天线基础知识介绍

合集下载

物理天线知识点总结

物理天线知识点总结

物理天线知识点总结一、天线的分类天线可以根据它的结构、工作频率、工作方式等不同特征进行分类。

根据天线的结构,天线可以分为线性天线、面状天线、体状天线等。

根据天线的工作频率,天线可以分为超高频天线、甚高频天线、高频天线等。

根据天线的工作方式,天线可以分为接收天线、发射天线、双工天线等。

此外,根据天线的工作原理,天线还可以分为定向天线、全向天线等。

二、天线的工作原理天线是通过改变电流和电压的分布来产生电磁波。

当电流通过天线时,会在天线上产生一个电磁场。

这个电磁场会向周围空间辐射出去,形成电磁波。

同时,当有外界的电磁波作用在天线上时,天线也会感应出电流和电压。

这样,天线在电磁波的发射和接收中发挥作用。

三、天线的设计方法天线的设计是一个复杂的过程,需要考虑多种因素,包括天线的工作频率、方向性、增益、波束宽度、阻抗匹配等。

在天线的设计中,通常需要用到一些工具,如天线模拟软件、电磁场仿真软件等。

天线的设计方法包括复合结构天线的设计、微带天线的设计、阵列天线的设计等。

这些设计方法大大提高了天线的工作性能和可靠性。

四、天线的性能分析天线的性能分析是对天线的工作性能进行评估和优化的过程。

通过对天线的参数和特性进行测试和分析,可以了解天线的工作状况和性能指标,为天线的改进和优化提供依据。

常用的天线性能分析方法包括天线参数测量、天线阻抗匹配、波束宽度测量等。

五、天线的应用天线在无线通信、雷达、卫星通信、电视广播等领域中有着广泛的应用。

在无线通信系统中,天线是信息传输的关键设备,它的工作性能直接影响到通信系统的稳定性和可靠性。

在雷达系统中,天线是用来发射和接收雷达信号,它的性能直接影响到雷达的探测性能和分辨率。

在卫星通信系统中,天线是用来与卫星间进行通信,它的性能直接影响到卫星通信的质量和覆盖范围。

在电视广播系统中,天线是用来接收广播信号的,它的性能直接影响到电视节目的清晰度和稳定性。

总结:物理天线是无线通信和雷达系统中不可或缺的重要组成部分。

天线基础知识课件

天线基础知识课件
重新安装
修复完成后,重新安装天线, 确保安装牢固。
天线的升级与改造方案
升级方案
根据实际需求和技术发展,对天线进 行升级改造,提高天线的性能和功能 。
改造方案
根据实际场景和需求,对天线进行改 造,如改变天线结构、增加天线数量 等。
方案实施
制定详细的实施方案,包括改造计划 、时间安排、人员分工等,确保改造 顺利进行。
04
天线的应用领域
通信领域
移动通信
01
手机、无线电对讲机等移动通信设备使用天线接收和发送信号

卫星通信
02
卫星地面站使用天线与卫星进行通信。
无线局域网
03
路由器、电脑等设备通过天线连接无线网络。
雷达领域
天气预报雷达
用于监测天气状况,如风切变、降水等。
导航雷达
用于飞机、船舶等导航。
军事雷达
用于探测目标、制导武器等。
05
天线的设计与制作
天线的设计原则与方法
匹配原则
天线应与发射和接收设 备相匹配,以确保信号
的最佳传输。
效率原则
天线应具有高效率,以 减少信号的损失和干扰

抗干扰原则
天线应具有抗干扰能力 ,以减少外部信号的干
扰。
多功能性原则
天线应具有多功能性, 以满足不同的应用需求

天线的制作材料与工艺流程
01
电磁波在空间中以波的形 式传播,其传播速度等于 光速。
电磁波的特性
电磁波具有频率、波长、 振幅等特性,不同特性的 电磁波具有不同的传播方 式和性质。
天线辐射原理
天线的作用
天线是用来发射或接收电 磁波的设备,其作用是将 电信号转换为电磁波或将 电磁波转换为电信号。

天线基本知识介绍

天线基本知识介绍

天线基本知识介绍天线是将电信号转换为电磁波并将其传输或接收的装置。

它是电磁学的一个分支,用于无线通信、电视和广播接收、雷达以及天体物理学研究等领域。

本文将对天线的基本知识进行介绍。

1.天线的作用和原理:天线的主要作用是将电信号转换为电磁波并将其辐射到空间中,或者将接收到的电磁波转换为电信号。

它的工作原理基于法拉第电磁感应定律和亥姆霍兹理论,即通过电流在导体中产生的磁场和由变化的磁场产生的感应电流来实现电磁波的辐射或接收。

2.天线的分类:天线可以根据其结构、工作频率、功率和应用等方面进行分类。

根据结构,天线可分为线性天线(如偶极子天线)、面型天线(如片极天线、光波导天线)和体型天线(如反射天线、波导天线)。

根据工作频率,天线可分为超高频、高频、甚高频、极高频和微波天线等。

根据功率,天线可分为小功率天线和大功率天线。

根据应用,天线还可细分为通信天线、雷达天线、电视天线、卫星天线和微波天线等。

3.天线参数:天线的性能取决于其设计参数。

常见的天线参数包括增益、方向性、波束宽度、驻波比、频率响应、极化方式和带宽等。

增益是天线辐射功率与等效输入功率之比,方向性衡量天线在一些方向上的辐射能力,波束宽度是主瓣的半功率宽度,驻波比是反射功率与输入功率之比,频率响应表示天线在不同频率下的性能表现,极化方式表示电磁波的电场分量与地面垂直或平行的相对方向,带宽表示天线能够工作的频率范围。

4.天线设计方法:天线的设计是一个综合考虑电磁学原理、工作频率和应用要求的过程。

常见的天线设计方法包括试验法、数值法和半经验法。

试验法通过制作实物天线并进行实际测量来调整参数和优化天线性能。

数值法使用计算机模拟和数值算法来预测和分析天线性能,例如有限元法、谱域法和时域法等。

半经验法结合实验和数值方法,通过经验公式和优化算法来设计天线。

5.天线应用:天线的应用非常广泛,涵盖了通信、广播、雷达、航天、医疗和科学研究等领域。

在通信领域,天线用于无线电通信、移动通信和卫星通信等。

天线基础知识大全

天线基础知识大全

天线基础知识大全1 天线1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。

*电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。

如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。

必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2a 。

另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

1.3 天线方向性的讨论1.3.1 天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。

有关天线的知识点总结

有关天线的知识点总结

有关天线的知识点总结一、天线的工作原理天线的工作原理可以简单地理解为两个方面:接收信号和辐射信号。

当接收信号时,天线将接收到的电磁波转换成电信号;而在辐射信号时,天线将电信号转换成电磁波辐射出去。

这样一来,天线就起到了收发信号的作用。

二、天线的分类根据不同的分类标准,天线可以分为很多种类。

其中最常见的分类方法有以下几种:1. 按照频率分类:根据天线工作的频率范围不同,可以分为超高频天线、甚高频天线、超高频天线、微波天线等;2. 按照结构分类:根据天线的结构和形状不同,可以分为偶极子天线、单极天线、方向性天线、非方向性天线等;3. 按照用途分类:根据天线的用途不同,可以分为通信天线、导航天线、雷达天线、电视天线等。

三、天线的特性1. 增益:天线的增益是指天线辐射的电磁波功率与理想点源辐射的电磁波功率的比值。

增益越高,天线的辐射效率越高。

2. 阻抗:天线的输入阻抗是指天线在工作频率下的端口电阻。

一般来说,天线的阻抗要与传输线的阻抗匹配,否则会导致信号回波,影响通信质量。

3. 方向性:天线的方向性是指天线在空间中辐射和接收电磁波信号的能力。

方向性越好,天线的指向性就越强。

4. 带宽:天线的带宽是指天线可以工作的频率范围。

一般来说,带宽越宽,天线的适用范围就越广。

四、天线的设计和调试天线的设计和调试是天线工程师的主要工作之一。

在设计天线时,需要考虑到天线的工作频率、带宽、增益、方向性等参数,并根据具体的应用场景选择合适的天线结构和材料。

在调试天线时,需要使用专业的测试设备进行天线的性能测试,一般包括驻波比测量、辐射图测量、方向图测量等。

五、天线的应用天线的应用非常广泛,几乎涵盖了各个领域。

在通信领域,天线用于手机、基站、卫星通信等设备;在雷达领域,天线用于目标探测和跟踪;在导航领域,天线用于车载导航、航空导航等设备;在电视领域,天线用于接收地面数字电视信号等。

总的来说,天线作为一种重要的通信装置,在现代社会中有着不可替代的作用。

天线基础知识

天线基础知识

第一讲天线的基础知识表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式等。

1.1 天线的输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。

天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。

匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们日常维护中,用的较多的是驻波比和回波损耗。

一般移动通信天线的输入阻抗为50驻波比:它是行波系数的倒数,其值在1到无穷大之间。

驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。

在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR 应小于1.2。

过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。

回波损耗:它是反射系数绝对值的倒数,以分贝值表示。

回波损耗的值在0dB 的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越小表示匹配越好。

0 表示全反射,无穷大表示完全匹配。

在移动通信系统中,一般要求回波损耗大于14dBJ发射功率+ J反射功率履射功牽-很射功率1.2天线的极化方式所谓天线的极化,就是指天线辐射时形成的电场强度方向。

当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

因此,在移动通信系统中,一般均采用垂直极化的传播方式。

另外,随着新技术的发展,最近又出现了一种双极化天线。

就其设计思路而言,一般分为垂直与水平极化和土45 °极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是土45 °极化方式。

第一章天线基础知识

第一章天线基础知识


1 2 Pr I Rr 2 30 2 2 则 Rr f ( , ) sin d d


0
0

则方向系数与 辐射电阻之间 的联系为
120 f D Rr
2 max

若要提高天线效率,必须尽可能的减小损耗 电阻和提高辐射电阻。通常,超短波和微波 天线的效率很高,能够接近于1。

半功率点波瓣宽度 (HWFN) ,指主瓣最大 值两边场强等于最大值0.707倍的两辐射方向之 间的夹角,又叫3分贝波束宽度。

副瓣电平,指副瓣最大值与主瓣最大值之比,
一般以分贝表示,

前后比,指主瓣最大值与后瓣最大值之比。
30
(4)方向系数
方向图参数能从一定程度上描述天线方向图的 状态,仅能反映方向图中特定方向的辐射强弱程 度,未能反映全空间的分布状态。
理想点源归一化方向函数:
26



(2)方向图
方向图:将方向函数用曲线描绘出来,称为 方向图,就是与天线等距离处,天线辐射场大 小在空间中的相对分布随方向变化的图形。

工程上常采用两个正交平面方向图,自由空 间中两个最重要的平面方向图是E面和H面。E 面即电场强度矢量所在并包含最大辐射方向的 平面,H面即磁场强度矢量所在并包含最大辐 射方向的平面。
z 电流元
H E H E

r
x

y
方向图立体模型
13
E面方向图
H面方向图
E面直角坐标方向图
H面直角坐标方向图 14
(4)中间区

(1)近区与远区之间,感应场与辐射场 相差不大; (2)电场 Er 和 E 不同相,相差接近90 度且振幅不等,一般在平行于传播方向的 平面内形成一旋转矢量,矢量端点的轨迹 为一椭圆; (3)辐射功率占主导地位。

天线基本知识汇总

天线基本知识汇总

天线基本知识汇总天线是无线通信系统的重要组成部分,它负责将电能转换为电磁波,将信号从传输介质(如空气)中发射出去或接收回来。

天线的性能直接影响着无线通信系统的质量和可靠性。

下面是关于天线基本知识的汇总。

1.天线的分类:根据应用领域和工作频率不同,天线可以分为不同的类型,如定向天线、全向天线、扇形天线、微带天线等。

2.天线的工作原理:天线的工作原理基于法拉第电磁感应定律,当电流通过天线时,它会产生一个电磁场,从而形成电磁波。

接收时,电磁波会被天线吸收,然后产生电流。

3.天线的参数:天线的主要参数包括频率范围、阻抗、增益、方向性、辐射效率等。

这些参数决定了天线的性能和适用场景。

4.天线的性能指标:-增益:天线将电能转换为电磁能的能力,通常以分贝(dB)为单位表示。

增益越高,天线的发射和接收距离越远。

-方向性:天线辐射或接收信号的特定方向能力。

定向天线具有较高的方向性,可以减少多径传播和干扰。

-阻抗:天线的输入或输出端口的电阻性质。

与发射端口匹配的阻抗可以最大程度地传递电能,减少反射损耗。

-波束宽度:天线主瓣的角度范围。

较窄的波束宽度意味着更好的方向性和更高的增益。

-辐射效率:天线将输入功率转换为有效辐射功率的能力。

辐射效率高的天线可以更好地实现远距离通信。

5.天线的结构和设计:天线的结构包含一个或多个导体元件,并且根据应用需求进行设计。

常见的天线设计包括垂直极化天线、水平极化天线、天线阵列、圆极化天线等。

6.天线的应用:天线在各种无线通信系统中广泛应用,包括移动通信、卫星通信、无线局域网、雷达、无线电广播等。

7.天线的安装和调整:为了确保天线的性能,需要正确地进行安装和调整。

安装位置和方向的选择对天线的性能和覆盖范围至关重要。

8.天线的特殊设计:根据应用需求,一些特殊设计的天线得到了广泛应用,如室内小型天线、宽带天线、增强型天线等。

9.天线的未来发展:随着无线通信技术的不断发展,天线也在不断创新和改进。

天线专业面试基础知识

天线专业面试基础知识

天线专业面试基础知识前言天线是通信系统中不可或缺的重要组成部分,负责将电磁波转换为电信号或将电信号转换为电磁波。

天线专业面试涉及到的基础知识是天线工程师必备的技能。

本文将介绍天线专业面试的基础知识,希望对天线工程师的求职面试有所帮助。

一、基础概念1. 天线天线是一种用于收发无线电波的装置,一般由导体构成。

根据其结构形式和工作原理的不同,可以分为定向天线和非定向天线。

2. 增益增益是衡量天线辐射能力的指标,表示天线辐射功率与等效辐射源辐射功率之比。

增益越高,天线的辐射距离和接收灵敏度越大。

3. 方向性天线的方向性是指其辐射或接收无线电波的指向性能。

方向性天线能够在某个方向上有更高的辐射或接收能力。

4. 驻波比驻波比是指在馈电系统中,驻波电压与最小驻波电压之比。

驻波比越大,表示天线系统匹配越差。

5. 频率带宽频率带宽是指天线在频率上的工作范围。

频率带宽越大,表示天线在更广泛的频率范围内能够正常工作。

二、天线类型1. 定向天线定向天线是指具有明确辐射方向的天线。

常见的定向天线有:定向天线、馈源天线、角度扫描天线等。

2. 非定向天线非定向天线是指在水平方向上辐射均匀的天线。

常见的非定向天线有:全向天线、鞭状天线、片状天线等。

三、天线参数1. 增益已经在基础概念中介绍过,增益是衡量天线辐射能力的指标。

2. 阻抗天线的阻抗是指天线对电路的输入或输出端口所呈现的电阻特性。

阻抗匹配是天线系统设计中非常重要的一个方面。

3. 有效长度天线的有效长度是指天线导体上产生有效信号的部分长度。

4. 损耗天线的损耗是指天线在辐射和接收过程中的能量损失。

5. 驻波比已经在基础概念中介绍过,驻波比是指在馈电系统中驻波电压与最小驻波电压之比。

四、常见面试问题在天线专业的面试中,可能会遇到以下几个常见问题:1. 什么是天线的增益?如何计算天线的增益?答:已经在基础概念中介绍过,增益是衡量天线辐射能力的指标,可以通过理论计算或实际测量来获得。

天线知识点总结

天线知识点总结

天线知识点总结天线是电子设备中最基本的元件之一,它能够将电磁波转换为电信号或者将电信号转换为电磁波,是广泛应用在通讯、雷达、导航、电视等领域的不可或缺的元器件。

本文将简要介绍一些天线的相关知识点。

1. 天线的基础理论 - 反射、辐射以及电磁波的特性天线的工作原理基于电磁波的传播特性及其与天线之间的相互作用。

天线通过反射、辐射等方式将电磁波与电信号进行转换,因此温度、介质、空气湿度等环境因素都会对天线的性能产生影响。

2. 天线的类型 - 主动、被动及扫描式天线天线可以根据其在电路中的位置和作用方式分为主动和被动两种类型。

主动天线通常带有放大器来增加信号强度,而被动天线则不带放大器。

此外,扫描式天线可以通过旋转、摆动等方式改变辐射方向,以实现扫描覆盖目标区域的效果。

3. 天线的指标 - 增益、方向性、VSWR、带宽等天线的性能可由其各种指标来描述,其中增益、方向性、VSWR、带宽等是较为重要的指标。

增益是天线的辐射能力,方向性是天线辐射能力随方向变化的能力,VSWR是天线对来自外部信号反射时的反射率指标,带宽则是天线能够工作的频率范围。

4. 天线的尺寸 - λ/2、λ/4、全波长天线等天线的尺寸与工作频率密切相关,常见的天线长度有λ/2、λ/4、全波长天线等。

λ/2天线通常用于VHF和UHF频段,λ/4天线适用于较低频段,全波长天线则通常用于HF 等较低频段。

5. 天线的应用 - 通讯、雷达、导航、电视等天线在通讯、雷达、导航、电视等领域都有广泛的应用。

不同应用场景对天线的要求不同,例如通讯领域需要天线具有良好的增益和方向性,而雷达和导航领域则需要具有较高的扫描速度和快速响应能力。

6. 天线的制作和测试 - PCB天线、红外按摩仪等天线的制作和测试涉及到复杂的技术和设备,常用的制作方法包括PCB天线、红外按摩仪等。

测试方法则通常包括VSWR测试、增益测试、方向性测试等。

7. 天线的未来发展趋势 - 新材料、智能化、多功能化等随着技术的不断进步,未来天线的发展趋势将会趋向于新材料、智能化、多功能化等方向。

天线知识培训

天线知识培训

天线知识培训一、天线基本原理天线是无线通信系统中的重要组成部分,负责将电磁波传输和接收。

天线能够将电流元转换为电磁波,或者将电磁波转换为电流元。

其基本原理基于电磁波的传播和辐射。

二、天线类型与用途1. 按照工作频段:可分为超长波、长波、中波、短波、超短波以及微波等类型。

2. 按照方向性:可分为全向和定向天线。

3. 按照增益:可分为无源和有源天线。

4. 按照结构:可分为线天线和面天线。

不同类型的天线有不同的用途,例如长波天线用于通信和导航,短波天线用于电报通信和广播,超短波天线用于电视、雷达和移动通信等。

三、天线参数与性能1. 阻抗:天线的输入阻抗应与信号源的输出阻抗相匹配,以实现最佳传输效果。

2. 方向图:表示天线接收和辐射电磁波的方向和强度。

3. 增益:表示天线辐射或接收电磁波的能力,与天线的尺寸、形状和材料有关。

4. 带宽:表示天线的工作频率范围。

5. 极化:表示电场矢量的方向,影响着天线的性能。

四、天线辐射与传播天线的辐射原理是将电磁能转化为向空间发散的电磁波,或者将空间中的电磁波转化为电流元。

电磁波在传播过程中受到各种因素的影响,如空气阻力、地面反射等,形成不同的传播模式。

五、天线材料与工艺天线的材料和工艺对其性能有着重要影响。

常用的天线材料包括铜、铝、铁等金属材料,以及塑料、陶瓷等非金属材料。

工艺方面,需要考虑天线的精度、防腐、防水等因素。

六、天线设计与优化天线的设计过程需要考虑诸多因素,如阻抗匹配、增益、方向图、极化等。

现代计算机辅助设计软件的应用使得天线的优化设计成为可能,通过对天线结构、尺寸和材料等因素的调整,可以得到最佳的性能表现。

七、天线测量与调试天线的性能需要通过实际测量来评估。

测量内容包括阻抗、方向图、增益、极化等。

一旦发现性能不佳,需要进行调试,调整天线的结构、尺寸或工作参数等,以实现最佳性能。

八、天线干扰与防护天线在使用过程中可能会受到各种干扰,如其他电磁波的干扰、雷电的袭击等。

天线的基本知识

天线的基本知识

天线的基本知识天线是无线通信中的重要组成部分,其作用是将电信号转换为电磁波进行传输或接收。

天线是无线通信系统中的关键元件,其性能直接影响到通信质量和距离等因素。

下面将介绍天线的基本知识。

一、天线的定义和作用天线是一种用于发射或接收电磁波的装置。

在无线通信中,天线的作用是将电信号转换为电磁波发射出去,或者将接收到的电磁波转换为电信号进行处理。

天线在无线通信系统中起着桥梁的作用,连接着发射机和接收机之间的电信号与电磁波之间的转换。

二、天线的基本原理天线的工作原理是基于电磁学的知识。

当电流通过天线时,会在天线附近产生电磁场。

这个电磁场会随着电流的变化而产生变化,从而形成电磁波并辐射出去。

当接收到的电磁波通过天线时,会在天线上感应出电流,从而实现电磁波到电信号的转换。

三、天线的结构和类型天线的结构形式多种多样,常见的有单极天线、双极天线、方向天线、全向天线等。

单极天线是指由一个导体构成的天线,常见的有垂直天线和水平天线。

双极天线是由两个导体构成的天线,常见的有偶极子天线和环形天线。

方向天线是指天线辐射或接收信号的主要方向是有限的,适用于需要指向性传输的场景。

全向天线是指天线辐射或接收信号的主要方向是全方向的,适用于需要全向传输的场景。

四、天线的性能指标天线的性能指标主要包括增益、方向性、频率响应、波束宽度、驻波比等。

增益是指天线在某个方向上辐射或接收信号的能力,是衡量天线性能好坏的重要指标。

方向性是指天线在某个方向上辐射或接收信号的能力相对于其他方向的能力。

频率响应是指天线在不同频率上的辐射或接收信号的能力。

波束宽度是指天线主瓣辐射功率下降到峰值功率的一半所对应的角度范围。

驻波比是指天线输入端的驻波比,用来衡量天线和传输线之间的匹配程度。

五、天线的应用领域天线广泛应用于无线通信、卫星通信、雷达、无线电广播、电视、导航系统等领域。

在无线通信中,天线是移动通信、无线局域网等系统中的重要组成部分,直接影响通信质量和距离。

天线的基础知识及应用

天线的基础知识及应用

天线的基础知识及应用1、天线的简介天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播电磁波,一般天线都具有可逆性,即同一种天线既可用作来做发射天线,也可用来作为接收天线。

凡是利用电磁波来传递信息的,都依靠天线来进行工作。

众所周知,天线是无线通信、广播、导航、雷达、测控、微波遥感、天文和电子对抗等各种民用和军用无线电系统必不可少的设备之一。

随着信息时代的到来,我们几乎天天都看得见天线,也正在使用天线带来的各种无线信号,如电视塔上的电视发射天线、移动电话基站塔上的通信天线、无时不在的4G还有正在普及中的5G手机内置天线、大型卫星通信地面站天线、全球定位系统(北斗、GPS 等)接收天线、各种智能穿戴、IOT设备的内置天线等等---天线究竟是一根什么样的“线”,为什么会如此彻底地改变我们的生活?其实,天线之所以牛逼,就是因为电磁波牛逼。

2、天线的历史1987年德国青年学者海因里希·赫兹(Heinrich R. Hertz)的著名实验证实了电磁波的存在,他当时所用的电偶极子谐振器就是最早的发射天线,因此天线发明至今还只有130年左右的历史。

1888年,29岁的亚历山大·波波夫得知德国物理学家赫兹发现电磁波的消息后,这位曾经立志推广电灯的年轻科学家对朋友们说:“我用毕生的精力去安装电灯,对于广阔的俄罗斯来说,只不过照亮了很小的一角:假如我能指挥磁波,那就可以飞越整个世界!”于是,他埋头研究,1896年,终于在相距20m的建筑物之间传送了一份电报,电文就是Heinrich Hertz,无线电天线由此而问世。

无线电开创初期主要使用的是火花式发射机,工作频率主要集中在米波和微波频率。

当今,天线技术已具有成熟科学的许多特征,但它仍然是一个富有活力的技术领域。

主要发展方向是:多功能(一副天线代替多副天线)、智能化(提高信息处理能力)、小型化、集成化以及高性能化(宽频带、高增益、低交叉极化等)。

天线培训资料

天线培训资料

天线培训资料一、天线的基本概念天线,简单来说,就是一种用于发射和接收无线电波的装置。

无论是我们日常使用的手机、无线网络,还是广播电视、卫星通信等,都离不开天线的作用。

天线的主要功能是将传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。

也就是说,它在发射时能将电信号转换成电磁波辐射出去,在接收时能将电磁波转换成电信号。

二、天线的分类天线的种类繁多,常见的分类方式有以下几种:1、按工作频段划分短波天线:工作在 3MHz 到 30MHz 频段。

超短波天线:工作在 30MHz 到 3000MHz 频段,例如我们常见的移动通信基站天线。

微波天线:工作在 3000MHz 以上频段,常用于卫星通信、雷达等领域。

2、按方向性划分全向天线:在水平方向上均匀辐射,例如室内的无线路由器天线。

定向天线:具有较强的方向性,将能量集中在特定方向上辐射,比如卫星电视接收天线。

3、按极化方式划分线极化天线:又分为水平极化和垂直极化,手机天线通常是线极化天线。

圆极化天线:分为左旋圆极化和右旋圆极化,在卫星通信中应用较多。

4、按用途划分通信天线:用于各种通信系统,如手机基站天线、卫星通信天线等。

广播天线:用于广播电视发射。

雷达天线:用于雷达系统,探测目标的位置和速度等信息。

三、天线的参数了解天线的性能,需要关注以下几个重要参数:1、频率范围这是天线能够有效工作的频段。

不同的应用需要不同频段的天线,例如 5G 通信需要特定频段的天线来支持高速数据传输。

2、增益天线增益表示天线在特定方向上辐射或接收电磁波的能力。

增益越高,信号在该方向上的传播距离越远,但覆盖范围可能会变窄。

3、方向性描述天线辐射或接收电磁波的方向性特性。

方向性好的天线可以减少干扰,提高通信质量。

4、输入阻抗天线与传输线之间的匹配程度由输入阻抗决定。

如果阻抗不匹配,会导致信号反射,降低传输效率。

5、驻波比用来衡量天线与传输线之间的匹配程度。

天线基础知识

天线基础知识

目录天线 (1)一、天线理论知识 (1)二、天线的选择原则 (18)三、常用天线的分类 (23)天线一、天线理论知识天线是将射频信号转化为无线信号的关键器件,其质量的优良和是否合理使用对无线通信工程的成败起到重要作用。

所以我们必须全面了解天线。

1、天线的方位图:天线辐射电磁波是有方向性的,它表示天线向一定方面辐射电磁波的能力。

反之,作为接收天线的方向性表示了它接收不同方向来的电磁波的能力。

天线方向图的定义:天线辐射的电磁场在一定距离上随空间角坐标分布的图形。

由于电磁场的矢量特征包含了幅度、相位、极化方向等信息,因此,对应有:幅度方向图、相位方向图。

而电磁场的幅度可用场强和功率密度表示,所以,幅度方向图又分为场强方向图和功率方向图。

除非特殊说明,在一般情况下,通常天线方向图指的是功率方向图,幅度以dB为单位。

根据定义,天线的方向图是三维立体图,但实际获得完整的三维方向图是非常困难的。

通常根据天线的结构特点,选择两个或多个特征面测得该平面内的二维方向图如:E面方向图:通过最大辐射方向并与电场矢量平行的平面;水平面方向图(Horizontal):是指与地面平行的平面内的方向图;垂直面方向图(Vertical):是指与地面垂直的平面内的方向图。

当天线为垂直极化时,H面近似为水平面,E面近似为垂直面,如果天线为水平极化则情况正好相反。

E面图和H面图只是描述了天线的功率密度的分布情况,但不能定量的反映天线的主要特征。

为了更好的描述天线的方向图,常使用半功率波束宽度、副瓣电平、前后比、第一上副瓣抑制、第一下零点填充等都是描述方向图特征的指标。

2、波瓣:零功率点波瓣宽度:主瓣最大值两边两个零辐射方向之间的夹角。

半功率点波瓣宽度:在E面或H面的等距线上,主瓣最大值两边场强等于最大场强的0.707倍(或一半功率密度)的两辐射方向之间的夹角。

副瓣电平:在E面或H面的等距线上,副瓣最大值与主瓣最大值之比,通常用dB表示。

移动通信天线基础知识范文精简版

移动通信天线基础知识范文精简版

移动通信天线基础知识移动通信天线基础知识1. 简介2. 天线分类2.1 按形式分类- 线性极化天线:根据振子的形式可以分为直立式天线(如全向天线)和倾斜式天线。

- 圆极化天线:包括左旋圆极化天线和右旋圆极化天线。

- 方波天线:常见的方波天线有方略天线和叶片天线。

2.2 按频率分类- 宽带天线:适用于多频段通信系统,如移动通信中的多频段天线。

- 窄带天线:适用于单频段通信系统,如无线电通信。

2.3 按功能分类- 发射天线:将射频信号转化为电磁波进行发射。

- 接收天线:将接收到的电磁波转化为射频信号进行接收。

3. 天线工作原理天线的工作原理基于电磁波的传播和辐射,其主要过程分为辐射和辐射场。

3.1 辐射过程天线通过电流或电压激励,产生电场和磁场,并将电磁能量转化为电磁波进行辐射。

辐射过程受到天线的结构、材料、频率等因素的影响。

3.2 辐射场辐射场是指电磁波在空间中的传播情况,包括辐射方向性、辐射功率等参数。

天线的辐射场性能直接影响通信质量和覆盖范围。

4. 天线性能参数4.1 增益天线增益是天线发射或接收信号强度的比较值,一般以dBi(dB与基准天线相比)或dBd(dB与标准偶极子天线相比)为单位。

4.2 方向性天线方向性是指天线在空间中辐射电磁波的方向特性,可以分为全向性和定向性天线。

全向性天线在水平方向上具有均匀的辐射特性,而定向性天线在特定方向上具有较高的辐射能力。

4.3 驻波比天线驻波比是指天线系统中传输线的阻抗与输入阻抗之比,用于评估天线系统的匹配性能,影响信号传输的效率和质量。

4.4 带宽天线带宽是指天线在有效工作状态下的频率范围,对于宽带通信系统而言,带宽越宽,支持的频段越多。

5. 天线安装要点5.1 安装高度天线的安装高度对于信号传输和接收具有重要影响,一般需考虑建筑物高度、障碍物遮挡、传输距离等因素。

5.2 天线方位角天线方位角是指天线指向的水平方向角度,与基站或通信目标的相对方向有关,需要根据具体需求进行调整。

天线基本知识点总结

天线基本知识点总结

天线基本知识点总结引言天线作为无线通信系统中的重要组成部分,起着收发电磁波信号的重要作用。

它的性能直接影响到无线通信系统的传输质量和覆盖范围,因此对天线的基本知识进行深入了解对于理解和设计无线通信系统至关重要。

一、天线的基本概念1. 天线的定义天线是指用于传输和接收无线电波的设备,通常由一个或多个导体制成。

它可以将射频信号转换成电磁波,或者将电磁波转换成射频信号,是无线通信系统中不可或缺的组成部分。

2. 天线的主要功能天线主要功能是将射频信号转化为电磁波并进行辐射,或者将接收到的电磁波转化为射频信号。

其次,天线还具有指向性和增益调节的功能。

3. 天线的分类根据使用场景和结构特点,天线可以分为室内天线和室外天线;根据辐射方式,天线可以分为定向天线和非定向天线;根据频段,天线可以分为宽频天线和窄带天线。

二、天线的基本参数1. 天线的增益天线的增益是指天线在特定方向上辐射功率与参考天线(一般为同种条件下的理想点源天线)辐射功率之比。

增益值越大,天线的辐射方向性越强,传输距离越远。

2. 天线的方向特性天线的方向特性是指天线在空间中辐射电磁波的方向分布规律。

根据辐射特性,天线可以分为全向天线和定向天线。

全向天线在水平方向上的辐射方向性最小,而定向天线在特定方向上的辐射方向性最大。

3. 天线的频率特性天线的频率特性是指天线在不同频率下的辐射特性和阻抗匹配情况。

由于不同频率下的波长不同,因此同一天线在不同频段下的辐射特性和阻抗情况会有所不同,需要进行频率特性的设计和匹配。

4. 天线的阻抗天线的阻抗是指天线在工作频率下的输入阻抗。

天线的阻抗匹配对于信号的传输和接收至关重要,需要根据工作频率进行设计和调整。

阻抗匹配不佳会导致信号的反射和损耗,影响通信质量。

5. 天线的带宽天线的带宽是指天线在一定范围内能够正常工作的频率范围。

天线的带宽需要根据具体应用场景来选择,以保证在不同频率下的正常工作和性能表现。

三、天线的设计原理1. 天线的辐射原理天线的辐射原理是天线将射频信号转换成电磁波并进行辐射的物理过程。

第1章--天线基础知识

第1章--天线基础知识
f ( , ) f ( ) l sin
第1章 天线基础知识
为了便于比较不同天线的方向性,常采用归一化 方向函数,用F(θ,φ)表示,即
F( , )
f ( , )
E( , )
fmax ( , )
Emax
第1章 天线基础知识
式中,fmax(θ,φ)为方向函数的最大值;Emax为最大辐射方 向上的电场强度;E(θ,φ)为同一距离(θ,φ)方向上的电场强 度。
归一化方向函数F(θ,φ)的最大值为1。因此,电基本 振子的归一化方向函数可写为
F(θ,φ)=|sinθ| 为了分析和对比方便,今后我们定义理想点源是无 方向性天线,它在各个方向上、相同距离处产生的辐射 场的大小是相等的,因此,它的归一化方向函数为
F(θ,φ)=1
第1章 天线基础知识
1.2.2 方向图 天线的方向函数,它与r及I无关。将方向函数用
y
图1―2―3 电基本振子E平面方向图
第1章 天线基础知识
z
x
y |sin 90°|= 1
图1―2―4 电基本振子H平面方向图
第1章 天线基础知识
但是要注意的是,尽管球坐标系中的磁基本振子方 向性和电基本振子一样,但E面和H面的位置恰好互换。
有时还需要讨论辐射的功率密度(坡印廷矢量模值) 与方向之间的关系,因此引进功率方向图(Power Pattern)Φ(θ,φ)。容易得出,它与场强方向图之间的关 系为
第1章 天线基础知识 z
Er
H
Ir
E
lO y
x
图1―1 电基本振子的坐标
第1章 天线基础知识
E Erer E e
H He
式中,E为电场强度,单位为V/m;
H为磁场强度,单位为A/m;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线基础知识介绍
2014-12-28DSRC专用短程通信技术
1.1 什么是天线?
空间的无线电波信号通过天线传送到电路;电路里的交流电流信号最终通过天线传送到空间中去。

因此,天线是空间无线电波信号和电路里的交流电流信号的一种转换装置,如图1所示。

图1 空间电波与电路电流通过天线转换的示意图
1.2 天线有哪些基本参数?
天线既然是空间无线电波信号和电路中的交流电流信号的转换装置,必然一端和电路中的交流电流信号接触,一端和自由空间中的无线电波信号接触。

因此,天线的基本参数可分两部分,一部分描述天线在电路中的特性(即阻抗特性);一部分描述天线与自由空间中电波的关系(即辐射特性);另外从实际应用方面出发引入了带宽这一参数。

描述天线阻抗特性的主要参数:输入阻抗。

描述天线辐射特性的主要参数:方向图、增益、极化、效率。

除了带宽之外,后文将对每个参数进行介绍。

图2 天线的一些基本参数
1.3 输入阻抗
天线输入阻抗的意义在于天线和电路的匹配方面。

当天线和电路完全匹配时,电路里的电流全部送到天线部分,没有电流在连接处被反射回去。

完全匹配状态是一种理想状态,现实中,不太可能做到理想的完全匹配,只有使反射回电路的电流尽可能小,当反射电流小到我们要求的程度的时候,就认为天线和电路匹配了。

通常,电路的输出阻抗都设计成50Ω或者75Ω,要使天线和电路连接时匹配,那么天线的输入阻抗应设计成和电路的输出阻抗相等。

但通常天线的输入阻抗很难准确设计成等于电路的输出阻抗,因此在实际的天线和电路的连接处始终存在或多或少的反射电流,即一部分功率被反射回去,不能向前传输,如图3所示。

描述匹配的参数如表1所示。

电压驻波比和回波损耗都是描述匹配的参数,只是表达的形式不同而已。

图3 电流在传输线不连续处产生反射的示意图
表1 描述匹配的一些参数
参数 对参数的一些描述
电压驻波比(VS WR ) 设输入电流大小为1,被反射回去的电流为Γ,那么电压驻
波比为:
(1+Γ)/(1-Γ)
电压驻波比只是个数值,没有单位。

Γ=1/3,电压驻波比则为2;当电流被全部反射时,Γ=1,电压驻波比为+∞;当没有反射电流时,Γ=0,电压驻波
比为1。

反射功率按Γ2计算,如反射电流是Γ=1/3,那么反射功率
是Γ2=1/9。

回波损耗(RL)回波损耗通常用对数表示,如果反射电流是Γ,那么回波损耗为20lg(Γ),单位dB。

Γ=1/3时,回波损耗为-9.5424dB;当电流被全部反射时,Γ=1,回波损耗为0dB;当没有反射电流时,Γ=0,回波损耗为-∞dB。

1.4 方向图
天线方向图描述了天线在各个方向的辐射特性,包括辐射场在每个方向的强度、特点等。

一个天线可以看成是由很多个小的辐射元构成的,每个辐射元都向空间辐射电磁波。

这些辐射元辐射的电磁波在有的方向相互叠加,辐射场变强了;有的方向相互抵消,辐射场变弱了。

因此,普遍情况是天线在不同方向的辐射场强度都不同。

以半波振子天线的方向图为例,如图4所示,该天线在水平方向的辐射最强,在垂直方向的辐射几乎为零。

图4显示的是一个三维的立体方向图,通常我们可以选择在两个相互垂直的平面上的二维方向图曲线来描述天线的方向图性能,如图5所示,用水平面和垂直面的方向图曲线来表示该天线的方向图特性。

a 立体方向图
b 侧视图
c 俯视图
图4 半波振子天线的方向图
a 垂直面方向图
b 水平面方向图
图5 半波振子天线的二维方向图曲线
1.5 增益
天线增益描述了天线在某个方向的辐射强弱程度。

为了更直观地了解增益这一概念,以半波振子天线为例,在天线向空间辐射出去的总功率一定的前提下,先假设方向图是全向的,如图6所示(实际的半波振子天线的方向图如图4、图5所示),即在各个方向的辐射强度都是一样的,而且设每个方向的强度都为1;再回到天线实际的方向图,真实情况是天线的辐射在有的方向强有的方向弱,对于半波振子,如图4所示,在水平方向辐射强垂直方向弱,即天线在某个方向的辐射强度不一定是1,可能大于1也可能小于1,例如在某个方向天线的辐射强度是1.5,那么天线在这个方向的增益就是
G=(1.5÷1)×η
其中η是天线效率,在1.7节在做详细介绍;
1.5表示天线在这个方向的辐射强度;
1表示在同样的辐射总功率下,假设天线是全向辐射时,天线在各个方向的辐射强度。

通过上面的描述可知,天线的增益是和方向相关的,表示的某一方向的辐射
特性。

通常我们提的增益是最大增益,就是天线在辐射最强的方向的增益。

例如
我们说半波振子天线增益是1.64(转换成对数为2.15dBi),指的是在半波振子辐射最强的方向(图4中的水平方向)的增益值。

图6 假设的全向方向图示意图
1.6 极化
天线极化描述了天线在某个方向的辐射场的矢量方向。

辐射场中不管是电场还是磁场,都是矢量(即有大小和方向)。

我们首先讨论电场。

电场的极化最普遍的是椭圆极化。

如图7所示,电场在向前传播的过程中,电场的方向也在绕着传播方向旋转,图中用长度表示电场的大小,用箭头表示了电场的方向,那么沿电波传播方向看过去,电场矢量的末端沿着一个椭圆的轨迹在旋转,椭圆长轴为a短轴为b。

电场的极化是根据沿电波传播方向看过去,电场矢量末端的移动轨迹来定义的。

当轨迹是椭圆时,就是椭圆极化;当轨迹是圆时,就是圆极化;当轨迹是一条线是,就是线极化如图8所示。

圆极化和线极化是椭圆极化的特殊情况,当椭圆的长轴a和短轴b相等时,就是圆了;当椭圆的长轴a远远大于短轴b时,就是一条线了。

因为在电磁波传播过程中电场方向、磁场方向和传播方向始终是固定的正交(垂直)关系,因此如果知道了传播方向,只需要考察电场的方向,就可以确定磁场的方向。

通常说的极化都是描述的电场的方向。

当椭圆极化的长轴和短轴相差不大时,就认为极化接近圆极化了,通常长轴比短轴小于2(即a÷b≤2,对应轴比小于3dB)时,就认为是圆极化。

沿传播方向看过去,电场矢量末端沿圆顺时针旋转,称其右旋圆极化;沿圆逆时针旋转,称其左旋圆极化。

线极化电场矢量末端移动轨迹在一条线上,当这条轨迹线与地面平行时,称其为水平极化;当这条轨迹线与地面垂直时,称其为垂直极化;当这天轨迹线与地面不平行也不垂直,而与地面有某一夹角,如夹角为45°,那么称其为极化方向45°。

图7 电场椭圆极化示意图
图8 电场线极化示意图
1.7 效率
天线效率描述了天线将输入端功率转化为辐射功率的能力。

举个例子来说明:假如在天线端口的输入功率是1,由于匹配不好,有0.2的功率在端口处被反射回去了,剩下0.8的功率送入了天线,由于天线材料损耗使得0.1的功率损失了,还由于表面波或者天线周围物体的存在,0.1的功率沿其他途径传输到其他地方消散了,没有辐射出去,最后还有0.6的功率转化成了空间电磁波辐射到周围空间中去了,那么天线的效率就是
(1-0.2-0.1-0.1)÷1=60%
可以看出,天线的效率可以这样定义:
天线效率=辐射功率÷输入功率。

相关文档
最新文档