(光学测量技术)第1章光学测量基础知识
现代光学测试技术
从测量镜返回光束的光频发生变化,其频移为
,该
光与返回光会合,形成“拍”,其拍频信号可表示为:
计算机先将拍频信号
与参考信号
理后,就得到所需的测量信息 .
进行相减处
设在动镜移动的时间 t 内,由 为 N ,则有:
引起的条纹亮暗变化次数
上式中
为在时间t内动镜移动的距离L,于是有:
单击此处添加大标题内容
第三章 散斑技术 散斑的形成及其性质 当一束激光射到物体的粗糙表面(例如铝板)上时,在铝板前面的空间将布满明暗相间的亮斑与暗斑;
一、双频激光外差干涉仪图
1 -141 示出双频激光外差干涉仪的光学系统。干涉仪的 光源为一双频 He-Ne 激光器,这种激光器是在全内腔单频 He-Ne 激光器上加上约 300 特拉斯的轴向磁场,由于塞曼 效应和频率牵引效应,使该激光器输出一束有两个不同频率的 左旋和右旋圆偏振光,它们频率
差 Δν约为 1.5MHz 。这两束光
1 -5 长度(间隔、高度、振幅)的激光干涉测量
一.
激光干涉测长的工作原理及特点
干涉测长仪器是用光波波长为基准来测量各种长度(如属测量干涉场上指定点上位相随时间而变化的干涉仪。
激光干涉测长仪与用其它准单色光源的干涉测长仪相比,具有下列的显著优点:
激光干涉测 长的工作原 理如图 1101 所示。
单击此处添加大标题内容
1 -6 激光外差干涉测长与测振 激光光波干涉比长仪以光波波长为基准来测量各种长度,具有很高的测量精度。这种仪器中, 由于动镜在测量时一般是从静止状态开始移动到一定的速度,因此干涉条纹的移动也是从静止 开始逐渐加速,为了对干涉条纹的移动数进行正确的计数,光电接收器后的前置放大器一般只 能用直流放大器,而不能用交流放大器,因此在测量时,一般对测量环境有较高的要求,一般 的干涉比长仪不能 用于车间现场进行精密测量。为了适应在车间现场实现干涉计量的需要,必 须使干涉仪不仅具有高的测量精度,而且还要具有克服车间现场中气流及灰雾引起的光电信号 直流漂移的性能,光外差干涉 技术是为解决车间现场测量问题而发展起来的。 这种技术的一个共同点是在干涉仪的参考光路中引入具有一定频率的副载波,干涉后被测信号 是通过这一副载波来传递,并被光电接收器接收,从而使光电接收器后面的前置放大器可以用 一交流放大器代替常规的直流放大器,以隔绝由于外界环境干扰引起的直流电平漂移,使仪器 能在车间现场环境下稳定工作。
专业实用的光学测量知识
1、相对孔径一、相对孔径与数值孔径1. 定义(见图1-1):相对孔径通光口径与焦距之比D f'像方数值孔径物方孔径角u的正弦与物空间的折射率n的乘积NA=n sin u 物方图1-1a、为什么用入瞳直径D不用出瞳直径D' ?若用D',它到系统后焦点F'的距离就不一定是焦距f '。
若用入瞳直径,对于物在无限远的成像系统来说,不管入瞳在什么地方,相对孔径总是D f'。
见图1-2。
后主面F'U'maxf'D图1-2b、为什么用sin u不用tan u?理想光学系统的物像空间不变式:n·y·tan u=n'·y'·tan u'考虑到设计计算方便,采取规格化(归一化)的措施,故采用正弦代替正切。
相应的,显微镜的设计必须满足正弦条件:n·y·sin u=n'·y'·sin u'D f'、NA与对准精度、调焦精度、分辨率、光学传递函数密切相关,而且是D f'、NA 越大,对准、调焦精度越高,分辨率越高,像质越好。
2. 对准:对准误差用γ、Δy 表示。
11610min (~)γα= 11610min (~)y ε∆=1.02D λα= 道斯 0.51NAλε= 道斯 D f '、NA 越大,对准越高。
3. 调焦: 焦深是对应K λ(K =4~8)波前误差的像点位置变化量。
望远物镜、照相物镜的焦深表示为:22max 22()sin x F k U Kλλ'∆=±≈±⋅' 显微物镜的焦深表示为: 22()x k NA λ∆=±⋅ D f '、NA 越大,调焦精度越高。
4. 分辨率:D f '、NA 越大,分辨率越高。
5. 像质:星点直径望远、照相物镜: 2.44d F λ=⋅显微物镜: 1.22d NA λ=衍射受限系统的光学传递函数:2()arccos()c r OTF r r π⎡=⋅-⎢⎣ r c - 截至空间频率 c D r dλ= (D -出瞳直径,d -出瞳面到像平面的距离) 对于无限远目标成像,d 可用f '替代,则:1c r Fλ=见图1-3。
光学与光电子技术作业指导书
光学与光电子技术作业指导书第1章光学基础知识 (4)1.1 光的波动性与粒子性 (4)1.1.1 波动性 (4)1.1.2 粒子性 (4)1.2 光的传播与反射 (4)1.2.1 光的传播 (4)1.2.2 反射 (4)1.3 光的折射与全反射 (4)1.3.1 折射 (4)1.3.2 全反射 (4)第2章光的干涉与衍射 (5)2.1 干涉现象及其应用 (5)2.1.1 干涉现象的基本原理 (5)2.1.2 干涉现象的应用 (5)2.2 衍射现象及其分类 (5)2.2.1 衍射现象的基本原理 (5)2.2.2 衍射现象的分类 (5)2.3 光学仪器中的干涉与衍射 (6)2.3.1 干涉在光学仪器中的应用 (6)2.3.2 衍射在光学仪器中的应用 (6)第3章光的偏振与双折射 (6)3.1 偏振光及其产生 (6)3.1.1 偏振光的概念 (6)3.1.2 偏振光的产生 (6)3.2 双折射现象及其应用 (6)3.2.1 双折射现象 (7)3.2.2 双折射的应用 (7)3.3 偏振器件与偏振光检测 (7)3.3.1 偏振器件 (7)3.3.2 偏振光检测 (7)第4章光的吸收与发射 (7)4.1 光的吸收过程 (7)4.1.1 吸收系数 (8)4.1.2 贝尔定律 (8)4.1.3 吸收光谱 (8)4.2 光的发射过程 (8)4.2.1 自发发射 (8)4.2.2 受激发射 (8)4.2.3 荧光和磷光 (8)4.3 光谱分析与光谱仪器 (8)4.3.1 光谱仪的原理 (8)4.3.3 光谱分析的应用 (9)4.3.4 光谱仪器的功能指标 (9)第5章激光原理与技术 (9)5.1 激光产生与特性 (9)5.1.1 激光产生原理 (9)5.1.2 激光特性 (9)5.2 激光器及其类型 (9)5.2.1 激光器的分类 (9)5.2.2 常见激光器介绍 (9)5.3 激光在光电子技术中的应用 (10)5.3.1 光通信 (10)5.3.2 光存储 (10)5.3.3 光刻 (10)5.3.4 材料加工 (10)5.3.5 医疗美容 (10)5.3.6 测量与检测 (10)5.3.7 激光显示 (10)第6章光电子器件与电路 (10)6.1 光电子器件原理 (10)6.1.1 光电子器件概述 (10)6.1.2 光源 (11)6.1.3 光探测器 (11)6.1.4 光调制器 (11)6.1.5 光开关 (11)6.2 光电子电路设计 (11)6.2.1 光电子电路概述 (11)6.2.2 光源驱动电路设计 (11)6.2.3 光探测器电路设计 (11)6.2.4 光调制器电路设计 (11)6.2.5 光开关电路设计 (11)6.3 光电子器件在通信与显示领域的应用 (12)6.3.1 光电子器件在光通信中的应用 (12)6.3.2 光电子器件在光纤通信中的应用 (12)6.3.3 光电子器件在显示技术中的应用 (12)6.3.4 光电子器件在光互连和光计算中的应用 (12)第7章光学传感器与检测技术 (12)7.1 光学传感器原理 (12)7.1.1 光敏感元件 (12)7.1.2 信号处理电路 (12)7.2 光学检测方法 (12)7.2.1 光谱检测 (13)7.2.2 干涉检测 (13)7.2.3 全息检测 (13)7.3 光学传感器在环境监测与生物检测中的应用 (13)7.3.1 环境监测 (13)7.3.2 生物检测 (13)第8章光通信技术与系统 (14)8.1 光纤通信原理 (14)8.1.1 光纤结构及分类 (14)8.1.2 光纤传输原理 (14)8.1.3 光源与光检测器 (14)8.2 光通信器件与设备 (14)8.2.1 光发射器件 (14)8.2.2 光接收器件 (14)8.2.3 光放大器与光衰减器 (14)8.2.4 光开关与光调制器 (14)8.3 光通信网络的规划与优化 (14)8.3.1 光通信网络结构 (14)8.3.2 光通信网络设计 (15)8.3.3 光通信网络优化 (15)8.3.4 光通信网络管理 (15)第9章光学成像与显示技术 (15)9.1 成像系统原理 (15)9.1.1 光的传播与成像规律 (15)9.1.2 成像系统的分类与结构 (15)9.1.3 成像系统的主要功能指标 (15)9.2 显示技术及其发展 (15)9.2.1 阴极射线管(CRT)显示技术 (15)9.2.2 液晶显示(LCD)技术 (16)9.2.3 发光二极管(LED)显示技术 (16)9.2.4 有机发光二极管(OLED)显示技术 (16)9.3 光学成像与显示在虚拟现实与增强现实中的应用 (16)9.3.1 虚拟现实中的光学成像与显示技术 (16)9.3.2 增强现实中的光学成像与显示技术 (16)9.3.3 光学成像与显示技术在VR与AR领域的挑战与展望 (16)第10章光电子技术在新能源领域的应用 (16)10.1 光伏发电原理与器件 (17)10.1.1 光伏效应 (17)10.1.2 光伏器件 (17)10.1.3 提高光伏转换效率的方法 (17)10.2 光催化与光化学合成 (17)10.2.1 光催化原理 (17)10.2.2 光催化剂 (17)10.2.3 光化学合成 (17)10.3 光电子技术在节能减排中的应用展望 (17)10.3.1 太阳能光伏发电 (17)10.3.2 光催化技术在环境保护中的应用 (18)10.3.3 光电子技术在新能源汽车中的应用 (18)10.3.4 光电子技术在绿色建筑中的应用 (18)第1章光学基础知识1.1 光的波动性与粒子性1.1.1 波动性光作为一种电磁波,具有波动性。
光学测试技术光学干涉测量技术
§4.1 干涉测量基础
样板本身也有误差,这种误差必然会影响到检测结果。下表给
出了基准样板精度等级的划分办法。在光学图纸上,基准样板精 度等级以符号ΔR表示。由于被测面曲率半径和样板曲率半径存在 差异ΔR’,使两者之间存在一定的空气隙厚度。空气隙厚度越大, 光圈数就越多。根据简单的数学推导,可以得到:
的矢高(波高)为Power。当最接近球面为会聚波前时,Power取
正值;当最接近球面为发散波前时,Power取负值。可见,Power
越小,波前的准直性越高,因此将Power称为波前的离焦量。
将Power从PV移出后的剩余量用pv表示。事实上,pv更能体
现波前的极限误差。
虽然PV可以用于描述元件或系统的质量,但这种描述往往容
9
§4.1 干涉测量基础
所有干涉条纹进行强度叠加,形成视场中见到的干涉条纹。 条纹度比度直接取决于光阑大小。
如图所示。设光阑半径为rm0,应用物理光学知识可以证明:
f' rm0 2
/h
K≥90%
m0
1 2
/h
式中h是虚拟空气楔厚度。可见,为保证干涉仪的空间相干性,
采用长焦准直镜,采用尽可能相等的两臂长,减小空气楔厚度是
n 1
若测试光路中混入有杂散光,其强度均为:I' mI1
k 2 n 会导致干涉图像对比度进一步下降 1 n m
见p79图4-4
§3.1 干涉测量基础
(2)光源大小的影响及其空间相干性 干涉条纹的照度很大程度上取决于光源的尺寸。而光源的尺
寸大小又会影响到各种干涉条纹的干涉图样对比度。 平行平板的等倾干涉: 对比度与光源大小无关 杨氏干涉:只有利用狭缝限制光源尺寸,才能获得干涉条纹 楔形板形成的等厚干涉:介于上述两种情况之间。
测量基础知识
第三章 测量方法分类
绝对测量和相对测量:测量器具的示值直接反映被测量 量值的测量为绝对测量。用游标卡尺、外径千分尺测量 轴径。将被测量与一个标准量值进行比较得到两者差值 的测量为相对测量。如用内径百分表测量孔径为相对测 量。 被动测量和主动测量:产品加工完成后的测量为被动测 量;正在加工过程中的测量为主动测量。被动测量只能 发现和挑出不合格品。而主动测量可通过其测得值的反 馈,控制设备的加工过程,预防和杜绝不合格品的产生。
Page 13
第四章 测量误差 ①测量器具:测量器具设计中存在的原理误差,如杠杆机 构、阿贝误差等。制造和装配过程中的误差也会引起其示 值误差的产生。例如刻线尺的制造误差、量块制造与检定 误差、表盘的刻制与装配偏心、光学系统的放大倍数误差、 齿轮分度误差等。其中最重要的是基准件的误差,如刻线 尺和量块的误差,它是测量器具误差的主要来源。
Page 11
Page 12
第四章 测量误差
由于测量过程的不完善而产生的测量误差,将导致测得 值的分散入不确定。因此,在测量过程中,正确分析测 量误差的性质及其产生的原因,对测得值进行必要的数 据处理,获得满足一定要求的置信水平的测量结果,是 十分重要的。 测量误差定义:被测量的测得值x与其真值x0之差,即: △= x -x0 由于真值是不可能确切获得的,因而上述善于测量误差 的定义也是理想的概念。在实际工作中往往将比被测量 值的可信度(精度)更高的值,作为其当前测量值的 “真值”。 误差来源:测量误差主要由测量器具、测量方法、测量 环境和测量人员等方面因素产生。
Page 10
第三章 测量方法分类
接触测量和非接触测量:测量器具的测头与被测件表面接 触并有机械作用的测力存在的测量为接触测量。如用光切 法显微镜测量表面粗糙度即属于非接触测量。
2020年深圳大学光学工程研究生考试复试历年考题题库大全-光学测量技术与应用(包含考题和解答)
第一章光学测量的基本知识。
光学测量系统的主要组成部分:常用光源、探测器与处理电路、调制方法等任一测量系统组成部分:(被测对象)传感器信号调理数据显示与记录(观察者)光学测量系统的基本组成部分: 光源、被测对象与被测量、光信号的形成与获得、光信号的转换、信号或信息处理光学测量的主要应用范围:辐射度量和光度量的测量非光物理量的测量光电子器件与材料及光电子系统特性的测试光学测量方法的优点:非接触性、高灵敏度、高精度光学测量技术主要特点:非接触性、高灵敏度、三维性、快速性与实时性技术现状(近代光学测量系统的主要特点): 从主观光学发展为客观光学,用光电探测器取代,提高测量精度和与效率。
用激光光源来取代常规光源,获得方向性极好的实际光束。
从光机结合的模式向光机电一体化的模式转换,实现测量与控制的一体化。
发展方向: 1.亚微米级、纳米级的高精密光学测量方法将优先得到发展,利用新的物理学原理和光电子学原理产生的光学测量方法将不断出现 2.以微细加工技术为基础的集成光学及其它微传感器将成为技术的主流方向 3.3D 测量技术取得突破,发展带存储功能的全场动态测量仪器4.发展闭环式光学测量技术,实现光学测量与控制的一体化5.发展光学诊断和光学无损检测,取代常规的无损检测方法光学测量方法分类:相位检测、时间探测、谱探测、衍射法、图像探测、各种物理效应方法选择依据:被测对象与被测量、测量范围、测量的灵敏度或精度、经济性、环境要求光源选择的基本要求:对光源发光光谱特性的要求对光源发光强度的要求对光源稳定性的要求光源的分类:按光辐射来源不同,分为自然光源和人工光源。
按工作原理不同,人工光源大致分为热光源,气体放电光源,固体光源和激光光源。
通常把能发出可见光的物体叫做光源,把能发出不可见光的物体叫做辐射源。
激光器:利用受激发射原理和激光腔的滤波效应。
主要特点: 有极小的光束发散角,方向性好和准直性好激光的单色性好,或者说相干性好功率密度很高分类:按工作物质的不同分为气体激光器、固体激光器、半导体激光器半导体激光器优点:体积小、重量轻、寿命长、具有高的转换效率光电探测器:把光辐射量转换为电量的光探测器。
光学测量与光学工艺知识点答案
目录第一章基本光学测试技术 (2)第二章光学准直与自准直 (5)第三章光学测角技术 (9)第四章:光学干涉测试技术 (12)第六章:光学系统成像性能评测 (15)第一章 基本光学测试技术• 对准、调焦的定义、目的;对准又称横向对准,是指一个对准目标(?)与比较标志(?)在垂直瞄准轴(?)方向像的重合或置中。
例:打靶、长度度量人眼的对准与未对准:对准的目的:1.瞄准目标(打靶);2.精确定位、测量某些物理量(长度、角度度量)。
调焦又称纵向对准,是指一个目标像(?)与比较标志(?)在瞄准轴(?)方向的重合。
人眼调焦:调焦的目的 :1.使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度;2.使物体(目标)成像清晰;3.确定物面或其共轭像面的位置——定焦。
121'2'1'P 2'2''•人眼调焦的方法及其误差构成;常见的调焦方法有清晰度法和消视差法。
清晰度法是以目标与比较标志同样清晰为准。
调焦误差是由于存在几何焦深和物理焦深所造成的。
消视差法是以眼镜在垂直平面上左右摆动也看不出目标和标志有相对横移为准的。
误差来源于人眼的对准误差。
(消视差法特点:可将纵向调焦转变为横向对准;可通过选择误差小的对准方式来提高调焦精确度;不受焦深影响)•对准误差、调焦误差的表示方法;对准误差的表示法:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示;调焦误差的表示法:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示;•常用的对准方式;常见的对准方式有压线对准,游标对准,夹线对准,叉线对准,狭缝叉线对准或狭缝夹线对准。
•光学系统在对准、调焦中的作用;提高对准、调焦精度,减小对准、调焦误差。
•提高对准精度、调焦精度的途径;使用光学系统进行对准,调焦;光电自动对准、光电自动调焦;•光具座的主要构造;平行光管(准直仪);带回转工作台的自准直望远镜(前置镜);透镜夹持器;带目镜测微器的测量显微镜;底座•平行光管的用途、简图;作用是提供无限远的目标或给出一束平行光。
光学测量的基础知识课件
光在不同物质中传播速度一般不同,在真空中最快。
光线直线传播的应用
可应用于光学测量、定位、光学仪器等。
光学成像原理
01
02
03
成像原理
基于透镜或反射面的折射 或反射原理,将物体成像 于视网膜或探测器上。
成像公式
1/f = 1/u + 1/v,其中f 为透镜焦距,u为物距,v 为像距。
成像质量
光学测量通常采用非接触式测量方式 ,具有高精度、高分辨率、非破坏性 等优点。
光学测量特点
高精度
实时性
光学测量利用光的干涉、衍射等效应,可 以实现高精度的测量,达到纳米级甚至更 高级别的测量精度。
光学测量可以实现实时在线测量,可以在 生产过程中快速获取测量数据,及时调整 生产工艺,提高产品质量。
非接触性
环境监测
光学测量可以用于环境监测,如空气质量、水质、噪声等 环境参数的测量。
医学诊断
光学测量在医学领域也有广泛应用,如医学影像、光学显 微镜、激光治疗等。
科研领域
光学测量在科研领域也有重要应用,如物理实验、化学分 析、生物研究等。
02
光学测量基本原理
光线传播定律
光线传播方向
光线在均匀介质中沿直线传播,当通过不同介质时,会发生折射 和反射现象。
利用光谱和偏振等光学技术实现对大气污染物的监测,如 二氧化硫、氮氧化物等。
水质监测
利用光学技术实现对水体中的污染物、悬浮物、叶绿素等 物质的监测。
气象观测
利用光学技术实现对云层、风向、风速等气象参数的观测 。
光学测量在安全防范中的应用
光学防盗系统
利用红外、微波等光学技术实现 防盗报警,具有高灵敏度和高分 辨率等优势。
工程光学知识点整理
工程光学课件总结班级:姓名:学号:目录第一章几何光学基本原理 (1)第一节光学发展历史 (1)第二节光线和光波 (1)第三节几何光学基本定律 (3)第四节光学系统的物象概念 (5)第二章共轴球面光学系统 (6)第一节符号规则 (6)第二节物体经过单个折射球面的成像 (7)第三节近轴区域的物像放大率 (10)第四节共轴球面系统成像 (11)第二章理想光学系统 (13)第一节理想光学系统的共线理论 (13)第二节无限远轴上物点与其对应像点F’---像方焦点 (14)第三节理想光学系统的物像关系 1,作图法求像 (17)第四节理想光学系统的多光组成像 (21)第五节实际光学系统的基点和基面 (25)第六节习题 (27)第四章平面系统 (27)第一节平面镜 (27)第二节反射棱镜 (28)第三节平行平面板 (30)第四节习题 (31)第五章光学系统的光束限制 (31)第一节概述 (31)第二节孔径光栅 (33)第三节视场光栅 (34)第四节景深 (35)第五节习题 (36)第八章典型光学系统 (36)第一节眼睛的光学成像特性 (36)第二节放大镜 (39)第三节显微镜系统 (40)第四节望远镜系统 (44)第五节目镜 (46)第六节摄影系统 (47)第七节投影系统 (49)第八节光学系统外形尺寸计算 (49)第九节光学测微原理 (52)第一章几何光学基本原理光和人类的生产活动和生活有着十分密切的关系,光学是人类最古老的科学之一。
对光的每一种描述都只是光的真实情况的一种近似。
研究光的科学被称为“光学”(optics),可以分为三个分支:几何光学物理光学量子光学第一节光学发展历史1,公元前300年,欧几里得论述了光的直线传播和反射定律。
2,公元前130年,托勒密列出了几种介质的入射角和反射角。
3,1100年,阿拉伯人发明了玻璃透镜。
4,13世纪,眼镜开始流行。
5,1595年,荷兰著名磨镜师姜森发明了第一个简陋的显微镜。
光学测量与光学工艺知识点答案
•V棱镜法折射率测量原理及精度水平;
测量原理光路图如下图所示:
测量不确定度可达到
•V棱镜折光仪的主要构造;
平行光管、V棱镜、对准望远镜、度盘、读数显微镜
•折射液的作用;
排除V棱镜和待测透镜之间的空气,从而提高测量精度。
自准直:利用光学成像原理,使物和像都在同一个平面上并重合的方法
•准直的目的、用途;
获得平行光束
•实现准直的方法;
激光束:很好的方向性、很高的亮度,是直线性测量的理想光束
进一步提高激光束准直性(平行性),可采用激光束的准直技术
利用倒装望远镜法,实现激光束的准直
•自准直仪的类别;
自准直仪一般指自准直望远镜和自准直显微镜。
第三章
•精密测角仪的主要部件关键部件及其作用;
自准直前置镜(瞄准、定位)
平行光管(产生无限远的瞄准标记:狭缝、分划线等)
精密轴系(围绕旋转中心平稳旋转,圆锥轴系、圆柱轴系、空气静压轴系)
圆分度器件(角度基准)
显微读数系统(将被测角与度盘进行比较,得到角度值)
•常见的圆分度器件;
最常用的是度盘,其他的还有多面体、圆光栅、光学轴角编码器、感应同步器等。
•放大率法的原理简图及测量装置;
原理简图:
测量装置:光具座(光源、波罗板、平行光管、测量显微镜)
•放大率法焦距测量计算;
•放大率法焦距测量中的注意事项;
负透镜(测量显微镜工作距离)
光源光谱组成(色差)
被测镜头像质
近轴焦距与全口径焦距(球差)、测量显微镜NA
第二章
•准直、自准直的概念;
光学测试技术-第1章-基本光学测量技术1
② 消视差法 其推导过程与清晰度法一致。对消视差法在像方的调焦不确定度
换算至物方,换算公式为:
x
'
nf
'2 eq
可得到调焦误差为:
x
2n e
D'1
f '2 eq
n e
f
' eq
NA
D' D'1
其单次调焦标准不确定度为 x / 3
列表比较经过不同光学系统后的对准误差与调焦误差
武汉大学 电子信息学院
23
武汉大学 电子信息学院
5
§1.1 光学测量中的对准与调焦技术
三、人眼的对准误差和调焦误差 1、人眼的对准误差
在正常照度下,人眼的对准误差主要取决于对准方式。 表1-1(p2)给出了5种不同对准方式下人眼的对准误差。 可见,随对准方式的不同,人眼对准误差在10″-120″之间。
2、人眼的调焦误差 要知道人眼的调焦误差,必须首先知道人眼是如何调
17
§1.1 光学测量中的对准与调焦技术
②消视差法 人眼通过望远镜调焦时,眼睛在出瞳面上摆动的最大距离受出瞳直径 的限制。同时,在视网膜上像的位置由进入眼瞳的成像光束的中心线 与视网膜的交点决定。因此眼瞳的有效移动距离为b,实际移动距离
为t,且: b t
b b
t
武汉大学 电子信息学院
18
§1.1 光学测量中的对准与调焦技术
焦的。人眼常用的调焦方式有两种:清晰度法、消视差法。
武汉大学 电子信息学院
6
x
§1.1 光学测量中的对准与调焦技术
清晰度法 以目标和比较标志同样清晰为准,这时的调焦误差由几何焦 深和物理焦深造成。 ①几何焦深 标志严格成像在视网膜上,则在视网膜上的像是一个几何点。 调焦时目标不一定与标志在同一平面上。但只要目标在视网 膜上生成的弥散圆直径小于人眼的极限分辨率,人眼仍然认 为所成的像是一个点,即认为目标和标志同样清晰,或目标 与标志在同一平面上。 当弥散圆直径等于人眼的极限分辨率时,目标与标志之间的 距离δx即为调焦极限误差。称2δx为几何焦深。可见几何焦深 的大小主要取决于人眼的极限分辨率αe。
第一章工程测量基础知识(多选题32道)
第一章工程测量基础知识(多选题32道)姓名 [填空题] *_________________________________1.()下列关于建筑坐标系,说法正确的是。
*A.建筑坐标系的坐标轴通常与建筑物主轴线方向一致(正确答案)B.建筑坐标系的坐标原点通常设置在总平面图的东南角上C.建筑坐标系的坐标轴通常用A、B分别表示坐标纵轴、横轴(正确答案)D.对于前后、左右对称的建筑物,坐标原点可选在对称中心(正确答案)E.测设前需进行建筑坐标系统与测量坐标系统的变换(正确答案)2.测量的基本工作有()。
*A.施工放样B.距离测量(正确答案)C.角度测量(正确答案)D.高差测量(正确答案)E.地形测量3.工程施工各阶段中,需要进行实地测量工作的有()阶段。
*A.勘测(正确答案)B.设计C.预算D.施工(正确答案)E.竣工(正确答案)4.下列关于测量记录计算的基本要求中,属于正确说法的是()。
*A.计算有序(正确答案)B.四舍六入,五看奇偶,奇进偶舍(正确答案)C.步步校核(正确答案)D.预估结果E.各项测量数据记录错误均可以修改5.关于大地水准面的特性,下列说法正确的是()。
*A.大地水准面有无数个B.大地水准面是不规则的曲面(正确答案)C.大地水准面是唯一的(正确答案)D.大地水准面是封闭的(正确答案)E.任意一点的铅垂面总是垂直于该点大地水准面(正确答案)6.为了确定地面点位,测量工作的基本观测量有()。
*A.角度(正确答案)B.高差(正确答案)C.距离(正确答案)D.坐标值E.高程7.下列关于建筑工程测量的说法中,属于正确说法的是()。
*A.工程勘测阶段,不需要进行测量工作B.工程设计阶段,需要在地形图上进行总体规划及技术设计(正确答案)C.工程施工阶段,需要进行施工放样(正确答案)D.施工结束后,测量工作也随之结束E.施工范围小,建筑工程施工放样可以不做控制测量8.新中国成立至今,我国先后采用的坐标系统有()。
光学测量-长春理工大学精品课
开[尔文] 克耳文 摩[尔] 莫耳
坎[德拉] 燭光
3
导出物理量
时间:三十万年差一秒 长度:氪86同位素波长λ=605.78nm,Δλ=4.7×10-4nm,相干长 度L=λ2/Δλ=0.78m;氦氖激光器λ=632.8nm,Δλ=6×109nm,L=60km
辅助物理量:平面角rad,球面角 sr 导出物理量 国际200多种,我国120种. 与光学测量有关的光学量导出单位: 光通量 流明 lm 1lm=1cd.sr 辐射能中能引起人眼光刺激的那部分辐通 量 光照度 勒(克斯)lx 1 lx=1 lm/m2单位面积上所接收的光通量大小 辐透(ph)1ph=1 lm/cm2。 计量单位:有明确定义和名称并命其数值为1的固定的量 量值:数值和计量单位的乘积
测量结果也应包含测量误差的说明及其优劣的评价 Y=N±ΔN
20
第一节 测量误差与数据处理
真值就是与给定的特定量的定义相一致的量值。客观存在 的、但不可测得的(测量的不完善造成)。
可知的真值: a. 理论真值----理论设计值、理论公式表达值等 如三角形内角和180度; b. 约定(实用)真值-----指定值,最佳值等, 如阿伏加德罗常数, 算术平均值当真值等。
如:测量单摆的振动周期T,用公式
T 2 l / g
求得g
6
例:空调机测量控制室温
被测对象: 室内空气
被测物理量: 温度 测量器具: 温度传感器 --- 热电阻、热电偶
电信号 处理 显示 操作过程:空气 热敏电阻
空调机
返回 7
计量、测量、测试的区别
计量:准确一致的测量 国际标准——国家计量局——地区计量站—— 工厂计量室——车间检验组。 测试:具有实验性质的测量。 检测:对产品以及成型仪器的测量。
《光电检测技术》第一章
4)光电转换:光信息经光电器件实现由光向电的信息 光电转换: 转换,称为光电转换。用各种光电变换器件来完成的, 转换,称为光电转换。用各种光电变换器件来完成的, 如光电检测器件、光电摄像器件等。 如光电检测器件、光电摄像器件等。 5)电信息处理:用各种电信号处理的方法实现解调、 电信息处理:用各种电信号处理的方法实现解调、 滤波、整形、判向、细分等, 滤波、整形、判向、细分等,或送到计算机进行进一步 的运算。 的运算。 6)控制、存储、显示部分。 控制、存储、显示部分。 被测对象与被控对象。 7)被测对象与被控对象。 光学变换与光电转换是光电测量的核心部分。 光学变换与光电转换是光电测量的核心部分。
(2)工作原理:
(d)由主振向二跳变脉冲间填充测量脉冲便可测出光扫描工 Δt, 不变, 件上下边缘的时间 Δt,若光扫描工件的线速度 v不变,则可 =vΔt。 测出被测工件尺寸 D =vΔt。
3、光电检测系统的基本组成:
1)光源:产生信息传递的媒介——光。 光源:产生信息传递的媒介——光 —— 2)光学系统:对光线传播方向等作处理以适应要求。 光学系统:对光线传播方向等作处理以适应要求。 光学变换: 3)光学变换:光载波与被测对象相互作用而将被测量 载荷到光载波上,称为光学变换。 载荷到光载波上,称为光学变换。 光学变换是用各种调制的方法来实现的。 光学变换是用各种调制的方法来实现的。使用各种光 学元件和光学系统来实现的,如平面镜、光狭缝、光 学元件和光学系统来实现的,如平面镜、光狭缝、 透镜等,实现将被测量转换为光参量(振幅、 楔、透镜等,实现将被测量转换为光参量(振幅、频 相位、偏振态、传播方向变化等)。 率、相位、偏振态、传播方向变化等)。
液压动力系 统
(左方) 左方)
{
(光学测量技术)第1章光学测量基础知识
第1章 光学测量基础知识 4. 按测量目的的数目多少分类 按照测量目的数目的不同,测量可分为独立测量和组合 测量。 独立测量:只有一个量作为测量目的的测量。一般说来, 它的测量原理可用一个方程式来表示。 组合测量:测量目的为两个及两个以上的测量。此时, 测量原理必须用方程组来表示。
第1章 光学测量基础知识 5. 按测量时所处的条件分类 按照测量时所处条件的不同,测量可分为等精度测量和 非等精度测量。 等精度测量:在同一条件下进行的一系列重复测量,称 为等精度测量。如每次测量都使用相同的方法、相同的仪器、 在同样的环境下进行,而且每次都以同样的细心和注意程 度来工作等。 非等精度测量:在多次测量中,进行每一次测量时,若 对测量结果精确度有影响的一切条件不能完全维持不变,则 所进行的一系列重复测量称为非等精度测量。
第1章 光学测量基础知识 1. 1. 4 测量的分类 对测量的分类可以从以下几个不同的角度进行。 1. 按获得测量结果的方式分类 从获得测量结果的方式来分,测量可分为直接测量和间 接测量。 直接测量:测量目的就是被测量,此时,测量目的直接 与标准量进行比较,从而求得测量目的的大小。 间接测量:在这种测量中,被测量不是测量目的。测量 目的的大小,是通过与它有一定关系的被测量的测量,而间 接地按已知的函数关系求得的。
第1章 光学测量基础知识 各测得值与算术平均值之差代表残差。残差有以下两个 性质: (1)当 n →∞ 时,残差代数和为零,即
(2)残差的平方和为最小,即
第1章 光学测量基础知识 1. 2. 5 算术平均值的标准偏差 真值往往是无法确切知道的,只能用算术平均值代替真 值,又由于测量次数总是有限的,因此标准偏差只能由残差 计算出的所谓标准偏差来估计。 在有限次数的测量中,用残差求出的 σ 估计 σ 0 的计算 公式如下:
1.4焦距测量
§3 焦距和顶焦距的测量
(三)测量不确定度
一、放大率法
测量顶焦距的不确定度包括显微镜的位臵读数误差(顶焦距 小于250mm时不确定度0.1mm,大于250mm时可达0.3mm)和 显微镜的两次调焦不确定度。测量正透镜的顶焦距(只用 1 、 5 显微物镜),不确定度为0.1-0.4mm;测量负透镜时 1 显微物镜),测量不确定度约为0.1-1.5 0 (用 0 . 33 、 . 5 、 mm。
2
2 D
1 y
2
2 y
1 4
2
2 4
2
(1 33 )
式中: f c , D , y , 4 分别为 f c, D , y , 4 的标准不确定度。 需要说明:实际平行光管焦距不可能正好等于1200mm,为了 保证保持仪器常数 C 0 为表1-2所示的整数,一般用改变显微 物镜到目镜测微器的距离,即改变显微物镜的放大率 来达到。
§3 焦距和顶焦距的测量
一、放大率法
(二)用GXY-08A型光具座测量的测试技术
被测正透镜的焦距最大值受仪器导轨长度的限制;负透镜 焦距的最大值则受显微镜工作距离的限制。表1-2所列的焦 距测量范围是根据导轨长度只有2m,显微镜的工作距离随 的增大而迅速减小,以及D值太小会影响测量精度(通常令 D在2.5-24范围内)这样一些限制条件确定的。能测顶焦距 的最大值也大致与表中所列举的焦距最大值相同。 由于被测透镜球差的影响,全口径对应的最佳像点位臵一 般不与近轴焦点重合,因此,应尽量测量被测透镜全口径工 作时的焦距。为此除要求平行光管口径大于被测透镜有效口 径外,还要求测量显微镜的数值孔径大于或等于被测透镜相 对孔径的一半(即被测透镜轴上点成像光束全部进入显微镜 成像)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 光学测量基础知识 1. 2. 2 测量误差的来源和分类 总的来说,测量误差产生的原因可归纳为以下几种: (1)测量装置误差:来源于读数或示值装置误差、基准器 (或标准件)误差、附件(如光源、水准器、调整件等)误差和 光电探测电路误差等,按其表现形式可分为机构误差、调整 误差、量值误差和变形误差等。 (2)环境误差:温度、湿度、气压、照明等与要求的标准 状态不一致或由于振动、电磁干扰等导致的误差。
第1章 光学测量基础知识 有界性:在一定的测量条件下,偶然误差的绝对值不会 超过一定的限度。 抵偿性:偶然误差的算术平均值随着测量次数的不断增 加而趋于零,即
正态分布的标准偏差 σ 0 和极限误差 Δ 的关系为
第1章 光学测量基础知识 2. 等概率分布 等概率分布又称均匀分布,偶然误差在区间[ - Δ , + Δ ] 内各处出现的概率相等,区间外概率为零。显微镜或望远镜 对物体进行调焦时,调焦在景深范围内任一点,像均是清晰 的,超出景深范围就不清晰了,所以调焦误差服从等概率分 布。 等概率分布的标准偏差 σ 0和极限误差 Δ 的关系为
第1章 光学测量基础知识
1. 1 测量的基本知识
1. 1. 1 测量的概念 测量就是将被测量与一个作为计量单位的标准量进行比
较,并确定出被测量是计量单位的几倍或几分之几的过程。
若以 L 表示被测量, E 表示计量单位,则比值为
于是,只要读出 q 值,就可得出测量结果:
第1章 光学测量基础知识 1. 1. 2 基本物理量及其单位 物理量是物理学中量度物体属性或描述物体运动状态及 其变化过程的量,它们通过物理定律及其方程建立相互间的 关系。目前,在实践中引入的物理量的量纲是由国际单位制 规定的七种基本物理量导出的。国际单位制的基本物理量有 长度、质量、时间、电流、热力学温度、物质的量和发光强 度,见表 1-1 。 在国际单位制的有专门名称的导出单位中,与光学测量 紧密相关的有两种,即光通量和光照度,见表 1-2 。
第1章 光学测量基础知识 1. 2. 4 算术平均值和残差 对某一量进行一系列等精度测量,测得值为 x 1 , x 2 ,…, x n 取算术平均值,有
此时式(1-3 )中的 v i 应为偶然误差 δ i ,由该式求和得
第1章 光学测量基础知识 由于偶然误差的抵偿性,当 n →∞ 时, ,故
可见,当测量次数 n 无限增大时,算术平均值趋于真值。 当测量次数有限时,可把算术平均值近似地视为真值。因此, 测量中用算术平均值表标准量系统:是指用以体现测量单位的物质标准,用 来与被测量进行比较,以便求得被测量。 (3)定位系统:用以确定被测量的合理位置。 (4)瞄准系统:用以确定被测量相对于标准量的位置,以 便进行比较。 (5)显示系统:将测得量进行运算,并显示出测量结果或 作为控制信号的输出。 (6)测量条件:任何测量都是在一定的条件下进行的,如 环境、温度、湿度、压力、时间等。
第1章 光学测量基础知识 (3)粗大误差:超出规定条件下预期的误差。如读错或记 错数据、仪器调整错误、实验条件突变等引起的误差。含有 粗大误差的测量值应当删除。
第1章 光学测量基础知识 1. 2. 3 偶然误差的评价 对于偶然误差的评价,由于单个误差的出现没有规律性, 因此采用标准偏差、平均误差、或然误差及极限误差等表明 某条件下一组测量数据的精密度。其中,常用的是标准偏 差和极限误差。
第1章 光学测量基础知识
第1章 光学测量基础知识 1. 1. 3 测量方法的组成 测量方法是对特定的测量对象测量某一被测量时,参与 测量过程的各组成因素和测量条件的总和。它包括以下几个 方面: (1)测量目的、被测对象和被测量:测量目的是指最终要 求得的那个量;被测量是指直接与标准量进行比较的量,它 本身也可以是测量目的;被测对象是指被测量的载体。以上 三者都是确定测量方法的依据。
第1章 光学测量基础知识 (3)读数。瞄准之后,我们并没有得到关于被测量的数 量概念,这只有在对两个瞄准位置读数(在标准量上)之后才 有可能。读数是将瞄准位置用数字形式确定下来,就是瞄准 位置的数字表现形式。读数也会产生误差,同样影响测量的 精度,因此,还必须研究提高 (4)数据处理。得到测量的原始数据之后,就可求得被 测量的大小,并可按测量原理方程式求得测量目的。同时, 还要考虑到测量环境对测量结果的影响而进行必要的修正。 最后,依据测量误差理论给出测量结果。目前,在一些自动 化检测设备中,读数和数据处理都由仪器自动完成,并显示 最后的测量结果,或作为控制信号输出。
算术平均值的标准偏差最佳估计值 σ x 为
第1章 光学测量基础知识
第1章 光学测量基础知识 1. 2. 7 粗大误差的判断 常用的粗大误差判断准则有五种:拉依达(PauTa )准则、 格拉布斯( Grubbs )准则、肖维勒(Chauvenet )准则、狄克逊 ( Dicon )准则和 T 检验准则。 T 检验准则的判断步骤如下: (1 )将测得值由小到大排列为 x 1 , x 2 ,…, x n 。 (2 )选定风险率 α ,一般取 5% 或 1% 。
第1章 光学测量基础知识
1. 2 测量误差及数据处理
1. 2. 1 量的真值和残值 量的真值是指一个量在被测量时,该量本身所具有的真 实大小。量的真值是一个理想概念,一般来说真值是不知道 的。在实际测量中,常用被测量的实际值或已修正过的算术 平均值代替真值。所谓实际值,就是满足规定准确度的用来 代替真值使用的量值。 残值也叫残差,是指测量列中的一个测得值 ai 和该列 的算术平均值 a 之间的差值 v i ,即 v i =a i –a (1-3 )
第1章 光学测量基础知识 6. 按实用情况分类 按实用情况的不同,测量可分为实验室测量和技术测量。 实验室测量:这类测量需要考虑测量误差的数值,其任 务是给出测量误差的值。 技术测量:这类测量只需要考虑误差的上限值,而不考 虑误差的具体值,其任务是给出测量目的的最佳值及误差的 极限值。 除了上述对测量进行的分类外,还可按测量时被测量所 处的状态,将测量分为静态测量和动态测量,这里不再详述。
第1章 光学测量基础知识 (3)方法误差:由于测量采用的数学模型不完善,利用近 似测量方法等引起的误差。 (4)人员误差:由于人眼分辨率限制、操作者技术水平不 高和固有习惯、感觉器官的生理变化等引起的误差。 有时候被测件本身的变化也可造成误差。
第1章 光学测量基础知识 测量误差按其特点和性质,可分为系统误差、偶然误差 (随机误差)和粗大误差三类。 (1)系统误差:在偏离测量规定条件时或由于测量方法所 引入的因素,按某确定规律引起的误差。 系统误差可按对误差掌握程度分为已定系统误差(大小 和符号已知)和未定系统误差。系统误差可用理论分析或实 验方法判断,对已定系统误差用加修正值的方法消除。 (2)偶然误差:也称随机误差,是指在实际测量条件下, 多次测量同一量时,误差的绝对值和符号以不可预定的方式 变化的误差。但偶然误差就整体而言是符合统计规律的。
第1章 光学测量基础知识 2. 按比较方式分类 按照比较方式的不同,测量可分为绝对测量和相对测量。 绝对测量:通过与绝对标准量进行比较而实现的测量称 为绝对测量。 相对测量:通过与相对标准量进行比较而实现的测量称 为相对测量。相对测量直接得到的是对标准值的偏差。
第1章 光学测量基础知识 3. 按接触形式分类 按照接触形式的不同,测量可分为接触测量和非接触测 量。 接触测量:测量时,瞄准是通过量具或者量仪的触端与 被测对象发生机械接触来实现的。 非接触测量:测量时,瞄准不是通过量具或量仪与被测 对象发生机械接触,而是通过与其它介质(光、气流等)接触 来实现的,或者说测量过程中的瞄准是非机械式的。
第1章 光学测量基础知识 由此可知,在拟定了测量方案之后,完成一个测量过程 通常需要经过以下几个步骤: (1)定位。定位就是按测量原则调整标准量和被测量至 合适的位置。由于定位对测量原则的偏离将造成测量误差, 因此,应设计、选择合适的定位方法。 (2)瞄准。为了进行比较,定位之后,必须使被测量的 一个端点或该端点的像与标准量的某一位置重合,称为瞄准。 瞄准是测量过程中基本的步骤之一,只有瞄准后,才能由标 准量上读出被测量的大小。瞄准产生的误差将直接影响测量 的精度,为了减小瞄准误差,必须要设计较好的瞄准方法。
第1章 光学测量基础知识 4. 按测量目的的数目多少分类 按照测量目的数目的不同,测量可分为独立测量和组合 测量。 独立测量:只有一个量作为测量目的的测量。一般说来, 它的测量原理可用一个方程式来表示。 组合测量:测量目的为两个及两个以上的测量。此时, 测量原理必须用方程组来表示。
第1章 光学测量基础知识 5. 按测量时所处的条件分类 按照测量时所处条件的不同,测量可分为等精度测量和 非等精度测量。 等精度测量:在同一条件下进行的一系列重复测量,称 为等精度测量。如每次测量都使用相同的方法、相同的仪器、 在同样的环境下进行,而且每次都以同样的细心和注意程 度来工作等。 非等精度测量:在多次测量中,进行每一次测量时,若 对测量结果精确度有影响的一切条件不能完全维持不变,则 所进行的一系列重复测量称为非等精度测量。
第1章 光学测量基础知识
第 1 章 光学测量基础知识
1.1测量的基本知识 1.2测量误差及数据处理 1.3人眼及目视光学仪器的瞄准误差 1.4光电瞄准技术 本章小结 思考题与习题
第1章 光学测量基础知识 本章首先介绍光学测量的基础知识、误差来源及数据分 析的方法,其次重点介绍人眼的特性及目视光学仪器的瞄准 误差,最后介绍目前较新的光电瞄准技术。
第1章 光学测量基础知识 各测得值与算术平均值之差代表残差。残差有以下两个 性质: (1)当 n →∞ 时,残差代数和为零,即
(2)残差的平方和为最小,即
第1章 光学测量基础知识 1. 2. 5 算术平均值的标准偏差 真值往往是无法确切知道的,只能用算术平均值代替真 值,又由于测量次数总是有限的,因此标准偏差只能由残差 计算出的所谓标准偏差来估计。 在有限次数的测量中,用残差求出的 σ 估计 σ 0 的计算 公式如下: