《解直角三角形》单元测试题
沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案

沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________(满分150分,限时120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.(2023安徽淮南模拟)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A 的正弦值、余弦值()A.都扩大为原来的3倍B.都缩小为原来的13C.没有变化D.不能确定2.(2023安徽宿州埇桥期末)三角函数sin 30°、cos 16°、cos 43°之间的大小关系是()A.cos 43°>cos 16°>sin 30°B.cos 16°>sin 30°>cos 43°C.cos 16°>cos 43°>sin 30°D.cos 43°>sin 30°>cos 16°3.(2023安徽巢湖三中月考)若sin(70°-α)=cos 50°,则锐角α的度数是()A.50°B.40°C.30°D.20°4.在△ABC中,∠C=90°,tan A=2,则cos A的值为()A.√55B.2√55C.12D.25.(2023安徽阜阳质检)下列运算中,值为14的是() A.sin 45°×cos 45° B.tan 45°-cos230°C.tan30°cos60°D.(tan 60°)-16.如图,在Rt△ABC中,∠ACB=90°,∠B=β,CD⊥AB,垂足为D,那么下列线段的比值不一定等于sin β的是()A.ADBD B.ACABC.ADACD.CDBC7.(2023安徽池州月考)如图,将△ABC放在每个小正方形的边长均为1的网格中,点A,B,C均在格点上,则tan A的值是()A.√55B.12C.2D.√1058.【新考法】一配电房的示意图如图所示,它是一个轴对称图形,已知AB=3 m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sin α)mB.(4+3tan α)mC.(4+3sinα)m D.(4+3tanα)m9.(2023安徽合肥庐江期末)如图,在△ABC中,sin B=12,AB=8,AC=5,且∠C 为锐角,cos C的值是()A.35B.45C.√32D.3410.【新情境·双翼闸机】下图是一个地铁站入口的双翼闸机示意图,它的双翼展开时,双翼边缘的端点A与B之间的距离为12 cm,双翼的边缘AC=BD=64 cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.76 cmB.(64√2+12)cmC.(64√3+12)cmD.64 cm二、填空题(本大题共4小题,每小题5分,满分20分)11.如果tan α=1,那么锐角α=度.12.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=6,AC=8,设∠BCD=α,则tan α=.13.如图,已知tan O=4,点P在边OA上,OP=5,点M、N在边OB上,PM=PN,3如果MN=2,那么PM=.,BC=12,D是AB的中点,过点B 14.如图,在△ABC中,∠ACB=90°,cos A=35作线段CD的垂线,交CD的延长线于点E.(1)线段CD的长为;(2)cos∠DBE的值为.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2cos 30°-tan 260°3tan45°+√(sin60°−1)2.16.(2023广西梧州模拟)构建几何图形解决代数问题是“数形结合”思想的重要体现,某数学兴趣小组在尝试计算tan 15°时,采用以下方法:如图,在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,设AC =1,则AB =2,BC =√3,所以tan 15°=ACCD =2+√3=√3(2+√3)×(2−√3)=2-√3,类比这种方法,计算tan 22.5°的值(画出计算所需图形,并用文字、计算说明).四、(本大题共2小题,每小题8分,满分16分)17.(2021广东潮州中考)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;BD,求tan∠ABC的值.(2)若AD=1318.(2023安徽合肥瑶海期末)有一架长为6米的梯子AB,将它的上端A靠着墙面,下端B放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示).一般满足50°≤α≤75°时,人才能安全地使用这架梯子.(1)当梯子底端B距离墙面2.5米时,人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A离地面最高时,梯子开始下滑,如果梯子顶端A沿着墙面下滑1.5米到墙面上的D点处停止,梯子底端B也随之向后平移到地面上的点E处(如图2所示),此时人是否能安全地使用这架梯子?请说明理由.(参考数据:sin 50°≈0.77,cos 50°≈0.64,sin 75°≈0.97,cos 75°≈0.26)五、(本大题共2小题,每小题10分,满分20分)19.如图,数学兴趣小组成员在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:sin53°≈45,cos53°≈3 5,tan53°≈43)20.【方程思想】李老师给班级布置了一个实践活动,测量某广场纪念碑的高度,使用卷尺和测角仪测量.如图,纪念碑设在1.2 m的石台上,他们先在点B处测得纪念碑最高点A的仰角为22°,然后沿水平方向前进21 m,到达点N处,在点C 处测得点A的仰角为45°,BM=CN=1.7 m,求纪念碑的高度.(结果精确到0.1 m,参考数据:sin 22°≈0.37,cos 22°≈0.93tan 22°≈0.40,√2≈1.41)六、(本题满分12分)21.【主题教育·生命安全与健康】某校为检测师生体温,在校门安装了某型号测温门,如图,已知测温门AD的顶部A距地面2.2 m.某数学兴趣小组为了解测温门的有效测温区间,做了如下实践:身高为1.6 m的组员在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为20°,在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求有效测温区间MN的长度.(参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,√3≈1.73,额头到地面的距离以身高计,计算结果精确到0.1 m)七、(本题满分12分)22.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶√3,AB=16米,AE=24米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732)八、(本题满分14分)23.(2022四川自贡中考)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)[探究原理]制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;(2)[实地测量]如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P 的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(√3≈1.73,结果精确到0.1米)(3)[拓展探究]公园高台上有一凉亭,为测量凉亭顶端P 距地面的高度PH (如图④),同学们经过讨论,决定先在水平地面上选取观测点E 、F (E 、F 、H 在同一直线上),分别测得点P 的仰角为α、β,再测得E 、F 间的距离为m 米,点O 1、O 2到地面的距离O 1E 、O 2F 均为1.5米.求PH (用α、β、m 表示).参考答案与解析1.C Rt △ABC 的各边长都扩大为原来的3倍后,所得的三角形与Rt △ABC 是相似的,∴锐角A 的大小是不变的,∴锐角A 的正弦值、余弦值没有变化.2.C ∵sin 30°=cos 60°,16°<43°<60°,余弦值随着角度的增大而减小,∴cos 16°>cos 43°>sin 30°.3.C ∵sin(70°-α)=cos 50°,∴70°-α+50°=90°,解得α=30°.故选C.4.A 在△ABC 中,∠C =90°,设∠A 、∠B 、∠C 的对边分别为a 、b 、c ,因为tan A =ab =2,所以a =2b ,由勾股定理得c =√a 2+b 2=√5b所以cos A =bc =√5b =√55.5.Bsin 45°×cos 45°=√22×√22=12,故A 不符合题意;tan 45°-cos 230°=1-(√32)2=1-34=14,故B 符合题意;tan30°cos60°=√3312=23√3,故C 不符合题意;(tan 60°)-1=(√3)-1=√33,故D 不符合题意. 6.AAD BD不一定等于sin β,故A 符合题意;∵△ABC 是直角三角形,∴sin β=AC AB,故B 不符合题意; ∵CD ⊥AB ,∠ACB =90°,∴∠ACD +∠A =∠B +∠A =90°∴∠ACD =∠B ,∴sin β=ADAC,故C 不符合题意;∵△BCD 是直角三角形,∴sin β=CDBC,故D 不符合题意.7.B 如图,取格点D ,连接BD由题意得AD 2=22+22=8,BD 2=12+12=2,AB 2=12+32=10,∴AD 2+BD 2=AB 2 ∴△ABD 是直角三角形,∴∠ADB =90°,在Rt △ABD 中 AD =2√2,BD =√2,∴tan A =BDAD =√22√2=12. 8.A 过点A 作AD ⊥BC 于点D ,如图∵AD ⊥BC ,∠ABC =α,∴sin α=AD AB=AD3,∴AD =3sin α m ,∴房顶A 离地面EF 的高度=AD +BE =(4+3sin α)m .9.A 如图,过点A 作AD ⊥BC ,垂足为D∴∠ADB =∠ADC =90°在Rt △ABD 中,sin B =12,AB =8,∴AD =AB ·sin B =8×12=4在Rt △ADC 中,AC =5,∴CD =√AC 2−AD 2=√52−42=3,∴cos C =CD AC =35.10.A 如图所示,过A 作AE ⊥CP 于E ,过B 作BF ⊥DQ 于F ,在Rt △ACE 中,AE =12AC =12×64=32(cm),同理可得BF =32 cm ,∵点A 与B 之间的距离为12 cm ,∴通过闸机的物体的最大宽度为32+12+32=76(cm).11.45解析 ∵tan α=1,∴锐角α=45度. 12.34解析 ∵CD ⊥AB ,∠ACB =90°,∴∠α+∠B =∠A +∠B =90°,∴∠α=∠A ∴tan α=tan A =68=34.13.√17解析 如图,过P 作PD ⊥OB ,交OB 于点D∵tan O =PD OD =43,∴设PD =4x ,则OD =3x∵OP =5,由勾股定理得(3x )2+(4x )2=52,∴x =1(已舍负),∴PD =4 ∵PM =PN ,PD ⊥OB ,MN =2,∴MD =ND =12MN =1在Rt △PMD 中,由勾股定理得PM =√MD 2+PD 2=√17. 14.(1)152(2)2425解析 (1)在Rt △ABC 中,cos A =AC AB =35∴设AC =3x ,则AB =5x ,∴BC =√AB 2−AC 2=√(5x)2−(3x)2=4x ∵BC =12,∴4x =12,∴x =3,∴AB =15,AC =9,∵D 是AB 的中点 ∴CD =12AB =152.(2)∵∠ACB =90°,D 是AB 的中点,∴△CBD 的面积=12×△ABC 的面积,∴12CD ·BE =12×12AC ·BC ,∴152BE =12×9×12,∴BE =365,在Rt △BDE 中cos ∠DBE =BE BD=365152=2425.15.解析原式=2×√32-(√3)23×1+1-√32=√3-1+1-√32=√32. 16.解析 如图,在等腰直角△ABC 中,∠C =90°,延长CB 至点D ,使得AB =BD ,则∠BAD =∠D.∵∠ABC =45°=∠BAD +∠D =2∠D ,∴∠D =22.5° 设AC =1,则BC =1,AB =√2AC =√2 ∴CD =CB +BD =CB +AB =1+√2 ∴tan 22.5°=tan D =ACCD =1+√2=√2−1(1+√2)×(√2−1)=√2-1.17.解析 (1)如图,连接BD ,设BC 的垂直平分线交BC 于点F ,∴BD =CD ∴C △ABD =AB +AD +BD =AB +AD +DC =AB +AC. ∵AB =CE ,∴C △ABD =AC +CE =AE =1 故△ABD 的周长为1.(2)设AD =x ,∴BD =3x.∵BD=CD,∴AC=AD+CD=4x在Rt△ABD中,AB=√BD2−AD2=√(3x)2−x2=2√2x∴tan∠ABC=ACAB =2√2x=√2.18.解析(1)在Rt△AOB中,cos α=OBAB∴OB=AB·cos α当α=50°时,OB=AB·cos α≈6×0.64=3.84当α=75°时,OB=AB·cos α≈6×0.26=1.56.∵1.56<2.5<3.84∴此时人能安全地使用这架梯子.(2)此时人不能安全地使用这架梯子.理由如下:当∠ABO=75°时∵sin∠ABO=AOAB∴AO=AB·sin 75°≈6×0.97=5.82(米)∵梯子顶端A沿着墙面下滑1.5米到墙面上的D点∴OD=AO-AD=5.82-1.5=4.32(米).当∠ABO=50°时∵sin∠ABO=AOAB∴AO=AB·sin∠ABO≈6×0.77=4.62(米)∵4.32<4.62∴此时人不能安全地使用这架梯子.19.解析过A作AD⊥BC,交CB的延长线于点D,如图所示则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=ADCD∴CD=ADtan45°=AD1=AD在Rt△ABD中,tan∠ABD=ADBD ,∴BD=ADtan53°≈AD43=34AD由题意得AD-34AD=75,∴AD=300 m,∵此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,∴此时热气球(体积忽略不计)附近的温度约为20-300100×0.6=18.2(℃).答:此时热气球(体积忽略不计)附近的温度约为18.2 ℃.20.解析延长BC交AF于E,延长AF交MN的延长线于D,如图则四边形BMNC、四边形BMDE是矩形∴BC=MN=21 m,DE=CN=BM=1.7 m∵∠AEC=90°,∠ACE=45°∴△ACE是等腰直角三角形∴CE=AE设AE=CE=x m∴BE=(21+x)m∵∠ABE=22°∴tan 22°=AE BE =x21+x≈0.40,解得x =14∴AE =14 m∴AD =AE +ED =14+1.7=15.7(m) ∴纪念碑的高度=15.7-1.2=14.5(m). 答:纪念碑的高度约为14.5 m . 21.解析 延长BC 交AD 于点E则DE =CM =BN =1.6 m ,BC =MN ,∠AEB =90° ∵AD =2.2 m∴AE =AD -DE =2.2-1.6=0.6(m) 在Rt △ACE 中,∠ACE =60° ∴CE =AE tan60°=√3≈0.35(m)在Rt △ABE 中,∠ABE =20° ∴BE =AE tan20°≈0.60.36≈1.67(m)∴MN =BC =BE -CE =1.67-0.35=1.32(m) ∴有效测温区间MN 的长度约为1.32 m .22.解析 (1)Rt △ABH 中,tan ∠BAH =√3=√33 ∴∠BAH =30°,∴BH =12AB =8米.(2)如图,过B 作BG ⊥DE 于G 由(1)得BH =8米,易得AH =8√3米∴BG=HE=AH+AE=(8√3+24)米,在Rt△BGC中,∠CBG=45°∴CG=BG=(8√3+24)米.在Rt△ADE中,∠DAE=60°,AE=24米,∴DE=√3AE=24√3米.∴CD=CG+GE-DE=8√3+24+8-24√3=32-16√3≈4.3(米).答:广告牌CD的高约为4.3米.23.解析(1)∵∠COG=90°,∠AON=90°∴∠POC+∠CON=∠GON+∠CON∴∠POC=∠GON.(2)由题意可得KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°在Rt△PQO中,tan∠POQ=PQOQ∴tan 60°=PQ5∴PQ=5√3米∴PH=PQ+QH=5√3+1.5≈10.2(米)即树高PH约为10.2米.(3)由题意可得O1O2=m米,O1E=O2F=DH=1.5米,tan β=PDO2D ,tan α=PDO1D∴O2D=PDtanβ,O1D=PDtanα∵O1O2=O2D-O1D,∴m=PDtanβ-PD tanα∴PD=mtanα·tanβtanα−tanβ米,∴PH=PD+DH=(mtanα·tanβtanα−tanβ+1.5)米。
九年级数学解直角三角形单元综合测试题

九年级数学解直角三角形单元综合测试题直角三角形常用到一个非常重要的三角形定理,勾股定理。
下面是小编给大家带来的九年级数学解直角三角形单元综合测试题,希望能够帮助到大家!九年级上册数学单元综合测试卷(第23章解直角三角形)注意事项:本卷共8大题23小题,满分150分,考试时间120分钟.一、选择题(本题共10小题,每小题4分,共40分)1.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是( )A. B.3 C. D.22.在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是( )A. B. C. D.3.如果∠ 为锐角,且sin =0.6,那么的取值范围是( )A.0°< ≤30°B.30°< <45°C.45°< <60°D.60°< ≤90°4.若为锐角,且sin = ,则tan 的值为( )A. B. C. D.5.如图,在平面直角坐标系中,P是第一象限内的点,其坐标为(3,m),且OP与x轴正半轴的夹角的正切值是,则sin 的值为( )A. B. C. D.第5题图第8题图第9题图第10题图6. 在Rt△ABC中,∠C=90°,sinB= ,则cosA的值为( )A. B. C. D.7.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是( )A. B. C. D.8.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AC于点E,则tan∠CDE的值等于( )A. B. C. D.9.如图,两条宽度均为40 m的公路相交成角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( )A. (m2)B. (m2)C.1600sin (m2)D.1600cos (m2)10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为( )A.5mB. mC.4 mD.2二、填空题(本题共4小题,每小题5分,共20分)11.如图,在四边形ABCD中,∠BAD=30°,∠C=90°,∠ADB=105°,sin∠BDC= ,AD=4.则DC=___________.第11题图第12题图第13题图第14题图12.如图,在A处看建筑物CD的顶端D的仰角为,且tan =0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为___________米.13.如图,已知点A(5 ,0),直线y=x+b(b>0)与x轴、y轴分别相交于点C、B,连接AB,∠ =75°,则b=________.14.如图,正方形ABCD中,E是CD中点,FC= BC,则tan∠EAF=________.三、(本题共2小题,每小题8分,满分16分)15.计算:(1) +2sin45°- ;(2)sin30° tan60°-(-tan45)2016+ .16.如图,在△ABC中,BD⊥AC于点D,AB=6,AC=5 ,∠A=30°.(1)求BD和AD的长;(2)求tanC的值.四、(本题共2小题,每小题8分,满分16分)17.如图,某中学课外活动小组的同学利用所学知识去测量某河段的宽度.小明同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据计算出河宽.(精确到0.01米,参考数据:≈1.414,≈1.732)18.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求tanB的值.五、(本题共2小题,每小题10分,满分20分)19.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD= ,求BE的值.20.已知,△ABC中,D是BC上的一点,且∠DAC=30°,过点D 作ED⊥AD交AC于点E,AE=4,EC=2.(1)求证:AD=CD;(2)若tanB=3,求线段AB的长﹒六、(本题满分12分)21.如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号)﹒七、(本题满分12分)22.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测角器高度忽略不计,结果保留根号形式)八、(本题满分14分)23.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=3,BC=5,点M是边CD的中点,连接AM、BM.(1)求△ABM的面积;(2)求sin∠MBC的值.第23章《解直角三角形》单元综合测试题参考答案一、选择题(本题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10答案 D D B D A C B C A D二、填空题(本题共4小题,每小题5分,共20分)11. . 12. 7 . 13. 5 . 14. .三、(本题共2小题,每小题8分,满分16分)15. 解答:(1) +2sin45°- ;= +2× - ,= + -= + -2 +2=3 - ;(2)sin30° tan60°-(-tan45)2016+ .= × -(-1)2016+= -1+1-= .16.解答:(1)∵BD⊥AC,AB=6,∠A=30°,∴BD= AB=3,在Rt△ABD中,AD=AB cosA=6× =3 ;(2)∵AC=5 ,AD=3 ,∴CD=AC-AD=2 ,在Rt△BCD中,tanC= = = .四、(本题共2小题,每小题8分,满分16分)17.解答:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,∴AE=CE=x在Rt△BCE中,∠CBE=30°,BE= CE= x,∵BE=AE+AB,∴ x=x+50,解得:x=25 +25≈68.30.答:河宽为68.30米.18.解答:∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,又∵∠MAN=∠BAC,∴△AMN∽△ABC,∴ = = ,设AC=3x,AB=4x,由勾股定理得:BC= = ,在Rt△ABC中,tanB= = = .五、(本题共2小题,每小题10分,满分20分)19.解答:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°,∴∠BCD+∠ACH=90°,∴∠B=∠BCD=∠CAH,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC= CH,∴CH:AC=1:,∴sinB= ;(2)∵sinB= ,∴AC:AB=1:,∴AC=2,∵∠CAH=∠B,∴sin∠CAH=sinB= ,设CE=x(x>0),则AE= x,则x2+22=( x)2,∴CE=x=1,AC=2,在Rt△ABC中,AC2+BC2=AB2,∵AB=2CD=2 ,∴BC=4,∴BE=BC-CE=3.20.解答:(1)证明:∵ED⊥AD,∴∠ADE=90°.在Rt△ADE中,∠DAE=30°,AE=4,∴∠DEA=60°,DE= AE=2,∵EC=2,∴DE=EC,∴∠EDC=∠C.又∵∠EDC+∠C=∠DEA=60°,∴∠C=30°=∠DAE,∴AD=CD;(2)解:如图,过点A作AF⊥BC于点F,则∠AFC=∠AFB=90°,∵AE=4,EC=2,∴AC=6.在Rt△AFC中,∠AFC=90°,∠C=30°,∴AF= AC=3.在Rt△AFB中,∠AFB=90°,tanB=3,∴BF= =1,∴AB= = .六、(本题满分12分)21.解答:过P作PM⊥AB于M,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20海里,∴PM= AP=10海里,AM=AP cos30°=10 海里,∴∠BPM=∠PBM=45°,∴PM=BM=10海里,∴AB=AM+BM=(10+10 )海里,∴BP= =10 海里,即小船到B码头的距离是10 海里,A、B两个码头间的距离是(10+10 )海里.七、(本题满分12分)22.解答:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=100,∠CAO=60°,∴CO=AO tan60°=100 (米).设PE=x米,∵tan∠PAB= = ,∴AE=2x.在Rt△PCF中,∠CPF=45°,CF=100 ﹣x,PF=OA+AE=100+2x,∵PF=CF,∴100+2x=100 ﹣x,解得x= (米),答:电视塔OC高为100 米,点P的铅直高度为 (米).八、(本题满分14分)23.解答:(1)延长AM交BC的延长线于点N,∵AD∥BC,∴∠DAM=∠N,∠D=∠MCN,∵点M是边CD的中点,∴DM=CM,∴△ADM≌△NCM(AAS),∴CN=AD=3,AM=MN= AN,∴BN=BC+CN=5+3=8,∵∠ABC=90°,∴S△ABN= ×AB BN= ×4×8=16,∴S△ABM= S△ABN=8;∴△ABM的面积为8;(2)过点M作MK⊥BC,∵∠ABC=90°,∴MK∥AB,∴△NMK∽△NAB,∴ = = ,∴MK= AB=2,在Rt△ABN中,AN= = =4 ,∴BM= AN=2 ,在Rt△BKM中,sin∠MBC= = = ,∴∠MBC的正弦值为 .。
第23章 解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)

第23章解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,=75°,则b的值为()A.3B.C.4D.2、如图,要测量河两相对的两点P、A之间的距离,可以在AP的垂线PB上取点C,测得PC=100米,用测角仪测得∠ACP=40°,则AP的长为()A.100sin40°米B.100tan40°米C. 米D. 米3、某公司要在如图所示的五角星(∠A=∠D=∠H=∠G=∠E=36°,AB=AC=CE=EF=FG=GI=HI=HK=DK=DB)中,沿边每隔25厘米装一盏闪光灯,若BC=(﹣1)米,则需要安装闪光灯()A.79盏B.80盏C.81盏D.82盏4、如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,下列结论正确的是()A.sinA=B.tanA=C.cosB=D.tanB=5、△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.6、如图,将矩形沿折叠,使点落在边上的点,点的对应点为点,连接、、与交于点,与交于点,若点为中点,,,则的长为()A. B. C. D.7、已知a=3,且(4tan 45°-b)2+,以a,b,c为边组成的三角形面积等于()A.6B.7C.8D.98、如图,菱形ABCD中,对角线AC、BD交于点O,若AC=4,BD=2,则∠1的余弦值为()A. B. C. D.9、如图,一个梯子靠在垂直水平地面的墙上,梯子AB的长是2米.若梯子与地面的夹角为,则梯子顶端到地面的距离(BC的长)为()A. 米B. 米C. 米D. 米10、如图,在等腰中,,, 是上一点.若,那么的长为()A.2B.C.D.111、如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A,D分别落在点A',D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,的值为()A. B.C.D.12、在Rt△ABC,∠C=90°,AC=12,BC=5,则sinA的值为( )A. B. C. D.13、如图,在正方形网格中,∠1、∠2、∠3的大小关系()A.∠1=∠2=∠3B.∠1<∠2<∠3C.∠1=∠2>∠3D.∠1<∠2=∠314、如图,修建抽水站时,沿着坡度为i=1:6的斜坡铺设管道. 下列等式成立的是()A.sinα =B.cosα=C.tanα=D.tanα=215、如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A. 8tan20°B.6cos15°C.8tan15°D.6cot15°二、填空题(共10题,共计30分)16、用科学计算器计算:8cos31°+=________17、如图,点A、点B是双曲线y=上的两点,OA=OB=6,sin∠AOB=,则k=________.18、如图,将一张矩形纸片ABCD沿CE折叠,B点恰好落在AD边上,设此点为F,若AB:BC=4:5,则tan∠CFD=________.19、实数tan45°,,0,﹣π,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是________个.20、如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD=20m,则甲楼的高AB的高度是________m.(结果保留根号)21、如图,在△ABC中,CA =3, CB=4,AB= 5,点D是BC的中点,将△ABC沿着直线EF 折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin ∠BED的值为________.22、如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则tan∠BPC=________.23、计算:2sin60°+tan45°=________24、如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)25、计算:3tan30°+sin45°=________.三、解答题(共5题,共计25分)26、计算:﹣4 ﹣tan60°+| ﹣2|.27、如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)28、先化简,再求值:,其中a=2sin45°﹣tan30°,b=tan45°.29、如图,水库大坝的横截面是梯形,坝顶宽5米,CD的长为20 米,斜坡AB的坡度i=1:2.5(i为坡比即BE:AE),斜坡CD的坡度i=1:2(i为坡比即CF:FD),求坝底宽AD的长.30、如图,轮船在A处观测灯塔C位于北偏东70o方向上,轮船从A处以每小时30海里的速度沿南偏东50o方向匀速航行,1小时后到达码头B处,此时观测灯塔C位于北偏东25o 方向上,求灯塔C与码头B之间的距离(结果保留根号).参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、D5、B6、A7、A8、D9、A11、A12、D13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、。
青岛版九年级数学上册第2章解直角三角形单元测试(A4扩B4印刷版)

青岛版九年级数学上册第2章解直角三角形单元测试一.选择题(共20小题)1.(2014•贵阳)在Rt △ABC 中,∠C=90°,AC=12,BC=5,则sinA 的值为( ) A . B . C . D .2.(2013•贵阳)如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tan α等于( )A .B .C .D .3.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则∠AOB 的正弦值是( )A .B .C .D . 4.(2014•湖州)如图,已知Rt △ABC 中,∠C=90°,AC=4,tanA=,则BC 的长是( ) A .2 B .8 C .2D . 45.(2014•包头)计算sin 245°+cos30°•tan60°,其结果是( )A . 2B . 1C .D.6.(2014•凉山州)在△ABC 中,若|cosA ﹣|+(1﹣tanB )2=0,则∠C 的度数是( )A . 45°B . 60°C . 75°D . 105° A . 1,2,3 B . 1,1, C . 1,1, D . 1,2, 8.(2014•滨州)在Rt △ACB 中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC 的长为( ) A . 6 B . 7.5 C . 8 D . 1 2.5 9.(2014•连云港)如图,若△ABC 和△DEF 的面积分别为S 12 A . S 1=S 2 B . S 1=S 2 C . S 1=S 2 D . S 1=S 210.(2014•丽水)如图,河坝横断面迎水坡AB 的坡比是(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高BC=3m ,则坡面AB 的长度是( )A .9m B .6m C .mD .mA . 4米B . 6米C . 12米D . 24米 A . (6+6)米 B . (6+3)米 C . (6+2)米 D . 12米13.(2014•临沂)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B 、C 之 A . 20海里 B . 10海里 C . 20海里 D . 30海里 时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( )A .40海里 B . 40海里 C . 80海里D . 40海里A . 4kmB . 2kmC . 2kmD . (+1)km A . 100米 B . 50米 C . 米 D . 50米 A . 600﹣250 B . 600﹣250 C . 350+350 D . 500 2.4,AB 的长度是13米,MN 是二楼楼顶,MN ∥PQ ,C 是MN 上处在自动扶梯顶端B 点正上方的一点,BC ⊥MN ,在自动扶梯底端A 处测得C 点的仰角为42°,则二楼的层高BC 约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)( )A . 10.8米B . 8.9米C . 8.0米D . 5.8米 A . B . C . D . A .B .C .D .二.填空题(共4小题) 21.(2014•铜仁)cos60°= _________ . 22.(2014•济宁)如图,在△ABC 中,∠A=30°,∠B=45°,AC=,则AB 的长为 _________ . 23.(2014•株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为 _________ 米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475). 24.(2013•泰安)如图,某海监船向正西方向航行,在A 处望见一艘正在作业渔船D 在南偏西45°方向,海监船航行到B 处时望见渔船D 在南偏东45°方向,又航行了半小时到达C 处,望见渔船D 在南偏东60°方向,若海监船的速度为50海里/小时,则A ,B 之间的距离为 _________ 海里(取,结果精确到0.1海里).三.解答题(共6小题)25.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.26.(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)27.(2014•聊城)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带成为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)28.(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC 长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.29.(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)30.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)。
解直角三角形》单元测试卷及答案

《解直角三角形》单元测试卷一、填空题:1、如下图,表示甲、乙两山坡的情况, _____坡更陡。
(填“甲”“乙”)αβ1213 34甲乙2、在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________。
3、在Rt △ABC 中,∠C=90°.若sinA=22,则sinB= 。
4、计算:tan 245°-1= 。
5、在△ABC 中,AB=AC=10,BC=16,则tanB=_____。
6、△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=31,则S △ABC=______。
7、菱形的两条对角线长分别为23和6,则菱形较小的内角为______度。
8、如图2是固定电线杆的示意图。
已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是__________m 。
9、升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为______米。
(用含根号的式子表示)10、如图3,我校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,90BCA ∠=,台阶的高BC 为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶.(结果精确到0.1m ,取2 1.414=,3 1.732=)11、如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B ,且BP=2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=624-,cos 15°=624+)二、选择题:12、在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( ) A 、45 B 、5 C 、15 D 、14513、李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( ) A.40° B.30° C.20° D.10°14、身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A.甲的最高B.乙的最低C.丙的最低D.乙的最高 15、在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是一般锐角三角形16、如图5,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( )A.1.8tan80°mB.1.8cos80°mC.︒80sin 8.1 m D.︒80tan 8.1 m17、如图6,四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=23,AD=2,则四边形ABCD 的面积是( ) A.42B.43C.4D.6三、解答题:18、计算:(1)3cos30°+2sin45° (2)6tan 2 30°-3sin 60°-2sin 45°19、根据下列条件,求出Rt △ABC(∠C=90°)中未知的边和锐角. (1)BC=8,∠B=60°; (2)AC=2,AB=2.20、如图7,在Rt △ABC 中,∠C=90°,AC=8,∠A 的平分线AD=3316,求∠B 的度数及边BC 、AB 的长.21、等腰三角形的底边长20 cm ,面积为33100c m 2,求它的各内角.22、同学们对公园的滑梯很熟悉吧!如图是某公园在“六•一”前新增设的一台滑梯,该滑梯高度AC =2m ,滑梯着地点B 与梯架之间的距离BC =4m 。
解直角三角形测试题及答案

《解直角三角形》整章测试【1】一、选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A )154(B)14(C)15 (D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133-(D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,3tan 2B =,23BC =,则AC 等于( )(A )3(B )4(C )43(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)(53332+)m (B)(3532+)m (C)533m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin 30=+=-;因为2sin 452=,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)22-(C)32- (D)3-7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)156km(B)152km (C)15(62)+km(D)5(632)+km北东ABC8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin DBE ∠的值为()(A)13(B)310(C)37373(D)1010二、填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是.10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A =. 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船(填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是.16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深、葭长各几何?(1丈=10尺)回答:水深,葭长. 17.(本题8分)计算:242(2cos 45sin 60)4︒-︒+. 18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你分别求出AB 的长度(用含有a b c β,,,字母的式子表示).(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号). 20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由. (1A C B a b(2AC B a β (3AC B aD Ec b A BCD EA BC21.(本题12分)如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.四、附加题(本题20分)22.现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1).(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm的矩形纱窗恰好安装在上、下槽深分别为0.9cm,高96cm(上、下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的sin810.987=0.990=sin830.993=0.995=cos90.987=0.990=0.993=0.995=章《解直角三角形》整章测试答案:~8 BABA ACDD三、17.解:2=原式2=-2=18.解:(1)AB=(2)tanAB aβ=(3)acABb=.19.解:分两种情况:(1)当ACB∠为钝角时,BD是高,90ADB∴∠=.在Rt BCD△中,40BC=,30BD=∴CD==.在Rt ABD△中,50AB=,ABC中山路文化路D和平路45°15°30°环城路EF 图1 2 图3∴40AD ==.40AC AD CD ∴=-=-,新课标第一网∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ==∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°. ∴∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴∠DAB=∠ADB.∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm ) 能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·°当81α∠=°时,纱窗高:96sin81960.98794.75295.1=⨯=<° ∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去.因此能合理装上纱窗时α∠的最大值是82°.。
第1章 解直角三角形 浙教版九年级数学下册单元测试题(含答案)

第一章解直角三角形 单元测试题(满分100分;时间:90分钟)一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )1. 如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是( )A.1,1,√2B.1,1,√3C.1,2,√3D.1,2,32. 如图,△ABC 中,∠B =90∘,BC =2AB ,则cos A =( )A.√52B.12C.2√55D.√553. 如图,在△ABC 中,∠C =90∘,sin A =35,则BC AC 等于( )A.34B.43C.35D.454. 在△ABC 中,∠C =90∘,如果tan A =34,那么sin B 的值等于( ) A.53 B.35 C.54 D.455. cot β=√33,则锐角β等于( )A.0∘B.30∘C.45∘D.60∘6. 如图是一台54英寸的大背投彩电放置在墙角的俯视图.设∠DAO=α,彩电后背AD平行于前沿BC,且与BC的距离为55cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(55+100tanα)cmB.(55+100sinα)cmC.(55+100cosα)cmD.以上答案都不对7. 如果某人沿坡度为1:3的斜坡向上行走a米,那么他上升的高度为()A.√1010a米 B.√10a米 C.a3米 D.3a米8. 如图是一台54英寸的大背投彩电放置在墙角的俯视图(其中ABCD是矩形).设∠ADO=α,彩电后背AD与前沿BC的距离为60cm,若AO=100cm,则墙角O到前沿BC的距离OE是()A.(60+100sinα)cmB.(60+100cosα)cmC.(60+100tanα)cmD.(60−100sinα)cm9. 某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45∘,再往摩天轮的方向前进50m至D处,测得最高点A的仰角为60∘.问摩天轮的高度AB约是()米(结果精确到1米,参考数据:√2≈1.41,√3≈1.73)A.120B.117C.118D.119二、填空题(本题共计11 小题,每题3 分,共计33分,)10. 如图,关于∠α与∠β的同一种三角函数值,有三个结论:①tanα>tanβ;②sinα>sinβ;③cosα>cosβ,正确的结论为________(填序号).11. 如图,在一次测绘活动中,某同学站在点A观测放置于B,C两处的标志物,数据显示点B在点A南偏东75∘方向20米处,点C在点A南偏西15∘方向20米处,则点B与点C的距离为________米..AC上有一点E,满足AE:CE= 12. 如图,已知AD是等腰△ABC底边上的高,且tan B=342:3.那么tan∠ADE的值是________.13. 如果在某建筑物的A处测得目标B的俯角为37∘,那么从目标B可以测得这个建筑物的A 处的仰角为________.14. 计算:sin60∘⋅cos30∘−tan45∘=________.15. 如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC成120∘角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD=√3米,则路灯的灯柱BC高度应该设计为________米.(计算结果保留根号).16. 茗茗在坡度为1:√3的坡面上走了100m,则茗茗上升了________m.17. 如图,我国一渔政船在A处,发现正东方向B处有一可疑船只,正以16海里/小时速度向西北方向航行,我渔政船立即往北偏东60∘方向航行,1.5小时后,在C处截获可疑船只,则我渔政船的航行路程AC=________海里(结果保留根号).18. 在Rt△ABC中,∠C=90∘,sin A=1,那么cos A=________.219. 如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则sin A=________.20. 动手操作:今有一副三角板(如图1),中间各有一个直径为4cm的圆洞,现将三角形a的30∘角的那一头插入三角板b的圆洞内(如图2),则三角板a通过三角板b的圆洞的那一部分的最大面积为________cm2(不计三角板的厚度).三、解答题(本题共计6 小题,共计60分,)−√3⋅tan30∘.21. 计算:cos245∘+cos302sin60+122. 已知电线杆AB直立于地面,它的影子恰好照在土坡的坡面CD和地面BC上.如果CD与地面成45∘,∠A=60∘,CD=4√2米,BC=(4√3−4)米,求电线杆AB的长.23. 某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A处测得大楼部分楼体CD的顶端C点的仰角为45∘,底端D点的仰角为30∘,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为60∘(如图②所示),求大楼部分楼体CD的高度为多少米?24. 在旧城改造中,要拆除一烟囱AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在从离B点21米远的建筑物CD顶端C测得A点的仰角为45∘,到B点的俯角为30∘,问离B点30米远的保护文物是否在危险区内?(√3约等于1.732)25. 如图,已知“中国渔政310”船(A)在南海执行护渔任务,接到陆地指挥中心(P)命令,得知出事渔船(B)位于陆地指挥中心西南方向,位于“中国渔政310”船正南方向,“中国渔政310”船位于陆地指挥中心北偏西60∘方向,距离为80海里的地方.而“中国渔政310”船最大航速为20海里/时.根据以上信息,请你求出“中国渔政310”船接到命令后赶往渔船出事地点最少需要多少时间(结果保留根号)?26. 我区在修筑渭河堤防工程时,欲拆除河岸边的一根电线杆AB.如图,已知距电线杆AB 水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡度为1:0.5,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30∘,D、E之间的宽是2米,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将DE段封止?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】B【解答】解:A、若三边为1,1,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“实验三角形”,所以A选项错误;B、由1,1,√3能构成,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“实验三角形”,所以B选项正确;C、若三边为1,2,√3,由于12+(√3)2=22,则此三边构成直角三角形,最小角为30∘,所以这个三角形不是“实验三角形”,所以C选项错误;D、由1,2,3不能构成三角形,所以D选项错误.故选B.2.【答案】D【解答】∵∠B=90∘,BC=2AB,∴AC=√AB2+BC2=√AB2+(2AB)2=√5AB,∴cos A=ABAC =√5AB=√55.3.【答案】A【解答】解:∵sin A=35,设a=3x,则c=5x,结合a2+b2=c2得b=4x;∴tan A=BCAC =ab=3x4x=34,故选A.4.【答案】D【解答】解:由tan A=34,可设∠A的对边是3k,∠A的邻边是4k.则根据勾股定理,斜边是5k.∴sin B=4.故选D.5.【答案】D【解答】解:∵cotβ=√33,β为锐角,∴β=60∘.故选D.6.【答案】B【解答】解:设OE、AD相交于F,则EF=55,在直角三角形AFO中,∵∠DAO=α,AO=100cm,∴OF=100sinα,∵EF=55,∴OE=55+100sinαOE=55+100sinα.故选B.7.【答案】A【解答】解:如图:根据题意得:AC=a,i=1:3,∴i=AECE =13.设AE=x米,则CE=3x米,∴AC=√AE2+CE2=√10x(米),∴√10x=a,解得:x=√1010a,∴AE=√1010a米.即他上升的高度为√1010a米.故选A.8.【答案】B【解答】解:∵△AOD是直角三角形,∴∠OAD+∠ODA=90∘,∵△AOF是直角三角形,∴∠OAD+∠AOF=90∘,∴∠AOF=∠ADO=α,在Rt△AOF中,OF=AO⋅cosα=100cosα,∵EF=CD=60cm,∴OE=EF+OF=(60+100cosα)cm.故选B.9.【答案】C【解答】解:在Rt△ABC中,由∠C=45∘,得AB=BC,在Rt△ABD中,∵tan∠ADB=tan60∘=ABBD,∴BD=ABtan60∘=√3=√33AB,又∵CD=50m,∴BC−BD=50,即AB−√33AB=50,解得:AB≈118.即摩天轮的高度AB约是118米.故选:C.二、填空题(本题共计11 小题,每题 3 分,共计33分)10.【答案】①②【解答】解:根据图形得:∠α>∠β,∴tanα>tanβ,sinα>sinβ,cosα<cosβ.∴①②正确.故答案为①②.11.【答案】20√2【解答】解:根据题意得:∠BAC=90∘,AB=AC=20米,在R t△ABC中,BC=√AC2+AB2=√202+202=20√2,故答案是:20√2.12.【答案】89【解答】解:作EF⊥AD于F,如图,∵△ABC为等腰三角形,AD为高,∴∠B=∠C,∴tan C=34=ADDC设AD=3t,DC=4t,∴AC=√AD2+CD2=5t,而AE:CE=2:3,∴AE=2t,∵EF // CD,∴△AEF∽△ACD,∴EFCD =AFAD=AEAC,即EF4t=AF3t=2t5t,∴AF=65t,EF=85t,∴FD=AD−AF=95t,在Rt△DEF中,tan∠FDE=EFFD =85t95t=89∴tan∠ADE=89.故答案为89.13.【答案】37∘【解答】解:如图,∵某建筑物的A处测得目标B的俯角为37∘,∴目标B可以测得这个建筑物的A处的仰角为37∘,故答案为:37∘14.【答案】−1 4【解答】解:sin60∘⋅cos30∘−tan45∘=√32⋅√32−1=−14.故答案为:−14.15.8√3【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90∘,∠P=30∘,OB=10米,CD=√3米,∴在直角△CPD中,DP=DC⋅tan60∘=3米,PC=CD÷sin30∘=2√3(米),∵∠P=∠P,∠PDC=∠B=90∘,∴△PDC∽△PBO,∴PDPB =CDOB,∴PB=PD⋅OBCD =3×10√3=10√3(米),∴BC=PB−PC=10√3−2√3=8√3(米).故答案为:8√3.16.【答案】50【解答】解:根据题意画图:AB=100,tan B=ACBC =1√3,设AC=x,BC=√3x,则x2+(√3x)2=1002,解得x=50,答:茗茗上升了50m.故答案为:50.17.24√2【解答】解:如图,作CD⊥AB于点D,垂足为D,∵在直角三角形BCD中,BC=16×1.5=24海里,∠CBD=45∘,∴CD=BC⋅sin45∘=24×√22=12√2海里,∴在直角三角形ACD中,AC=CDsin30∘=12√2×2=24√2海里,故答案为:24√2.18.【答案】√32【解答】∵在Rt△ABC中,∠C=90∘,sin A=12,∴∠A=30∘,∴cos A=√32.19.【答案】35【解答】解:如图所示:作CD⊥AB,则DC=3,AC=5,故sin A=DCAC =35.故答案为:35.20.【答案】 14.9【解答】解:如图,BC =4,∠BAC =30∘,作AD ⊥BC 于点D ,当点D 是BC 的中点时,△ABC 的面积最大,此时由中垂线的性质知,AB =AC ,∠B =75∘,S △ABC =12BC ⋅BD tan 75∘=12×4×2×3.732≈14.9cm 2.-----------------------故答案为:14.9三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )21.【答案】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.【解答】原式=(√22)2+√322×√32+1−√3×√33=12+3−√34−1 =1−√34.22.【答案】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.【解答】解:如图,延长AD交BC的延长线于点E,作DF⊥BE于F.∵在Rt△DCF中,∠CFD=90∘,∠DCF=45∘,CD=4√2,∴CF=DF=4.∵在Rt△DEF中,∠EFD=90∘,∠E=30∘,∴EF=DFtan∠E =4√33=4√3,∴BE=BC+CF+FE=4√3−4+4+4√3=8√3.∵在Rt△ABE中,∠B=90∘,∠E=30∘,∴AB=BE tan30∘=8√3×√33=8.故电线杆AB的长为8米.23.【答案】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.【解答】解:设楼高CE为x米,∵ 在Rt△AEC中,∠CAE=45∘,∴ AE=CE=x.∵ AB=20,∴ BE=x−20.在Rt△CEB中,CE=BE⋅tan60∘=√3(x−20),∴√3(x−20)=x,解得:x=30+10√3(米).=10√3+10,在Rt△DAE中,DE=AE⋅tan30∘=(30+10√3)×√33∴ CD=CE−DE=30+10√3−(10√3+10)=20(米).答:大楼部分楼体CD的高度为20米.24.【答案】文物在危险区内.解:在Rt△AEC中,∠ACE=45∘,则CE=EA,∵DB=CE=21m,∴DB=EA=21m,在Rt△CEB中,∠BCE=30∘,则tan30∘=BE,即BE=EC tan30∘,EC=7√3m,∴BE=21×√33∴AB=AE+EB=(21+7√3)m,∵AB=(21+7√3)>30,∴文物在危险区内.【解答】此题暂无解答25.【答案】“中国渔政310”船接到命令后赶往渔船出事地点最少需要(2+2√3)小时.【解答】解:过点P作PD⊥AB于点D.在Rt△APD中,∵AP=80海里,∠APD=90∘−60∘=30∘,AP=40海里,PD=√3AD=40√3海里.∴AD=12在Rt△BDP中,PD=40√3海里,∠B=45∘,∴BD=PD=40√3海里,∴AB=AD+BD=(40+40√3)海里,=2+2√3(小“中国渔政310”船接到命令后赶往渔船出事地点最少需要的时间为40+40√320时).26.【答案】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.【解答】解:∵i=1:0.5,CF=2米=2,∴tan∠CDF=CFDF∴DF=1米,BG=2米,∵BD=14米,∴BF=GC=15米.=5√3≈8.66(米),在Rt△AGC中,AG=15tan30∘=15×√33∴AB=AG+BG=8.66+2=10.66米,BE=BD−DE=14−2=12(米),∵10.66<12,∴没有必要封止DE.。
第一章 解直角三角形单元测试卷(困难 含解析)

浙教版初中数学九年级下册第一单元《解直角三角形》(困难)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,已知△ABC中,∠B=90°,D,E分别为BC,AC的中点,连结DE,过D作AC的平行线与∠CAB的角平分线交于点F,连结EF,若EF⊥DF,AC=2,则∠DEF的正弦值为( )A. √5−12B. √5+14C. √5−14D. 3+√542. 在△ABC中,已知tanA=tanB,则下列说法不正确的是( )A. 边AB上任意一点P到边AC、BC的距离之和等于点B到AC的距离B. 边AB的垂直平分线是△ABC的对称轴C. △ABC的外心可能在△ABC内部、边上或外部D. 如果△ABC的周长是l,那么BC=l−2AB3. 如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点M处,折痕为AP,再将△PCM,△ADM分别沿PM,AM折叠,此时点C,D落在AP上的同一点N处.给出以下结论:①M是CD的中点;②AD//BC;③∠DAM+∠CPM=90∘;④当AD=CP时,ABCD =√32.其中正确的个数为( )A. 1B. 2C. 3D. 44. 在Rt△ABC中,∠C=90°,cosB=12,则sinA的值为( )A. 12B. √22C. √32D. √35. 如图,AB⏜是半径为1的半圆弧,△AOC 为等边三角形,点D 是BC ⏜上的一动点、则△COD 的面积S 的最大值是 ( )A. √34B. √33C. √32D. 126. 如图,Rt △ABC 中,∠BAC =90∘,cosB =14,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使∠ADE =∠B ,连接CE ,则CEAD的值为( )A. 32B. √3C. √152D. 27. 已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是( ) A. 2B. 1C. √3D. √328. 如图,在正方形ABCD 中,AB =2,点E 是BC 边的中点,连接DE ,延长EC 至点F ,使得EF =DE ,过点F 作FG ⊥DE ,分别交CD 、AB 于N 、G 两点,连接CM 、EG 、EN ,下列正确的是:①tan∠GFB =12;②MN =NC ;③CMEG =12;④S 四边形GBEM =√5+12( )A. 4B. 3C. 2D. 19. 四巧板是一种类似七巧板的传统智力玩具,它是由一个长方形按如图1分割而成,这几个多边形的内角除了有直角外,还有45°、135°、270°角.小明发现可以将四巧板拼搭成如图2的T字形和V字形,那么T字形图中高与宽的比值ℎl为( )A. √2B. √2+12C. 4+√24D. 3√2210. 如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于( )A. 12B. 13C. 14D. 2311. 如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②△OAP∽△EAC;③四边形OECF的面积是正方形ABCD面积的14;④AP−BP=√2OP;⑤若BE:CE=2:3,则tan∠CAE=47.其中正确的结论有( )个A. 2个B. 3个C. 4个D. 5个12. 如图,建筑工地划出了三角形安全区(△ABC),一人从A点出发,沿北偏东53°方向走50m 到达C点,另一人从B点出发,沿北偏西53°方向走100m到达C点,则点A与点B相距(tan53°=43)( )A. 30√15mB. 30√17mC. 40√10mD. 130m第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有______.14. 如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为______.,BE=2,则该菱形的面积是______.15.如图,在菱形ABCD中,DE⊥AB,cosA=3516.如图,在矩形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AH:AE=4:3,四边形EFGH的周长是40cm,则矩形ABCD的面积是______cm2.三、解答题(本大题共9小题,共72分。
第23章 解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)

第23章解直角三角形数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,Rt△ABC中,∠C=90°,AB=7,∠B=35°,则AC的长为()A.7cos35°B.7tan35°C.7sin35°D.7sin55°2、在中,,则的值为()A. B. C. D.3、若,则锐角的度数为()A. B. C. D.4、已知α为锐角,sin(α+20°)=,则α的度数为( )A.20°B.40°C.60°D.80°5、如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=4,cos∠ABC=,则BD 的长为()A.2B.4C.2D.46、已知二次函数y=x²,当a≤x≤b时m≤y≤n,则下列说法正确的是( )A.当n-m=1时,b-a有最小值B.当n-m=1时,b-a有最大值C.当b-a=1时,n-m无最小值D.当b-a=1时,n-m有最大值7、如图,从A点出发的光线,经C点反射后垂直地射到B点,然后按原路返回A点.若∠AOC=33°,OC=1,则光线所走的总路线约为( )A.3.8B.2.4C.1.9D.1.28、如图,在中,,,为边上的一个动点(不与、重合),连接,则的最小值是()A. B. C. D.29、在Rt△ABC中,∠A=90°,AC=5,BC=13,那么tanB的值是()A. B. C. D.10、如图,在中,,如果,,那么的值为()A. B. C.D.11、如图,在Rt△ABC中,∠C=90°,AB=5,AC=4,则sinA的值是()A. B. C. D.12、如图,∠1的正切值为()A. B. C.3 D.213、计算:cos245°+sin245°=()A. B.1 C. D.14、如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是()A. B. C.1600sinα(m 2) D.1600cosα(m 2)15、如图,在菱形ABCD中,DE⊥AB,cosA= ,BE=3,则tan∠DBE 的值是()A. B.2 C. D.二、填空题(共10题,共计30分)16、如图,在扇形OAB中,∠AOB=90°,半径OB=2.∠BOC=60°,连接AB,AB、OC 相交于点D,则图中阴影部分的面积为________.17、A为锐角,且4sin2A﹣3=0,则A=________.18、如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则tan∠ADC的值为 ________.19、如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos ∠BDC= ,则BC的长为________.20、如图,在中,,于点,若,,设,则________.21、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,tan∠ACD=, AB=5,那么CD的长是________22、点A是反比例函数y=(x>0)图象上的一点,点B在x轴上,点C是坐标平面上的一点,O为坐标原点,若以点A,B,C,O为顶点的四边形是有一个角为60°的菱形,则点C的坐标是________.23、如图,矩形纸片中,,,按下列步骤进行折叠,具体操作过程如下:第一步:先把矩形对折,折痕为,如图(1)所示;第二步:再把点叠在折痕线上,折痕为,点在上的对应点为,得,如图(2)所示;第三步:沿折叠折痕为,且交的延长线于点,如图(3)所示;则由纸片折叠成的图形中,为________.24、在Rt△ABC中,斜边AB的长是8,cosB= ,则BC的长是________.25、sin21°+sin22°…+sin288°+sin289°=________.三、解答题(共5题,共计25分)26、计算:|﹣3|+ tan30°﹣﹣(2016﹣π)0.27、如图,在距离铁轨200米的A处,观察由成都开往西安的“和谐号”动车,当动车车头到达B处时,车头恰好位于A处的北偏东60°方向上,10秒钟后,动车车头到达C处,此时车头恰好位于A处西偏北45°方向上,求这时段动车的平均速度是多少米/秒?(结果精确到个位,参考数据≈1.414,≈1.732)28、如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73).29、已知sin A=0.328 6,tan B=10.08,利用计算器求锐角A,B.(结果精确到0.01°)30、如图,已知某市一座电视塔高AB为600米.张明在点C处测得电视塔塔顶B的仰角∠ACB=40°。
青岛新版九年级上册数学《第2章 解直角三角形》单元测试卷(有答案)

2020-2021学年青岛新版九年级上册数学《第2章解直角三角形》单元测试卷一.选择题1.在Rt△ABC中,∠C=90°,AC=,AB=,则下列结论正确的是()A.sin B=B.cos A=C.tan B=2D.tan A=2.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.3.在Rt△ABC中,∠A=90°,若∠B=30°,则sin C=()A.B.C.D.4.如图,某河堤迎水坡AB的坡比i=tan∠CAB=1:,堤高BC=5m,则坡面AB的长是()A.5 m B.10m C.5m D.8 m5.在Rt△ABC中,∠C=90°,sin B=,则tan A的值为()A.B.C.D.6.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m 7.重庆实验外国语学校坐落在美丽且有灵气的华岩寺旁边,特别是金灿灿的大佛让身高1.6米的小王同学很感兴趣,刚刚学过三角函数知识,他就想测一下大佛的高度,小王到A 点测得佛顶仰角为37°,接着向大佛走了10米来到B处,再经过一段坡度i=4:3,坡长为5米的斜坡BC到达C处,此时与大佛的水平距离DH=6.2米(其中点A、B、C、E、F在同一平面内,点A、B、F在同一条直线上),请问大佛的高度EF为()(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80).A.15米B.16米C.17米D.18米8.已知cosα=,则锐角α的取值范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°9.在Rt△ABC中,已知∠C=90°,∠A=40°,AC=3,则BC的长为()A.3sin40°B.3sin50°C.3tan40°D.3tan50°10.人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,则点D离地面的高度DE为()A.140sin20°cm B.140cos20°cmC.140sin40°cm D.140cos40°cm二.填空题11.计算:tan15°•tan45°•tan75°=.12.如图,已知Rt△ABC中,斜边AB的长为m,∠B=40°,则直角边AC的长是.13.已知sinα=(α为锐角),则tanα=.14.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)15.比较大小:(1)cos35°cos45°,tan50°tan60°;(2)若sinα=0.3276,sinβ=0.3274,则αβ.16.如果α是锐角,且sinα=cos20°,那么α=度.17.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是海里.18.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.19.如图,在△ABC中,∠ACB=90°,D是AB的中点,DE⊥AB,交AC于E,若=,则tan∠A=.20.如图,某商场大厅自动扶梯AB的长为12m,它与水平面AC的夹角∠BAC=30°,则大厅两层之间的高度BC为m.三.解答题21.如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.22.求满足下列条件的锐角x.(1)cos x=(2)tan x﹣3=023.在Rt△ABC中,已知∠C=90°,a=19,c=19,解这个直角三角形.24.如图是某货站传送货物的平面示意图,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4m.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出5m的通道,试判断距离B点4m的货物MNQP是否需要挪走,并说明理由.25.用计算器求下列各式的值:(1)sin59°;(2)cos68°42′.26.在△ABC中,AB=8,BC=6,∠B为锐角且cos B=.(1)求△ABC的面积.(2)求tan C.27.在△ABC中,已知∠C=90°,sin A+sin B=,求sin A﹣sin B的值.参考答案与试题解析一.选择题1.解:在Rt△ABC中,∠C=90°,∴BC==2,A、sin B===,本选项计算错误;B、cos A===,本选项计算正确;C、tan B===,本选项计算错误;D、tan A===2,本选项计算错误;故选:B.2.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.3.解:∵∠A=90°,∠B=30°,∴∠C=90°﹣30°=60°,∴sin C=sin60°=,故选:D.4.解:∵tan∠CAB===,∴在Rt△ABC中,∠BAC=30°,又∵BC=5m,∴AB=2BC=10m,故选:B.5.解:∵sin B==,∴设AC=12x,AB=13x,由勾股定理得:BC===5x,∴tan A===,故选:D.6.解:由题意得,∠AOB=90°﹣60°=30°,∴AB=OA=100(m),故选:A.7.解:过点C作CM⊥BF于点M,过点G作GN⊥EF于点N,∵斜坡BC的坡度i=4:3,BC=5米,∴设CM=4x,BM=3x,∴(4x)2+(3x)2=52,解得x=1,∴CM=4米,BM=3米,由题意可知四边形DHFM和四边形AGNF是矩形,∴DH=FM=6.2米,∵AB=10米,∴AF=GN=AB+BM+MF=10+3+6.2=19.2米,在Rt△ENG中,∵∠EGN=37°,∴tan37°=≈0.75,∴EN=0.75×NG=0.75×19.2=14.4米,∴EF=EN+NF=14.4+1.6=16米.故选:B.8.解:∵cos30°=,cos45°=,∵<<,∴30°<α<45°,故选:B.9.解:如图,在Rt△ABC中,∵∠C=90°,AC=3,∠A=40°,∴BC=AC•tan A=3tan40°,故选:C.10.解:∵∠BAC=40°,AB=AC,∴∠ACB=∠ABC=70°,∵DE⊥BC,∴∠DEB=90°,∴∠BDE=90°﹣70°=20°,∴DE=BD•cos20°=140cos20°,故选:B.二.填空题11.解:原式=tan15°•tan75°•tan45°=1×1=1.故答案为:1.12.解:在Rt△ABC中,sin B=,∴AC=AB•sin B=m sin40°,故答案为:m sin40°.13.解:∵sin2α+cos2α=1,∴cosα==,∴tanα===,故答案为:.14.解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈233.所以,热气球离地面的高度约为233米,故答案为:233米.15.解:(1)cos35°>cos45°,tan50°<tan60°;故答案为:>,<;(2)∵sinα=0.3276,sinβ=0.3274,则α>β.故答案为:>.16.解:∵sinα=cos20°,∴α=90°﹣20°=70°.故答案为:70.17.解:作BD⊥AC于点D,由题意得,∠CBA=25°+50°=75°,AB=20,则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∴∠ABD=30°,∴∠CBD=75°﹣30°=45°,在Rt△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10,在Rt△BCD中,∠CBD=45°,则BC=BD=10×=10,故答案为:10.18.解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=×540°=108°,∠BAE=108°又∵EA=ED,∴∠EAD=×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,故答案为:72°.19.解:连接EB,∵D是AB的中点,DE⊥AB,∴DE是AB的垂直平分线,∴EA=EB,∵==,设EC=3k,则AE=BE=4k,AC=5k+3k=8k,在Rt△BCE中,BC==4k,在Rt△ABC中,tan∠A===,故答案为:.20.解;在Rt△ABC中,∠BAC=30°,AB=12m,∴BC=m,故答案为:6.三.解答题21.解:由勾股定理得,AB===13,则sin A==,cos A==,tan A==.22.解:(1)∵cos x=,∴x=30°;(2)tan x﹣3=0,∴tan x=3,∴tan x=,则x=60°.23.解:在Rt△ABC中,∠C=90°,a=19,c=19,∴b==19,∵tan A==1,∴∠A=45°,∴∠B=90°﹣∠A=45°,因此,b=19,∠A=∠B=45°.24.解:(1)在Rt△ABD中,∠ABD=45°,∴AD=AB=4,在Rt△ACD中,∠ACD=30°,∴AC=2AD=8,答:新传送带AC的长度为8m;(2)在Rt△ACD中,∠ACD=30°,∴CD=AB•cos∠ACD=4,在Rt△ABD中,∠ABD=45°,∴BD=AD=4,∴BC=CD﹣BD=4﹣4,∴PC=BP﹣BC=4﹣(4﹣4)=4<5,∴货物MNQP需要挪走.25.解:(1)sin59°≈0.857;(2)cos68°42′=cos68.7°≈0.363.26.解:(1)如图,过点A作AH⊥BC于H.∵cos B=,∴∠B=60°,∴BH=AB•cos B=4,AH=AB•sin B=4,∴S=•BC•AH=×6×4=12.△ABC(2)在Rt△ACH中,∵∠AHC=90°,AH=4,CH=BC﹣BH=7﹣4=2,∴tan C===2.27.解:∵sin A+sin B=,∴(sin A+sin B)2=,∴sin2A+sin2B+2sin A•sin B=,∵sin B=cos A,∴sin2A+cos2A+2sin A•sin B=,∴2sin A•sin B=,∴(sin A﹣sin B)2=1﹣=,∴sin A﹣sin B=±.。
第2章 解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)

第2章解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、方程,则锐角=()A.30°B.45°C.60°D.无法确定2、如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5 .若用科学计算器求边AC的长,则下列按键顺序正确的是()A. B.C. D.3、如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A.m=nB.x=m+nC.x>m+nD.x 2=m 2+n 24、如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,AB=8,则tan∠ACB的值等于()A. B. C. D.5、如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A. B. C. D.6、如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要 ( )A.450a元B.225a元C.150a元D.300a元7、cos30°=()A. B. C. D.8、如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A.2个B.3个C.4个D.5个9、如图,小强从热气球上测量一栋高楼顶部的倾角为30°,测量这栋高楼底部的俯角为60°,热气球与高楼的水平距离为45米,则这栋高楼高为多少(单位:米)()A.15B.30C.45D.6010、如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4kmB.(2+ )kmC.2 kmD.(4﹣)km11、三角形在正方形网格纸中的位置如图所示,则cosα的值是()A. B. C. D.12、等于()A. B. C. D.13、如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.3 kmB.3 kmC.4 kmD.(3 ﹣3)km14、如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB= ,则⊙O的半径为().A.4B.2.5C.2D.15、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.()米B.()米C.()米 D.()米二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B 顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为________.17、如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为________.18、如图所示,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12米,塔影长DE=18米,小明和小华的身高都是1.6米,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2米和1米,那么塔高AB为________米。
第24章 解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)

第24章解直角三角形数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CEB.AE=2CEC.AE=BDD.BC=2CE2、如图,线段是⊙的直径,弦,垂足为,点是上任意一点,,则的值为()A. B. C. D.3、在Rt△ABC中,∠C=90°,若AB=2AC,则sinA 的值是()A. B. C. D.4、如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A. B. C. D.5、已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°B.75°C.45°或15°或75°D.60°6、以下列各组线段为边,能组成三角形的是()A.4cm,5cm,6cmB.8cm,2cm,5cmC.12cm,5cm,6cm D.3cm,6cm,3cm7、如图,,是角平分线上一点,,垂足为,点是的中点,且,如果点是射线上一个动点,则的最小值是()A.1B.C.2D.8、如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3B.C.4D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,,.则()A. B. C.1 D.210、等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A.25cmB.20cmC.15cmD.20cm或25cm11、如图,已知P是射线OB上的任意一点,PM⊥OA于M,且OM:OP=4:5,则cosα的值等于( )A. B. C. D.12、已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A. B. C. D.13、如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.14、如图,正方形中,为的中点,为上一点,,设,则的值等于().A. B. C. D.15、在中,,,则的值等于()A. B. C. D. 或二、填空题(共10题,共计30分)16、计算:2sin45°cos45°=________.17、如图,已知等边的边长是6,点D在AC上,且延长BC到E,使,连接点F,G分别是AB,DE的中点,连接FG,则FG的长为________.18、如图,优弧纸片所在的半径为2,,点为优弧上一点(点不与,重合),将图形沿折叠,得到点的对称点.当与相切时,则折痕的长________.19、如图,在△ABC中,,,AD是△ABC的中线,AE是∠BAD的角平分线,DF//AB交AE的延长线于点F,则DF的长为________.20、如图,点是圆形纸片的圆心,将这个圆形纸片按下列要求折叠,使弧和弧都经过圆心,已知的半径为,则阴影部分的面积是________.21、已知等边的边长为3,点在直线上,点在直线上,且,若,则的长为________.22、在直角三角形ABC中,若2AB=AC,则cosC=________.23、已知tanα= ,那么sinα=________.(其中α为锐角)24、如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30o得到正方形AB′C′D′,则它们的公共部分的面积等于________ 。
第24章 解直角三角形单元测试卷及参考答案

图(1)图(2)第24章 解直角三角形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 如图(1)所示,在△ABC 中,︒=∠90B ,AB BC 2=,则A cos 等于 【 】 (A )25 (B )21 (C )552 (D )552. 如图(2)所示,在Rt △ABC 中,︒=∠90BAC ,BC AD ⊥于点D ,如果α=∠ABC ,那么下列结论 错误的是 【 】 (A )αsin ACBC =(B )αtan ⋅=AD CD (C )αcos ⋅=AB BD (D )αcos ⋅=AD AC3. 如图(3)所示,在菱形ABCD 中,AB DE ⊥,2,53cos ==BE A ,则DBE ∠tan 的值是 【 】图(3)(A )21(B )2 (C )25 (D )554. 在Rt △ABC 中,︒=∠90C ,已知54sin =A ,则A cos 的值为 【 】 (A )54(B )1 (C )53 (D )525. 如图(4)所示,△ABC 的顶点是正方形网格的格点,则A sin 的值为 【 】图(4)CBA(A )21(B )55 (C )1010 (D )5526. 如图(5)所示,已知︒=∠60AOB ,点P 在边OA 上,,12=OP 点M 、N 在边OB 上,PN PM =,若2=MN ,则OM 等于 【 】A B图(5)N OPM(A )3 (B )4 (C )5 (D )67. 如图(6)所示,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若,5,4==BC AB 则AFE ∠tan 的值为 【 】图(6)D(A )54 (B )53 (C )43 (D )358. 如图(7)所示,在Rt △ABC 中,︒=∠90C ,︒=∠30A ,E 为AB 上一点,且1:4:=EB AE ,AC EF ⊥于点F ,连结FB ,则CFB ∠tan 的值等于【 】(A )33 (B )332 (C )335 (D )35 图(7)图(8)9. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度,如图(8)所示,旗杆P A 的高度与拉绳PB 的长度相等.小明将PB 拉到PB′的位置,测得α=∠C PB '(C B '为水平线),测角仪D B '的高度为1米,则旗杆P A 的高度为 【 】(A )αsin 11-米 (B )αsin 11+米(C )αcos 11-米 (D )αcos 11+米10. 如图(9)所示,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD 长2米,且与灯柱BC 成︒120角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC 的高度应该设计为 【 】A图(9)O DBC(A )()2211-米 (B )()22311-米 (C )()3211-米 (D )()4311-米二、填空题(每小题3分,共15分)11. 如图(10)所示,在△ABC 中,12,==BC AC AB ,BD 为高,M 为AB 的中点,且5=DM ,则△ABC 的面积为_________.图(10)图(11)MNBCAD12. 在△ABC 中,如果B A ∠∠、满足021cos 1tan 2=⎪⎭⎫⎝⎛-+-B A ,那么=∠C _________.13. 如图(11)所示,正方形ABCD 的边长为4,N 是DC 的中点,M 是AD 上异于D 的点,且MBC NMB ∠=∠,则=∠ABM tan _________.14. 一般地,当βα,为任意角时,()βα+sin 与()βα-sin 的值可以用下面的公式求得:()βαβαβαsin cos cos sin sin +=+,()βαβαβαsin cos cos sin sin -=-.例如:()4622223222145sin 30cos 45cos 30sin 4530sin 75sin +=⨯+⨯=︒︒+︒︒=︒+︒=︒类似地,可以求得=︒15sin __________.15. 如图(12)所示,已知点()0,35A ,直线b x y +=)0(>b 与y 轴交于点B ,连结AB ,若︒=75α,则=b _________.图(12)三、解答题(共75分)16. 计算:(每小题5分,共20分)(1)︒+︒45cos 360sin 2; (2)130sin 560cos 3-︒︒;(3)︒-︒-︒45tan 230cos 1245sin 22; (4)︒-︒-︒︒60cos 2345tan 60sin 230sin 2.17.(8分)先化简,再求值:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中︒=30sin x .18.(11分)如图(13)所示,在△ABC 中,AC BE BC AD ⊥⊥,,垂足分别为D 、E ,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当1=AC时,求BF的长.tan=∠ABD,3 Array图(13)19.(12分)如图(14)所示,在矩形ABCD中,点E是BC边上的点,AEAE⊥=,,垂足为点F,连结DE.BCDF(1)求证:DFAB=;(2)若,6=ABAD求EDF10=,tan的值.∠Array图(14)20.(12分)如图(15)所示,小强从自己家的阳台上看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42 m,这栋楼有多高?图(15)21.(12分)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(记作sad ).如图1,在△ABC 中,AC AB =,顶角A 的正对记作sad A ,这时sad A ABBC==腰底边.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题: (1)sad =︒60_________;(2)如图2,在△ABC 中,CA CB =,若sad C 56=,求B tan 的值; (3)如图3,在Rt △ABC 中,︒=∠90C ,若54sin =A ,试求sad A 的值.图 1BCA图 2BAC图 3C第24章 解直角三角形单元测试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. 48 12. ︒75 13.3114. 426- 15. 5 三、解答题(共75分)16. 计算:(每小题5分,共20分) (1)︒+︒45cos 360sin 2;解:原式223232⨯+⨯= 62626=+=(2)130sin 560cos 3-︒︒;解:原式1215213-⨯⨯=1= (3)︒-︒-︒45tan 230cos 1245sin 22; 解:原式223322222-⨯-⨯=292321-=--=(4)︒-︒-︒︒60cos 2345tan 60sin 230sin 2.解:原式21231232212⨯--⨯⨯=41324321343131-=-+=--=17.(8分)先化简,再求值:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x ,其中︒=30sin x .解:1211222++-÷⎪⎭⎫ ⎝⎛+-x x x x x x()()()()1111122-=-++⋅+=x x x x x x x x ……………………………………6分当2130sin =︒=x 时……………………………………7分 原式112121-=-=. ……………………………………8分 18.(11分)如图(13)所示,在△ABC 中,AC BE BC AD ⊥⊥,,垂足分别为D 、E ,AD 与BE 相交于点F . (1)求证:△ACD ∽△BFD ;(2)当1tan =∠ABD ,3=AC 时,求BF 的长.图(13)(1)证明:∵AC BE BC AD ⊥⊥, ∴︒=∠+∠︒=∠+∠902,901C C ……………………………………1分 ∴21∠=∠……………………………………2分 ∵︒=∠=∠90BDF ADC ,21∠=∠∴△ACD ∽△BFD ;……………………………………5分 (2)在Rt △ABD 中 ∵1tan =∠ABD ∴1=BDAD……………………………………7分 ∵△ACD ∽△BFD∴13,1===BFBD AD BF AC ∴3=BF .……………………………………9分 19.(12分)如图(14)所示,在矩形ABCD 中,点E是BC边上的点,AE DF BC AE ⊥=,,垂足为点F ,连结DE .(1)求证:DF AB =;(2)若,6,10==AB AD 求EDF ∠tan 的值.图(14)(1)证明:∵四边形ABCD 是矩形 ∴BC AD BC AD ABE =︒=∠,//,90 ……………………………………1分 ∴AEB DAF ∠=∠ ∵AE DF ⊥∴︒=∠=∠90ABE DFA ∵BC AE = ∴DA BC AE == 在△ABE 和△DF A 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠DA AE DAF AEB DFA ABE ∴△ABE ≌△DF A (AAS )……………………………………5分 ∴DF AB =;(2)由(1)可知:△ABE ≌△DF A ∴6==DF AB……………………………………6分 ∵10=AD ∴10=AE在Rt △ABE 中,由勾股定理得:86102222=-=-=AB AE BE……………………………………9分 ∴8=FA∴2=-=FA AE EF……………………………………10分 ∴3162tan ===∠DF EF EDF . ……………………………………12分 20.(12分)如图(15)所示,小强从自己家的阳台上看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42 m,这栋楼有多高?解:由题意可知:42,=⊥AD BC AD m……………………………………1分 在Rt △ABD 中 ∵ADBDBAD =∠tan ∴3342=BD ∴314=BD m……………………………………6分 在Rt △ACD 中 ∵ADCDCAD =∠tan ∴360tan 42=︒=CD∴342=CD m……………………………………11分 ∴356=+=CD BD BC m……………………………………12分 答:这栋楼的高度为356m.21.(12分)我们定义:等腰三角形中底边与腰的比叫做顶角的正对(记作sad ).如图1,在△ABC 中,AC AB =,顶角A 的正对记作sad A ,这时sad A ABBC==腰底边.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad =︒60_________;(2)如图2,在△ABC 中,CA CB =,若sad C 56=,求B tan 的值; (3)如图3,在Rt △ABC 中,︒=∠90C ,若54sin =A ,试求sad A 的值. 解:(1)1;……………………………………3分 (2)作AB CD ⊥.图 2∵CA CB =,AB CD ⊥ ∴AB BD 21=……………………………………4分∵sad C 56=∴56=BC AB 设x AB 6=,则x BC 5=∴x BD 3=在Rt △BCD 中,由勾股定理得:()()xx x BD BC CD 4352222=-=-=……………………………………5分 ∴3434tan ===x x BD CD B . ……………………………………6分 (3)延长AC 至E ,使AE AB =. ……………………………………8分图 3∵54sin =A ∴54=AB BC 设x AB x BC 5,4== ∴x AE 5=在Rt △ABC 中,由勾股定理得:()()xx x BC AB AC 3452222=-=-=……………………………………9分 ∴x AC AE CE 2=-= 在Rt △BCE 中,由勾股定理得:()()xx x CE BC BE 52242222=+=+=∴sad A 552552===x x AB BE .(12分)图 2 mm。
第一章 解直角三角形单元测试卷(标准难度 含答案)

浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。
第2章 解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)

第2章解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、的值等于()A. B. C. D.2、如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A. B. C. D.3、已知,△ABC中,∠C=90°,sinA=,则∠A 的度数是()A.30°B.45°C.60°D.90°4、如图,在的正方形网格中,每个小正方形的边长都是,的顶点都在这些小正方形的顶点上,则的值为()A. B. C. D.5、cos60°的值等于()A. B.1 C. D.6、在中,,,,则的值是()A. B. C. D.7、如图,折叠矩形的一边,使点落在边的点处,已知折痕,且,那么矩形的周长是()A. B. C. D.8、李红同学遇到了这样一道题:tan(α+20°)=1,你猜想锐角α的度数应是()A.40°B.30°C.20°D.10°9、如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=()A. B. C. D.10、某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼三楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=6米,则旗杆AB的高度为()A.9米B.9(1+ )米C.12米D.18米11、如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在反比例函数的图象上,则的值为()A. B. C.2 D.12、图1是一张圆形纸片,直径AB=4,现将点A折叠至圆心O形成折痕CD,再把点C,D 都折叠至圆心O处,最后将图形打开铺平(如图2所示),则弧EF的长为( )A. πB. πC. πD. π13、如图,小明在C处看到西北方向上有一凉亭A,北偏东35°的方向上有一棵大树B,已知凉亭A在大树B的正西方向,若BC=100米,则A、B两点相距()米.A.100(cos35°+sin35°)B.100(cos35°﹣sin35°)C.D.14、如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④15、某数学社团开展实践性研究,在大明湖南门测得历下亭在北偏东37°方向,继续向北走105m后到达游船码头,测得历下亭在游船码头的北编东53°方向.请计算一下南门与历下亭之间的距离约为()(参考数据:,)A.225B.275C.300D.315二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,以点P为圆心,PC长为半径作⊙P。
解直角三角形单元测试题4

第十九章《解直角三角形》测试卷班级: 姓名: 学号: 成绩:一、选择题(每题3分,共21分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B.34 C.53 D.352. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A.21 B.33 C. 1 D.33.在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 4. 在△ABC 中,∠C =90°,53sin =A ,则=B tan ( ).A.53 B.54 C.43 D.345.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A .513 B.1213C .1013D .5126.如图6,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为 A .10米 B .15米 C .25米 D .30米7. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3, 顶宽是3米,路基高是4米,则路基的下底宽是( ) A. 7米 B. 9米 C. 12米 D. 15米二、填空题(每题4分,共32分)8. 如图:P 是∠α的边OA 上一点,且P 点的坐标为(3,4), 则sin (900 - α)=_____________.9.已知直角三角形的两直角边的比为3:7,则最小角 的正弦值为_______.10. Rt △ABC 的两条边分别为5cm 和6cm ,它的周长是 cm.11. 已知△ABC 中,∠C =90°,tanA ∙tan50°=1,那么∠A 的度数是_______.12. 在Rt △ABC 中,∠C =90°,tan A =3,AC 等于10,则S △ABC 等于 . 13.在一艘船上看海岸上高42米的灯塔顶部的仰角为30度,船离海岸线 米.14. 在△ABC 中,∠ACB =900,CD ⊥AB 于D ,若AC =4,BD =7,则sinA = , tanB = .15.如图:有一个直角梯形零件ABCD 、AD ∥BC ,斜腰DC 的长为10cm , ∠D =120°,则该零件另一腰AB 的长是__________cm.三、计算题:(每题6分,共18分) 16. ︒+︒⋅︒30tan 45cos 45sin 17.︒⨯︒45cos 2260sin 2118. .tan30°cot60°+cos 230°-sin 245°tan45°30°图6四.解答题:(29分)19.已知△ABC中.∠C=Rt∠,AC=m,∠ BAC=α.(如图)求△ABC的面积.(用α的三角函数及m表示)(9分)20.雄伟壮观的“千年塔”屹立在海口市西海岸带状公园的“热带海洋世界”.在一次数学实践活动中,为了测量这座“千年塔”的高度,雯雯在离塔底139米的C处(C与塔底B在同一水平线上),用高1.4米的测角仪CD 测得塔项A的仰角α=43°(如图),求这座“千年塔”的高度AB(结果精确到0.1米).(参考数据:tan43°≈0.9325, cot43°≈1.0724)21.如图,河对岸有铁塔AB.在C处测得塔顶A的仰角为30°,向塔前进14米到达D,在D处测得A的仰角为45°,求铁塔AB的高.(10分)附加题:22.如图,为了测量河流某一段的宽度,在河北岸选了一点A, 在河南岸选相距200米的B、C两点,分别测得∠ABC=60O,∠ACB=45O,求这段河的宽度.请你再设计一种测量河宽的可行方案.(10分)αBCAmB CABCDα。
九年级数学上册试题 第23章《解直角三角形》单元测试卷 -沪科版(含答案)

第23章《解直角三角形》单元测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt ABC ∆中,90C ∠=︒,6AC =,4sin 5A =,则AB 的值为()A.8B.9C.10D.122.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,则cos B 的值为()A.13B.12C.22D.323.如图,某游乐场山顶滑梯的高BC 为50米,滑梯的坡比为5:12,则滑梯的长AB 为()A.100米B.110米C.120米D.130米4.如图,ABC ∆的顶点都在正方形网格的格点上,则tan ACB ∠的值为()A.13B.35C.23D.125.下列各式中正确的是()A.sin 46cos 44︒>︒B.2sin 40sin 80︒=︒C.cos 44cos 46︒<︒D.22sin 44sin 461︒+︒=6.如图,在44⨯的正方形网格中,小正方形的顶点称为格点若ABC ∆的顶点都在格点上,则cos ABC ∠的值是()A.13B.12C.55D.2557.如图,在ABC ∆中,90ACB ∠=︒,点D 在AB 的延长线上,连接CD ,若2AB BD =,2tan 3BCD ∠=,则ACBC的值为()A.1B.2C.12D.328.如图,Rt ABC ∆中,90ABC ∠=︒,6AB =,8BC =,D 为AC 边上一动点,且1tan 2ABD ∠=,则BD 的长度为()A.1558B.25C.5D.5119.如图,AC 垂直于AB ,P 为线段AC 上的动点,F 为PD 的中点, 2.8AC m =, 2.4PD m =, 1.2CF m =,15DPE ∠=︒.若90PEB ∠=︒,65EBA ∠=︒,则AP 的长约为()(参考数据:sin 650.91︒≈,cos 650.42︒≈,sin 500.77︒≈,cos500.64)︒≈A.1.2B.1.3m C.1.5m D.2.0m10.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是()A.23-B.23+C.36D.32二、填空题(本大题共8小题,每小题3分,共24分)11.如图,在ABC ∆中,90C ∠=︒,设A ∠,B ∠,C ∠所对的边分别为a ,b ,c ,则正确的是.A .sin a c A =⋅B .cos b c B =⋅C .tan a b A =⋅D .tan a b B=⋅12.有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是BAC ∠,若坡比为2:5,则此斜坡的水平距离AC 为.13.在Rt ABC ∆中,90BCA ∠=︒,CD 是AB 边上的中线,8BC =,5CD =,则tan ACD ∠=.14.如图所示,MON ∠是放置在正方形网格中的一个角,则tan MON ∠的值是.15.在ABC ∆中,22AB =,1tan 3B =,BC 边上的高长为2,则ABC ∆的面积为.16.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB 与水平桥面的夹角是30︒,拉索BD 与水平桥面的夹角是60︒,两拉索底端距离20AD =米,则立柱BC 的高为米.(结果保留根号)17.如图是一款利用杠杆原理设计的平衡灯,灯管AB 与支架AD ,砝码杆AC 均成120︒角,且40AB cm =,18AC cm =,6AD cm =,底座是半径为2cm 的圆柱体,点P 是杠杆的支点.如图1,若砝码E 在端点C 时,当杠杆平衡时,支架AD 垂直于桌面,则此时垂直光线照射到最远点M 到支点P 的距离PM 为cm .由于特殊设计,灯管的重力集中在端点B ,砝码杆重力集中在砝码E 上,支架AD 的重力忽略不计,由杠杆原理可知,平衡时重力保持垂直水平桌面向下,且1122G h G h ⋅=⋅,如图2.为了使得平衡时砝码杆与桌面平行,则砝码E 到离A 点的距离为cm .18.用一副如图1所示的七巧板,拼出如图2所示中间有一个空白正方形的“风车图”,则图2中tan ABC ∠=.三、解答题(本大题共8小题,共66分.)19.计算:22sin 456cos303tan 454sin 60︒-︒+︒+︒.20.如图,在Rt ABC ∆中,90C ∠=︒,10AB =,6BC =,求sin A ,cos A ,tan A 的值.21.如图,在ABC∆中,90C∠=︒,AB的垂直平分线分别交边AB、BC于点D、E,连接AE.(1)如果25B∠=︒,求CAE∠的度数;(2)如果2CE=,2sin3CAE∠=,求tan B的值.22.如图,在ABC∆中,已知ABC m∠=︒,ACB n∠=︒.090m n︒<︒+︒<︒,1AC=.(1)求AB及BC的长度(用m︒,n︒的三角函数表示);(2)试判断sin()sin cos cos sinm n m n m n︒+︒=︒︒+︒︒是否成立并说明理由.23.如图,梯子斜靠在与地面垂直(垂足为)O 的墙上.当梯子位于AB 位置时,它与地面所成的角60ABO ∠=︒,当梯子底端向右滑动0.5m (即0.5)BD m =到达CD 位置时,它与地面所成的角5118CDO ∠=︒',求梯子的长.(参考数据:sin 51180.780︒'=,cos 51180.625︒'=,tan 5118 1.248)︒'=24.如图,在Rt ABC ∆中,90A ∠=︒,作BC 的垂直平分线交AC 于点D ,延长AC 至点E ,使CE AB =.(1)若1AE =,求ABD ∆的周长;(2)若13AD BD =,求tan ABC ∠的值.25.在太原郁郁葱葱的西山上,环绕着一条蜿蜒曲折、鲜艳夺目的公路,它就是太原环城旅游公路暨公路自行车赛道,该赛道环西山而建,全长约136千米,将百余处景点串连成一条线.(1)周日,某自行车骑行团组织甲、乙两个赛队在该赛道进行骑行活动,他们从赛道同一端出发,甲队出发25分钟时乙队出发,结果乙队比甲队提前15分钟到达终点(即赛道的另一端).已知乙队骑行的平均速度为甲队的1.2倍.求甲、乙两个赛队此次活动骑行的平均速度.(2)该赛道一端附近是太原市的摄乐桥如图(1),摄乐桥是太原市第18座跨汾河大桥,也是太原市首座仅靠主塔及缆索承担桥面重量的跨河大桥.某数学兴趣小组的同学们为了测量摄乐桥主塔的高AB,在地面上选取测点C放置测倾仪,测得主塔顶端A的仰角45∠=︒,将测ADM倾仪向靠近主塔的方向前移10m至点E处,测得主塔顶端A的仰角47.7∠=︒,测量示意图AFM如图(2)所示.已知测倾仪的高度 1.5︒≈,=,求摄乐桥主塔的高AB.(参考数据:sin47.70.74CD m︒≈︒≈,tan47.7 1.10)cos47.70.6726.山西省隰县盛产香梨,被称为“隰县玉露香”.县政府运用“互联网+玉露香梨”的发展思路,探索“爱心助农精准脱贫”的方式,构建“隰县玉露香”电商生态圈,使隰县成为中国北方最大的电商孵化基地.2021年春节期间,“隰县玉露香”在网上热销,某电商看准商机,用10000元购进一批“隰县玉露香”,销量可观,于是又用18000元购进一批同款规格的“隰县玉露香”,但第二次的进价比第一次每箱上涨20元,第二次所购数量恰好是第一次的1.5倍.(1)求第一次购进的“隰县玉露香”每箱的价格.(2)政府为推进农村电商高质量可持续发展,在隰县新建一批移动信号发射塔,以提高农村互联网的传输效率.如图,是一个新建的移动信号发射塔AC ,其高15AC m =.用测角仪在山脚下的点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒,点A ,C ,D 在同一条铅垂线上.果农要在山脚B 处修建房屋以方便管理梨园,按国家规定,通讯基站离居民居住地至少100m 就可不受信号塔辐射的影响.请判断在点B 处的房屋是否受信号塔塔顶A 发出的信号辐射的影响.(测角仪、房屋的高度忽略不计;结果精确到0.1m ;参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒=,sin 420.67︒=,cos 420.74︒=,tan 420.90)︒≈答案一、选择题C .B .D .D .D .C .B .D .B .A .二、填空题11.A 、C .12.75m .13.43.14.1.15.7或5.16..17.165.18.3.三、解答题19.原式22()6314222=⨯-⨯+⨯+⨯2234=⨯-+13=-++4=.20.在Rt ACB ∆中,由勾股定理得:8AC ===,所以63sin 105BC A AB ===,84cos 105AC A AB ===,63tan 84BC A AC ===.21.(1)DE 垂直平分AB ,EA EB ∴=,25EAB B ∴∠=∠=︒.40CAE ∴∠=︒.(2)90C ∠=︒ ,∴2sin 3CE CAE AE ∠==.2CE = ,3AE ∴=,AC ∴=3EA EB == ,5BC ∴=,∴tan AC B BC ==.22.(1)作AD BC ⊥于点D ,在Rt ACD ∆中,1AC =,sin AD n AD AC ︒==,cos CD n CD AC︒==,在Rt ABD ∆中,sin AD m AB ︒=,sin sin sin AD n AB m m ︒∴==︒︒,cos BD m AB︒= ,sin cos cos sin n BD AB m m m ︒∴=⋅︒=︒︒.sin cos cos sin n BC BD CD m n m ︒∴=+=︒+︒︒.(2)成立,理由如下:作CE BA ⊥交BA 延长线于点E ,EAC ∠ 为ABC ∆的外角,EAC B ACB m n ∴∠=∠+∠=︒+︒,在Rt EBC ∆中,sin CE m BC︒=,sin sin (cos cos )sin sin cos cos sin sin n CE BC m m n m m n m n m ︒∴=⋅︒=︒+︒︒=︒︒+︒︒︒.23.设梯子的长为xm ,在Rt ABO ∆中,cos OBABO AB∠=1cos cos 602OB AB ABO x x ∴=∠=︒=在Rt CDO ∆中,cos ODCDO CD∠=cos cos51180.625OD CD CDO x x ∴=∠=︒'≈ .BD OD OB =- ,0.5BD m =10.6250.52x x ∴-=,解得4x =.故梯子的长是4米.24.(1)如图,连接BD ,设BC 垂直平分线交BC 于点F ,BD CD ∴=,ABD C AB AD BD∆=++AB AD DC=++AB AC =+,AB CE = ,1ABD C AC CE AE ∆∴=+==,故ABD ∆的周长为1.(2)设AD x =,3BD x ∴=,又BD CD = ,4AC AD CD x ∴=+=,在Rt ABD ∆中,AB ==.tanAC ABC AB ∴∠===.25.(1)设甲队骑行的平均速度为/xkm h,则乙队骑行的平均速度为1.2/xkm h.根据题意,得13613625151.26060x x-=+,解得:34x=.经检验,34x=是原方程的根.1.2 1.23440.8x∴=⨯=.答:甲队骑行的平均速度为34/km h,乙队骑行的平均速度为40.8/km h.(2)如图,过点D作DG AB⊥于点G,则DG过点F.由题意得 1.5BG EF CD m===,10DF m=.设FG a=m.在Rt ADG∆中,45ADG∠=︒,(10)AG DG a m∴==+.在Rt AFG∆中,tanAG AFGFG∠=,tan tan47.7 1.10() AG FG AFG a x m∴=⋅∠=︒≈,10 1.10a a∴+=,解得:100a≈,10100110()AG m∴=+=,110 1.5111.5()AB AG BG m∴=+=+=.答:摄乐桥主塔的高AB约为111.5m.26.(1)设第一次购进隰县玉露香的进价为x 元/箱,根据题意可得:10000180001.520x x ⨯=+,解得100x =,经检验,100x =是原方程的解,答:第一次购进的“隰县玉露香”每箱的价格为100元;(2)由题意得,90ADB ∠=︒,在Rt ABD ∆中,tan AD ABD BD∠=,tan 42AD BD ∴=⋅︒,在Rt BCD ∆中,tan CD CBD BD ∠=,tan 36.9CD BD ∴=⋅︒,AC AD CD =- ,15AC m =,15tan 42tan 36.9BD BD ∴=⋅︒-⋅︒,解得100BD m ≈,100135.1()cos 0.74BD AB m ABD ∴=≈≈∠,135.1100> ,∴在点B 处的房屋不会受信号塔塔顶A 发出的信号辐射的影响.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《解直角三角形》单元测试题
一、选择题
1. 在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦( ) A. 都扩大2倍 B. 都扩大4倍 C. 没有变化 D. 都缩小一半
2. 在Rt △ABC 中,∠C =90°,sinA=
5
4
,则cos B 的值等于( ) A .5
3 B. 5
4 C. 4
3 D. 5
5
3. 在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .
1
2
B .
22
C .
3
2
D .
33
4. 在Rt ∆ABC 中,∠C =90º,∠A =15º,AB 的垂直平分线与AC 相交于M 点,则CM :MB 等于( )
A. 2:3
B. 3:2
C. 3:1
D. 1:3 5. 式子()
2
60tan 145tan 30cos 2
--
-的值是( )
A. 232-
B. 0
C. 32
D. 2 6. 等腰三角形底边与底边上的高的比是3:2,则顶角为( ) A .600
B. 900
C. 1200
D. 1500
7. 在△ABC 中,若()0tan 12
1cos 2
=-+-
B A ,则∠
C 的度数是( ) A .45° B. 60° C .75°
D .105° 8. 河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比3:1,则AC 的长是( ) A .35米 B .10米
C .15米
D .310米
9. 如图,一渔船上的渔民在A 处看见灯塔M 在北偏东60O
方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东15O
方向,此时,灯塔M 与渔船的距离是( ) A.km 27 B.km 214 C.km 7 D.km 14
10. 身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝是拉直的),则三人所放的风筝中( )
6A
B
M
东
(第9题)
同学 甲 乙 丙 放出风筝线长 100m 100m 90m 线与地面夹角
40º
45º
60º
A. 甲的最高
B. 丙的最高
C. 乙的最低
D. 丙的最低 11. 如图,一棵大树被台风拦腰刮断,树根到刮断点的长度是,折断部分
与地面成
的
夹角,那么原来树的长度是( )
12.为了方便行人推车过某天桥,市政府在10m 高的天桥一侧修建了40m 长的斜道(如图所示).我们可以借助科学计算器求这条斜道倾斜角的度数.具体按键顺序是 ( ).
11 12 二、填空题
13. 锐角A 满足2 sin(A-150)=3,则∠A = . 14. 已知tan B =3,则sin 2
B
= . 15. 已知有一山坡水平方向前进了
米,就升高了
米,那么这个山坡的坡度是 .
16.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为 .
17. 如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .
18. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(保留根号)
17 18 19 A
B C D
α
A 1l 3l
2l
4
l
19. 已知如图,将两根宽度为的纸带交叉叠放,若为已知,则阴影部分面积为________
20. 如图,在一段坡度为
的山坡上种树,要求株距(即相邻两株树之间的水平距离)为米,
那么斜坡上相邻两株树之间的坡面距离为________米 三、解答题 21计算:
-1
2016
2cos 60-+2-8-tan 30-12+1
÷⨯()(1)()
22. 如图,在Rt △ABC 中,∠C =90°,AC =12,∠A 的平分线AD =83,求BC ,AB .
23. 如图所示,海上有一灯塔P ,在它周围3海里处有暗礁,一艘客轮以9海里/时的
速度由西向东航行,行至A 点处测得P 在它的北偏东60°的方向,继续行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向.问客轮不改变方向继续前进有无触礁的危险?
24. 如图,某中心广场灯柱
被钢缆
固定,已知
米,且
.求钢缆的长度;若米,灯的顶端距离处
米,且,则灯的顶端距离地面多少米?
25.如图,小华站在河岸上的点,看见河里有一小船沿垂直于岸边的方向划过来.此时测得小船的俯角是.若小华的眼睛与地面的距离是米,
米,
平行于
所在的直
线,迎水坡,坡长
米,点、、、、、在同一平面内,则此时小船到岸边
的距离的长是多少?(结果保留根号)
26. 综合实践课上,张明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸AB 、CD ,河岸AB 上有一排大树,相邻两棵大树之间的距离均为10米.张明先用测角仪在河岸CD 的M 处测得∠α=36°,然后沿河岸走50米到达N 点,测得∠β=72°.请你根据这些数据帮他们算出河宽FR (结果保留两位有效数字). (参考数据:sin 36°≈0.59,cos 36°≈0.81,tan36°≈0.73,sin 72°≈0.95,cos 72°≈0.31,tan72°≈3.08)
A
B
C D
E
F
M
N
R α
β。