高中数学思想方法教学

合集下载

高中数学思维方法指导教案

高中数学思维方法指导教案

高中数学思维方法指导教案
教学目标:通过本节课的学习,学生能够掌握一些常用的数学思维方法,提高解题能力和思维水平。

教案内容:
一、引入
1. 用一个简单的数学问题引入,让学生思考如何解决这个问题。

2. 引导学生讨论解题的一些常用方法和思维策略。

二、数学思维方法的介绍
1. 列举一些常用的数学思维方法,如逆向思维、分析综合、归纳推理等。

2. 对每种方法进行详细解释和举例说明。

三、练习
1. 给学生提供一些练习题,让他们运用所学的数学思维方法来解题。

2. 分组讨论,鼓励学生分享自己的解题思路和方法。

四、总结
1. 总结本节课学习到的数学思维方法,并强调其重要性和应用场景。

2. 鼓励学生在日常学习中多加练习,提高自己的数学思维能力。

五、作业
布置一些相关的作业,让学生进一步巩固所学内容。

教学反思:
本节课主要是针对高中学生的数学思维方法进行指导,旨在帮助学生提高解题能力和思维水平。

通过丰富多样的练习和案例,能够让学生更加深入地理解和运用数学思维方法解决问题。

在教学过程中要注重引导学生思考和讨论,激发他们的学习兴趣和动力。

希望通过这节课的学习,学生们能够在未来的数学学习中取得更好的成绩。

谈数学思想方法在高中数学教学中的应用

谈数学思想方法在高中数学教学中的应用

谈数学思想方法在高中数学教学中的应用数学思想方法在高中数学教学中具有重要的应用,可以帮助学生更好地理解和掌握数学概念、方法和定理,提高学生的数学思维能力和解决问题的能力。

数学思想方法能够帮助学生建立数学模型。

数学模型是把实际问题转化为数学问题的过程,是数学思想方法的重要应用之一。

在高中数学教学中,教师可以通过引导学生观察实际问题、抽象问题的数学特征,将问题转化为数学模型,并通过对模型的求解,进一步理解和掌握数学概念和方法。

在解决实际问题时,可以通过建立线性方程组、函数模型、几何模型等不同的数学模型来求解问题,培养学生的数学建模能力和解决实际问题的能力。

数学思想方法能够帮助学生形成数学证明的思维方式。

数学证明是数学思想方法的核心内容之一。

在高中数学教学中,教师可以引导学生通过分析问题、提出假设、推理论证来解决数学问题,并且教授一些常用的证明方法和技巧,如归纳法、逆否命题的证明、反证法等。

通过进行数学证明,学生能够深入理解数学定理和推理的过程,提高逻辑思维和推理能力,培养学生的创新和批判性思维。

数学思想方法能够帮助学生发现数学的美和趣味性。

数学思想方法能够引导学生从多个角度去观察和理解数学问题,发现问题背后的规律和奥秘,培养学生对数学的兴趣和热爱。

在高中数学教学中,教师可以通过举例、探究、启发式问题等方式,培养学生的探究精神和解决问题的能力。

教师也可以介绍一些有趣的数学问题和数学思想,如无穷级数、黄金分割、图论等,激发学生学习数学的兴趣,并且展示数学的美和魅力。

数学思想方法在高中数学教学中的应用具有重要的意义。

它能够帮助学生建立数学模型、形成数学证明的思维方式、发现数学的美和趣味性,促进学生的数学思维能力的发展。

教师在高中数学教学中应该注重运用数学思想方法进行教学,调动学生学习的兴趣和积极性,提高学生的数学素养和解决问题的能力。

更高更妙的高中数学思想与方法

更高更妙的高中数学思想与方法

更高更妙的高中数学思想与方法导言高中数学作为学生学习的一门重要学科,在培养学生数学思维、逻辑推理能力、分析解决问题的能力等方面具有重要作用。

学习数学并不仅仅关乎于应试,更关乎于培养学生的综合素质和创新精神。

在传统教学模式的基础上,我们可以引入更高更妙的数学思想和方法,使数学学习更加生动有趣、高效有用。

本文将结合具体案例,探讨一些更高更妙的高中数学思想和方法。

一、启发式问题解决启发式问题解决是指通过一定的启发式方法和技巧,对具体问题进行分析和解决。

高中数学中的一些问题可以通过启发式问题解决的方法得到更妙的解决办法。

例:已知a、b、c是三个互质的正整数,求满足$\\frac{1}{a}+\\frac{1}{b}=\\frac{1}{c}$的所有正整数解。

传统的解法是穷举法,尝试各种可能的a、b、c的取值,然后验证等式是否成立。

但是这种方法相对低效。

更高更妙的解法是运用启发式问题解决的方法。

我们假设a=m+n,b=m-n,其中m和n是任意正整数,代入原等式进行计算,并整理得到$\\frac{1}{m}+\\frac{1}{n}=\\frac{1}{c}$。

我们可以得到这样的结论:如果$\\frac{1}{m}+\\frac{1}{n}$是一个整数,那么$\\frac{1}{m}+\\frac{1}{n}$的倒数就是c的可能取值。

通过这种思路,我们可以更高效地解决这个问题。

二、分析解决复杂问题高中数学中,有些复杂的问题可以通过分析解决的方法得到更妙的解决办法。

分析解决问题的方法是通过对问题进行逐步分解、拆解,然后分别解决每个小问题,最后结合各个小问题的解,得到整个问题的解决办法。

例:某公司有100辆汽车,每辆车只能载5个人。

某天,公司要搬运500个人,至少需要多少辆车?常规的思路是直接除法计算,得到答案是100辆车。

但是通过进一步分析,我们可以得到更妙的解决办法。

首先,我们可以得到等式:100辆车 × 5个人/辆 = 500个人。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

谈数学思想方法在高中数学教学中的应用

谈数学思想方法在高中数学教学中的应用

谈数学思想方法在高中数学教学中的应用数学思想方法是指运用逻辑、抽象、严密推理等数学思想来解决实际问题的方法。

在高中数学教学中,教师应该利用数学思想方法来指导学生进行数学学习,引导学生掌握数学基本概念,分析问题,解决问题,提高数学证明和推理能力,培养学生的数学思维和创新能力。

数学思想方法旨在帮助学生了解数学的本质,培养学生的逻辑思维能力,提高学生的问题解决能力,使学生对数学产生浓厚的兴趣和热情。

要想成功应用数学思想方法进行高中数学教学,就需要教师具备深厚的数学功底和丰富的教学经验。

也需要学生具备一定的数学基础和较强的数学求知欲。

数学思想方法可以帮助学生理解数学公理和定理。

在高中数学课程中,许多数学概念和理论都是从公理和定理出发的,通过数学思想方法教学,可以让学生更深入理解数学公理和定理的本质,帮助学生建立起逻辑思维框架,提高他们的数学抽象能力。

在教授中学数学中的平行公设定理时,可以通过数学思想方法来引导学生构建平行线的概念,探讨平行线的性质和应用,以及相关定理的证明过程,使学生理解平行公设定理的本质和重要性。

数学思想方法可以帮助学生分析和解决实际问题。

数学思想方法强调从实际问题出发,通过建立数学模型,利用数学原理和方法解决实际问题。

在高中数学教学中,可以通过讲解实际问题,引导学生分析实际问题的本质和特点,发现其中的数学规律和联系,然后运用数学思想方法解决问题。

在教学中学数学中的函数问题时,可以通过实际生活中的例子引出函数的概念,然后通过数学思想方法进行分析和解决,让学生理解函数的应用和意义。

数学思想方法可以帮助学生培养数学思维和创新能力。

数学思维和创新能力是数学学习和研究的核心能力,也是数学思想方法的最终目标。

通过数学思想方法教学,可以引导学生进行数学探究和发现,培养学生的数学直觉和想象力,激发学生对数学探索的兴趣和热情,促进学生的数学创新思维和创新能力的培养。

在教学中可以引导学生进行一些数学探究项目,让学生自主研究和发现数学规律和定理,激发学生的数学思维和创新能力。

高中数学课要重视数学思想方法的教学

高中数学课要重视数学思想方法的教学

高中数学课要重视数学思想方法的教学我们常说:授之以鱼不如授之以渔。

从教育的角度来看,数学教学不仅包含数学内容,还应包含这些内容所反映的数学思想方法,数学知识可以被记忆一时,而数学的精神、数学的思想方法可以使学生受益终生。

这正是数学素质教育所要求的,是数学教学的根本目的所在。

数学思想方法反映出人们对数学本质的认识,对数学基本规律的把握以及处理数学现象时的思维活动方式、特点和水平。

高中数学教学的目的就是要全面提高中学生的数学素质,而加强数学思想方法的教学是增强中学生的数学观念,使学生形成良好的数学素质的有效途径。

因此,教师必须通过日常教学的渗透,适时归纳概括,及时总结方式方法,切实加强数学思想方法的教学。

一、高中数学教材中的数学思想方法(一)关于符号表示的思想数学符号是交流与传播数学思想的媒体,是思维活动的物质载体。

用字母表示数,实现了算术方法到代数方法的过渡。

以数的运算性质为依据进行数、字母以及字母表达式的运算,是代数的本质。

数学符号不仅可以很方便地表达具有普遍意义的运算规律,而且可以用运算符号表达数之间的关系和结构,进而把字母表示的运算对象从数推广到其他各种各样的量,因此字母表示法的实质就是舍去运算对象的个性,把运算对象抽象化。

在数学中,各种量与量之间的关系,量的变化以及在量之间进行推导和演算,都是以符号形式表示的,数学运用着一套形式化的数学语言,从而极大地简化和加速了思维的进程。

(二)函数的思想凡是有数学的地方,都会有函数概念或者函数的方法。

函数是中学数学的中心课题,函数思想是高中数学的主线。

函数思想的建立使常量数学进入了变量数学,它的运用使许多数学问题的处理达到了统一。

例如,方程、不等式、数列、三角等内容都可归结为函数。

曲线和方程可看做隐函数,立体几何中的大部分内容涉及角、距离、体积与面积的计算就可以理解为通过空间模型建立函数关系。

另外,人们在研究物理、化学及其他自然现象时,先把自然规律转化成函数关系,然后再进一步加以研究。

【高中数学】谈数学思想方法的教学

【高中数学】谈数学思想方法的教学

【高中数学】谈数学思想方法的教学数学思想方法是数学概念、理论的相互联系和本质所在,是对数学规律的理性认识和本质体现。

初、高中的衔接不仅仅是知识点的衔接,更是思想方法、思维习惯、学习习惯、学习方法的衔接。

因此,要培养学生的数学能力,就必须重视数学思想方法的教学。

学生在数学学习中掌握了数学思想方法,既可以提高理论水平,又可以用它指导做题实践,而在做题反思中,学生的数学思想方法又得以不断充实、丰富和完善。

叶圣陶先生说过,教育的真谛在于使学生把老师教给他的所有知识全忘了,但却还有使他终生受用的东西,那种教育才是最好的教育,而这“终生受用的东西”在数学教学中非数学思想方法莫属。

数学思想方法在数学知识转化成数学能力的过程中起着纽带和桥梁作用。

数学教学中不能就知识论知识、就题论题,而是要用数学思想方法统摄具体知识、解决问题的具体方法,逐步培养和发展学生的数学思维能力。

数学教学离不开解题教学,数学思想方法是数学解题的指南,离开了数学方法指导的解题,必然是盲目乱撞,也很难达到解题的目的。

而数学思想方法的形成,又离不开数学解题实践。

数学家波利亚说过,数学解题是一种命题的连续变换,而命题的连续变换就是数学思想基本方法反复运用的过程。

数学概念的学习是数学学习的重点,因为概念的产生过程中蕴含了数学思想方法。

在数学解题过程中,我们既要重视基础知识的识记、消化吸收、理解和积累,又要注重数学基本思想方法的提炼和总结。

学生一旦掌握了一种数学思想方法,数学解题能力就会有长足的进步,数学思维境界也就得到了升华。

为了使学生掌握必要的数学思想方法,需要从教材和教法两方面有机结合进行,在教材中要渗透数学思想方法,在教法中要应用数学思想方法。

数学思想方法的教学要结合教学内容进行,不能脱离教学内容只传授形式。

脱离了数学思想方法指导的教学和脱离了内容的数学思想方法的教学都是不全面的教学。

数学思想方法蕴含在数学基础知识和基本方法之中,正是有了数学思想方法,才使得数学知识不再是零散的、孤立的片断。

高中四大数学思想方法

高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

数学家和哲学家对数学的确切范围和定义有一系列的看法。

下面是店铺整理的高中四大数学思想方法,希望对你有所帮助!一、数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。

应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。

运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线。

以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法。

以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。

二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决。

分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”。

应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏。

如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结。

高中数学的思想方法

高中数学的思想方法

高中数学的思想方法数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握状况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变幻法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的.2方法一:函数与方程的思想函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来合计问题,研究问题和解决问题。

所谓方程的思想就是特别研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

函数和方程、不等式是通过函数值等于零、大于零或小于零而互相关联的,它们之间既有区别又有联系。

函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

3方法二:分类与整合思想解题时,我们经常碰到这样一种状况,解到某一步之后,不能再以统一方法,统一的式子持续进行了,因为这时被研究的问题包涵了多种状况,这就必须在条件所给出的总区域内,正确划分假设干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。

有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。

高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题必须要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。

特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q1两种状况,对数函数的单调性就分为a1,04方法三:转化与化归思想转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。

高中数学思想方法8篇

高中数学思想方法8篇

高中数学思想方法8篇高中数学思想方法精选8篇高中数学思想方法1第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的`转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法21、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

高中的数学思想和方法教案

高中的数学思想和方法教案

高中的数学思想和方法教案
教学目标:
1.了解高中数学的思想和方法,培养学生的数学思维能力和解决问题的能力。

2.掌握高中数学的基本概念和方法,提高学生的数学学习效果。

教学重点:
1.高中数学的思想和方法。

2.数学的基本概念和方法。

教学难点:
1.如何理解和应用高中数学的思想和方法。

2.如何灵活运用数学的基本概念和方法解决问题。

教学准备:
1.教材《高中数学》;
2.多媒体课件;
3.数学实物教具。

教学流程:
一、导入(5分钟)
通过数字游戏或数学趣题引导学生思考数学的重要性和奇妙之处。

二、讲解高中数学的思想和方法(15分钟)
1.介绍高中数学的思想,如抽象思维、逻辑思维、推理能力等。

2.讲解高中数学的方法,如证明方法、建模方法、解题方法等。

三、授课互动(20分钟)
1.通过数学问题讨论,引导学生运用高中数学的思想和方法解决实际问题。

2.组织小组合作,让学生在小组内练习应用数学的基本概念和方法。

四、课堂练习(15分钟)
布置一道综合性的数学练习题,让学生独立思考、解答并讲解答案。

五、总结(5分钟)
对本节课的重点内容进行总结,强调高中数学思想和方法的重要性和应用价值。

六、作业布置
布置相关练习题作业,巩固本节课所学内容。

教学评价:
通过学生的课堂表现和作业情况,评价学生对高中数学思想和方法的掌握情况,并及时做出针对性的辅导和指导。

通过多种形式的测试和考核,检验学生对高中数学思想和方法的掌握程度,为学生的学习提供有效反馈和指导。

新课标下如何在高中数学教学中渗透数学思想方法

新课标下如何在高中数学教学中渗透数学思想方法

新课标下如何在高中数学教学中渗透数学思想方法一、数学思想方法及其教学的重要性数学思想是对数学知识和方法本质的认识,数学方法是解决问题、体现数学思想的手段和工具、数学思想方法是形成学生的良好认识结构的纽带,是由知识转化为能力的桥梁.我们应在数学教学的每一个环节中重视数学思想方法的教学,使学生对数学知识内容和所使用的方法有本质的认识,使学生终生受益.二、教学中如何把握数学思想方法1.首先教师必须更新观念,提高对数学思想方法教学的认识.2.把握数学思想方法教学要求的层次.3.数学思想方法教学所采用的主要方法是渗透,让学生对数学思想方法的认识由浅入深,由表及里,渐进地达到一定的认识高度,从而自觉地运用之.三、数学思想方法教学的主要方式——渗透渗透教学应遵循以下原则:渗透性原则;渐进性原则;发展性原则;学生参与原则.四、教学中渗透数学思想方法的几点尝试数学思想、数学方法很多,这里仅就高中教材中和高考试题中常见的函数与方程思想、数形结合思想、分类讨论思想、等价转化思想作些探讨.1.函数与方程思想函数思想的实质是提取问题的数学特征,用联系和变化的观点建立函数关系,构造函数原型,化归为方程问题,实现函数与方程的互相转化,达到解决问题的目的.函数知识涉及的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维.中学数学中,方程、数列、不等式等问题都可利用函数思想得以简解;几何量的变化问题也可以通过对函数值域的考查加以解决.高中数学教材中,函数与方程思想的内容相当广泛.例1.设f(x)=lg■,当x∈(-∞,1)时f(x)有意义,求实数a的取值范围.分析:当x∈(-∞,1]时f(x)=lg■有意义的函数问题,转化为1+2x+4xa>0在x∈(-∞,1]上恒成立的不等式问题.解:由题设可知,不等式1+2x+4xa>0在x∈(-∞,1]上恒成立, 即:(■)2x+(■)x+a>0在x∈(-∞,1]上恒成立.设t=(■)x,则t≥■,又设g(t)=t2+t+a,其对称轴为t=-■.所以t2+t+a=0在[■,+∞]上无实根,即g(■)=(■)2+■+a>0,得a>-■.所以a的取值范围是a>-■.【注】对于不等式恒成立,引入新的参数化简不等式后,构造二次函数利用函数的图像和单调性进行解决问题,其中也联系到了方程无解,体现了方程思想和函数思想.一般地,我们在解题中要抓住二次函数及图像、二次不等式、二次方程三者之间的紧密联系,将问题进行相互转化.在解决不等式(■)2x+(■)x+a>0在x∈(-∞,1)上恒成立的问题时,也可使用“分离参数法”:设t=(■)x,t≥■,则有a=-t2-t∈(-∞,-■),所以a的取值范围是a>-■.其中最后得到a的范围,是利用了二次函数在某区间上值域的研究,也可属应用“函数思想”.例2.《苏教版.数学必修5》p41,关于等差数列的前n项和公式的推导.在得出公式sn=na1+n(n-1)■后,教师要不失时机地指出,在该公式中,将n看作变量,则sn是关于n的二次函数,这个二次函数的常数项为零,二次项系数为■,因此可以用二次函数的有关知识来解决等差数列的前n项和的问题.如九三年高考题:设等差数列{an}的前n项和为sn,已知a3=12,s12>0,s13g(x)解集就是函数f(x)的图像位于函数g(x)的图像的上方的那一部分所对应的x的取值范围.2.数形结合的思想方法“数”就是方程、函数、不等式及表达式,代数中的一切内容;“形”就是图形、图像、曲线等.数形结合就是抓住数与形之间的本质上的联系,以“形”直观地表达数,以“数”精确地研究形.高中数学教材中处处都蕴涵着数形结合的思想.数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体.例3.若方程lg(-x2+3x-m)=lg(3-x)在x∈(0,3)内有唯一解,求实数m的取值范围.[分析]将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决.■[解]:原方程变形为3-x>0,-x2+3x-m=3-x即:3-x>0,(x-2)2=1-m设曲线y1=(x-2)2,x∈(0,3)和直线y2=1-m,图像如图所示。

数学思想方法在高中教学中运用论文

数学思想方法在高中教学中运用论文

数学思想方法在高中教学中的运用一、把数学思想方法渗透到教学中去1.在高中数学教学中,教师可以通过课堂情景的创设,有意识地把数学思想方法渗透到教学中去,创设良好的体验环境,激发学生的学习兴趣,激活学生思维,使学生在已有的生活经验之上,在合适的环境中体验体验数学思想方法。

需要注意的是,教师创设的这个情景,可以是真的,也可以是虚拟的、模仿的,只要能吸引学生的注意力就行。

2.可以让学生参加实践活动,亲身体验数学思想方法。

在数学教学中,教师在教授概念时,要经济引导学生重视基本思想方法的作用,充分挖掘并掌握数学概念中包含的数学思想方法。

3.在定理、公式、法则教学中,让学生体验数学思想方法。

数学的内容包含了大量的公式、定理等,它们是学习数学知识的基础,解决问题的依据,它们的形成都是数学家辛勤研究的结晶,其中蕴藏了数学家们深刻的数学思维过程,处处体现着创造性思维。

对这些公式定理的推导过程,有利于学生深化对公式定理的发现过程,并在发现过程张揭示数学思想方法。

比如在“三垂线定理”这节课的学习中,教师要重视“化归”思想的教授,使学生充分了解到怎样通过射影将空间问题转化为平面的问题,只有让学生把这种实质了解透彻了,才能真正掌握三垂线定理及其应用,并使学生真正感受到数学魅力,更好地将知识转化为技能。

二、正确运用数学思想方法解决数学问题在数学问题的解答中,掌握数学思想方法是解决问题的关键,数学问题的解决过程,实质是命题的不断变换和数学思想方法反复运用的过程。

数学问题的步步转化,无不体现出数学思想方法,它们是解决数学问题的的观念性成果,新大纲指出:“要加强对解题的正确指导,应引导学生从解题的思想方法上作必要的概括”。

在数学题的解答过程中,数学思想方法的应用时必不可少的,如果掌握了数学思想方法,我们就会发现,一道题中能够用到好几种数学思想方法。

例如:如果x2+y2-2y=0,不等式x+y+c≥0恒成立,求c 的取值范围。

在这个题中,我们可以至少用到两种数学思想方法来解题。

高中数学教学中的思想和方法

高中数学教学中的思想和方法
而同一问题 又可以用不 同的数学思想 、 方法来解决 。 因此 , 教师 的概括 、 分析是十分重要 的。教师还要有意识地培养学生 自我
中数学 中的数学思想和方法 内涵 与外 延 , 尚无公 认的定义 。其 难分层次地贯彻数 学思想 、 方法 实. 在高中数学 中, 许多数学思想 和方 法是一致 的 , 两者之 间很 难分割 。它们既相辅相成 。 又相互蕴含 。只是方法较具体 , 是实
方法是数学的行为。 运用 数学方法解决 问题 的过程就是感 性认
要达到课标的基本要求 , 教学 中应遵循 以下几项原则 : ( 1 ) 渗透 “ 方法” , 了解“ 思想 ” 。 由于高 中学生数学知识 比较 贫乏 , 抽象思想能力也较为 薄弱 . 把数学思 想、 方法 作为- -l ' q 独
立的课程还缺乏应有的基础 。因而只 能将数 学知识作为载体 ,
识不 断积累的过程 , 当这种量 的积累达到一定程序时就产 生了 质 的飞跃 , 从而上升为数学思想 。若 把数学知识看作一 幅构思 巧妙 的蓝图而建筑 起来 的一座宏伟大厦 . 那么数学方法相 当于 建筑施工 的手段 。 而这 张蓝 图就相 当于数学思想 。 ( 1 ) 明确基本要求 , 渗透“ 层次 ” 教学。 课标对高 中数学 中渗
提 出、 分析并创造性地解决问题。
( 2 ) 从“ 方法 ” 了解“ 思想 ” , 用“ 思想 ” 指导“ 方法” 。 目前 , 高
的程度 、 认知能力 、 理解 能力 和可接受性能力 由浅人 深 , 由易到 ( 3 )教学 中要适 时 除当地对数学方法给予提炼 和概括 , 让
学生有 明确的印象 。由于数学思想 、 方法分散在各个不 同部分 。
法的教学落在实处
课 内外笔 头练习 . 让学生每天坚持写几 句话 , 日积月累 , 学 生的

高中数学思想和解法教案

高中数学思想和解法教案

高中数学思想和解法教案
学科:数学
年级:高中
课时:1课时
教学目标:了解高中数学的思想和解法,掌握其中的重要概念和方法。

教学重点:数学的思想和解法
教学难点:抽象思维和逻辑推理
教学准备:教材《高中数学》、教学投影仪
教学步骤:
1.导入:通过一道简单的数学问题引入本课的学习内容,激发学生对数学思想和解法的兴趣。

2.讲解:向学生介绍高中数学的核心思想和解法,包括抽象思维、逻辑推理、数学建模等内容,让学生了解数学的本质和意义。

3.示范:通过几个例题演示高中数学的解题方法和思维过程,让学生了解如何运用所学知识解决实际问题。

4.练习:让学生进行一定数量的练习题,巩固所学知识,培养解题能力和思维逻辑。

5.总结:对学生进行总结,强调数学思想和解法在数学学习中的重要性,鼓励学生多动脑思考,勇于挑战问题。

6.作业:布置相关练习题作为课后作业,加深学生对数学思想和解法的理解和掌握。

教学反思:通过本课的教学,希望学生能够认识到数学的思想和解法是数学学习的核心,能够灵活运用所学知识解决各种问题。

同时,也希望能够引导学生养成良好的思维习惯和解题技能,为将来的学习和生活打下坚实的数学基础。

高中数学思想方法教学[论文]

高中数学思想方法教学[论文]

浅谈高中数学思想方法教学方程与函数是高中教学中两个重要的概念,方程与函数的思想是高中数学的重要思想,使用方程与函数的思想能够使高中数学中的许多问题得到转化,能够使很多复杂的问题简单化.因此高中数学教师在教学中要重视方程与函数的思想方法.函数思想方程思想数学问题方程与函数思想是高中数学的重要思想,考试中常运用方程与函数的思想去处理不等式、数列、几何中的一些问题,从而使问题得到转化,使学生能够轻松解决问题.方程与函数的思想在高中试题中的应用主要表现在两个方面:(1)借助有关初等函数的性质,解答有关求值、证明不等式、解方程以及讨论参数的取值问题;(2)在研究问题中,通过建立方程与函数的关系式或构造中间的函数,把所解答的问题转化为讨论函数的有关性质,从而达到简化问题的目的.一、注重概念1.方程与函数有着密切的联系,在日常教学中,笔者发现有很多方程的问题需要用函数的知识去解决,也有很多的函数问题是要方程的知识去解答,方程与函数之间的对立与辩证关系,形成了方程与函数的思想.因此,方程与函数思想就是用方程与函数的观点和方法来处理数学量之间的关系,一种思维方式,在高中数学中是一种很重要的数学思想.其实函数思想,就是用变化的观点、对应的思想去分析和研究数学问题中的一些数量关系,通过他们彼此之间的关系来建立函数关系或构造函数,并运用所熟知的函数图像或性质去研究问题、转化问题,从而获得解决问题的思想.应用函数思想解答问题时,确立变量之间的函数关系式是一个关键过程,大体可分为以下情况:根据所解决的问题建立变量之间的函数关系式,把所研究的数学问题转化为相应的函数问题;根据所解决问题的需要构造好函数,并应用学生所熟知函数的相关知识去解决问题.例1:设函数的图象的交点为(x0y0x0在的区间是()a.(0,1)b.(1,2)c.(2,3)d.(3,4)解析:由题意可知,(x0y0x0x3-22-x=0的一个根,即函数g (x)=x3-22-xg(x)=x3-22-x.正解:令g(x)=x3-22-x g(0)=-40,g(3)=2612>0,g(4)>0,由g(1)?g(2)=-7<0可知函数g(x)的零点所在区间为(1,2),因此答案选b.注意:由于方程x30-22-x0=0是一个超越方程,用高中数学所学知识我们是无法求解的,由题意可知本题只求x0x0.因此,本题在求解时可以把一个解方程的问题转化为研究函数零点的问题,最后通过构造函数进行求解.2.方程的思想是指在解决问题时,用事先设定的未知数与问题中的数量关系,列出方程(组),求出未知数及各量的值数学过程,从而使问题得以解决.在解题过程中方程起到了桥梁的作用,事实上,方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标,即函数y=f(x)的零点;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究.方程思想是动中求静,研究运动中的数量的等量关系.用方程的思想方法解题,就是要用方程的观点,分析和研究具体问题中的数量及其关系,把对立的已知与未知通过相等关系统一在方程中,把数学问题转化为方程问题,最后能守求解方程得以解决.例2设p(3,1)为二次函数f(x)=ax2-2ax+b(x≥1)的图象与其反函数y=f-1x)的图象的一个交点,则()解析:由于点p(3,1)是函数y=f(x)与其反函数y=f-1 x)的交点,因此点(3,1)和(1,3)都在函数f(x)=ax2-2ax+b(x≥1)的图象上,由此可通过列方程组的方法来求解.正解由于p(3,1)是二次函数f(x)= ax2-2ax+b(x ≥1)上的点,可得1=9a-6a+b,①又p(3,1)是其反函数上的点,所以点(1,3)在原函数上,故3=a-2a+b,②联立①、②,可解得a=-12,b=52,因此答案选c.注意:本题其实与上面的例题实质是相同的,但解法不同,一个是通过构造函数,一个是通过构造方程组最后使问题得以解决,在学习中同学们要加以体会.二、注重学法方程与函数的思想方法,在高中数学的各个领域都有涉及,在解题过程中有着广泛应用.因此同学们在复习中必须有意识地培养和形成这种解题思想,在复习中应切实做好如下几点:1.要深刻理解一般函数的图像与性质,熟练掌握一、二次函数、指数函数、对数函数、三角函数的具体特征是应用方程与函数思想的基础,要学会通过题设巧妙、恰当地构造函数,只有构造出正确的函数才能方便解题.2.在解答非函数问题时,要注意对题设中的隐含条件进行仔细分析,结合所学知识,构造出正确的函数模型,从而使问题得到解决.3.根据题设条件构造方程,再通过对方程的研究,进而解决问题.4.注意要学会方程与函数转化的思想.在许多数学问题中,一般都含有常量、变量或参变量,这些参变量中必有一个处于突出的、主导的地位,我们称之为主元,于是就可构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.纵观中学数学,可谓是以函数为中心,以函数为纲,就带动起了中学数学的“目”.熟练掌握基本初等函数的图像和性质,是应用函数与方程思想解题的基础.善于根据题意构造、抽象出函数关系式是用函数思想解题的关键.作为数学教师,我们在日常教学中要注重对学生数学思想的培养。

数学思想方法在高中数学教学中的应用

数学思想方法在高中数学教学中的应用

数学思想方法在高中数学教学中的应用数学思想方法是指在解决数学问题时,通过灵活的思维方式和方法来引导学生进行思考和探索的一种方法。

它强调培养学生的数学思维能力和创造力,促使学生主动思考、积极动手,从而实现学生积极性的调动和学习效果的最大化。

本文将从问题解决能力、思维习惯和数学素养的培养三个方面来探讨数学思想方法在高中数学教学中的应用。

首先,数学思想方法在高中数学教学中的首要目标是培养学生的问题解决能力。

传统的数学教学往往是教师将解题方法和要点讲解给学生,而学生只是被动地接受,并且缺乏实际运用的机会。

而数学思想方法则强调“人学什么,解决什么问题,我的思维方式是什么”,鼓励学生在解决问题的过程中,借助各种思维方式的运用来深入思考问题的本质,拓展解题方法的灵活性。

在实际教学中,教师可以通过给学生提供一系列有挑战性的问题,引导他们灵活运用所学知识来解决问题,同时鼓励他们尝试多种方法来寻找解决问题的策略。

通过解决问题的实践活动,学生可以培养自主思考、自主解决问题的能力。

其次,数学思想方法在高中数学教学中的应用还能够培养学生的思维习惯。

思维习惯是指学生在解决问题时借助各种思维方式和方法,形成的稳定的思考模式和习惯。

数学思想方法以问题为起点,以问题为导向,使学生将目光聚焦在问题本身,培养学生主动思考、积极探索的习惯。

在实际教学中,教师可以引导学生形成“观察问题-提出假设-验证假设-归纳总结”的思维模式,让学生习惯于用多种方式分析问题、提出解决方案,并通过实际验证来进一步加深对问题本质的理解。

最后,数学思想方法在高中数学教学中的应用还可以培养学生的数学素养。

数学素养是指学生对数学理论、知识和方法的充分理解、熟练掌握和灵活运用的能力。

传统的数学教学往往注重知识点的讲解和记忆,缺乏对知识的深入理解和应用。

而数学思想方法则侧重于培养学生从不同角度思考和运用数学知识的能力。

在实际教学中,教师可以通过引入一些具有挑战性的数学问题,让学生在解决问题的过程中不断拓展数学知识的运用范围,让学生体验到数学知识的美妙和无限可能性。

高中数学思想方法教案

高中数学思想方法教案

高中数学思想方法教案
一、教学目标
1. 知识目标:学生能够了解数学的思维方式和方法,提高数学解题的能力;
2. 能力目标:培养学生的逻辑推理能力和问题解决能力;
3. 情感目标:激发学生对数学的兴趣,增强学生解决问题的信心。

二、教学重点和难点
1. 重点:引导学生正确理解数学思维方式和方法;
2. 难点:培养学生的逻辑推理能力和问题解决能力。

三、教学内容
1. 数学思维的基本原理和方法;
2. 数学中常用的解题思路和技巧。

四、教学方法与过程
1. 导入:通过一个生活实例或数学问题引导学生思考,激发学生解决问题的兴趣;
2. 学习:介绍数学思维的基本原理和方法,讲解数学解题的常用思路和技巧;
3. 练习:让学生进行举一反三的练习,加深对数学思维的理解;
4. 总结:引导学生总结今天所学内容,强化学习效果。

五、教学手段
1. 多媒体教学:利用PPT、视频等多媒体手段辅助教学;
2. 互动讨论:设置小组讨论、分享思考等环节,促进学生间的互动交流;
3. 练习与检测:设计针对性的练习题和难题,检验学生的学习效果。

六、教学反馈
1. 对学生进行及时的学习成绩评价和反馈;
2. 鼓励学生勇于思考、提问和探究。

七、课后作业
1. 完成相关练习题;
2. 思考数学中的思维方式和方法。

八、教学效果评估
1. 定期组织考试,检验学生的学习成果;
2. 观察学生在课堂上的表现和思考能力。

以上是一份高中数学思想方法教案范本,希望对你有所帮助。

祝教学顺利!。

高中数学教学中数学思想方法教学

高中数学教学中数学思想方法教学

高中数学教学中的数学思想方法教学如何在高中数学教学中实施素质教育,提高学生的数学素养,是摆在高三复习中数学教学面前的问题。

那种只重视讲授基础知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在初级阶段;反之,如果单纯强调数学思想和方法,而忽略基础知识的教学,就会使教学流于形式,学生也难以领略到深层知识的真谛。

因此,数学思想、方法的教学应与整个基础知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质。

这也是数学思想方法教学的基本原则。

下面对数学思想方法教学谈一些体会。

一、高三数学思想方法教学的途径1、用数学思想指导基础复习,在基础复习中培养思想方法。

①基础知识的复习中要充分展现知识形成发展过程,揭示其中蕴涵的丰富的数学思想方法。

如讨论直线和圆锥曲线的位置关系时的两种基本方法:一是把直线方程和圆锥曲线方程联立,讨论方程组解的情况;二是从几何图形上考虑直线和圆锥曲线交点的情况,利用数形结合的思想方法,将会使问题清晰明了。

②注重知识在教学整体结构中的内在联系,揭示思想方法在知识互相联系、互相沟通中的纽带作用。

如函数、方程、不等式的关系,当函数值等于、大于或小于一常数时,分别可得方程,不等式,联想函数图象可提供方程,不等式的解的几何意义。

运用转化、数形结合的思想,这三块知识可相互为用。

2、用数学思想方法指导解题练习,在问题解决中运用思想方法,提高学生自觉运用数学思想方法的意识。

①注意分析探求解题思路时数学思想方法的运用。

解题的过程就是在数学思想的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题断间的差异的过程。

也可以说是运用化归思想的过程,解题思想的寻求就自然是运用思想方法分析解决问题的过程。

②注意数学思想方法在解决典型问题中的运用。

③用数学思想指导知识、方法的灵活运用,进行一题多解的练习,培养思维的发散性,灵活性,敏捷性;对习题灵活变通,引伸推广,培养思维的深刻性,抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性,批判性。

高中数学教学中应注意渗透数学思想方法

高中数学教学中应注意渗透数学思想方法

高中数学教学中应注意渗透数学思想方法一、数学思想方法及其教学的重要性数学思想是对数学知识和方法本质的认识,数学方法是解决数学问题、体现数学思想的手段和工具。

数学思想方法是形成学生的良好的认识结构的纽带,是由知识转化为能力的桥梁。

《高中数学教学大纲》提出,中学数学中的基础知识包括概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法。

数学思想和方法作为基础知识在大纲中明确、肯定地提出来,尚属首次,足见数学思想方法及其如何教学的问题已引起教育职能部门的重视。

二、教学中如何把握数学思想方法1、首先教师必须更新观念,提高对数学思想方法教学的认识。

从备课入手,从数学思想方法的高度深入钻研教材,通过对概念、公式、定理等的研究与探讨,挖掘有关数学思想方法,将数学思想方法的教学要求与有关知识、技能的教学要求同时明确地提出来。

在教学过程中,要重视数学思想方法的训练。

在教学小结时,要注意数学思想方法的归纳。

使学生通过训练总结,从数学思想方法的高度把握知识的本质。

总之,要把数学思想方法的渗透,贯穿于整个教学过程。

2、把握数学思想方法教学要求的层次。

初中阶段对掌握数学思想方法要求低,高中阶段相应地提高了要求的层次,如对分类讨论的思想、等价转化的思想、数形结合的思想、函数方程的思想等,不但要求理解,还要求在理解的基础上掌握及运用或灵活运用。

任意提高或降低其要求层次,都会影响教学效果。

3、数学思想方法教学所采用的主要方法是渗透,所谓渗透,就是有机地结合数学知识的教学,采用教者有意,学者无心的方式,反复向学生讲解诸如分类、转化、数形结合、函数等数学思想方法。

通过逐步积累,让学生对数学思想方法的认识由浅入深,由表及里,渐进地达到一定的认识高度,从而自觉地运用之。

之所以采用渗透的方法,是由数学思想方法本身的特点决定的。

从知识和思想方法的关系来看,数学思想方法隐含在知识里,体现在知识的应用过程中,它不象知识那样可以具体编排在某一章、某一节,靠教师专门讲解就可以理解的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学思想方法教学
中学数学教学内容从总体上可以分为两个层次:一个称为基础知识,另一个称为深层知识.基础知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。

基础知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的基础知识后,才能进一步的学习和领悟相关的深层知识。

深层知识蕴含于基础知识之中,是数学的精髓,它支撑和统帅着基础知识.教师必须在讲授基础知识的过程中不断地渗透相关的深层知识,让学生在掌握基础知识的同时,领悟到深层知识,才能使学生的基础知识达到一个质的“飞跃”,使其更富有朝气和创造性。

实施以培养创新精神和实践能力为重点的素质教育,是我国面向二十一世纪的战略选择,是教育走向现代化的开端,如何在高中数学教学中实施素质教育,提高学生高的数学素养,就是摆在高中复习中数学教学面前的问题。

那种只重视讲授基础知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略基础知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个基础知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形
成良好的数学素质。

这也是数学思想方法教学的基本原则。

结合本人的教学经验,下面对数学思想方法教学浅谈一些体会。

一、在高中复习教学中,数学思想方法教学的途径主要有:
1、用数学思想指导基础复习,在基础复习中培养思想方法。

①基础知识的复习中要充分展现知识形成发展过程,揭示其中蕴涵的丰富的数学思想方法。

如讨论直线和圆锥曲线的位置关系时的两种基本方法:一是把直线方程和圆锥曲线方程联立,讨论方程组解的情况;二是从几何图形上考虑直线和圆锥曲线交点的情况,利用数形结合的思想方法,将会使问题清晰明了。

②注重知识在教学整体结构中的内在联系,揭示思想方法在知识互相联系、互相沟通中的纽带作用。

如函数、方程、不等式的关系,当函数值等于、大于或小于一常数时,分别可得方程,不等式,联想函数图象可提供方程,不等式的解的几何意义。

运用转化、数形结合的思想,这中块知识可相互为用。

例如、若关于 x的方程9x2+(4+a)3x+4=0有实根,求实数a的范围。

分析:若令3x=t ,则t>0,原方程有解的充要条件是方程t2+(4+a)t+4=0有正根,故解得:a≤-8。

这种解法是根据一元二次方程解的讨论,思维方法是常规合理的,但解法繁琐,若采取以下解
法:因为a∈R,所以原方程有解的a的取值范围为函数a=
x x
x 312
9
42-
-
的值域。

根据基本不等式上式 a≤-2-4=-8。

则思维突破常规,利用函数与方程的转化,解法灵活简捷。

2、用数学思想方法指导解题练习,在问题解决中运用思想方法,提高学生自觉运用数学思想方法的意识。

①注意分析探求解题思路时数学思想方法的运用。

解题的过程就是在数学思想的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题断间的差异的过程。

也可以说是运用化归思想的过程,解题思想的寻求就自然是运用思想方法分析解决问题的过程。

②注意数学思想方法在解决典型问题中的运用。

例如选择题中的求解不等式:>x+1,虽然可以通过代数方法求解,但若用数形结合,转化为半圆与直线的位置关系,问题将变得非常简单。

③用数学思想指导知识、方法的灵活运用,进行一题多解的练习,培养思维的发散性,灵活性,敏捷性;对习题灵活变通,引伸推广,培养思维的深刻性,抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性,批判性。

对同一数学问题的多角度的审视引发的不同联想,是一题多解的思维本源。

丰富的合理的联想,是对知识的深刻理解,及类比、转化、数形结合、函数与方程等数学思想运用的必然。

数学方法、数学思想的自觉运用往往使我们运算简捷、推理机敏,是提高数学能力的必由之路。

二、高中数学中常用的思想方法有以下几类:
1、函数与方程的思想方法。

函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种动态刻画。

因此,函数思想的实质是提取问题的数学
特征,用联系的变化的观点提出数学对象,抽象其数学特征,建立函数关系。

很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的。

函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维。

2、数形结合的思想方法。

数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体。

3、分类讨论的思想方法。

分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想在人的思维发展中有着重要的作用。

原因有二,其一:具有明显的逻辑性特点;其二:能训练人的思维的条理性的概括性。

如“参数问题”对中学生来说并不十分陌生,它实际上是对具体的个别的问题的概括.从绝对值、算术根以及在一般情况下讨论字母系数的方程、不等式、函数,到曲线方程等等,无不包含着参数讨论的思想.但在含参数问题中,常常会碰到两种情形:在一种情形下,参数变化并未引起所研究的问题发生质变,例如在中,参数的变化并未改变曲线系是抛物线系的性质;而在另一种情况下,参数的变化使问
题发生了质变.例如曲线系中,随着值的变化,该曲线可能是椭圆、双曲线、圆、二平行直线等,因此需根据的不同范围分类讨论.这种分类讨论有时并不难,但问题主要在于有没有讨论的意识.在更多的情况下,“想不到要分类”比“不知如何分类”的错误更为普遍.这就是所谓“素质”的问题.良好的数学素养,需长期的磨练形成.
4、等价转化的思想。

等价转化思想是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的数学思想方法,转化包括等价转化和非等价转化,等价转化要求转化过程中前因后果应是充分必要的,这样的转化能保证转化后的结果仍为原问题所需要的结果;而非等价转化其过程是充分或必要的,这样的转化能给人带来思维的闪光点,找到解决问题的突破口,是分析问题中思维过程的主要组成部分。

转化思想贯穿于整个高中数学之中,每个问题的解题过程实质就是不断转化的过程。

总之,我们在数学教学的每一个环节中,都要重视数学思想方法的教学。

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。

相关文档
最新文档