法确定9.(3分)已知三角形的两边长分别为5和7,则第三边的中线长x的取值范围是()A.2<x<12 B.5<x<7 C.1<x<6 D.无法确定10.(3分)如图,在△ABC中,BC=AC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,垂足为E.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE其中正确结论的个数是()A.1 B.2C.3 D.4二、填空题(本题共20分,每小题2分)11.(2分)若式子有意义,则x的取值范围是.12.(2分)计算=.13.(2分)如图,等腰三角形ABC中AB=AC,∠A=20°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE=.14.(2分)若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为.15.(2分)若a+b=7,ab=5,则a2﹣ab+b2=.16.(2分)当x取值时,x2+6x+10有最小值,最小值是.17.(2分)某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,如果设原计划每天挖x米,那么根据题意可列方程为.18.(2分)如图,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连结PC,若BD=2CD,△ABC的面积为2cm2,则△DPC的面积为.19.(2分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=90°,则∠2的度数为.20.(2分)如果满足条件“∠ABC=30°,AC=1,BC=k(k>0)”的△ABC是唯一的,那么k的取值范围是.三、解答题21.(8分)把多项式分解因式:(1)3a3b﹣12ab3;(2)(x2﹣x)2﹣4(x2﹣x)+4.22.(8分)(1)计算:;(2)解方程:.23.(5分)已知:如图,A、B、C、D四点在同一直线上,AB=CD,AE∥BF且AE=BF.求证:EC=FD.24.(8分)(1)先化简,再求值:(),其中m=9;(2)已知=3,求代数式的值.25.(5分)列分式方程解应用题:(温馨提示:你可借助图示、表格等形式“挖掘”等量关系)赵老师为了响应市政府“绿色出行”的号召,上下班由自驾车方式改为骑自行车方式.已知赵老师家距学校20千米,上下班高峰时段,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多小时.求自驾车速度和自行速度各是多少.四、解答题26.(4分)某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)27.(5分)阅读下列材料:如图1,在四边形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求证:CD=AB.小刚是这样思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求证及特殊角度数可联想到构造特殊三角形.即过点A作AE⊥AB交BC的延长线于点E,则AB=AE,∠E=∠D.在△ADC与△CEA中,∵∴△ADC≌△CEA,得CD=AE=AB.请你参考小刚同学思考问题的方法,解决下面问题:如图2,在四边形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD与AB是否相等?若相等,请你给出证明;若不相等,请说明理由.28.(7分)在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.(1)如图1,若点D在线段BC上.求证:①AD=DE;②BC=DC+2CF;(2)如图2,若点D在线段BC的延长线上,(1)中的两个结论是否仍然成立?请说明理由.29.(4分)已知a2﹣3a﹣1=0,求a6+120a﹣2=.30.(4分)如图中,∠ABC=∠BCD=∠DAB=45°,BD=2,求四边形ABCD的面积为.31.(6分)已知:m2=n+2,n2=m+2(m≠n),求:m3﹣2mn+n3的值.32.(6分)已知:△ABC中,∠ABC=2∠ACB,∠ABC的平分线BD与∠ACB的平分线CD相交于点D,且CD=AB,求证:∠A=60°.数学试题答案一、选择题(本题共30分,每小题3分)1.【解答】A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意.D、不是轴对称图形,不符合题意;故选:C.2.【解答】A、2x2﹣4x=2x(x﹣2),本选项不合题意;B、x2+x+=(x+)2,本选项不合题意;C、x2+9y2不能分解因式,本选项符合题意;D、1﹣m2=(1+m)(1﹣m),本选项不合题意.故选C.3.【解答】根据关于纵轴的对称点:纵坐标相同,横坐标变成相反数,∴点P(﹣3,5)关于y轴的对称点的坐标是(3,5),故选:A.4.【解答】过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选C.5.【解答】A、﹣=,本选项错误;B、﹣=,本选项错误;C、=,本选项错误;D、﹣=,本选项正确.故选:D.6.【解答】A、等底等高的两个三角形全等,是假命题,故本选项错误;B、周长相等的直角三角形都全等,是假命题,故本选项错误;C、有两边和一角对应相等的两个三角形全等,是假命题,因为一角没有说明是两边的夹角,故本选项错误;D、有一边对应相等的两个等边三角形全等是真命题,故本选项正确.故选D.7.【解答】∵将△ABD绕点A按逆时针方向旋转到△ACD′的位置,∴AD=AD′,∠DAD′=∠BAC=90°,即△ADD′是等腰直角三角形,∴∠ADD′=45°.故选D.8.【解答】∵AB=2BC,AB=20,∴BC=10,三角形的腰长是10时,三角形的三边长是:10,10,20,不能构成三角形;当三角形的腰长是20时,三角形的三边长是:10,20,20,则周长是:10+20+20=50.故选B.9.【解答】延长AD至E,使AD=DE,如图所示,AB=5,AC=7,设BC=2a,AD=x,在△BDE与△CDA中,,∴△BDE≌△CDA,(SAS)∴AE=2x,BE=AC=7,在△ABE中,BE﹣AB<AE<AB+BE,即7﹣5<2x<7+5,∴1<x<6.故选C.10.【解答】①∵BC=AC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AD平分∠BAC,∴∠BAE=∠EAF=22.5°,∵在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,∴∠EAF=∠FBC,∵BC=AC,∠EAF=∠FBC,∠BCF=∠AEF,∴Rt△ADC≌Rt△BFC,∴AD=BF;故①正确;②∵①中Rt△ADC≌Rt△BFC,∴CF=CD,故②正确;③∵①中Rt△ADC≌Rt△BFC,∴CF=CD,AC+CD=AC+CF=AF,∵∠CBF=∠EAF=22.5°,∴在Rt△AEF中,∠F=90°﹣∠EAF=67.5°,∵∠CAB=45°,∴∠ABF=180°﹣∠F﹣∠CAB=180°﹣67.5°﹣45°=67.5°,∴AF=AB,即AC+CD=AB,故③正确;④由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BE=BF,∵在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE≠CF,故④错误;⑤由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BF=2BE,故⑤正确.所以①②③⑤四项正确.故选D.二、填空题(本题共20分,每小题2分)11.【解答】根据题意得:x﹣4≠0,解得:x≠4.故答案是:x≠4.12.【解答】原式=﹣==﹣.故答案为:﹣.13.【解答】∵DE是线段AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=20°,∵等腰三角形ABC中,AB=AC,∠A=20°,∴∠ABC=∠C==80°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故答案为:60°.14.【解答】由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故答案为:﹣115.【解答】∵a+b=7,ab=5,∴a2﹣ab+b2=(a+b)2﹣3ab=72﹣3×5=34,故答案为:34.16.【解答】x2+6x+10,=x2+6x+9+1,=(x+3)2+1,所以当x+3=0,即x=﹣3时,多项式x2+6x+10有最小值1.故答案是:﹣3,1.17.【解答】设原计划每天挖x米,﹣=4.故答案为:﹣=4.18.【解答】∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC的面积为2cm2,∴S△BPC=×2=1cm2,∵BD=2CD,∴3DC=BC,=S△BPC=.故答案为.19.【解答】∵∠A=60°,∴∠B′+∠C′=∠AEF+∠AFE=180°﹣60°=120°,在四边形B′EFC′中,∠2=360°﹣120°×2﹣90°=30°.故答案为:30°.20.【解答】当AC<BCsin∠ABC,即1<ksin30°,即k>2时,三角形无解;当AC=BCsin∠ABC,即1=ksin30°,即k=2时,有一解;当BCsin∠ABC<AC<BC,即ksin30°<1<k,即1<k<2,三角形有2个解;当0<BC≤AC,即0<k≤1时,三角形有1个解.综上所述,k的取值范围是k=2或0<k≤1.故答案是:k=2或0<k≤1.三、解答题21.【解答】解:(1)原式=3ab(a2﹣4b2)=2ab(a+b)(a﹣2b);(2)原式=(x2﹣x﹣2)2=[(x﹣2)(x+1)]2=(x﹣2)2(x+1)2.22.【解答】解:(1)原式=•﹣=﹣==﹣;(2)去分母得:x﹣5=8x﹣12,移项合并得:7x=7,解得:x=1.23.【解答】解:∵AE∥BF,∴∠A=∠FBD,又∵AB=CD,∴AB+BC=CD+BC.即AC=BD,在△AEC和△BFD中,∴△AEC≌△BFD(SAS),∴EC=FD.24.【解答】解:(1)()=,=.当m=9时,原式=.(2)∵,∴x﹣y=﹣3xy∴=.25.【解答】解:设自行车速度为x km/h,则汽车的速度为2x km/h,依题意得:,解方程得:180﹣90=5x∴x=18,经检验:x=18是所列方程的解,且符合实际意义,∴2x=36答:自行车速度为18km/h,汽车的速度为36km/h.四、解答题26.【解答】解:如图所示,点M就是所要求作的建立超市的位置.27.【解答】答:CD与AB相等.证明如下:作AE=AB交BC延长线于E点,∴∠B=∠E∵∠B=∠D∴∠D=∠E,∵∠ACB+∠DAC=180°,∠ACB+∠ECA=180°,∴∠DAC=∠ECA,∵在△DAC和△ECA中,,∴△DAC≌△ECA (AAS),∴CD=AE∴CD=AB.28.【解答】证明:(1)如图,①过D作DG∥AC交AB于G∵△ABC是等边三角形,AB=BC,∴∠B=∠ACB=60°∴∠BGD=60°∴△BDG是等边三角形,∴BG=BD∴AG=DC∵CE是∠ACB外角的平分线,∴∠DCE=120°=∠AGD∵∠ADE=60°,∴∠ADB+∠EDC=120°=∠ADB+∠DAG∴∠EDC=∠DAG,在△AGD和△DCE中,,∴△AGD≌△DCE(SAS)∴AD=DE②∵△AGD≌△DCE,∴GD=CE,∴BD=CE∴BC=CE+DC=DC+2CF(2)过D作DG∥AC交AB延长线于G,①成立;∵DG∥ACAG=DC∠AGD=180°﹣60°=120°∵∠ACB=60,CE是∠ACB的外角平分线∴∠ACE=×(180°﹣∠ACB)=60°∠DCE=120°∵∠GAD=∠BGD﹣∠ADG=60°﹣∠ADG∵∠CDE=180°﹣∠GDB﹣∠ADE﹣∠ADG=180°﹣60°﹣60°﹣∠ADG=60°﹣∠ADG在△AGD和△DCE中,,∴△AGD≌△DCE(ASA),AD=DE②不成立,此时BC=2CF﹣CD∵△AGD≌△DCE,∴GD=CE,∴BD=CE∴BC=BD﹣CD=CE﹣DC=2CF﹣CD.29.【解答】解:∵a2﹣3a﹣1=0,∴a2=3a+1,a6=(a2)3=(3a+1)2(3a+1)=(9a2+6a+1)(3a+1)=[9×(3a+1)+6a+1](3a+1)=(33a+10)(3a+1)=99a2+63a+10=99(3a+1)+63a+10=360a+109,∵a2﹣3a=1,120a﹣2=(a2﹣3a)=120﹣=120﹣×(a2﹣3a)=120﹣360a+1080,∴a6+120a﹣2=360a+109+120﹣360a+1080=1309.30.【解答】解:延长AD交BC于点E,延长CD交AB于点F,设DE=x,BE=y,∵∠C=∠A=∠ABC=45°,∴AE⊥BC,CF⊥AB,∴CE=DE=x,CD=x,∴AD=AE﹣DE=y﹣x,∴AB=BE=y,DF=(y﹣x)∴S四边形ABCD=S△BCD+S△ABD=BC•DE+AB•DF=x(y+x)+×(y﹣x)×y=(xy+x2+y2﹣xy)=(x2+y2),在Rt△BDE中,x2+y2=BD2=4,∴S四边形ABCD=×4=2.故答案为:2.31.【解答】解:∵m2=n+2,n2=m+2∴m2﹣n2=(n+2)﹣(m+2)=n﹣m又∵m2﹣n2=(m+n)(m﹣n)∴(m+n)(m﹣n)=n﹣m∵m≠n∴m+n=﹣1∴m3﹣2mn+n3=m(n+2)﹣2mn+n(m+2)=2(m+n)=2×(﹣1)=﹣2.32.【解答】证明:过点A作AE∥BC交BD延长线于E,连接CE,设AC、BE相交于点O.则∠1=∠ACB,∠2=∠3.∵∠ABC=2∠ACB,∴∠3=∠ACB,∴OB=OC,∠1=∠2,∴OA=OE.在△AOB与△EOC中,,∴△AOB≌△EOC(SAS).∴∠BAC=∠CED,∠5=∠4=∠3,AB=CE ∵CD=AB,∴CD=CE,∴∠CED=∠CDE=∠3+∠6,又∵∠DCE=∠5+∠7,∠6=∠7,∴∠CED=∠CDE=∠DCE=60°,∴∠BAC=∠CED=60°.。

2023-2024学年北京四中八年级(上)期中数学试卷(含解析)

2023-2024学年北京四中八年级(上)期中数学试卷(含解析)

2023-2024学年北京四中八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下列博物院的标识中是轴对称图形的是( )A.B.C.D.2.(2分)如图,用三角板作△ABC的边AB上的高,下列三角板的摆放位置正确的是( )A.B.C.D.3.(2分)下列计算正确的是( )A.(4ab)2=4a2b2B.a2⋅a3=a6C.a2+a2=a4D.(﹣3a3b)2=9a6b24.(2分)如图,△ABC被木板遮住了一部分,其中AB=6,则AC+BC的值不可能是( )A.11B.9C.7D.55.(2分)根据分式的基本性质,分式可变形为( )A.B.C.D.6.(2分)如图,已知AD∥BC,欲用“边角边”证明△ABC≌△CDA,需补充条件( )A.AB=CD B.∠B=∠D C.AD=CB D.∠BAC=∠DCA 7.(2分)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连接CP,过点A作AH⊥CP交CP的延长线于点H,连接AP,则∠PAH的度数( )A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小8.(2分)用两种或两种以上的正多边形没有重叠、没有缝隙地填充一个平面,并且每个顶点周围的多边形排列是相同的,所得到的图案叫做“半正密铺”图案.如图所示的三个“半正密铺”图案可以依次用记号(4,8,8),(3,6,3,6),(3,3,4,3,4)表示.下列记号中,不能表示“半正密铺”图案的是( )A.(3,12,12)B.(3,4,6,4)C.(3,3,4,12)D.(3,4,3,3,6)二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)计算:(π﹣3.14)0= ;= .10.(2分)要使分式有意义,则x的取值范围是 .11.(2分)一个多边形的每个内角都等于150°,则这个多边形是 边形.12.(2分)等腰三角形一腰上的高与另一腰的夹角是20°,则等腰三角形的顶角等于 .13.(2分)如图,∠ABC=60°,AB=3,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒,当△ABP是直角三角形时,t = .14.(2分)有两个正方形A、B,现将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A,B的面积之和为 .15.(2分)数学课上,老师提出问题:任画两条长度不等的线段a、b,利用“尺规作图”作Rt△ABC使所画线段分别为三角形的一条直角边和斜边.在交流讨论环节,小明看到小勇所作之图如下,请你回答下列问题:所以,Rt△ABC为所求作的三角形.(1)在以下作图步骤中,小勇的作图顺序可能是 ;(只填序号)①以点B为圆心,BA的长为半径画弧,交射线AG于点D;②画直线BF;③分别以点A,D为圆心,大于线段AB的长为半径画弧,交于点F;④以点A为圆心,线段b的长为半径画弧,交直线BF于点C,连接AC;⑤画射线AG,并在AG上截取线段AB=a.(2)∠ABC=90°的理由是 .16.(2分)在等边△ABC中,M、N、P分别是边AB、BC、CA上的点(不与端点重合),对于任意等边△ABC,下面四个结论中:①存在无数个△MNP是等腰三角形;②存在无数个△MNP是等边三角形;③存在无数个△MNP是等腰直角三角形;④存在一个△MNP在所有△MNP中面积最小.所有正确结论的序号是 .二、解答题(本大题共8小题,第17题每小题24分,共24分,第18,19,20,21,23题每题6分,第22,24题每题7分,共68分)17.(24分)(1)计算:;(2)计算:20222﹣2020×2024 (需简便运算);(3)计算:(15x2y﹣10xy2)÷5xy;(4)计算:(2x+3y)2﹣(2x+y)(2x﹣y);(5)因式分解:(x+m)2﹣(x+n)2;(6)因式分解:3ax2+6axy+3ay2.18.(6分)如图,A,C,D三点共线,△ABC和△CDE落在AD的同侧,AB∥CE,BC=DE,∠B=∠D,求证:(1)△ABC≌△CDE;(2)AB+CE=AD.19.(6分)先化简:,再从0,﹣1,﹣2,2中选择一个合适的数作为x 的值代入求值.20.(6分)如图所示的正方形网格中,每个小正方形的边长都是1,△ABC顶点都在网格线的交点上,点A坐标为(﹣4,﹣1),点B坐标为(﹣1,﹣1),点C坐标为(﹣3,3).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)请写出点B关于x轴对称点的坐标为 ;(3)点P在y轴上,且△ABP与△ABC的面积相等,则点P的坐标为 .21.(6分)中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.如图2,∠ABC为直角,以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.以点B 为圆心,以任意长为半径画弧,交射线BA ,BC 分别于点D ,E ;以点D 为圆心,以BD 长为半径画弧与交于点F ;再以点E 为圆心,仍以BD 长为半径画弧与交于点G ;作射线BF ,BG .(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG ,∠GBF ,∠FBE 的大小关系.22.(7分)如图(1),等边△ABC 中,D 是AB 边上的动点,以CD 为一边,向上作等边△EDC ,连接AE .(1)△DBC 和△EAC 会全等吗?请说说你的理由;(2)试说明AE ∥BC 的理由;(3)如图(2),将(1)动点D 运动到边BA 的延长线上,所作仍为等边三角形,请问是否仍有AE ∥BC ?证明你的猜想.23.(6分)阅读下列材料:对于多项式x 2+x ﹣2,如果我们把x =1代入此多项式,发现x 2+x ﹣2的值为0,这时可以确定多项式中有因式(x﹣1);同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x﹣2=(x﹣1)(x+2).又如:对于多项式2x2﹣3x﹣2,发现当x=2时,2x2﹣3x﹣2的值为0,则多项式2x2﹣3x﹣2 有一个因式(x﹣2),我们可以设2x2﹣3x﹣2=(x﹣2)(mx+n),解得m=2,n=1.于是我们可以得到:2x2﹣3x﹣2=(x﹣2)(2x+1)请你根据以上材料,解答以下问题:(1)当x= 时,多项式6x2﹣x﹣5的值为0,所以多项式6x2﹣x﹣5有因式 ,从而因式分解6x2﹣x﹣5= ;(2)以上这种因式分解的方法叫“试根法”,常用来分解一些比较复杂的多项式,请你尝试用试根法分解多项式:x3﹣7x+6.24.(7分)如图1,已知△ABC是等边三角形,点E在射线AB上,且∠ACE=2α,在射线CE上取点D使得CD=CA,连接AD并延长交射线CB于点F.(1)当0°<2α<60°时,①∠DAB= ;(请用含α的代数式表示)②求证:CE+BE=CF;(2)当60°<2α<120°时,请根据题意补全图2,并写出线段CE,BE,CF间的数量关系 .第二部分附加题(共10分)25.(5分)找规律.第1组:,42+32=52;第2组:,82+152=172;第3组:,122+352=372;……(1)请写出第4组等式 , ;(2)请写出第n组等式 , ;(3)若k2+96032=96052(k>0)则k= .26.(5分)为了比较两个实数的大小,常用的方法是判定这两个数的差的符号,我们称这种方法为“作差比较法”.要比较两个代数式的大小,同样可以采用类似的方法.因此,可以利用不等式比较大小.如果要证明A>B,只需要证明A﹣B>0;同样的,要证明A <B,只需要证明A﹣B<0.例如:小明对于命题:任意的实数a和b,总有a2+b2≥2ab,当a=b并且只有a=b时,等号成立,给出了如下证明:证明:∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab,当a=b并且只有a=b时,等号成立.(1)请仿照小明的证明方法,证明如下命题:若a,b,x,y≥0,且a≥x,则(a﹣x)2+(b﹣y)2≤(a+b﹣x)2+y2.(2)若a1≥a2≥……≥a n≥0,b1≥b2≥……≥b n≥0,且a1+a2+……+a n=b1+b2+……+b n=1,求(a1﹣b1)2+(a2﹣b2)2+……+(a n﹣b n)2的最大值.2023-2024学年北京四中八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.【解答】解:△ABC的边AB上的高是经过点C与AB垂直,故选:A.3.【解答】解:A.(4ab)2=16a2b2,故A错误,不符合题意;B.a2⋅a3=a5,故B错误,不符合题意;C.a2+a2=2a2,故C错误,不符合题意;D.(﹣3a3b)2=9a6b2,故D正确,符合题意.故选:D.4.【解答】解:在△ABC中,AC+BC>AB,∵AB=6,∴AC+BC>6,∴AC+BC的值不可能是5,故选:D.5.【解答】解:原式=﹣=,故选:D.6.【解答】解:添加的条件是AD=CB,理由是:∵AD∥BC,∴∠DAC=∠BCA,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),故选:C.7.【解答】解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,∴BC=BP=BA,∴∠BCP=∠BPC,∠BPA=∠BAP,∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BPA=180°,∠ABP+∠CBP=90°,∴∠BPC+∠BPA=135°=∠CPA,∵∠CPA=∠AHC+∠PAH=135°,∴∠PAH=135°﹣90°=45°,∴∠PAH的度数是定值,故选:C.8.【解答】解:A、∵正三角形一个内角为60°,正十二边形一个内角为150°,60°+2×150°=360°,∴(3,12,12)可以得到“半正密铺”图案,故不符合题意;B、∵正三角形一个内角为60°,正方形一个内角为90°,正六边形一个内角为120°,60°+2×90°+120°=360°,∴(3,4,6,4)可以得到“半正密铺”图案,故不符合题意;C、∵2×60°+90°+150°=360°,∴(3,3,4,12)可以得到“半正密铺”图案,故不符合题意;D、3×60°+90°+120°=390°≠360°,∴(3,4,3,3,6)不可以得到“半正密铺”图案,故符合题意;故选:D.二、填空题(本大题共8小题,每小题2分,共16分)9.【解答】解:(π﹣3.14)0=1;=.故答案为:0;﹣.10.【解答】解:∵x﹣3≠0,∴x≠3.故答案为:x≠3.11.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是十二边形.12.【解答】解:当高在三角形内部时(如图1),顶角是70°;当高在三角形外部时(如图2),顶角是110°.故答案为:70°或110°.13.【解答】解:分两种情况:①当∠APB=90°时,过A作AP⊥BC于点P,∵∠ABC=60°,AB=3,∴BP=,∵动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,∴t=;②当∠BAP=90°时,过A作P'A⊥AB交BC于点P',∵∠ABC=60°,AB=3,∴BP'=6,∵动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,∴t=6,综上所述,当△ABP是直角三角形时,t=或6,故答案为:或6.14.【解答】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=10,2ab=10,所以a2+b2=11,故答案为:11.15.【解答】解:(1)⑤①③②④,故答案为:⑤①③②④;(2)∠ABC=90°的理由是:等腰三角形的三线合一;故答案为:等腰三角形的三线合一.16.【解答】解:如图1中,满足AM=BN=PC,可证△PMN是等边三角形,这样的三角形有无数个.如图2中,当NM=NP,∠MNP=90°时,△MNP是等腰直角三角形,这样的三角形有无数个(见图3).故①②③正确,△PNM的面积不存在最小值(面积可以接近O,没有最小值).故答案为①②③.二、解答题(本大题共8小题,第17题每小题24分,共24分,第18,19,20,21,23题每题6分,第22,24题每题7分,共68分)17.【解答】解:(1)原式=﹣6a3b2;(2)原式=20222﹣(2022﹣2)×(2022+2)=20222﹣(20222﹣22)=20222﹣20222+22=4;(3)原式=15x2y÷5xy﹣10xy2÷5xy=3x﹣2y;(4)原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2;(5)(x+m)2﹣(x+n)2=(x+m+x+n)(x+m﹣x﹣n)=(2x+m+n)(m﹣n);(6)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2.18.【解答】证明:(1)∵AB∥CE,∴∠A=∠ECD,在△ABC和△CDE中,,∴△ABC≌△CDE(AAS);(2)∵△ABC≌△CDE;∴AC=CE,AB=CD,∴AB+CE=CD+AC=AD.19.【解答】解:==.∵x≠±2且x≠0,∴x=﹣1时,.20.【解答】解:(1)如图,△A1B1C1即为所求;(2)B(﹣1,﹣1)关于x轴的对称点的坐标为(﹣1,1).故答案为:(﹣1,1);(3)设P(0,m),由题意×3×|m+1|=×3×4,∴m=3或﹣5,∴P(0,3)或(0,﹣5).故答案为:(0,3)或(0,﹣5).21.【解答】解:(1)如图,射线BG,BF即为所求.(2)∠DBG=∠GBF=∠FBE.理由:连接DF,EG,则BD=BF=DF,BE=BG=EG,即△BDF和△BEG均为等边三角形,∴∠DBF=∠EBG=60°,∵∠ABC=90°,∴∠DBG=∠GBF=∠FBE=30°.22.【解答】解:(1)△DBC和△EAC会全等证明:∵∠ACB=60°,∠DCE=60°∴∠BCD=60°﹣∠ACD,∠ACE=60°﹣∠ACD ∴∠BCD=∠ACE在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),(2)∵△DBC≌△EAC∴∠EAC=∠B=60°又∠ACB=60°∴∠EAC=∠ACB∴AE∥BC(3)结论:AE∥BC理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60°∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),∴∠EAC=∠B=60°又∵∠ACB=60°∴∠EAC=∠ACB∴AE∥BC.23.【解答】解:(1)当x=1时,6x2﹣x﹣5=6×12﹣1﹣5=0,所以多项式6x2﹣x﹣5有因式x﹣1,即6x2﹣x﹣5=(x﹣1)(6x+5).故答案为:1,x﹣1,(x﹣1)(6x+5);(2)当x=1时,x3﹣7x+6=13﹣7×1+6=0,所以x3﹣7x+6=(x﹣1)(x2+x﹣6)=(x﹣1)(x+3)(x﹣2).24.【解答】(1)①解:∵CD=CA,∴∠CAD=∠CDA,∵∠ACE=2α,∴∠CAD=(180°﹣2α)=90°﹣α,∵△ABC为等边三角形,∴∠CAB=60°,∴∠DAB=∠CAD﹣∠CAB=90°﹣α﹣60°=30°﹣α,故答案为:30°﹣α;②证明:在CF上截取CM=CE,连接DM,BD,∵∠ABC=60°,∠DAB=30°﹣α,∴∠F=60°﹣(30°﹣α)=30°+α,∵CD=CB,∠DCM=∠BCE,CM=CE,∴△CMD≌△CEB(SAS),∴∠CMD=∠CEB,DM=BE,∴∠DEB=∠DMF,∵∠DEB=∠DAB+∠CDA=120°﹣2α,∴∠DMF=120°﹣2α,∴∠MDF=180°﹣30°﹣α﹣120°+2α=30°+α,∴∠F=∠MDF,∴DM=MF,∴BE=MF,∴CF=CM+MF=CE+BE;(2)解:补全图形如下:在CE上截取CN=CF,连接BN,BD,则CA=CB=CD,同(1)可知△BCN≌△DCF(SAS),∴∠CNB=∠CFD,∴∠BNE=∠BFD,∵∠BCE=2α﹣60°,CD=CB=CA,∴∠CAD=∠CDA=(180°﹣2α)=90°﹣α,∴∠DAB=60°﹣(90°﹣α)=α﹣30°,∴∠E=∠CDA﹣∠DAB=120°﹣2α,∵∠CFD=90°﹣α+60°=150°﹣α,∴∠CNB=150°﹣α,∴∠BNE=30°+α,∴∠NBE=180°﹣∠BNE﹣∠E=30°+α,∴∠BNE=∠NBE,∴BE=NE,∴CE=NC+NE=CF+BE.故答案为:CE=CF+BE.第二部分附加题(共10分)25.【解答】解:∵第1组:,42+32=52;第2组:,82+152=172;第3组:,122+352=372;∴(1)请写出第4组等式,162+632=652;故答案为:,(2)请写出第n组等式=,(4n)2+(4n2﹣1)2=(4n2+1)2;故答案为:=,(4n)2+(4n2﹣1)2=(4n2+1)2;(3)∵k2+96032=96052(k>0),设x+(x+2)=k,则x(x+2)=9603,解得x=97,k=196,故答案为:196.26.【解答】(1)证明:由题意得,(a﹣x)2+(b﹣y)2﹣(a+b﹣x)2﹣y2=(a﹣x)2﹣(a+b﹣x)2+(b﹣y)2﹣y2=(a﹣x+a+b﹣x)(a﹣x﹣a﹣b+x)+(b﹣y+y)(b﹣y﹣y)=﹣b(2a+b﹣2x)+b(b﹣2y)=b(﹣2a﹣b+2x+b﹣2y)=2b(x﹣a﹣y).∵a,b,x,y≥0,且a≥x,∴x﹣a≤0,﹣y≤0.∴x﹣a﹣y≤0.∴2b(x﹣a﹣y)≤0.∴(a﹣x)2+(b﹣y)2﹣(a+b﹣x)2﹣y2≤0.∴(a﹣x)2+(b﹣y)2≤(a+b﹣x)2+y2.(2)解:设a1≥b1,∵b1≥b2≥……≥b n≥0,b1+b2+……+b n=1,∴b1≥.又++……+≤+b1b2+……+b1b n=b1(b1+b2+……+b n)=b1,∴b1(a1+a2+……+a n)=a1b1+b1(a2+……+a n)≤a1b1+a1(a2+……+a n)≤a1b1+a2b2+…+a n b n+a1a2+a2a3+……+a n﹣1a n.∴a1b1+a2b2+…+a n b n≥b1(a2+……+a n)﹣(a1a2+a2a3+……+a n﹣1a n).∴(a1﹣b1)2+(a2﹣b2)2+……+(a n﹣b n)2=(++……+)﹣2(a1b1+a2b2+…+a n b n)+(++……+)≤(++……+)﹣2b1(a1+a2+……+a n)+2(a1a2+a2a3+……+a n﹣1a n)+b1=(a1+a2+……+a n)2﹣2b1+b1=1﹣2b1+b1=1﹣b1≤1﹣=.∴(a1﹣b1)2+(a2﹣b2)2+……+(a n﹣b n)2的最大值为.。

北京市四中八年级(上)期中数学试卷

北京市四中八年级(上)期中数学试卷

2010-2011学年北京市四中八年级(上)期中数学试卷2010-2011学年北京市四中八年级(上)期中数学试卷一、选择题:(1~6小题每题4分,7~12小题每题3分,共42分).C D.3.(4分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()4.(4分)如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()分)(2003•黑龙江)将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()5.(46.(4分)如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()8.(3分)下列运算中,正确的个数是()①=±4;②;③.9.(3分)(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()10.(3分)如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系11.(3分)如图,AB⊥BC于B,BE⊥AC于E,∠1=∠2,D为AC上一点,AD=AB,则()12.(3分)已知:如图,四边形ABCD中,∠ABC=60°,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P 是对角线BD上的一个动点,则PE+PC的最小值为().C.二、填空题:(每小题2分,共16分)13.(2分)的平方根是_________,若(x+1)2=2,则x=_________.14.(2分)已知点(2,x)和点(y,3)关于y轴对称,则(x+y)2011=_________.15.(2分)某人在湖水中看到一串字符在水中的倒影为,则该串字符在实际中的内容应该是_________.16.(2分)如图,已知点O为△ABC内角平分线的交点,过点O作MN∥BC,分别交AB于AC点M、N,若AB=12,AC=14,则△AMN的周长是_________.17.(2分)设实数x,y满足,则x=_________,y=_________.18.(2分)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为_________.19.(2分)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为_________.20.(2分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是_________.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.三、解答题:21.(3分)计算:.22.(9分)将下列各式因式分解:(1)2x2﹣4x﹣6;(2)(x+2)(x﹣3)﹣6;(3)x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).23.(5分)(2005•武汉)如图,在四边形ABCD中,对角线AC、BD相交于点O,已知∠ADC=∠BCD,AD=BC,求证:AO=BO.24.(4分)在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣l,O),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,在右面的坐标系中画出△A2B2C2,并写出它的三个顶点的坐标.25.(5分)已知,如图,AD为△ABC的角平分线,∠C=2∠B.求证:AB=AC+CD.26.(5分)如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.27.(5分)如图:△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,求AD的长.28.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,试判断CF与GB的大小关系,并证明你的结论.四、附加题29.求证:是整数.30.已知,如图,AD为△ABC的内角平分线,且AD=AB,CM⊥AD于M.求证:AM=(AB+AC).31.试证明:在一个三角形中,如果两条边不相等,那么它们所对的角也不相等,较大的边所对的角也较大.2010-2011学年北京市四中八年级(上)期中数学试卷参考答案与试题解析一、选择题:(1~6小题每题4分,7~12小题每题3分,共42分).C D.3.(4分)如图,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=()4.(4分)如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()5.(4分)(2003•黑龙江)将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()6.(4分)如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()CBD= CBD=×8.(3分)下列运算中,正确的个数是()①=±4;②;③.解:①=4③的算术平方根.记为9.(3分)(2009•江苏)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;其中能使△ABC≌△DEF的条件共有()10.(3分)如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系11.(3分)如图,AB⊥BC于B,BE⊥AC于E,∠1=∠2,D为AC上一点,AD=AB,则()12.(3分)已知:如图,四边形ABCD中,∠ABC=60°,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P 是对角线BD上的一个动点,则PE+PC的最小值为().C.=.二、填空题:(每小题2分,共16分)13.(2分)的平方根是±3,若(x+1)2=2,则x=﹣1±.解:∵=9∴±,±±14.(2分)已知点(2,x)和点(y,3)关于y轴对称,则(x+y)2011=1.15.(2分)某人在湖水中看到一串字符在水中的倒影为,则该串字符在实际中的内容应该是wp31285qb.16.(2分)如图,已知点O为△ABC内角平分线的交点,过点O作MN∥BC,分别交AB于AC点M、N,若AB=12,AC=14,则△AMN的周长是26.17.(2分)设实数x,y满足,则x=2,y=4.解:∵,∴y=018.(2分)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为1.=OE+OF=BCAB=19.(2分)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为40°.20.(2分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论正确的是①②③④.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.三、解答题:21.(3分)计算:.2+22.(9分)将下列各式因式分解:(1)2x2﹣4x﹣6;(2)(x+2)(x﹣3)﹣6;(3)x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).23.(5分)(2005•武汉)如图,在四边形ABCD中,对角线AC、BD相交于点O,已知∠ADC=∠BCD,AD=BC,求证:AO=BO.∵∵24.(4分)在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣l,O),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,在右面的坐标系中画出△A2B2C2,并写出它的三个顶点的坐标.25.(5分)已知,如图,AD为△ABC的角平分线,∠C=2∠B.求证:AB=AC+CD.26.(5分)如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.27.(5分)如图:△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,求AD的长.28.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,试判断CF与GB的大小关系,并证明你的结论.四、附加题29.求证:是整数.是整数.30.已知,如图,AD为△ABC的内角平分线,且AD=AB,CM⊥AD于M.求证:AM=(AB+AC).EF=ACAC AD=AB ACEF=EM=ACAE=AD=AM=AE+EM=(AM=EF=EM=31.试证明:在一个三角形中,如果两条边不相等,那么它们所对的角也不相等,较大的边所对的角也较大.参与本试卷答题和审题的老师有:zjx111;心若在;gbl210;HJJ;xiawei;wenming;sjzx;bjy;HLing;haoyujun;开心;冯延鹏;cair。

北京四中2013-2014学年度第一学期八年级数1

北京四中2013-2014学年度第一学期八年级数1

数 学 试 卷(考试时间为90分钟,试卷满分为120分)班级 学号_________ 姓名 分数________A 卷(共100分)一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( ).A .⎪⎩⎪⎨⎧=+=+9114yx y x B.⎩⎨⎧=+=+75z y y x C.⎩⎨⎧=-=6231y x x D.⎩⎨⎧=-=-1y x xy y x2.下列计算正确的是( ).A .3362x x x += B.5420()x x -=- C.m n m n x x x +⋅= D. 2334x x x += 3.下面能用平方差公式计算的有( ).①()()x y x y +-②()()x y x y -+--③()()x y x y +-+ ④()()x y y x --⑤(2)(2)a b b a +-A .4个B .3个C .2个D .1个4.在△ABC 中,若AB =AC ,其周长为12,则AB 的取值范围是( ). A. AB >6 B. AB <3 C. 4<AB <7 D . 3<AB <65.2x -有意义的x 是( ).A .全体正数B .全体负数C .零D .非零数6.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是2>x ,则m 的取值范围( ).A. m ≤2B. m ≥2C. m ≤1D. m >1 7.给出下列四个命题,其中真命题的个数为( ). (1) 坐标平面内的点与有序实数对一一对应 (2)若a >0,b 不大于0,则P (-a ,b )在第三象限内 (3)在x 轴上的点,其横坐标都为0(4)当m ≠0时,点P (m 2,-m )在第四象限内A . 1B . 2C .3D . 4 8.如图,把长方形ABCD 沿EF 对折,若150∠=, 则AEF ∠的度数为( ). A .110° B .115° C .120° D .130°1FEDCBA9.若32a =,36b =,312c =,则a ,b ,c 的关系不正确的是( ). A .1b a =+ B .1c a b =++ C .21b c =+ D .21c a =+ 10.在平面直角坐标系xOy 中,有一只电子青蛙在点A (1,0)处.第一次,它从点A 先向右跳跃1个单位,再向上跳跃1个单位到达点A 1; 第二次,它从点A 1先向左跳跃2个单位,再向下跳跃2个单位到达点A 2; 第三次,它从点A 2先向右跳跃3个单位,再向上跳跃3个单位到达点A 3; 第四次,它从点A 3先向左跳跃4个单位,再向下跳跃4个单位到达点A 4; ……依此规律进行,若点A n 的坐标为(2013,2012),则n 的值为( ). A.4025 B. 4023 C. 2012 D.1012二、填空题(每小题3分,共24分)11. 25的平方根是.12. 如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点若∠1=25°,则BAF ∠的度数为.13. 若622=-n m ,且3=-n m ,则=+n m . 14. 如果2144x ax ++是一个完全平方式,那么a =.15.若m 为整数,且点(12-4m ,14-3m )在第二象限,则20132+m =.16. 已知线段AB 的端点A (-1,-2),B (1,2),将线段AB 平移后, AB 点坐标 是(1,2),则B 点坐标是 .17. 如图,∠A =27°,∠COD =83°,∠D =47°,则∠B18.先观察下列各式的规律,然后填空:63212=++;113422=++;183632=++;……第6个等式为:____________________________________.第n 个等式为:____________________________________.(n 为正整数).三、解答题(每小题4分,共16分)19. 解方程组23405.x y x y +=⎧⎨-=-⎩,20.解不等式组⎪⎩⎪⎨⎧->+-<-xx x x 5)1(2,232221.计算:()()()()111142+++-a a a a22.已知2310x x +-=,求代数式2)12()2)(3(2-+---x x x 的值.23. 已知:如图,把ABC ∆向上平移3个单位长度,再向右平移2个单位长度,得到'''∆A B C ,(1)在图中画出'''∆A B C ;(2)在y 轴上是否存在点P ,使得△BCP 与△ABC 面积相等?若存在,求出点P 的坐标;若不存在,说明理由.五、解答题(本题共4分)24. 如图,下面有一个边长为a 的正方形、四个边长为b 的正方形和四个边长分别为a 和b 的长方形,请你把它们拼成一个大正方形.C -22-22yAB -11O -11x231图7FE D CG BA 25.某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元? (2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?七、解答题(每小题6分,共12分)26.如图,已知:∠AGF =∠ABC ,∠1+∠2=180°,DE ⊥AC 于点E . 求证:BF ⊥AC .27. 如图,在四边形ABCD中,∠ABC=∠ACB,∠ACD=∠ADC,∠ABD=∠ADB.(1) 若∠DAC=2∠BAC,求证:∠DBC=2∠BDC;(2) 试猜想:当∠DAC=n∠BAC时,∠DBC与∠BDC有何关系?并说明理由 .CB 卷一、填空题:(每小题3分,共6分)1. 比较大小:对于任意实数x ,1322-+x x 352-+x x2. 如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数是.二、解答题(每小题7分,共14分)3.已知实数x 、y 、z 满足x y z xy y +==+-592,,求代数式z y x 32++的值.DG北京四中2013-2014学年度第一学期八年级数学开学测试参考答案一、选择题CCBDC CABBB二、填空题三、解答题 19.解方程组⎩⎨⎧-=-=+)2(5)1(4032y x y x 解:()32⨯ 得:)3(1533-=-y x()()43+得:255=x解得:5=x ………………………………………2分 把5=x 代入()2得:10=y ………………………………………3分∴方程组的解是:⎩⎨⎧==.10,5y x ………………………………………4分20.解:解不等式(1)得:4≤x ………………………………1分解不等式(2)得:0>x ………………………………2分 不等式组的解集是40≤<x ………………………………4分21. 解:原式()()()111422++-=a a a ………………………………2分()()1144+-=a a ………………………………3分()18-=a………………………………4分22. 解:原式=2)144()65(22-++-+-x x x x …………………………………… 2分3932+--=x x ……………………………… 3分)13(32-+-=x x003,0)13(2=⨯-=∴=-+原式x x ……………………………… 4分23. (1)在图中画出'''∆A B C ;(2)求出点P 的坐标是(0,3)或(0,-3) 24.…………………………4分25.解:(1)设甲、乙两种花木的成本价分别为x 元和y 元.由题意得:⎩⎨⎧=+=+15003170032y x y x解得:⎩⎨⎧==300400y x …………………………4分(2)设种植甲种花木为a 株,则种植乙种花木为(3a +10)株.则有:⎩⎨⎧≥+-+-≤++21600)103)(300540()400760(30000)103(300400a a a a 解得:132709160≤≤a 由于a 为整数,∴a 可取18或19或20,所以有三种具体方案:①种植甲种花木18株,种植乙种花木3a +10=64株; ②种植甲种花木19株,种植乙种花木3a +10=67株;③种植甲种花木20株,种植乙种花木3a +10=70株. …………………………8分26. 证明: ∠AGF =∠ABC , BC GF //∴…………………………1分 31∠=∠∴ ………………………………………2分∠1+∠2=180°,∴∠3+∠2=180°DE BF //∴ ………………………………………3分 AED AFB ∠=∠∴ ………………………………4分DE ⊥AC 于点E ,︒=∠∴90AED ……………………………5分 ︒=∠=∠∴90AED AFB ,∴BF ⊥AC …………………………… 6分(2) ∠DBC =n ∠BDC . …………………………………………4分证明 ……………………………6分 B 卷 1. > 2. 360°3.解:由两个完全平方公式得:()()[]2241b a b a ab --+=从而 ()[]z x y y 2221459=--+- ()()()=--+-=-+-=--+=--25414529696932222y y y y y y y ()2300322====-+x y z y z ∴,∴∴ 8032232=+⨯+=++z y x ∴ …………………………7分4. ∠C=4°时,∠BFE 的最小值是113°. …………………………7分。

北京市海淀区2014-2015学年八年级(上)期中数学试卷(解析版)

北京市海淀区2014-2015学年八年级(上)期中数学试卷(解析版)

北京市海淀区2014-2015学年八年级上学期期中数学试卷一、选择题(每题3分,共30分)1.下列说法正确的是()A.0的平方根是0 B.1的平方根是1C.﹣1的平方根是﹣1 D.(﹣1)2的平方根是﹣12.在实数范围内,下列各式一定不成立的有()(1)=0;(2)+a=0;(3)+=0;(4)=0.A.1个B.2个C.3个D.4个3.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变4.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.85.如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A.∠DAC=∠BCA B.A C=CA C.∠D=∠B D.A C=BC6.如图,点P为∠AOB内一点,分别作点P关于OA,OB的对称点P1,P2,连接P1,P2交OA于M,交OB于N,若P1P2=6,则△PMN周长为()A.4B.5C.6D.77.下列说法中正确的是()A.绝对值最小的实数是零B.两个无理数的和、差、积、商仍是无理数C.实数a的倒数是D.一个数平方根和它本身相等,这个数是0或18.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数()A.1个B.3个C.4个D.5个9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④10.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在点C′的位置,则图中的一个等腰直角三角形是()A.△ADC B.△BDC′C.△ADC′D.不存在二、填空题(每题3分,共24分)11.实数4的平方根是.12.点A(﹣5,﹣6)与点B(5,﹣6)关于对称.13.|2﹣|=,|3﹣π|=.14.如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,使△ABC≌△DBE.(只需添加一个即可)15.若1<x<3,化简的结果是.16.等腰三角形的一个外角等于100°,则它的底角等于°.17.命题“一个角的平分线上的点,到这个角两边的距离相等”的逆命题是:“”.18.在平面直角坐标系中,x轴一动点P到定点A(1,1)、B(5,7)的距离分别为AP和BP,那么当BP+AP最小时,P点坐标为.三、计算题(每题8分,共56分)19.计算:.20.计算:(1)计算:(2)求4(x+1)2=64中的x.21.计算:﹣++(π﹣3)0.22.计算:|﹣2|﹣+(﹣2013)0.23.计算:.24.计算:|﹣2|++﹣|﹣2|25.计算:(﹣20)×(﹣)+.四、解答题(共10分)26.已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,求证:AH=2B D.北京市海淀区2014-2015学年八年级上学期期中数学试卷一、选择题(每题3分,共30分)1.下列说法正确的是()A.0的平方根是0 B.1的平方根是1C.﹣1的平方根是﹣1 D.(﹣1)2的平方根是﹣1考点:平方根.分析:A、根据平方根的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定.解答:解:A、0的平方根是0,故选项正确;B、1的平方根是±1,故选项错误;C、﹣1没有平方根,故选项错误;D、(﹣1)2的平方根是±1,故选项错误.故选A.点评:本题考查了平方根的定义,也利用了平方运算.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.2.在实数范围内,下列各式一定不成立的有()(1)=0;(2)+a=0;(3)+=0;(4)=0.A.1个B.2个C.3个D.4个考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式被开方数为非负数,即分式有意义的条件,分母不能等于0,分别判断各式即可得出答案.解答:解:(1)a2+1≥1,≥1,故不成立;(2)a≥1,+a≥1,故不成立;(3)由二次根式有意义的条件可得a只能取,当a=时,0+0=0,故成立;(4)a取任何值都不成立.综上可知(1)(2)(4)符合条件.故选C.点评:本题考查二次根式有意义的条件,难度不大,注意细心的判断每个选项.3.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变考点:轴对称的性质.分析:根据轴对称不改变图形的形状与大小解答.解答:解:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选:A.点评:本题考虑轴对称的性质,是基础题,熟记轴对称变换不改变图形的形状与大小是解题的关键.4.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8考点:轴对称图形.分析:根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.解答:解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选:B.点评:本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.5.如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A.∠DAC=∠BCA B.A C=CA C.∠D=∠B D.AC=BC考点:全等三角形的性质.分析:根据全等三角形对应角相等,全等三角形对应边相等对各选项分析判断利用排除法求解.解答:解:∵△ABC≌△CDA,∴∠DAC=∠BCA,AC=CA,∠D=∠B,故A、B、C选项结论正确;AD=BC,而AC与AD不一定相等,所以,AC=BC不一定成立.故选D.点评:本题考查了全等三角形的性质,熟记性质并准确识图,理清对应边与对应角熟记解题的关键.6.如图,点P为∠AOB内一点,分别作点P关于OA,OB的对称点P1,P2,连接P1,P2交OA于M,交OB于N,若P1P2=6,则△PMN周长为()A.4B.5C.6D.7考点:轴对称-最短路线问题.专题:转化思想.分析:根据线段垂直平分线上的点到线段两端的距离相等,得到MP=MP1,NP=NP2,于是△PMN周长可转化为P1P2的长.解答:解:∵P与P1关于OA对称,∴OA为PP1的垂直平分线,∴MP=MP1,P与P2关于OB对称,∴OB为PP2的垂直平分线,∴NP=NP2,于是△PMN周长为MN+MP+NP=MN+MP1+NP2=P1P2=6.故选C.点评:此题考查了轴对称图形的性质:在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等.7.下列说法中正确的是()A.绝对值最小的实数是零B.两个无理数的和、差、积、商仍是无理数C.实数a的倒数是D.一个数平方根和它本身相等,这个数是0或1考点:实数的运算.专题:计算题.分析:A、利用绝对值的代数意义判断即可得到结果;B、举一个反例说明即可;C、a=0没有倒数,错误;D、平方根等于本身的数为0,错误.解答:解:A、绝对值最小的实数是零,故选项正确;B、两个无理数的和,差,积,商不一定为无理数,故选项错误;C、当a≠0时,a的倒数为,故选项错误;D、一个数的平方根和它本身相等,这个数是0,故选项错误.故选A.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数()A.1个B.3个C.4个D.5个考点:等腰三角形的判定与性质;角平分线的性质.分析:首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.解答:解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∵ED∥BC,∴∠AED=∠ADE=72°,∠EDB=∠CBC=36°,∴在△ADE中,∠AED=∠ADE=72°,AD=AE,△ADE为等腰三角形,在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△BED中,∠EBD=∠EDB=36°,ED=BE,△BED是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有5个等腰三角形.故选D.点评:本题考查了等腰三角形的性质及等腰三角形的判定,角的平分线的性质,两直线平行的性质;求得各个角的度数是正确解答本题的关键.9.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④考点:全等三角形的判定;等腰三角形的性质.分析:根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.解答:解:∵AB=AC,∴∠ABC=∠AC B.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE(ASA);③△BDA≌△CEA(ASA);④△BOE≌△COD(AAS或ASA).故选D.点评:此题考查等腰三角形的性质和全等三角形的判定,难度不大.10.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在点C′的位置,则图中的一个等腰直角三角形是()A.△ADC B.△BDC′C.△ADC′D.不存在考点:翻折变换(折叠问题).分析:由三角形中线的定义,可得BD=CD,又由折叠的性质,易求得∠BDC′=90°,BD=C′D,即可得△BDC′是等腰直角三角形.解答:解:∵AD是△ABC的中线,∴BD=CD,由折叠的性质可得:C′D=CD,∠ADC′=∠ADC=45°,∴∠CDC′=90°,C′D=BD,∴∠BDC′=180°﹣∠CDC′=90°,∴△BDC′是等腰直角三角形.故选:B.点评:此题考查了折叠的性质、等腰直角三角形的判定以及三角形中线的定义.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.二、填空题(每题3分,共24分)11.实数4的平方根是±2.考点:平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.点A(﹣5,﹣6)与点B(5,﹣6)关于y对称.考点:关于x轴、y轴对称的点的坐标.分析:关于y轴对称的两个点的坐标特点:纵坐标相等,横坐标互为相反数.解答:解:∵点A和点B的纵坐标相等,横坐标互为相反数∴点A和点B关于y轴对称.故答案是:y.点评:本题主要考查了关于x轴、y轴对称的点的坐标.根据平面直角坐标系中任意一点P(x,y),则关于y轴的对称点的坐标是(﹣x,y).13.|2﹣|=﹣2,|3﹣π|=π﹣3.考点:实数的性质.专题:计算题.分析:首先判断2﹣和3﹣π的正负情况,根据绝对值的性质即可进行化简.解答:解:∵2,3<π∴2﹣<0,3﹣π<0∴|2﹣|=﹣2,|3﹣π|=π﹣3.故答案是﹣2和π﹣3.点评:此题主要考查了绝对值的性质,解题时先确定绝对值符号中代数式的正负再去绝对值符号.14.如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件∠BDE=∠BAC,使△ABC≌△DBE.(只需添加一个即可)考点:全等三角形的判定.专题:压轴题;开放型.分析:根据∠ABD=∠CBE可以证明得到∠ABC=∠DBE,然后根据利用的证明方法,“角边角”“边角边”“角角边”分别写出第三个条件即可.解答:解:∵∠ABD=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠ABC=∠DBE,∵AB=DB,∴①用“角边角”,需添加∠BDE=∠BAC,②用“边角边”,需添加BE=BC,③用“角角边”,需添加∠ACB=∠DE B.故答案为:∠BDE=∠BAC或BE=BC或∠ACB=∠DE B.(写出一个即可)点评:本题考查了全等三角形的判定,根据已知条件有一边与一角,根据不同的证明方法可以选择添加不同的条件,需要注意,不能使添加的条件符合“边边角”,这也是本题容易出错的地方.15.若1<x<3,化简的结果是2.考点:二次根式的性质与化简.分析:先由二次根式的性质=|a|,将原式化简为|x﹣3|+|x﹣1|,再根据绝对值的定义化简即可.解答:解:∵1<x<3,∴=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故答案为2.点评:本题考查了二次根式的性质与化简,绝对值的定义,牢记定义与性质是解题的关键.16.等腰三角形的一个外角等于100°,则它的底角等于80或50°.考点:等腰三角形的性质;三角形内角和定理.专题:分类讨论.分析:根据等腰三角形的一个外角等于100°,进行讨论可能是底角的外角是100°,也有可能顶角的外角是100°,从而求出答案.解答:解:①当100°外角是底角的外角时,底角为:180°﹣100°=80°,②当100°外角是顶角的外角时,顶角为:180°﹣100°=80°,则底角为:(180°﹣80°)×=50°,∴底角为80°或50°.故答案为:80或50.点评:此题主要考查了等腰三角形的性质,此题应注意进行分类讨论,非常容易忽略一种情况.17.命题“一个角的平分线上的点,到这个角两边的距离相等”的逆命题是:“到一个角两边距离相等的点,在这个角的平分线上”.考点:命题与定理.分析:两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.把一个命题的条件和结论互换就得到它的逆命题.解答:解:命题“一个角的平分线上的点,到这个角两边的距离相等”的逆命题是:“到一个角两边距离相等的点,在这个角的平分线上”.点评:本题考查了互逆命题的知识.18.在平面直角坐标系中,x轴一动点P到定点A(1,1)、B(5,7)的距离分别为AP和BP,那么当BP+AP最小时,P点坐标为.考点:轴对称-最短路线问题;坐标与图形性质.专题:动点型.分析:本题根据题意可知B(5,7)关于x轴的对称点是(5,﹣7),经过(1,1)与(5,﹣7)的直线可以求出,这条直线与x轴的交点就是P点.解答:解:依题意得:B(5,7)关于x轴的对称点是(5,﹣7)设过(1,1)与(5,﹣7)的直线为y=kx+b,∴,∴∴y=﹣2x+3令y=0,得x=故P点坐标为(,0).点评:本题考查了最短线路问题及坐标与图形的性质;能够正确作出P的位置是解决本题的关键.三、计算题(每题8分,共56分)19.计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负指数幂、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=9﹣16÷(﹣2)+1﹣2×=9+8+1﹣3=15.点评:本题考查实数的综合运算能力,是各地2015届中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握及零指数幂、负指数幂、特殊角的三角函数值、立方根等考点的运算.20.计算:(1)计算:(2)求4(x+1)2=64中的x.考点:实数的运算;平方根.专题:计算题.分析:(1)原式第一项利用立方根的定义化简,第三项了平方根定义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)方程变形后,利用立方根的定义开立方即可求出解.解答:解:(1)原式=﹣2﹣+3+﹣1=0;(2)方程变形得:(x+1)2=16,开方得:x+1=4或x+1=﹣4,解得:x=3或x=﹣5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣++(π﹣3)0.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、立方根、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=0.5﹣++1=0.5﹣2++1=1.点评:本题考查实数的综合运算能力,是各地2015届中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负指数幂、立方根、二次根式化简等考点的运算.22.计算:|﹣2|﹣+(﹣2013)0.考点:实数的运算;零指数幂.分析:针对绝对值,二次根式化简,零指数幂3个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣3+1=0.点评:本题考查了实数的运算,解决此类题目的关键是熟练掌握绝对值、零指数幂、二次根式等考点的运算.23.计算:.考点:二次根式的混合运算;零指数幂.分析:﹣1的奇次幂为﹣1,非0数的0次幂为1,把二次根式化为最简二次根式,再进行计算.解答:解:原式=﹣1++1﹣3=﹣2.点评:本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.24.计算:|﹣2|++﹣|﹣2|考点:实数的运算.分析:先去绝对值号、开方,再计算.解答:解:原式=2﹣+(﹣2)+2﹣2=.点评:本题考查实数的综合运算能力,解题关键是分别根据定义法则去掉根号和括号,是各地2015届中考题中常见的计算题型.25.计算:(﹣20)×(﹣)+.考点:实数的运算.分析:分别进行有理数的乘法、二次根式的化简等运算,然后合并即可.解答:解:原式=10+3+2000=2013.点评:本题考查了实数的运算,涉及了有理数的乘法、二次根式的化简等运算,属于基础题.四、解答题(共10分)26.已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,求证:AH=2B D.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:△ABC中,AB=AC,AD是底边上的高,则BC=2BD,又∵BE是高,所以,∠AEH=∠BEC=90°,∠HAE+∠AHE=∠DAC+∠C,所以,∠AHE=∠C,所以,△AHE≌△BCE,则AH=BC,即AH=2B D.解答:证明:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,AD是底边上的高,∴BC=2BD,又∵BE是高,∴∠AEH=∠ADC=90°,则∠DAC+∠AHE=∠DAC+∠C=90°,∴∠AHE=∠C,在△AHE和△BCE中,,∴△AHE≌△BCE(AAS),∴AH=BC,又BC=2BD,∴AH=2B D.点评:本题主要考查了等腰三角形的性质和全等三角形的判定与性质,证明两个三角形全等,是证明线段或角相等的重要工具;在判定三角形全等时,关键是选择恰当的判定条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷(考试时间:100分钟满分:120分)姓名:班级:成绩: ____________一、选择题(本题共30分,每小题3分)1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是().A.B.C.D.2.下列各式不能..分解因式的是().A.224x x-B.214x x++C.229x y+D.21m-3.点P(-3,5)关于y轴的对称点的坐标是().A.(3,5)B.(3,-5)C.(5,-3)D.(-3,-5)4. 如图,Rt ABC△中,90C∠=°,ABC∠的平分线BD交AC于点D,若3cmCD=,则点D到AB的距离是().A.5cm B.4cm C.3cm D.2cm5.下列各式中,正确的是().A.3355x xy y--=-B.a b a bc c+-+-=C.a b a bc c---=-D.a ab a a b-=--6.下列命题是真命题的是().A.等底等高的两个三角形全等B.周长相等的直角三角形都全等C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等7.如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A逆时针方向旋转到△ACD′的位置,则∠ADD′的度数().A.25︒B.30︒C.35︒D.45︒8.在等腰ABC∆中,已知AB=2BC,AB=20,则ABC∆的周长为().A.40 B.50 C.40或50 D.无法确定9.已知三角形的两边长分别为5和7,则第三边的中线长x的范围是().A.2 < x < 12 B.5 < x < 7 C.1 < x < 6 D.无法确定10.如图,在RtΔABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足.则结论:(1)AD=BF;(2)CF=CD;(3)AC+CD=AB;(4)BE=CF;(5)BF=2BE,其中正确的结论个数是().A.1 B.2 C.3 D.4A BDD'C(第7题图)DCAB(第4题图)C二、填空题(本题共20分,每小题2分)11.若式子42-x x 有意义,则x 的取值范围是________.12.计算212293m m+--= . 13.如图,在△ABC 中,AB =AC ,∠A =20°,线段AB 的垂直平分 线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 为 度.14.若关于x 的二次三项式2x +kx b +因式分解为(1)(3)x x --,则k+b 的值为___. 15.若 a + b = 7, ab = 5, 则 a 2 - ab + b 2 = _______________. 16.当x 取 值时,2610x x ++有最小值,最小值是 . 17.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,则列出的方程是________________. 18.如图,在等腰直角三角形ABC 中,∠BAC =90°,在BC 上截取BD =BA ,作∠ABC 的平分线与AD 相交于点P ,连结PC ,若BD=2CD ,△ABC 的面积为22cm ,则△D PC 的面积为_____________.(第18题图) (第19题图) 19.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若60A ∠=︒,195∠=︒,则∠2的度数为_______. 20.如果满足条件“∠ABC =30°,AC =1, BC =k (k >0)”的△ABC 是唯一的,那么k 的取值范围是 .三、解答题21. 把多项式分解因式(每题4分,共8分).(1)33312a b ab - (2)4)(4)(222+---x x x x 解: 解:ABCB'C'EF 12AB CDE(第13题图)22.(每题4分,共8分) (1)计算:11112---÷-a aa a a . (2)解方程:542332x x x +=--. 解: 解:23.(本题5分)已知:如图, A 、B 、C 、D 四点在同一直线上, AB =CD , AE ∥BF 且AE =BF . 求证: EC =FD .24.(每题4分,共8分) (1)先化简,再求值:2112()3369mm m m m +÷-+-+,其中9m =. 解:(2)已知113x y -=,求代数式21422x xy yx xy y----的值.解:C D25. 列分式方程解应用题:(本题5分)(温馨提示:你可借助图示、表格等形式“挖掘”等量关系)赵老师为了响应市政府“绿色出行”的号召,上下班由自驾车方式改为骑自行车方式.已知赵老师家距学校20千米,上下班高峰时段,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多95小时.求自驾车和自行车的速度.四、解答题26. (本题4分)某地区要在区域..S .内. (即 COD 内部..) 建一个超市M , 如图所示, 按照要求, 超市M 到两个新建的居民小区A , B 的距离相等, 到两条公路OC , OD 的距离也相等. 这个超市应该建在何处? (要求:尺规作图, 不写作法, 保留作图痕迹)27. (本题5分)阅读下列材料:如图,在四边形ABCD 中,已知 105=∠=∠BAD ACB , 45=∠=∠ADC ABC .求证:CD=AB.小刚是这样思考的:由已知可得, 60=∠DCA , 75=∠DAC , 30=∠CAB ,180=∠+∠DAC ACB ,由求证及特殊角度数可联想到构造特殊三角形.即过点A作AE AB ⊥交BC 的延长线于点E ,则AB=AE ,∠E=∠D.∵在ADC ∆与CEA ∆中,75D E DAC ECA AC CA ∠=∠⎧⎪∠=∠=⎨⎪=⎩ADC CEA ∆∆∴≌,得CD AE AB ==.请你参考小刚同学思考问题的方法,解决下面问题:如图,在四边形ABCD 中,若 180=∠+∠CAD ACB ,D B ∠=∠, 请问:CD 与AB 是否相等?若相等,请你给出证明;若不相等,请说明理由.BB28. (本题7分)在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.(1)如图1,若点D在线段BC上.求证:①AD=DE;②BC=DC+2CF;(2)如图2,若点D在线段BC的延长线上,(1)中的两个结论是否仍然成立?请说明理由.AB CD EFAB C DEF图1 图2附加题(满分20分):1.(本题4分)已知2310a a --=,求62120a a -+= .2.(本题4分)右图中,∠ABC=∠BCD=∠DAB=45°,BD=2,求四边形ABCD 的面积为 .3.(本题6分)已知22m n =+,22n m =+,m≠n ,求 332m mn n -+的值.4.(本题6分)已知:△ABC 中,∠ABC =2∠ACB ,∠ABC 的平分线BD 与∠ACB 的平分线CD 相交于点D ,且CD =AB ,求证:∠A =60°.一、选择题1、D2、C3、A4、C5、D6、D7、D8、B9、C 10、D 二、填空题AB C D11.4≠x ; 12.32+-m ; 13.60; 14.-1; 15.34; 16.x =-3,1; 17.420480480=+-x x ;18.31;19.25°; 20.2k =或0<k ≤1. 21.(1)解:原式=).2)(2(3)4(322b a b a ab b a ab -+=-(2)解:原式=[].)1()2()1)(2()2(22222+-=+-=--x x x x x x22. (1)()11a a -- ;(2)1x =.23.解:∵AE ∥BF ,∴△AEC ≌△BFD (SAS ). ∴EC =FD .24.(1)解: 2112()3369mm m m m +÷-+-+=22(3)(3)(3)2m m m m m-⋅-+ =33m m -+. 当9m =时,原式=931932-=+. (2)解:∵xy y x yx 3,311-=-∴=- ∴上式=.423146214)(2=----=----xyxy xyxy xy y x xy y x25.解:设自行车速度为x 千米/小时 依题意得:9522020=-x x 解方程得x=18.经检验x=18是原方程的解且符合实际意义 2x=36答:自行车的速度是18千米/小时,自驾车的速度是36千米/小时.26.略27.解:CD=AB证明:延长BC 至E使AE=AB 则∠B=∠E ∵∠B=∠D ∴∠D=∠E∵ 180=∠+∠CAD ACB ∠ACB+∠ACE=180° ∴∠CAD=∠ACE在ΔCAD 与ΔACE 中⎪⎩⎪⎨⎧∠=∠=E D CAAC ACE ∠=CAD ∠ ∴ΔCAD ≅ΔACE ∴CD=AE ∴CD=AB.28.(1)①过D 作DG ∥AC 交AB 于G∵△ABC 是等边三角形,AB =BC ,∴∠B =∠ACB =60°∴∠BDG =∠ACB =60°,∴∠BGD =60° ∴△BDG 是等边三角形,∴BG =BD ∴AG =DC∵CE 是∠ACB 外角的平分线,∴∠DCE =120°=∠AGD ∵∠ADE =60°,∴∠ADB +∠EDC =120°=∠ADB +∠DAG ∴∠EDC =∠DAG ,∴△AGD ≌△DCE∴AD =DE②∵△AGD ≌△DCE ,∴GD =CE ,∴BD =CE∴BC =CE +DC =DC +2CF(2)①成立;②不成立,此时BC =2CF -CD证明:过D 作DG ∥AC 交AB 延长线于G 以下略附加题:1、1309; 2、2; 3. -24.证明:过点A 作AE ∥BC 交BD 延长线于E ,连接CE ,设AC 、BE 相交于点OA B C D EFGAB C DEF G则∠1=∠ACB,∠2=∠3∵∠ABC=2∠ACB,∴∠3=∠ACB∴OB=OC,∠1=∠2∴OA=OE又∠AOB=∠EOC,∴△AOB≌△EOC∴∠BAC=∠CED,∠5=∠4=∠3,AB=CE ∵CD=AB,∴CD=CE∴∠CED=∠CDE=∠3+∠6又∠DCE=∠5+∠7,∠6=∠7∴∠CED=∠CDE=∠DCE=60°∴∠BAC=∠CED=60°AB CDE1 234O67 5。

相关文档
最新文档