高温对混凝土抗压强度的影响

高温对混凝土抗压强度的影响
高温对混凝土抗压强度的影响

高温对混凝土抗压强度的影响

摘要:由于混凝土材料中粗细骨料和水泥等材料的热工性能不同,在高温作用下,这些材料间的物理化学作用使混凝土力学性能产生变异,进而导致混凝土力学性能劣化。实验采用液压伺服试验系统对经历相同时间恒温加热,不同温度作用后的C30普通硅酸盐混凝圆柱体试块进行抗压强度试验,详细描述高温后试块的外观特征及抗压破坏特征,探讨分析了不同加热温度对混凝土的抗压强度力学性能的影响。本试验结果表明:高温后,混凝土的力学性能随温度的升高而劣化,表现为随着受热温度的升高,混凝土的抗压强度降低。此外,还探讨了混凝土抗压强度随温度变化的规律,得到了混凝土抗压强度随温度变化的试验曲线。

关键词:混凝土;高温;抗压强度

Effect of temperature on the compressive strength of concrete

Abstract:The thermal properties of concrete material of coarse aggregate and cement and other materials, under the condition of high temperature, the physical and chemical effects of these materials to make the mechanical properties of concrete mutation, resulting in deterioration of mechanical properties of concrete. The experiment adopts hydraulic servo test system to experience the same constant temperature heating time, different temperature after interaction of C30 ordinary portland concrete cylinder specimens were subjected to compressive strength tests, described in detail after high temperature test appearance characteristics and compressive block failure characteristics, to explore the effect of compressive strength of different heating temperature on mechanical properties of concrete is analyzed. In addition, also discusses the rule of concrete compressive strength varies with temperature, a regression formula of compressive strength of concrete with temperature changes, comparing the regression curve with the test results, the regression curve can be simulated well test curve.

keywords:concrete; elevated temperature; compression strength

目录

1 绪论 (1)

1.1建筑火灾的危害 (1)

1.2混凝土的组成 (1)

1.3混凝土的力学性能 (2)

1.4国内外研究现状 (2)

1.5研究内容及意义 (3)

2 试验设计介绍 (5)

2.1引言 (5)

2.2原材料与混凝土配比 (5)

2.3模具及混凝土试块制备 (5)

2.4混凝土试块的养护 (6)

2.5加热设备及热处理过程 (6)

2.6压力试验设备及加压处理过程 (6)

2.7数据处理 (8)

3 试验部分 (9)

3.1温度的选定 (9)

3.2混凝土试块表观特征 (10)

3.3混凝土试块的高温破坏现象 (10)

3.4试验数据 (11)

3.5高温后混凝土立方体抗压强度与温度的关系曲线 (12)

3.6抗压强度损失率随温度的变化曲线 (13)

3.7原因分析 (13)

5 参考文献 (15)

6 指导教师简介 (16)

7 致谢 (17)

1 绪论

1.1建筑火灾的危害

火在人类生活和生产中起着巨大的作用,但是火失去控制成为火灾后给人类也造成了巨大的损失。在我国,建筑火灾形势也十分严峻,火灾发生起数和由此造成的损失显著上升。据统计报告,1993?1997年的五年间,平均年火灾发生38万起,直接经济损失约12亿,死亡2500人,其中建筑火灾居首位,占火灾总数的60%左右,其直接经济损失占总火灾损失的80%以上[1]。

近年来,随着国民经济和现代化建设的发展,高层建筑不断涌现,房屋密度加大。加之大量新型材料广泛应用于建筑业,以及燃气、电器的普遍使用,大大增加了建筑物发生火灾的可能性,人们预测和控制火灾的压力越来越大。随着我国现代化建设的发展,建筑物向高层、超高层不断发展,人口密度增加,建筑火灾带来的危害也越来越大,每年我国因为火灾造成的直接经济损失达到数十亿元,而火灾带来的间接经济损失则更多,统计分析表明,火灾的平均间接经济损失是直接经济损失的3倍左右[1]。

1.2混凝土的组成

混凝土是以水泥为胶结料,把水泥和砂、石等骨料以及添加剂、水按一定比例配合、搅拌而成的物质。刚搅拌成的混凝土,在一定时间内呈流塑状态。因此,可以制成任意大小和形状的结构和构件。在成型以后经过一段时间,水泥和水进行水化反应,便硬化成具有一般石料性质的人造石,在建筑中常与钢筋配合使用,组成钢筋混凝土结构。

混凝土具有原料丰富,价格低廉,生产工艺简单的特点,因而使其用量越来越大。同时混凝土还具有抗压强度高,耐久性好,强度等级范围宽等特点。这些特点使其使用范围十分广泛,因此它是现今世界上用途最广、用量最大的人造建筑材料,也是最要的建筑结构材料。

1.3混凝土的力学性能

混凝土的强度有抗压、抗拉、抗剪、抗弯强度等,其中以抗压强度值最大。因此,抗压强度是衡量混凝土材料最重要的力学性能参数,工程应用中混凝土主要用来承受压力。国内外许多学者长期以来进行了大量试验研究,发现混凝土抗压强度是各项性能中最基本也是最重要的一项,能直接反映材料本身受高温影响后的力学性能,并直接或间接影响着混凝土的其他性能。由于混凝土材料中粗细骨料和水泥等材料的热工性能不同,在高温作用下这些材料间的物理化学作用使混凝土力学性能产生变异,进而导致混凝土力学性能劣化,使混凝土结构的安全性降低。可见高温后,抗压强度高低对于结构的承载力及安全使用同样起着很重要的作用。

1.4国内外研究现状

1.4.1国外研究状况

国外对于混凝土抗火性能的研究开始得比较早,大量的研究开始于50年代,美国、日本、英国、瑞典等国家对不同类型的混凝土在高温下的热工特性和力学性能、钢筋混凝土构件、结构及预应力钢筋混凝土结构的抗火性能进行了大量的研究[2]。对高温下混凝土在单向、多向应力作用下的应力一应变关系以及强度、变形性能均进行了系统的研究。

1.4.2国内研究状况

国内对钢筋混凝土的抗火性能的系统研究开始得比较晚。主要是从80年代起,同济大学、清华大学、哈尔滨建筑大学等学校先后分别开始对高温下混凝土的力学性能、火灾下钢筋混凝土构件内部的温度分布、钢筋混凝土构件、钢筋混凝土框架及预应力混凝土结构等的抗火性能进行了较为系统的实验和理论研究,积累了不少研究资料[3-6]。同济大学还对高温下普通混凝土热工性能进行了测定[3]。国内学者对于高温下不同混凝土在单向应力作用下的应力应变关系已经进行了比较系统的研究[3],对高温下混凝土在单向应力作用下的强度、变形性能均有了比较深刻的了解,对于高温下混凝土在双向应力作用下强度及变形性能也有了部分研究,取得了混凝土在双向应力

作用下强度及变形随温度变化的规律[4,5]。

李卫等[7]对高温后混凝土的抗压、抗拉强度及变形性能进行的试验研究,分析了高温后混凝土力学性能的变化规律和机理,并给出了相应的计算公式;吴波等[8]对混凝土的应力—应变全过程及其变形指标进行的试验研究,分析了混凝土经历100~600℃高温作用过程中应力—应变曲线各阶段的特点,建立了相应的应力—应变全曲线方程;阎继红等[9]对混凝土材料进行了不同温度、不同静置时间、不同冷却方式及不同养护条件等情况下的相关试验,研究了这些因素对混凝土抗压强度的影响,并得出了计算公式;吕天启等[10,11]通过大量试验,研究了高温静置后混凝土抗压强度变化的原因,探讨了高温后静置混凝土的抗压强度、弹性模量和应力—应变关系等力学性能的变化规律,给出了各力学指标的拟合回归公式;李宁波等通过4种水灰比混凝土的高温后强度试验,分析了混凝土的残余强度衰减规律及其高温衰退机理。但是现有研究并未就某一温度下的相同加热时间对混凝土力学性能的影响进行全面的研究和分析,因此本文对经历不同温度、不同加热时间作用后的混凝土力学性能进行了试验研究,探讨混凝土抗压强度随温度变化的规律。

研究成果表明,400℃后混凝土强度开始剧烈下降,残余强度随着温度的升高逐渐降低,但是从常温到400℃这个温度区间混凝土的强度变化比较复杂,在200℃内强度损失不大,从300℃开始强度损失就比较严重了,特别是600℃后强度剧烈降低。由此可以预测800℃甚至更高的温度时混凝土试块的残余强度将会很小。

1.5研究内容及意义

1.5.1研究内容

本研究通过采用液压伺服试验系统对经历相同时间恒温加热,不同温度作用后的C30普通硅酸盐混凝圆柱体试块进行抗压强度试验,详细描述高温后试块的外观特征及抗压破坏特征,探讨分析了不同加热温度对混凝土的抗压强度力学性能的影响。

1.5.2研究意义

一般的混凝土结构在建造过程和长期的使用期间,当处于正常的工作条件下,其

温度绝对值不高,波动不大,按照现行规范[12]进行设计,可保证结构安全,并满足建筑物的使用功能要求。但是,如若结构的环境温度升高很多,或温度差发生周期性变化时,可能使结构因为使用性能恶化或承载力下降而失效,甚至酿成局部破坏,以至整体倒塌。

混凝土的抗压强度是评价其力学性能的最重要、最基本的指标。不同温度下混凝土的力学性能研究,为人们进一步分析火灾情况下混凝土构件内部各点的应力分布和评估结构在不同温度下的损伤情况和安全性提供依据。建筑物遭受火灾后,其结构内部升温,形成不均匀的温度场,材料性能严重恶化,导致结构不同程度的损伤和承载力的下降。作为建筑物的承重和支撑体系,其结构必须在一定时间期限内保持足够的承载能力,以便使受灾人员安全撤离现场,消防人员进行灭火,救护伤亡人员和抢救重要器物等活动。

2 试验设计介绍

2.1引言

随着我国经济的不断发展,人民的生活水平得到提高,同时也伴随着火灾的不断发生。上文中已介绍我国每年发生大量的火灾,而且随着建筑物高层化发展火灾带来的危害也越来越大。我们知道,高温后混凝土的力学性能发生了巨大的变化,由此可以猜想:火灾后没有坍塌的建筑物能否可以继续使用?

正是因为这个猜想的引出,所以本人拟定了这个实验方案[13],来探究高温后混凝土的力学性能,从而来解答上述的猜想。

2.2原材料与混凝土配比

在本次试验中,所采用的水泥是云南东骏水泥有限公司于2013年2月21日生产的P?S42.5级的普通硅酸盐水泥,该水泥是按照国家新标准GB175-1999组织生产的,它具有早强,28天富裕强度高,凝结时间正常,和易性好的特点,在全省质量评比中名列前茅。所采用的细骨料为细河砂,粗骨料为碎石子,骨料的最大粒径可达10mm,水为自来水。本试验所采用的混凝土标号为C30,混凝土每立方米的配合比以及其性能指标见表1。

表1 每立方米混凝土的配合比

C30混凝土(2400kg/m3)水水泥砂子石子质量(kg)175 357 633 1285

配合比0.49 1 1.77 3.6

2.3模具及混凝土试块制备

本试验混凝土试块为直接50mm,高10mm的圆柱体,试验采用直径50mm的阻燃性硬质PVC聚氯乙烯管作为制备混凝土试块的模具。先将PVC聚氯乙烯管切割为11cm 长的短管,经过打磨使其长度达到10cm,再将其切割成两半,重新组装并且用塑料胶带纸绑好,使其恢复原状。

按照C30混凝土的标准配合比量取水、水泥、沙子、石子,将其倒入搅拌桶中,

充分搅拌;将配置好的混凝土分层放入模具中,充分捣实,直至拌合物表面呈现水泥浆时为止;用镆刀沿试模边缘将多余的拌合物刮去,并用镆刀将表面抹平;于室内阴凉处常温静置,使其自然硬化。

2.4混凝土试块的养护

混凝土试块的养护采用室内(20℃)自然条件下养护,试件成型后应覆盖表面,以防止水分蒸发,并应在室内阴凉处;常温条件下静置1~2天,拆下模具;拆模后的试件应隔天浇水继续养护,避免用水直接冲淋试件;拆模后,试件仍需要保持同等条件下养护28天,使混凝土试块具有充分的强度。

2.5加热设备及热处理过程

本试验采用的高温试验炉为上海特成机械设备有限公司制造的SX2-10-12型箱形高温电阻炉,炉膛净空为(400×250×160) mm,额定功率10kW,最高温度1200℃,配套使用KSW-12-16型电炉温度控制器,最高控制温度可达1200℃,炉温由一个热电偶测定。

本试验共分为常温(20℃)、200℃、300℃、400℃、500℃、600℃、700℃、800℃、900℃、1000℃十个温度档(见表2),每组三个平行试验。将需加热的混凝土试件置于炉内加热,待温度达到预设温度时开始计时,并且使试件恒温加热120min。加热结束,切断电源,小心取出混凝土试块放在地面,令其在自然环境中冷却一天后进行抗压强度试验。冷却后给混凝土试块标号,并记录加热后混凝土试块的表面变化特征。

表2 实验温度档取定表

实验组1组2组3组4组5组6组7组8组9组10组

加热温度常温200℃300℃400℃500℃600℃700℃800℃900℃1000℃加热时间0 120min 120min 120min 120min 120min 120min 120min 120min 120min 重复上述操作,对每个温度档的混凝土试块进行温度处理并编号。

2.6压力试验设备及加压处理过程

2.6.1压力试验设备及加压处理过程

压力试验设备采用西南林业大学土木工程学院力学实验室SANS型微机控制液压伺服压力试验万能机,是由上海华龙仪器有限公司生产。设备型号WHY-10KN,试验

机的最大荷载为1000kN,量程可分多档,试验力测量范围0.4%--100%,试验力示值误差为±0.5%。试验采用计算机应力控制方式,将经历高温热处理后的混凝土试样放置在压力试验机上,以0.5MPa/s的速率沿轴向均匀施加荷载,直至试样破坏,试验数据由试验系统自动采集。

待试块冷却后,将试块取出后擦拭干净,测量尺寸,并检查其外观;将试块放在下承压板上,试件的承压面应与成型时的顶面垂直,试件的中心应与试验机下压板中心对准;开动试验机,当上压板与试件接近时,调整球座,使接触均衡;加压时,应连续而均匀地加荷,加荷速度控制在0.5MPa/s;当试件接近破坏而开始迅速变形时,停止调整试验机加压控制器,直至试件破坏,记录破坏载荷。

重复上述过程,将7组试件分别测试,记录数据。

2.6.2实验注意事项

(1)压力机

在进行混凝土抗压强度试验的过程中,必须选择精度和量程都满足条件的压力试验机,只有这样才能降低测试误差,提高混凝土强度测定值的准确性。另外,在测试的过程中,混凝土试件的中心要对准上下压板的中心,也就是要试件、上压板、下压板中心为一直线,这就要求试验机的上下压板必须中心相对,若上下压板中心偏离,混凝土试件受力不均匀,使得测出结果会比实际值偏低。另外,压力机上下压板的平整度对混凝土抗压强度试验结果亦有影响,压板不平、球座不灵活都会使试件产生局部受压,降低强度检验结果。

(2)加荷速度

试验过程中,加荷速度对于混凝土立方体的强度具有一定的影响,加荷速度的快与慢,会造成测试结果和真值相比偏高与偏低。当加荷速度较快时,材料变形的增长落后于荷载的增加,故破坏时强度偏高;而加荷速度较慢时,由于试件破坏荷载大,到接近破坏阶段,尽管油门已开至最大,但加荷速度还是达不到规定的要求,结果破坏荷载就会明显减小而不能正确反映混凝土的真实强度。因此,在GB/T50081-2002普通混凝土力学性能试验方法标准中规定了不同等级混凝土立方体试件的加载速度为:混凝土强度等级小于C30时,加荷速度取每秒0.3MPa~0.5MPa,所以我们在试验过程中应严格按标准的规定速度加荷。

2.7数据处理

水泥块圆柱体试件抗压强度按下式计算:

A F

f cu (1) 式中:cu f ——水泥圆柱体试件抗压强度,MPa ;

F ——破坏载荷,N ;

A ——试块承压面积,mm2 。

以三个试件测定值的算术平均值作为该组试件的抗压强度,精确至0.01MPa 。

3 试验部分

3.1温度的选定

为了便于科学研究和制定防火规范,世界各国都依据实验结果制定能代表本国一般建筑火灾发展规律的标准温度-时间曲线。实际上,各国绘制的标准温度-时间曲线形状十分近似,我国采用国际标准(ISO834)规定的标准火灾温度-时间曲线(见图1)。

图1 标准火灾温度曲线

图示为标准火灾温度曲线图,根据火灾发展及温度变化规律,为了使实验能够更真实的模拟火灾环境,使混凝土能达到火灾环境中最高温度和有充足的时间发生物理化学反应,同时结合实验实际条件,最终本试验将混凝土试块在恒温下加热120min。

3.2混凝土试块表观特征

常温至200℃时,试块颜色和表面特征与常温状态相同;400℃开始,表面有少量细微裂缝,颜色暗灰;600℃时,试件表面出现较多细微裂纹,且有少量掉皮、缺角现象,颜色由暗灰到灰白;700℃混凝土表面的颜色开始变浅,呈现淡灰色,表面开始出现可见的细微裂缝,无缺角现象;700℃以上时,试件表面有较多明显的宽裂纹,有明显的疏松爆裂状况,且有大量掉皮、缺角现象,颜色呈灰白色,冷却后触碰掉渣,完全松散(见表3)。

表3 火灾温度作用后混凝结构构件外观特征表

火灾温度混凝土颜色表面开裂情况疏松脱落情况200?300℃以下灰青色与常温无大变化无无400℃微显红色无无

600℃灰白色为主表面有贯通裂缝角部剥落、表面起鼓

700℃颜色开始变浅,呈现淡灰色表面有贯通裂缝混凝土有疏松状800℃~1000℃浅黄并呈白色裂缝较多冷却后触碰掉渣,完全松散

3.3混凝土试块的高温破坏现象

混凝土试件在200℃温度下,高温对混凝土力学特性影响不大,单轴受压条件下,试件表现为柱状破坏。

受火温度为300℃到500℃的试块在抗压过程中,破坏特征基本类似,单轴受压条件下,试件主体表现为柱状破坏,但由于表面的裂纹的存在和水分的丧失,试件表面带有较多的片状破坏:最初试块没有明显裂缝出现,随着荷载的增加,当快要达到破坏荷载时,试块的边角开始出现细微斜裂缝并逐渐发展;当达到破坏荷载时,在很短的时间内发生斜截面剪切破坏,边角掉落,承载力骤然降低,并且伴随着较清脆的声响。破坏面不仅在骨料的表面以及砂浆的内部,而且骨料本身发生大量破坏。

受火温度为700℃的试块,因本身存在较多的温度裂缝,试块在压坏时,破坏面松散,有少量核心。破坏面依然主要在骨料与砂浆的结合面及砂浆的内部,骨料本身也存在少量破坏。

700℃以上的混凝土试块冷却后自然松散,除800℃的混凝土试块有少量的核心

外,其余均没有,且混凝土试块中的骨料完全分解,一触即碎,化为粉末。

3.4试验数据

连续均匀地加载荷载,直至试件破坏。荷载及变形等数据由试验机配套的数据采集软件自动采集,得到试件荷载-位移曲线。然后再根据不同温度处理后混凝土试块所得的极限载荷与试块受力面积的关系,绘制出试验数据表(见表4、表5)。

表4 各组试块抗压强度极限值

温度(℃)20 200 300 400 500 600 700 800 900 1000 第一组29.37 30.15 34.76 20.34 10.28 2.73 1.26 0 0 0 第二组33.95 32.17 32.25 24.72 8.97 2.54 1.57 0 0 0 第三组32.51 34.38 33.58 25.63 7.14 4.25 2.47 0 0 0

表5 实验处理数据

温度(℃)20 200 300 400 500 600 700 800 900 1000 抗压强度平均值31.94 32.23 33.53 23.56 8.8 3.17 1.77 0 0 0 残留强度百分率100 101 105 74 27 14 6 0 0 0 强度损失百分率0 -1 -5 26 73 86 94 100 100 100

3.5高温后混凝土立方体抗压强度与温度的关系曲线

图2 高温后混凝土抗压强度曲线

T=100℃,混凝土内部自由水蒸发,试件内部形成孔隙和裂缝,混凝土抗压强度略微降低,但强度降低不明显,基本与常温情况下相同;

T=200?300℃,混凝土的微观形貌变化不大,有利于水泥的水化,加快水化物的生长,混凝土的抗压强度值逐渐回升,甚至超过常温强度然后随着温度的增加强度开始降低;

T=400?500℃,混凝土强度急剧下降,这是因为水泥胶体与粗骨料的变形差逐步增大,界面裂缝不断开展延伸;

开始脱水,体积膨胀,促使裂缝进一步开展;

T>500℃后,Ca(OH)

2

T>600℃后,水泥中未水化的颗粒和骨料中的石英成分晶体化,伴随着巨大的膨胀,甚至在骨料内部形成裂缝,随温度的升高而继续下降。

3.6抗压强度损失率随温度的变化曲线

图3 高温后混凝土抗压强度损失百分率曲线

从图3可以看到抗压强度损失率随着温度的升高逐渐增大,在200℃内强度损失不大,但在300℃左右强度损失出现负增长,300℃开始强度损失就比较严重了,特别是400℃后强度损失加剧,800℃甚至更高的温度时混凝土试块的强度将会完全丧失。

3.7原因分析

高温下混凝土强度的变化是由其微观变化而造成的,其微观变化又可由材料随温度变化作用的变形情况来加以说明[9,12]。我们知道,混凝士是由水泥、骨料及孔隙组成的性能复杂的混合体。当混凝土加热时,在200℃以内的受火温度下,较常温相比,混凝土的微观形貌变化不大,有利于水泥的水化,加快水化物的生长;当温度在300℃左右时,由于C—S—H凝胶脱去部分化合水或结晶水,而使结构变得更加致密和强度的增加;在300℃受火温度之后,混凝土中结晶水开始散失,水化物开始分解,在受火温度达500℃时,结晶水大部丧失,水泥水化物也大部分解,骨料相亦开始脱水,混凝土表面出现明显裂纹。在700℃的受火温度之后,结晶水完全丧失,水泥水化物已不存在,混凝土表面裂纹明显而且相互连通。在800℃的受火温度之后,混凝土已不成形。

4 试验结论

经过高温作用以后,混凝土的力学性能会发生复杂的变化。总体上来说,混凝土的极限抗压强度会随着温度的增加而降低,但在一定温度范围内其强度会略有提高:温度在200℃以下时,其强度变化并不是很明显;300℃左右时其强度有所提高;400℃高温后,混凝土单轴抗压强度降低较明显;800℃混凝土强度完全损失。

5 参考文献

[1]袁杰,吴波等.火灾后高强混凝土结构的剩余抗力研究[J].哈尔滨工业大学,2001,7

[2]T.Z.Harmathy:Thermal Properties of Concrete at Elevated Temperatures[J],Journal of Materials,V01.5,No1,Mar,1970

[3]陆洲导.钢筋混凝土梁对火灾反应的研究[D].同济大学博士学位论文.上海,1989年10月

[4]过镇海,李卫.混凝土在不同应力-温度下的变形试验和本构关系[J].土木工程学报,Vol.37,No.6,1977

[5]南建林,过镇海,时旭东.混凝士的温度-应力耦合本构关系[J].清华大学学报,Vol.37,No.6,1997

[6]胡克旭.高温下钢筋混凝士粘接性能及钢筋混凝土门式刚架抗火性能研究[D].同济大学硕士论文.上海,2000年2月

[7]李卫,过镇海.高温下砼的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16

[8]吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究[J].建筑结构学报,1999,20(5):42—49

[9]阎继红,林志伸,胡云昌.高温作用后混凝土抗压强度的试验研究[J].土木工程学报,2002,35(5):17—19

[10]吕天启,赵国藩,林志伸等.高温后静置混凝土的微观分析[J].建筑材料学报,2003,6(2):135—141

[11]吕天启,赵国藩,林志伸.高温后静置混凝土力学性能试验研究[J].建筑结构学报,2004,25(1):63—70

[12]中华人民共和国建设部.混凝土结构设计规范GB50010-2002[S].中国建筑工业出版社.北京,2002年

[13]中华人民共和国建设部.普通混凝土力学性能试验方法国家标准GB/T5008—2002[S]

6 指导教师简介

6 指导教师简介

崔飞,男,汉族,讲师,2004年毕业于沈阳航空航天大学消防工程专业,获学士学位;2013年毕业于昆明理工大学安全工程专业,获安全工程硕士学位;国家注册安全工程师。现任教于云南昆明西南林业大学土木工程学院消防工程教研室教师,主要从事“消防管理”“建筑防火”“防排烟工程”等课程的教学工作。第一作者发表学术论文5篇,参编教材2部,主持项目3项。

7 致谢

7 致谢

在此,我要深深地感谢我的指导老师,感谢XX老师在这两个多月实验过程以及毕业论文撰写的过程中给予的辅导、帮助和意见,从他那里我不仅学到了理论知识和实际经验,更重要的是他的谆谆教诲和鼓励使我有更大的信心面对未来,这是我今后学习工作中可以利用的最宝贵的财富。

同时借此感谢这四年来,教育我帮助我的各位老师和同学。正是因为你们的帮助和指引,才使得我少走了许多弯路,不断向我的目标迈进;也正是因为你们的默默奉献,才使得一届届消防人迈出校园,顺利的走进各自的工作岗位。和你们的朝夕相处结下了深厚的友谊,我会珍惜这难得的缘分和情谊。

最后,最深深的感激要送给生我养我为我操了一辈子心的父母亲。他们的教诲将伴随我的一生,他们的亲情是使我在今后学习和工作中不断取得进步的永恒动力。

混凝土抗压强度试验报告

试验表18 委托单位:市政建设(集团)有限公司试验委托人:王孟芝 工程名称:将军污水泵站过河管工程部位:支墩砼 设计强度等级: C20 拟配强度等级: C20 要求坍落度: 7-9cm 实测坍落度 8cm 水泥品种及等级: P.C 32.5级厂别:抚顺出厂日期:试验编号: 砂子产地及品种:浑河细度模数:中砂含泥量: % 试验编号: 石产产地及品种:浑河最大粒径: 20-40mm 含泥量: % 试验编号: 掺合料名称:产地:占水泥用量的: % 外加剂名称:产地:占水泥用量的: % 施工配合比:水灰比: 0.47 砂率: 28 % 制模日期: 2005.10.20 要求龄期: 28 要求试验日期: 2005.11.17 试验收到日期: 2005.10.20 试块养护条件:标养试块制作人:寇俊峰 负责人:审核:计算:试验: 报告日期: 2005年 11 月 17 日

试验表18 委托单位:市政建设(集团)有限公司试验委托人:王孟芝 工程名称:将军污水泵站过河管工程部位:支墩砼 设计强度等级: C20 拟配强度等级: C20 要求坍落度: 7-9cm 实测坍落度 8cm 水泥品种及等级: P.C 32.5级厂别:抚顺出厂日期:试验编号: 砂子产地及品种:浑河细度模数:中砂含泥量: % 试验编号: 石产产地及品种:浑河最大粒径: 20-40mm 含泥量: % 试验编号: 掺合料名称:产地:占水泥用量的: % 外加剂名称:产地:占水泥用量的: % 施工配合比: C20 水灰比: 0.47 砂率: 28 % 制模日期: 2005.9.22 要求龄期: 28 要求试验日期: 2005.10.20 试验收到日期: 2005.9.22 试块养护条件:标养试块制作人:寇俊峰 负责人:审核:计算:试验: 报告日期: 2005年 10 月 20 日

混凝土试块强度评定

一、混凝土强度检测的基本规定 1、混凝土的强度等级应按立方体抗压强度标准值划分。混凝土强度等级应采用符号C与立方体抗压强度标准值(以N/mm2计)表示。 2、立方体抗压强度标准值应为按标准方法制作和养护的边长为100mm的立方体试件,用标准试验方法在28d龄期测得的混凝土抗压强度总体分布中的一个值,强度低于该值的概率为5%。 3、混凝土强度应分批进行检验评定。一个检验批的混凝土应由强度等级相同、试验龄期相同、生产工艺条件和配合比基本相同的混凝土组成。 4、对大批量、连续生产混凝土的强度应按统计方法评定。对小批量或零星生产混凝土的强度应按非统计方法评定。 二、混凝土的取样与试验 1、混凝土的取样 1.1混凝土的取样,宜根据GB_50107-2010中规定的检验评定方法要求制定检验批的划分方案和相应的取样计划。 1.2混凝土强度试样应在混凝土浇筑地点随机抽取。 1.3试件的取样频率和数量应符合下列规定: 1.3.1每100盘,但不超过100m3的同配合比混凝土,取样次 数不应少于一次; 1.3.2每一工作班拌制的同配合比的混凝土,不足100盘和 100m3时其取样次数不应少于一次;

1.3.3当一次连续浇筑的同配合比混凝土超过1000m3时,每 200m3取样不应少于一次; 1.3.4对房屋建筑,每一楼层、同一配合比的混凝土,取样不 应少于一次。 1.4每批混凝土试样应制作的试件总组数,除满足GB_50107-2010中规定的混凝土强度评定所必需的组数外,还应留置为检验结构或构件施工阶段混凝土强度所必需的试件。 2、混凝土试件的制作与养护 2.1每次取样应至少制作一组标准养护试件。 2.2每组3个试件应由同一盘或同一车的混凝土中取样制作。 2.3检验评定混凝土强度用的混凝土试件,其成型方法及标准养护条件应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081的规定。 2.4采用蒸汽养护的构件,其试件应先随构件同条件养护,然后应置入标准养护条件下继续养护,两段养护时间的总和应为设计规定龄期。 3、混凝土试件的试验 3.1混凝土试件的立方体抗压强度试验应根据现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081的规定执行。每组混凝土试件强度代表值的确定,应符合下列规定: 3.1.1取3个试件强度的算术平均值作为每组试件的强度代表 值;

混凝土轴心抗压强度试验报告

混凝土轴心抗压强度试验 (一)试验目的 测定混凝土棱柱体轴心抗压强度,比较素混凝土和钢筋混凝土的强度差异,分析钢筋骨架对混凝土的作用。 (二)试验仪器 试模尺寸为150mm×l50mm×300mm卧式棱柱体试模,电脑全自动恒应力试验机,微机控制压力试验机测控系统。 (三)试验步骤和方法 1.按混凝土配制强度计算配合比,制作150mm×l50mm×300mm棱柱体试件2根,其一为素混凝土试件,其一为钢筋混凝土试件。隔天拆模并把试件在标准养护条件下,养护28d。 2.取出试件,清除表面污垢,擦干表面水份,仔细检查后,在其中部量出试件宽度(精确至lmm),计算试件受压面积。在准备过程中,要求保持试件湿度无变化。 3.在压力机下压板上放好棱柱体试件,几何对中;球座最好放在试件顶面并凸面朝上。 4.以立方抗压强度试验相同的加荷速度,均匀而连续地加荷,当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,记录最大荷载。试验时观察裂缝的发展情况。 5.若试件的试验数据或钢筋未发生屈服可再进行抗压试验。 6.因条件有限所以取所得数据为该试件的轴心抗压强度。 (四)注意事项 1.钢筋应放置在混凝土试件的中央。 2.进行试验时,压力板应对准几何中心再进行加载。 3.箍筋时要保证钢筋箍紧,防止影响试验结果。 4.开始试验时要清零。 5.试验完后将试件分解回收。 (五)试验记录

素混凝土(强度为29.4Mb): 钢筋混凝土(强度为34.9Mb): (六)试验结果分析 据试验得出的数据来看,有些素混凝土的轴心抗压强度比钢筋混凝土的轴心抗压强度大。其原因有可能是: 1.试验时,试件放置的位置使受力点不在几何中心,形成了偏心受压。 2.制作钢筋骨架时,未将箍筋箍紧,导致试验时钢筋骨架松动或散架,影响试验结果。 (七)裂缝发展变化

混凝土抗压强度标准值计算

1 总 则 1.0.1~ 本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材 料 混凝土 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm 的立方体改为边长150mm 的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去倍标准差(保证率90%),改为强度总体分布的平均值减去倍标准差(保证率95%)。用公式表示,即: f cu,k =μfcu,15-σfcu =μfcu ,15(1-δfcu ) (3.1.2-1) 式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表 注:表中混凝土立方体抗压强度的变异系数是取用全国28个大中型水利水电工程合格 水平的混凝土立方体抗压强度的调查统计分析的结果。 3.1.3 混凝土强度标准值 (1)混凝土轴心抗压强度标准值

28天混凝土试块抗压强度报审

28天混凝土试块抗压强度报审

混凝土抗压强度报审、报验表 工程名称:芦溪湾住宅小区工程编号: 致:芦溪湾住宅小区工程项目监理部(项目监理机构) 我方已完成 9#楼基础垫层及商铺基础垫层混凝土试块抗压强度检测工作,经自检合格,现将有关资料报上,请予以审查或验收。 附: 1、混凝土抗压强度检验报告 施工项目经理部(盖章) 项目经理(签字) 年月日 审查或验收意见: 项目监理机构(盖章) 专业监理工程师(签字) 年月日 填报说明:本表一式二份,项目监理机构、施工

单位各一份。 混凝土抗压强度报审、报验表 工程名称:芦溪湾住宅小区工程编号: 致:芦溪湾住宅小区工程项目监理部(项目监理机构) 我方已完成 9#楼基础承台混凝土试块抗压强度检测工作,经自检合格,现将有关资料报上,请予以审查或验收。 附: 1、混凝土抗压强度检验报告 施工项目经理部(盖章) 项目经理(签字) 年月日 审查或验收意见: 项目监理机构(盖章)

专业监理工程师(签字) 年月日 填报说明:本表一式二份,项目监理机构、施工单位各一份。 混凝土抗压强度报审、报验表 工程名称:芦溪湾住宅小区工程编号: 致:芦溪湾住宅小区工程项目监理部(项目监理机构) 我方已完成 4#楼塔吊基础混凝土试块抗压强度检测工作,经自检合格,现将有关资料报上,请予以审查或验收。 附: 1、混凝土抗压强度检验报告 施工项目经理部(盖章) 项目经理(签字) 年月日

审查或验收意见: 项目监理机构(盖章) 专业监理工程师(签字) 年月日 填报说明:本表一式二份,项目监理机构、施工单位各一份。 混凝土抗压强度报审、报验表 工程名称:芦溪湾住宅小区工程编号: 致:芦溪湾住宅小区工程项目监理部(项目监理机构) 我方已完成 9#楼塔吊基础混凝土试块抗压强度检测工作,经自检合格,现将有关资料报上,请予以审查或验收。 附: 1、混凝土抗压强度检验报告

混凝土抗压强度试验

混凝土抗压强度试验 (一)概述 水泥混凝土抗压强度就是按标准方法制作得150mm×l50mm×l50mm ,100mm×l00mm×l00mm立方体试件, 在温度为20±3℃及相对湿度 90%以上得条件下, 养护 28d 后, 用标准试验方法测试, 并按规定计算方法得到得强度值。 (二)试验仪具 1.压力试验机:压力试验机得上、下承压板应有足够得刚度, 其中一个承压板上应具有球形支座,为了便于试件对中,球形支座最好位于上承压板上。压力机得精确度(示值得相对误差)应在±2%以内,压力机应进行定期检查,以确保压力机读数得准确性。 根据预期得混凝土试件破坏荷载,选择压力机得量程,要求试件 破坏时得读数不小于全量程得 20%,也不大于全量程得 80%。 2.钢尺:精度 lmm。 3.台秤:称量 100kg,分度值为 lkg。 (三)试验方法 1.按试验一成型试件,经标准养护条件下养护到规定龄期。 2.试件取出,先检查其尺寸及形状,相对两面应平行,表面倾 斜偏差不得超过 0、5mm。量出棱边长度,精确至 lmm。试件受力截面积按其与压力机上下接触面得平均值计算。试件如有蜂窝缺陷,应在

试验前 3d 用浓水泥浆填补平整,并在报告中说明。在破型前,保持试件原有湿度,在试验时擦干试件,称出其质量。 3.以成型时侧面为上下受压面,试件妥放在球座上,球座置压力机中心, 几何对中(指试件或球座偏离机台中心在 5mm 以内,下同),以 0、3~0、8MPa/s 得速度连续而均匀地加荷,小于 C30 得低强度等级 混凝土取 0、3~0、5MPa/s 得加荷速度, 强度等级不低于 C30 时取 0、5~0、8MPa/s 得加荷速度,当试件接近破坏而开始变形时, 应停止调整试 验机油门,直至试件破坏,记下破坏极限荷载。 1MPa=1N/m㎡4. 4.试验结果计算 (1)混凝土立方体试件抗压强度 fcu(以 MPa 表示)按式(3—1)计算: 式中:F—极限荷载(N); A—受压面积(mm2)。 龄期与强度经验公式 在标准养护条件下,混凝土强度得发展,大致与其龄期得常用对数成正比关系(龄期不小于3d)。 式中 fn———nd龄期混凝土得抗压强度(MPa);

混凝土立方体抗压强度标准值的计算

混凝土立方体抗压强度标准值fcu,k的计算 1.立方体抗压强度标准值fcu,k ⑴ 测定方法 我国国家标准《普通混凝土力学性能试验方法》(GBJ81-85)规定以边长为150mm的立方体为标准试件,标准立方体试件在(20±3)℃的温度和相对湿度90%以上的潮湿空气中养护28d,按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为N/mm2。 ⑵《混凝土结构设计规范》规定用上述标准试验方法测得的具有95%保证率的立方体抗压强度作为混凝土的立方体抗压强度标准值,用符号fcu,k表示。 ⑶ 强度等级的划分 《混凝土结构设计规范》规定混凝土强度等级应按立方体抗压强度标准值fcu,k确定。混凝土强度等级划分有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。例如,C30表示立方体抗压强度标准值为30N /mm2。其中,C50~C80属高强度混凝土范畴。 2.混凝土的轴心抗压强度 fc 混凝土的抗压强度与试件的形状有关,采用棱柱体比立方体能更好地反映混凝土结构的实际抗压能力。用混凝土棱柱体试件测得的抗压强度称轴心抗压强度。 ⑴ 测定方法 我国《普通混凝土力学性能试验方法》规定以150mm×150mm×300mm的棱柱体作为混凝土轴心抗压强度试验的标准试件。棱柱体试件与立方体试件的制作条件相同,试件上下表面不涂润滑剂。棱柱体试件的抗压强度都比立方体的强度值小,并且棱柱体试件高宽比越大,强度越小。 ⑵ 轴心抗压强度标准值fck 《混凝土结构设计规范》规定以150mm×150mm×300mm的棱柱体试件试验测得的具有95%保证率的抗压强度为混凝土轴心抗压强度标准值,用符号fck表示。 ⑶ 轴心抗压强度标准值与立方体抗压强度标准值的关系 《混凝土结构设计规范》基于安全取偏低值,轴心抗压强度标准值与立方体抗压强度标准值的关系按下式确定: fck=0.88αc1αc2fcu,k (1) 式中:

抗压试块评定_规范

求均方差。均方差的公式如下:(xi为第i个元素)。 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根 1 .砼试块留样的部位和数量 在规范中7.4.1中明确规定用于检查结构构件混凝土强度的试块应该在混凝土的浇注地点随机抽取。取样和试块的留置应符合下面几个规定:1不超过100M3的同配合比的混凝土,取样不得少于一次;2每工作班搅拌的同一配合比的混凝土不足100盘时取样不得少于一次;3当一次连续浇注超过1000M3每200 M3取样一次;每一楼层、同一配合比的混凝土,取样不得少于一次;4每次取样应该至少留置一组标准养护试块,同条件养护试块的留置组数应根据实际需要确定。 所谓的实际需要,在规范的附录D中说明:同条件养护的试块所对应的结构构件或结构部位应由监理(建设)施工等各方共同决定,选定的依据是什么?结构实体的检验仅限于涉及结构安全的柱、墙、梁等结构构件的重要部位。像垫层等非涉及结构安全的部位完全可以不留置同条件试块。同条件试块留置数量依照《规范》的规定:同一强度等级的同条件养护试块,其留置的数量应根据混凝土工程的工程量和重要性决定,不宜少于10组不应少于3组,不少于10组是为了按照GBJ107的要求构成进行统计方法的必要条件,不少3组是为了按照GBJ107的要求构成非统计方法的必要条件。 当有抗渗要求的工程时,混凝土试块应当在浇注地点随机取样,同一工程同一配合比的混凝土,取样不应少于一次,留置组数可根据实际需要确定。 2. 砼试块的制作和养护 参加混凝土强度评定的试块分为标养试块和同养试块,标养试块是指在标养室养护的试块,规范规定标养试块是在温度20度上下3度范围,湿度不小于百分之九十,养护28天;同养试块是指在浇注现场随机抽取混凝土制作的试块,同养试块是在施工现场随机抽取并在现场依现场养护条件日平均温度累积至600摄氏度的试块。同时,《规范》也规定了等效的养护周期不宜小于14d也不宜大于60d。在进行高层建筑施工的情况下,通常我们也要留置拆模试块,冬季时,温度较低,混凝土的强度发展缓慢,这就要求拆模的龄期长些,夏季时,温度高,混凝土的强度发展较快,一般在7d的现场养护条件下,混凝土强度就能达到90%以上,可以适当的缩短拆模龄期。

混凝土抗压强度试验流程

混凝土抗压强度试验流程 一、试验目的 掌握混凝土抗压强度的测定和评定方法,作为混凝土质量的主要依据。 二、试验原理 测定混凝土抗压强度是检验混凝土的强度是否满足设计要求。我国采用边长150mm立方体试件为标准试件。 三、仪器设备 压力试验机、振动台、试模、捣棒、小铁铲、镘刀等。 四、试验步骤 1、取三个试件为一组。拌和物的坍落度小于70mm时,用振动台振实,将拌和物一次装满试模,振实后抹平。拌和物的坍落度大于70mm时,用捣棒人工捣实,将拌和物分两层装入试模,每层插捣25次。 2、试件成型后24~36h拆模,在标准养护条件(温度20+2℃,相对湿度95%以上)下养护至规定龄期进行试验。 3、试件取出后,在试压前应先擦干净,测量尺寸,并检查其外观,试件尺寸测量精确至lmm,并据此计算试件的承压面积值(A)。试件不得有明显缺损,其承压面的不平度要求不超过0.05%,承压面与相临面的不垂直偏差不超过土1o。 4、把试件安放在试验机下压板中心,试件的承压面与成型肘的顶面垂直。开动试验机,当上压板与试件接近时,调整球座,使接触均衡。 5、加压时,应持续而均匀地加荷。加荷速度为:混凝土强度等级小于C30时,取0.3—0.5MPa /s;当等于或大于C30时,取0.5—0.8MPa/s。当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,然后记录破坏荷载(F)。 五、试验结果 1、混凝土立方体抗压强度fcu按公式计算(精确至0.1 Mpa):fcu=F/A 式中 F—破坏荷载,N;A—受压面积,mm2。 2、以3个试件测定值的算术平均值作为该组试件的抗压强度值。当3个测定值中的最大或最小值有一个与中间值的差值超出中间值的15%时,则把最大及最小值一并舍去,取中间值作为该组试件的抗压强度值。如果两个测值与中间值的差都超出中间值的15%,则该组试件的试验结果无效。

普通混凝土立方体抗压强度实验

实验三普通混凝土主要技术性能实验 四、普通混凝土立方体抗压强度实验 实验目的: 测定混凝土立方体抗压强度,作为检查混凝土质量及确定等级的主要依据。 主要仪器及设备 (1)压力实验机:实验机的精度(示值的相对误差)至少应为±2%,其量程应能使试件的预期破坏荷载值不小于全量程的20%,也不大于全量程的80%。实验机上、下压板之间可各垫以钢垫板,钢垫板的承压面均应为机械加工。 (2)振动台:振动台频率为50±3Hz,空载振幅约为0.5mm。 (3)试模:由铸铁或钢制成,应具有足够的刚度并拆装方便。试模内表面应机械加工,其不平度应为每100mm不超过0.5mm。组装后各相邻面的不垂直度不应超过±0.5°。 (4)其他用具:捣棒、小铁铲、金属直尺、镘刀等。 试件制作: (1)立方体抗压强度试验以同时制作同样养护同一龄期三个试件为一组,按《混凝土结构工程施工质量验收规范》(GB50204—2002)的规定,试件尺寸按骨料最大粒径由试表3.1选用。 试表3.1 不同骨料最大粒径选用的试件尺寸、插捣次数及抗压强度换算系数(GB50204—2002)试件尺寸/mm骨料最大粒径/mm每层插捣次数/次抗压强度换算系数100×100×100≤31.5120.95 150×150×150≤40251 200×200×200≤6350 1.05 注:对强度等级为C60及以上的混凝土试件,其强度的尺寸换算系数可通过试验确定。 (2)每一组试件所用的混凝土拌合物应由同一次拌合物中取出。 (3)制作时,应将试模清擦干净,并在其内壁涂上一层矿物油脂或其他脱膜剂。 (4)坍落度不大于70mm的混凝土拌合物,宜用振动台振实。将拌合物一次装入试模,装料时应用抹刀沿试模内壁略加插捣并使混凝土拌合物高出试模上口。振动时应防止试模在振动台上自由跳动。振动应持续到混凝土表面出浆为止,刮除多余的混凝土,并用抹刀抹平。 坍落度大于70mm混凝土宜用捣棒人工捣实。将混凝土拌合物分两次装入试模,每层的厚度大致相等。插捣应按螺旋方向从边缘向中心均匀进行,插捣底层时,捣棒应达到试模底面;插捣上层时,捣棒应穿入下层深度为20~30mm,插捣时捣棒应保持垂直,不得倾斜。同时,还应用抹刀沿试模内壁插入数次。每层的插捣次数应根据试件的截面而定,一般每100cm2截面积不应少于12次(见试表3.1)。插捣完后,刮除多余的混凝土,并用抹刀抹平。

混凝土立方体抗压强度标准值的表示法

混凝土立方体抗压强度标准值用fcu,k表示。 混凝土强度等级采用符号C与立方体抗压强度标准值(以N/m㎡计)表示. 例:C25就是25N/平方MM 立方体抗压强度标准值系指对按标准方法制作和养护的边长为150mm(150*150*150mm)的立方体试件,在28d龄期,用标准试验方法测得的抗压强度总体分布中的一个值,强度低于该值的百分率不超过5%。 每组三个试件应在同一盘混凝土中取样制作。其强度代表值的确定,应符合下列规定: 一、取三个试件强度的算术平均值作为每组试件的强度代表值; 二、当一组试件中强度的最大值或最小值与中间值之差超过中间似的15%时,取中间值作为该组试件的强度代表值; 三、当一组试件中强度的最大值和最小值与中间值之差均超过中间值的15%时,该组试件的强度不应作为评定的依据。 例:一组强度值18、24、20。22、24、16 那么:20*15%=3、20-18=2、24-20=2,(18+24+20)/3=20.其代表值是20. 那么:22*15%=3.3、24-22=2、22-16=6,其代表值是22. 简述:其中只有一个强度超过中间值的15%就取中间值,两个都超过中间值15%时作废,如果两个中间值不超过15%就取组数算数的平均值。 根据有关标准规定,建筑材料强度统一由符号“f”表达。 混凝土轴心抗压强度标准值为fck,"c"是棱柱体的意思,“k”是标准值

的意思。混凝土立方体抗压强度为“fcu”。其中,“cu”是立方体的意思。而立方体抗压强度标准值以“fcu,k”表达,其中“k”是标准值的意思,例如混凝土强度等级为C20时,fcu,k=20N/mm2(MPa),即立方体28d抗压强度标准值为20MPa。 1、混凝土(砂浆)试块试验结果汇总表中的达到强度%:用混凝土(砂浆)的强度÷标准强度×100%(即试压结果÷强度等级×100%) 2、混凝土抗压强度计算表 mfcu ------同一验收批混凝土强度的平均值 fcu------抗压强度 σo——验收批混凝土立方体抗压强度的标准差(N/m㎡); fcu,k ------设计的混凝土强度标准值(即:C25=25兆帕,C30=30兆帕) fcu,min -----同一验收批混凝土强度最小值 Sfcu ------同一验收批混凝土强度的标准值 m2fcu-----同一验收批混凝土强度平均值的平方 fcu,i----第Ⅰ组混凝土试件强度值(N/mm2); n----一个验收混凝土试件级数。 (验收批总组数) ∑---总和。 n ∑ fcu,i 2 - nm2fcu Sfcu= i=1 __________________ n - 1

混凝土抗压强度标准值计算

1 总则 1.0.1~1.0.3 本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材料 3.1 混凝土 3.l.2 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm的立方体改为边长150mm的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去1.27倍标准差(保证率90%),改为强度总体分布的平均值减去1.645倍标准差(保

证率95%)。用公式表示,即: f cu,k =μfcu,15-1.645σfcu =μfcu ,15(1-1.645δfcu ) (3.1.2-1) 式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中0.95为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;0.1为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表

混凝土轴心抗压、轴心抗拉强度设计值及标准值

混凝土轴心抗压、轴心抗拉强度设计值 f c 、f t 应按表 4.1.4 采用。 2 强度 种类 混凝土强度等级 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 f c 7.2 9.6 11.9 14.3 16.7 19.1 21.1 23.1 25.3 27.5 29.7 31.8 33.8 35.9 f t 0.91 1.10 1.27 1.43 1.57 1.71 1.80 1.89 1.96 2.04 2.09 2.14 2.18 2.22 注:1 计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的边长或直径小于 300mm,则表中混凝土的强度设计值应乘以系数 0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不受此限制; 2 离心混凝土的强度设计值应按专门标准取用。 混凝土是一种脆性材料,在受拉时很小的变形就要开裂,它在断裂前没有残余变 形。 图4-12 混凝土劈裂抗拉试验示意图 1-上压板2-下压板3-垫层4-垫条混凝土的抗拉强度只有抗压强度的1/10~1/20,且随着混凝土强度等级的提高,比值降低。混凝土在工作时一般不依靠其抗拉强度。但抗拉强度对于抗开

裂性有重要意义,在结构设计中抗拉强度是确定混凝土抗裂能力的重要指标。有时也用它来间接衡量混凝土与钢筋的粘结强度等。 混凝土抗拉强度采用立方体劈裂抗拉试验来测定,称为劈裂抗拉强度f ts 。该方法的原理是在试件的两个相对表面的中线上,作用着均匀分布的压力,这样就能够在外力作用的竖向平面内产生均布拉伸应力(图4-12),混凝土劈裂抗拉强度应按下式计算: 式中f ts ——混凝土劈裂抗拉强度,MPa; P——破坏荷载,N; A ——试件劈裂面面积,mm2。 混凝土轴心抗拉强度f t 可按劈裂抗拉强度f ts 换算得到,换算系数可由试验确 定。 各强度等级的混凝土轴心抗压强度标准值f ck 、轴心抗拉强度标准值f tk 应按 表4-17采用。 表4-17混凝土强度标准值(N/mm2) 强度种类 混凝土强度等级 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75 C80 f ck 10.0 13.4 16.7 20.1 23.4 26.8 29.6 32.4 35.5 38.5 41.5 44.5 47.4 50.2 f tk 1.27 1.54 1.78 2.01 2.20 2.39 2.51 2.64 2.74 2.85 2.93 2.99 3.05 3.11

混凝土抗压强度试验规程

混凝土抗压强度试验规程 1、混凝土试件的制作应采用与预应力混凝土轨枕相同的混凝土,同时间、同样的条件进行振动成型和养护。用15cm×15cm ×15cm的立方体三件为一组的铸铁试模制作混凝土试件。制作时,应将混凝土拌合物一次装入试模,用双手轻扶试模进行振动。振动结束后,刮除试模周围多余的混凝土,并用抹刀抹平。将制作好的试模随轨枕钢模放入同一个养护池内。 2、当养护周期结束,试件从养护地点取出后,应尽快进行试验,以免试件内部的温湿度发生显著变化。试验前应将试件擦拭干净,测量尺寸,并检查其外观。试件承压面的不平度为每100mm 不超过0.05mm,承压面与相邻界面的不垂直度不应超过±1°。 将试件安放在试验机的下压板上,试件的承压面应与成型时的顶面垂直。试件的中心应与试验机下压板中心对准。试验时应连续而均匀地加荷。当试件接近破坏而开始迅速变形时,停止调整试验机油门,直至试件破坏,然后记录破坏荷载。 以三个试件测值的算术平均值作为该组试件的抗压强度值。三个测值中的最大值或最小值中如有一个与中间值的差值超过中间值的15﹪时,则取中间值作为该组试件的抗压强度值。如有二个测值与中间值的差值均超过中间值的15﹪,则该组试件的试验结果无效。 3. 当试验抗压强度结果大于或等于50Mpa时,由试验员填写出池通知单一式两份,一份交给看养护人员通知车间生产人员允许该池轨枕出池脱模,另一份存档。若抗压强度试验结果低于45Mpa时,试验员应告诉看养护人员盖池继续养护,并确定延长养护时间。试验员应对此执行过程进行监督。到时取出第二组试件

试压,当第二组试件抗压强度大于或等于45Mpa时,试验员方可填写出池通知单同意该池轨枕出池脱模。若抗压强度仍小于45Mpa ,应由质检中心报总工程师和生产副总,组织技术部、质检中心、车间研究处理。 用作检验28天强度的试件,由看养护人员拆模后送试验室进行标准养护。 4、混凝土抗压强度应按照TB10425的规定进行检验评定。

混凝土抗压强度标准值计算

1 总则 1.0.1~本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材料 混凝土 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm的立方体改为边长150mm的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去倍标准差(保证率90%),改为强度总体分布的平均值减去倍标准差(保证率95%)。用公式表示,即: f cu,k=μfcu, 15-σfcu =μfcu, 15 (1-δfcu) (3.1.2-1)

式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表

水泥混凝土立方体抗压强度

水泥混凝土立方体抗压强度试验 (JTG E30 T0553-2005) 一、目的、适用范围 本方法规定了测定水泥混凝土抗压极限强度的方法和步骤。本方法可用于确定水泥混凝土的强度等级,作为评定水泥混凝土品质的主要指标。 本方法适用于各类水泥混凝土立方体试件的极限抗压强度试验。 二、仪器设备 1、压力机或万能试验机:上下压板平整并有足够刚度,可以均匀、连续地加荷卸荷,可以保持固定荷载,能够满足试件破型吨位要求。 2、球座: 刚质坚硬,转型灵活.球座最好放置在试件顶面(特别是棱柱试件),并凸面朝上,当试件均匀受力后,一般不宜敲动球座. 3、试摸:由铸铁或钢制成,试件尺寸见表。 抗压强度试件尺寸 集料公称最大粒径 (mm)试件尺寸 (mm) 集料公称最大粒径 (mm) 试件尺寸 (mm) 31.5150×150×15053200×200×200 26.5100×100×100 混凝土等级大于等于C60时,试验机上、下压板之间应各垫一钢

垫板,平面尺寸应不小于试件的承压面,其厚度至少为25mm。钢垫板应机械加工,其平面度允许偏差±0.04mm;表面硬度大于等于55HRC;硬化层厚度约5mm 三、试验方法与步骤 1、试验准备 混凝土抗压强度试件以边长150mm的正方体为标准试件,其集料公称最大粒径为31.5mm。混凝土抗压强度试件同龄期者为一组,每组为3个同条件制作和养护的混泥土试块。 2、试验步骤 取出试件,先检查其尺寸及形状,相对两面应平行,表面倾斜差不得超过0.5mm。量出棱边长度,精确至1mm。试件受力截面积按其与压力机上下接触面的平均值计算。在破行前,保持试件原有湿度,在试验时擦干试件。 以成型时的侧面为上下受压面,试件要放在球座上,球座置于压力机中心,几何对中。强度等级小于C30的混凝土取0.3~0.5MPa/s的加荷速度;强度等级大于C30且小于C60时,则取0.5~0.8MPa/s的加荷速度;强度等级大于C60时,则取0.8~1.0MPa/s的加荷速度。当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,记下破坏极限荷载F(N)。

试验室出的混凝土抗压强度检测报告中的强度代表值以什么为标准共14页文档

试验原理 众所周知,混凝土的强度主要取决于水泥石的强 度,而水泥石的强度又与水泥的标号、水灰比有密切的 关系,此外还受施工质量等因素的影响,而能综合反映 混凝土内部质量的是水泥石的孔隙率。 混凝土28天强度的高低,是与28天混凝土的孔 隙率有关的,而28天的孔隙率又是与混凝土浇筑初期 的内部结构有关的。具体讲某一水灰比较大,强度较 低的混凝土,比另一水灰比较小,强度较高的混凝土, 在28夭时所多的孔隙体积,是和刚浇筑时或1天龄期 时的孔隙体积相差的数量相等的。所以,不同强度的 混凝土在28天时的声波速度是不同的,而它们在1天 时的声波速度也相应是不相同的。这就使我们有可能 利用混凝土1天的声波速度来区分不同强度的混凝 土。 采用2 4 小时并在50℃条件下加速养护,既可以 相当早地为质量控制提供依据,又可以取得比较稳定 的声波速度。本次室内试验表明,在50℃条件下加速 养护24小时后,混凝土的强度大约相当于标准养护3 天的强度,所以,本方法采用50℃加速养护。这样既 可以统一制定公式的温度条件和现场的温度条件,又 可以用混凝土成熟度较高时的波速来推定其28天抗 折强度,从而提高推定的可靠度。 3 试验方法 3.1试验仪器设备 加速养护箱,本课题研制。可自动恒温恒湿控制, 箱体尺寸60 X 40 X 24 (cm),如图1所示。 图1 加速养护箱构造示意图 JC -2 超声仪,(换能器100KC,由北京无线电三 厂生产)或SYC一2岩石参数声波测定仪(换能器 50KC,由湘潭无线电仪器厂生产)。 3.2 试验用材料与混凝土配合比 试验用材料为机场道面混凝土常用的425号普通 水泥,砂子为中砂,石子为石灰石碎石,5一20,20一40 (mm)两级配。混凝土配合比为机场道面混凝土常用 的类型。 3.3 试验方法 实验室采用模拟混凝土道面板和相应的标准抗折

混凝土试块抗压强度的影响因素【最新版】

混凝土试块抗压强度的影响因素 一、试件取样对混凝土试块抗压强度的影响 1、试件数量不足。出现该问题的原因大多为在施工之前没有将抽样方案确定下来,对于留置数量和评定统计方法没有量化、细化,导致统计上出现了误差。 2、抽样的样品没有代表性,不能将混凝土的质量真实地反映出来。这大多是由于取样人员在取样时,没有严格按照相关规范的要求实施取样。在实施中,仅是根据混凝土搅拌质量的优劣一次制作出了多组试件包含了下一个批次的试件,如此做法,不能真实地反映个批次混凝土的实际质量。 3、《普通混凝土物理力学性能试验方法标准》中的相关条例具体规定了混凝土试件的成型方法、振捣方法和养护要求,如果在施工现场对这些规范和要求有所缺失,必然导致成型后的试件存在诸多问题,这些问题也势必影响了试块抗压强度检测的准确性。 二、检测过程对混凝土试块抗压强度的影响 1、在对试块实施抗压强度测试之前,没有能够按照试件的尺寸

公差实施检测。大量工程实践和相关标准表明,标准的试件检测有如下要求: (1)承压面的平整度公差应£0.0005d(其中d为试件直径); (2)试件相邻面应该垂直,即夹角为90°,公差应0.5°; (3)对于试件各边长、直径和高的实际尺寸公差应1mm。 2、在进行试块抗压强度测试的操作中,试块放置位置的精确程度不够,导致试块不是轴心受压。 3、没有按照加荷速度标准实施正确的操作,导致由于加荷速度过于快了生成冲击荷载。大量理论研究和工程实践经验表明,试块在受力被破坏之前,荷载增加的速度如果大于材料裂纹扩展的速度,那么测试得到的强度值与真实值相比偏高。 4、在测试时,如果试件表面有油污对测试结果有影响。理论研究和实验表明,如果试件的受压面上存有油污,那么将减小承压板与试件表面之间的摩擦力,试件将出现垂直裂纹而破坏,如此一来测试得到的混凝土强度值偏低。

混凝土的强度等级应按立方体抗压强度标准值划分

1混凝土的强度等级应按立方体抗压强度标准值划分。混凝土强度等级应采用符号C与立方体抗压强度标准值(以N/mm2计)表示。 2 立方体抗压强度标准值应为按标准方法制作和养护的边长为100mm的立方体试件,用标准试验方法在28d龄期测得的混凝土抗压强度总体分布中的一个值,强度低于该值的概率应为5%。 3 混凝土强度应分批进行检验评定。一个检验批的混凝土应由强度等级相同、试验龄期相同、生产工艺条件和配合比基本相同的混凝土组成。 4对大批量、连续生产混凝土的强度应按的统计方法评定。对小批量或零星生产混凝土的强度应的非统计方法评定。 混凝土的取样与试验 a混凝土的取样 .1 混凝土的取样,宜根据本标准规定的检验评定方法要求制定检验批的划分方案和相应的取样计划。 2 混凝土强度试样应在混凝土的浇筑地点随机抽取。 3 试件的取样频率和数量应符合下列规定: 1.每100盘,但不超过l00m3的同配合比混凝土,取样次数不应少于 一次; 2.每一工作班拌制的同配合比混凝土,不足100盘和l00m3时其取样 次数不应少于一次; 3.当一次连续浇筑的同配合比混凝土超过l000m3时,每200 m3取样不 应少于一次; 4.对房屋建筑,每一楼层、同一配合比的混凝土,取样不应少于一次。 b 混凝土试件的制作与养护 1 每次取样应至少制作一组标准养护试件。 2 每组3个试件应由同一盘或同一车的混凝土中取样制作。 3 检验评定混凝土强度用的混凝土试件,其成型方法及标准养护条件应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081的规定。 4 采用蒸汽养护的构件,其试件应先随构件同条件养护,然后应置入标准养护条件下继续养护,两段养护时间的总和应为设计规定龄期。

混凝土试块抗压强度评定及不合格批的处理方法

混凝土试块抗压强度评定及不合格批的处理方法 一、混凝土试块的性质分析 混凝土结构的强度等级必须符合设计要求,在混凝土浇筑地点随机抽取的混凝土试件是检查结构构件混凝土强度是否满足设计要求的依据。在结构混凝土施工过程中,至少需要留置四种试块作为检验混凝土质量的试件。 第一种是自拌混凝土的“开盘鉴定”试块。《混凝土结构工程施工质量验收规》这样说:“首次使用的混凝土配合比应进行开盘鉴定,其工作性应满足设计配合比的要求。开始生产时应至少留置一组标准养护试件,作为验证配合比的依据。”这是检验混凝土施工配合比是否满足设计强度的检验试件,这个试件是在标准养护条件下达到28天龄期后开始试验的,不能代表结构构件的质量。 《普通混凝土配合比设计规程》JGJ55-2000第6.1.6条进行混凝土强度试验时,每种配合比至少应制作一组(三块)试件,标准护到28d时试压,需要时可同时制作几组试件,供快速检验或较早龄期试压,以便提前定出混凝土配合比供施工使用。但应以标准28d强度或按现行行业标准《粉煤灰在混凝土和砂浆中应用技术规程一》(JGJ28)等规定的龄期强度的检验结果为依据调整配合比。 这个试件是用来检验施工配合比质量的,因此需要在结构构件正式施工前28天完成“开盘鉴定”。第二种标准养护条件试块,

是由专门的施工人员刻意制作的,其试验强度往往高于实际构件的强度。还有的混凝土试块不能按照构件所使用的混凝土的品质制作,比如“坍落”为180~220mm的用于在水下灌注的混凝土,如果用现场抽取的样品不作任何加工是无论如何也制作不成的,象水一样流动的混凝土制作成150mm见方的试件是无论如何也压不到设计强度的。 因此,这个试件也只能用来动态控制施工配合比的质量。 第三种是“拆模试块”,这个试件的强度就是决定承重构件能否拆除支架的依据,是同条件试块的“兄弟”。第四种是真正意义的“同条件试块”,这才是断定构件混凝土是否满足设计强度的真实试件。规将其作为“结构实体检验”的依据“对混凝土强度极限的检验,应以在混凝土浇筑地点制备并与结构实体同条件养护的试件强度为依据。” 同条件养护混凝土试件与结构混凝土的组成成分、养护条件等相同,可较好地反映结构混凝土的强度。这本来应该是非常有效的方法,但现实中没有几家的“同条件试块”是合乎规定的,绝大多数“同条件试块”都是在标准养护室养护的试件,和处在自然环境中的构件养护条件相去甚远。 “同条件试块”的试验龄期是一个相当难以掌握的数据。原则是“同条件养护试件达到等效养护龄期时,其强度与标准养护条件下28d龄期的试件强度相等。” 这就需要通过实践经验来确定这个试验龄期了。《混凝土结

相关文档
最新文档