福建省厦门市九年级上学期期末数学试卷

合集下载

福建省厦门市九年级上学期期末数学试卷

福建省厦门市九年级上学期期末数学试卷

福建省厦门市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根为0,则实数a的值为()A . 1B . -1C . 0D . ﹣1或12. (2分)的值为()A . 5B . 5-C . 1D . 2-13. (2分)下列说法正确的是()A . 面积相等的两个三角形全等B . 矩形的四条边一定相等C . 一个图形和它旋转后所得图形的对应线段相等D . 随机投掷一枚质地均匀的硬币,落地后一定是正面朝上4. (2分)如图,直线l与半径为3的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连结PA,设PA=m,PB=n,则m﹣n的最大值是()A . 3B . 2C .D .5. (2分) (2016九上·龙湾期中) 如图,正五边形ABCDE内接于⊙O,则∠OAB的度数为()A . 36°B . 72°C . 54°D . 108°6. (2分)一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。

如果任意抛掷小正方体两次,那么下列说法正确的是()A . 得到的数字之和必然是4B . 得到的数字之和可能是3C . 得到的数字之和不可能是2D . 得到的数字之和有可能是17. (2分) (2020九上·米易期末) 不透明的口袋内装有红球和白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2020次球,发现有505次摸到白球,则口袋中白球的个数是()A . 5B . 10C . 15D . 208. (2分)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3 km都需付8元车费),超过3 km以后,每增加1 km,加收1.5元(不足1 km按1 km计).某人从甲地到乙地经过的路程是x km,出租车费用为15.5元,那么x的最大值是()A . 11B . 8C . 7D . 59. (2分) (2020九上·浦城期末) 在平面直角坐标系xoy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,若B点的对应点B′的坐标为(﹣6,0),则A 点的对应点A′坐标为()A . (﹣2,﹣4)B . (﹣4,﹣2)C . (﹣1,﹣4)D . (1,﹣4)10. (2分) (2019九上·苍南期中) 如图,在Rt△ABC中,∠C=90°,若AB=5,AC=4,则cosB的值()A .B .C .D .11. (2分)一段拦水坝横断面如图所示,迎水坡AB的坡度为i=1:,坝高BC=6m,则坡面AB的长度()A . 12mB . 18mC . 6D . 1212. (2分)小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是()A .B .C .D .13. (2分)(2017·河南模拟) 如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A .B .C .D .14. (2分) (2020九上·宁津期末) 如图是小玲设计用手电来测家附近“新华大厦”高度的示意图.点处放一水平的平面镜,光线从点出发经平面镜反射后刚好射到大厦的顶端处,已知,且测得米,米,米,那么该大厦的高度约为()A . 8米B . 16米C . 24米D . 36米15. (2分) (2020九上·晋州期中) 如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A, BC=3,AC=6,则CD的长为()A . 1B . 2C .D .16. (2分)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A .B .C .D .二、填空题 (共4题;共4分)17. (1分)已知抛物线y=ax2-4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x 轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为________ .18. (1分)如图,反比例函数y=-图象上有一点P,PA⊥x轴于A,点B在y轴的负半轴上,那么△PAB的面积是________19. (1分)(2019·婺城模拟) 如图,已知在△ABC中,AB=AC,BC=8,D、E两点分别在边BC、AB上,将△ABC 沿着直线DE翻折,点B正好落在边AC上的点M处,并且AC=4AM,设BD=m,那么∠ACD的正切值是________(用含m的代数式表示)20. (1分)在Rt△ABC中,∠C=90°,如果AB=6,cosA=,那么AC=________三、解答题 (共6题;共30分)21. (5分)解方程:3x(x﹣2)=2(2﹣x);22. (5分)在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)23. (5分)如图,以Rt△ABC的直角边AB为直径作☉O,与斜边AC交于点D,过点D作☉O的切线交BC边于点E.求证:EB=EC=ED24. (5分)(2017·长春) 如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)25. (5分)已知二次函数y=-的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.26. (5分) (2019九上·西城期中) 如图,在四边形ABCD中,,,,,如果,求CD的长.参考答案一、单选题 (共16题;共32分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:二、填空题 (共4题;共4分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共30分)答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:答案:26-1、考点:解析:第21 页共21 页。

厦门市九年级上学期期末质量检测数学试题及答案

厦门市九年级上学期期末质量检测数学试题及答案

厦门市九年级上学期期末质量检测数学试题一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-5+6,结果正确的是A .1B .-1C .11D .-11 2.如图1,在△ABC 中,∠C =90°,则下列结论正确的是 A . AB =AC +BC B .AB =AC ·BC C .AB 2=AC 2+BC 2 D .AC 2=AB 2+BC 2 3.抛物线y =2(x -1)2-6的对称轴是A .x =-6B .x =-1C .x =12 D .x =14.要使分式1x -1有意义,x 的取值范围是A .x ≠0B .x ≠1C .x >-1D .x >1 5.下列事件是随机事件的是A .画一个三角形,其内角和是360°B .投掷一枚正六面体骰子,朝上一面的点数小于7 C.射击运动员射击一次,命中靶心D .在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生 产零件数的统计图.与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是 A .平均数变大,方差不变 B .平均数变小,方差不变 C .平均数不变,方差变小 D .平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离s 与时间t 的函数关系如图4中的部分抛 物线所示(其中P 是该抛物线的顶点),则下列说法正确的是A .小球滑行6秒停止B .小球滑行12秒停止C .小球滑行6秒回到起点D .小球滑行12秒回到起点8.在平面直角坐标系xOy 中,已知A (2,0),B (1,-1),将线段OA 绕点O 逆时针旋转, 设旋转角为α(0°<α<135°).记点A 的对应点为A 1,若点A 1与点B 的距离为6,则 α为A .30°B .45°C .60°D .90°9.点C ,D 在线段AB 上,若点C 是线段AD 的中点,2BD >AD ,则下列结论正确的是 A .CD <AD -BD B .AB >2BD C .BD >AD D .BC >AD 10.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0).当该二次函数的自 变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值为y 1,y 2,且y 1=y 2.设该函数图象 的对称轴是x =m ,则m 的取值范围是A .0<m <1B .1<m ≤2C .2<m <4D .0<m <4 二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体骰子,投掷一次,朝上一面的点数为奇数的概率是 .12.已知x =2是方程x 2+ax -2=0的根,则a = . 13.如图5,已知AB 是⊙O 的直径,AB =2,C ,D 是圆周上的点, 且∠CDB =30°,则BC 的长为 .14.我们把三边长的比为3∶4∶5的三角形称为完全三角形.记命题A :“完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :;并写出一个例子(该例子能判断命题B 是错误的): .15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA ,OP ,将△OP A 绕点O 逆时针旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为 .16.若抛物线y =x 2+bx (b >2)上存在关于直线y =x 成轴对称的两个点,则b 的取值范围 是 . 三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=0.18.(本题满分8分)化简并求值:(1-2x +1)÷x 2-12x +2,其中x =2-1.19.(本题满分8分)已知二次函数y =(x -1)2+n ,当x =2时y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20.(本题满分8分)如图6,已知四边形ABCD 为矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB =EC ; (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O ,交边AC 于点D ,︵AD 的长为4π3.求证:BC 是⊙O 的切线.22.(本题满分10分) 已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD ,AB 的距离分别为m ,n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图8所示.当点P 在对角线AC 上,且m =14时,求点P 的坐标;(2)如图9,当m ,n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运 输过程中,有部分鱼未能存活.小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录. (1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的规律,① 若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ② 考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只能卖活鱼),且 售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.24.(本题满分12分)已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点 A ,B (不与P ,Q 重合),连接AP ,BP . 若∠APQ =∠BPQ , (1)如图10,当∠APQ =45°,AP =1,BP =22时,求⊙O 的半径;(2)如图11,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P ,M 重合),连接ON ,OP ,若∠NOP+2∠OPN =90°,探究直线AB 与ON 的位置关系,并证明.25.(本题满分14分)在平面直角坐标系xOy 中,点A (0,2),B (p ,q )在直线l 上,抛物线m 经过点 B ,C (p +4,q ),且它的顶点N 在直线l 上. (1)若B (-2,1),① 请在图12的平面直角坐标系中画出直线l 与抛物线m 的示意图;表一表二 图10 图11② 设抛物线m 上的点Q 的横坐标为e (-2≤e ≤0),过点Q 作x 轴的垂线,与直线l 交于点H .若QH =d ,当d 随 e 的增大而增大时,求e 的取值范围;(2)抛物线m 与y 轴交于点F ,当抛物线m 与x 轴有唯一 交点时,判断△NOF 的形状并说明理由.数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.12. 12. -1. 13.1. 14.直角三角形是完全三角形;如:等腰直角三角形,或三边分别为5,12,13的三角形,或三边比为5∶12∶13的三角形等. 15.102. 16.b >3.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:a =1,b =-3,c =1. △=b 2-4ac=5>0. ……………………………4分 方程有两个不相等的实数根x =-b ±b 2-4ac 2a=3±52. ……………………………6分 即x 1=3+52,x 2=3−52. ……………………………8分18.(本题满分8分)解:(1-2x +1)÷x 2-12x +2=(x +1-2x +1)·2x+2x 2-1 ……………………………2分=x -1x +1·2(x +1)(x+1)(x -1) ……………………………5分 =2x +1……………………………6分当x =2-1时,原式=22= 2 …………………………8分19.(本题满分8分)解:因为当x =2时,y =2. 所以 (2−1)2 +n =2. 解得n =1.所以二次函数的解析式为:y =(x −1)2 +1…………………4分列表得:如图:…………………8分20.(本题满分8分)(1)(本小题满分3分)解:如图,点E 即为所求.…………………3分 (2)(本小题满分5分)解法一:解:连接EB ,EC , 由(1)得,EB =EC . ∵ 四边形ABCD 是矩形,∴ ∠A =∠D =90°,AB =DC .∴ △ABE ≌△DCE . …………………6分∴ AE =ED =12AD =3. …………………7分在Rt △ABE 中,EB =AB 2+AE 2. ∴ EB =5. …………………8分解法二:如图,设线段BC 的中垂线l 交BC 于点F , ∴ ∠BFE =90°,BF =12BC .EDCBAlFEDCBAl∵ 四边形ABCD 是矩形,∴ ∠A =∠ABF =90°,AD =BC .在四边形ABFE 中,∠A =∠ABF =∠BFE =90°, ∴ 四边形ABFE 是矩形. …………………6分 ∴ EF =AB =4. …………………7分 在Rt △BFE 中,EB =EF 2+BF 2.∴ EB =5. …………………8分21.(本题满分8分)证明:如图,连接OD , ∵ AB 是直径且AB =4, ∴ r =2.设∠AOD =n °, ∵ ︵AD 的长为4π3,∴ n πr 180=4π3.解得n =120 .即∠AOD =120° . ……………………………3分 在⊙O 中,DO =AO , ∴ ∠A =∠ADO .∴ ∠A =12(180°-∠AOD )= 30°. ……………………………5分∵ ∠C =60°,∴ ∠ABC =180°-∠A -∠C =90°. …………………………6分 即AB ⊥BC . ……………………………7分 又∵ AB 为直径,∴ BC 是⊙O 的切线. ……………………………8分 22.(本题满分10分)解(1)(本小题满分5分) 解法一:如图,过点P 作PF ⊥y 轴于F , ∵ 点P 到边AD 的距离为m .∴ PF =m =14.∴ 点P 的横坐标为14. …………………1分由题得,C (1,1),可得直线AC 的解析式为:y =x . …………………3分 当x =14时,y =14 . …………………4分所以P (14,14). …………………5分F解法二:如图,过点P 作PE ⊥x 轴于E ,作PF ⊥y 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m . ∴ P (m ,n ). …………………1分 ∵ 四边形ABCD 是正方形,∴ AC 平分∠DAB . …………………2分 ∵ 点P 在对角线AC 上,∴ m =n =14. …………………4分∴ P (14,14). …………………5分(2)(本小题满分5分)解法一:如图,以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系. 则由(1)得P (m ,n ).若点P 在△DAB 的内部,点P 需满足的条件是:①在x 轴上方,且在直线BD 的下方; ②在y 轴右侧,且在直线BD 的左侧.由①,设直线BD 的解析式为:y =kx +b , 把点B (1,0),D (0,1)分别代入,可得直线BD 的解析式为:y =-x+1. ……………6分 当x =m 时,y =-m+1.由点P 在直线BD 的下方,可得n <-m+1. ……………7分 由点P 在x 轴上方,可得n >0 ……………8分 即0<n <-m+1.同理,由②可得0<m <-n+1. ……………9分所以m ,n 需满足的条件是:0<n <-m+1且0<m <-n+1. ……………10分解法二:如图,过点P 作PE ⊥AB 轴于E ,作PF ⊥AD 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .在正方形ABCD 中,∠ADB =12∠ADC =45°,∠A =90°.∴ ∠A =∠PEA =∠PF A =90°. ∴ 四边形PEAF 为矩形.∴ PE =F A =n . ……………6分 若点P 在△DAB 的内部,则延长FP 交对角线BD 于点M .在Rt △DFM 中,∠DMF =90°-∠FDM =45°. ∴ ∠DMF =∠FDM . ∴ DF =FM . ∵ PF <FM ,∴ PF <DF ……………7分 ∴ PE+ PF =F A+ PF <F A+ DF .· PEFM即m+ n <1. ……………8分 又∵ m >0, n >0,∴ m ,n 需满足的条件是m+n <1且m >0且n >0. ……………10分23.(本题满分10分) 解:(1)(本小题满分2分)估计运到的2000公斤鱼中活鱼的总重量为1760公斤.……………2分 (2)①(本小题满分3分)根据表二的销售记录可知,活鱼的售价每增加1元,其日销售量就减少40公斤,所以按此变化规律可以估计当活鱼的售价定为52.5元/公斤时,日销售量为300公斤.……………………5分②(本小题满分5分)解法一:由(2)①,若活鱼售价在50元/公斤的基础上,售价增加x 元/公斤,则可估计日销售量在400公斤的基础上减少40x 公斤,设批发店每日卖鱼的最大利润为w ,由题得w =(50+x -2000×441760) (400-40x ) ……………………7分=-40x 2+400x=-40(x -5)2+1000.由“在8天内卖完这批活鱼”,可得8 (400-40x )≤1760,解得x ≤4.5. 根据实际意义,有400-40x ≥0;解得x ≤10. 所以x ≤4.5. ……………………9分因为-40<0,所以当x <5时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分解法二:设这8天活鱼的售价为x 元/公斤,日销售量为y 公斤,根据活鱼的售价与日销售量之间的变化规律,不妨设y =kx +b .由表二可知,当x =50时,y =400;当x =51时,y =360,所以⎩⎨⎧50k +b =40051k +b =360,解得⎩⎨⎧k =-40b =2400,可得y =-40x +2400.设批发店每日卖鱼的最大利润为w ,由题得w =(x -2000×441760) (-40x +2400) ……………………7分=-40x 2+4400x -120000 =-40(x -55)2+1000.由“在8天内卖完这批活鱼”,可得8 (-40x +2400)≤1760,解得x ≤54.5. 根据实际意义,有-40x +2400≥0;解得x ≤60.所以x ≤54.5. ……………………9分因为-40<0,所以当x <55时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分24.(本题满分12分)(1)(本小题满分6分) 解:连接AB . 在⊙O 中, ∵ ∠APQ =∠BPQ =45°,∴ ∠APB =∠APQ +∠BPQ =90°.…………1分 ∴ AB 是⊙O 的直径. ………………3分∴ 在Rt △APB 中,AB =AP 2+BP 2 ∴ AB =3. ………………5分 ∴ ⊙O 的半径是32. ………………6分(2)(本小题满分6分) 解:AB ∥ON .证明:连接OA ,OB ,OQ , 在⊙O 中,∵ ︵AQ =︵AQ ,︵BQ =︵BQ ,∴ ∠AOQ =2∠APQ ,∠BOQ =2∠BPQ . 又∵ ∠APQ =∠BPQ ,∴ ∠AOQ =∠BOQ . ……………7分 在△AOB 中,OA =OB ,∠AOQ =∠BOQ ,∴ OC ⊥AB ,即∠OCA =90°. ………………………8分 连接OQ ,交AB 于点C , 在⊙O 中,OP =OQ .∴ ∠OPN =∠OQP .延长PO 交⊙O 于点R ,则有2∠OPN =∠QOR . ∵ ∠NOP +2∠OPN =90°,又∵ ∠NOP +∠NOQ +∠QOR =180°,∴ ∠NOQ =90°. ………………………11分 ∴ ∠NOQ +∠OCA =180°.∴ AB ∥ON . ………………………12分25.(本题满分14分)(1)①(本小题满分3分)解:如图即为所求…………………………3分Q②(本小题满分4分)解:由①可求得,直线l :y =12x +2,抛物线m :y =-14x 2+2.……………5分因为点Q 在抛物线m 上,过点Q 且与x 轴垂直的直线与l 交于点H ,所以可设点Q 的坐标为(e ,-14e 2+2),点H 的坐标为(e ,1e +2),其中(-2≤e ≤0).当-2≤e ≤0时,点Q 总在点H 的正上方,可得 d =-14e 2+2-(12e +2) ……………6分=-14e 2-12e=-14(e +1)2+14.因为-14<0,所以当d 随e 的增大而增大时,e 的取值范围是-2≤e ≤-1.……………7分 (2)(本小题满分7分)解法一:因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2. 又因为抛物线m 与x 轴只有一个交点, 可设顶点N (p +2,0).设抛物线的解析式为y =a (x -p -2)2. 当x =0时,y F =a (p+2)2. 可得F (0,a (p+2)2). …………………9分 把B (p ,q )代入y =a (x -p -2)2,可得q =a (p -p -2)2. 化简可得q =4a ①. 设直线l 的解析式为y =kx +2, 分别把B (p ,q ),N (p +2,0)代入y =kx +2,可得 q =kp +2 ②,及0=k (p +2)+2 ③ .由①,②,③可得a =12+p.所以F (0,p +2). 又因为N (p +2,0), …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 为等腰直角三角形.…………………14分解法二:因为直线过点A (0,2), 不妨设直线l :y =kx +2, 因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2.又因为抛物线的顶点N 在直线l :y =kx +2上,可得N (p +2,k (p +2)+2).所以抛物线m :y =a (x -p -2)2+k (p +2)+2.当x =0时,y =a (p +2)2+k (p +2)+2.即点F 的坐标是(0,a (p +2)2+k (p +2)+2). …………………9分 因为直线l ,抛物线m 经过点B (p ,q ),可得⎩⎨⎧kp +2=q 4a +k (p +2)+2=q, 可得k =-2a .因为抛物线m 与x 轴有唯一交点,可知关于x 的方程kx +2=a (x -p -2)2+k (p +2)+2中,△=0. 结合k =-2a ,可得k (p +2)=-2.可得N (p +2,0),F (0, p +2). …………………13分所以ON=OF ,且∠NOF =90°.所以△NOF 是等腰直角三角形. …………………14分。

福建省厦门市九年级上学期数学期末试卷

福建省厦门市九年级上学期数学期末试卷

福建省厦门市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)给出以下结论,错误的有()①如果一件事发生的机会只有十万分之一,那么它就不可能发生.②如果一件事发生的机会达到99.5%,那么它就必然发生.③如果一件事不是不可能发生的,那么它就必然发生.④如果一件事不是必然发生的,那么它就不可能发生.A . 1个B . 2个C . 3个D . 4个2. (2分)(2020·萧山模拟) 下列四种标志图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2019九上·辽阳期末) 在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A .B .C .D .4. (2分) (2016九上·海淀期中) 在△ABC中,∠C=90°,以点B为圆心,以BC长为半径作圆,点A与该圆的位置关系为()A . 点A在圆外B . 点A在圆内C . 点A在圆上D . 无法确定5. (2分) (2019八下·龙州期末) 已知关于x的方程的一个根为,则m的值为()A .B .C .D .6. (2分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c=n有两个不相等的实数根,其中正确的有()C . 4个D . 5个7. (2分) (2017九上·襄城期末) 下列说法正确的是()A . 与圆有公共点的直线是圆的切线B . 过三点一定可以作一个圆C . 垂直于弦的直径一定平分这条弦D . 三角形的外心到三边的距离相等8. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a:b:c=-1:2:3.其中正确的是()A . ①②B . ②③C . ③④D . ①④9. (2分) (2018九上·解放期中) 若方程 x2+px+3=0 的一个根是﹣3,则它的另一个根是()A . ﹣1B . 0C . 1D . 210. (2分) (2020八下·遂宁期末) 如图,矩形ABCD中,AB=8cm,点E在AD上,且AE=4cm,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点处,则BC的值为()A . 8cmD . 10cm二、填空题 (共6题;共6分)11. (1分) (2019九上·进贤期中) 点关于原点的对称点的坐标为________.12. (1分) (2017九下·佛冈期中) 已知扇形的半径长6,圆心角为120°,则该扇形的弧长等于________.(结果保留π)13. (1分) (2018九上·焦作期末) 在一个不透明的盒子中装有红、黄、蓝三种除颜色外完全相同的小球,其中红球6个,黄球10个,篮球个。

【5套打包】厦门市初三九年级数学上期末考试测试卷(解析版)

【5套打包】厦门市初三九年级数学上期末考试测试卷(解析版)

最新九年级上册数学期末考试题(含答案)一、选择题(每小题4分,共48分.)1.下列立体图形中,俯视图是正方形的是()A.B.C.D.2.(4分)一种零件的长是2毫米,在一幅设计图上的长是40厘米,这幅设计图的比例尺是()A.200:1B.2000:1C.1:2000D.1:2003.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.4.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0B.b<a<0C.a<0<b D.b<0<a5.将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元7.如图,下列四个选项不一定成立的是()A.△COD∽△AOB B.△AOC∽△BOD C.△DCA∽△BAC D.△PCA∽△PBD8.如图,⊙O的直径AB经过CD的中点H,cos∠CDB=,BD=5,则OH的长度为()A.B.C.D.9.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3B.+1或﹣1C.2﹣3D.﹣111.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4 12.如图,△ABC和△DEF的各顶点分别在双曲线y=,y=,y=在第一象限的图象上,若∠C=∠F=90°,AC∥DF∥x轴,BC∥EF∥y轴,则S△ABC ﹣S△DEF=()A.B.C.D.二、填空题(每小题4分,共24分)13.若反比例函数y=﹣的图象经过点A(m,3),则m的值是.14.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.15.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?;(填“是”或“否”)请简述你的理由.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)16.如图,与抛物线y=x2﹣2x﹣3关于直线x=2成轴对称的函数表达式为.17.如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(﹣1,1),点C 的坐标为(﹣4,2),则这两个正方形位似中心的坐标是.18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3…,则S1+S2+S3+…+S20=.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(6分)()2﹣(2018﹣2019)0+(+1)(﹣1)+tan30°20.(6分)已知抛物线的顶点A(1,﹣4),且与直线y=x﹣3交于点B(3,0),点C(0,﹣3)(1)求抛物线的解析式;(2)当直线高于抛物线时,直接写出自变量x的取值范围是多少?21.(6分)如图,正方形ABCD的边长为6,点E是AB边上的一个动点,过点E作EF⊥DE交BC边于点F,当BE=2AE时,求BF的长.22.(8分)为推进我市生态文明建设,某校在美化校园活动中,设计小组想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为216m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.23.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.24.(10分)如图是太阳能电池板支撑架的截面图,其中AB=300cm,AB的倾斜角为30°,BE=CA=50cm,FE⊥AB于点E.点D、F到地面的垂直距离均为30cm,点A到地面的垂直距离为50cm.求CD和EF的长度各是多少cm(结果保留根号).25.(10分)(1)如图1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延长CB至点D,使BD=AB.①求∠D的度数;②求tan75°的值.(2)如图2,点M的坐标为(2,0),直线MN与y轴的正半轴交于点N,∠OMN=75°.求直线MN的函数表达式.26.(12分)如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△P AB的周长最小,求点P的坐标.27.(12分)已知直线y=﹣x+2与x轴、y轴分别交于点A、C,抛物线y=﹣+bx+c 过点A、C,且与x轴交于另一点B,在第一象限的抛物线上任取一点D,分别连接CD、AD,作DE⊥AC于点E.(1)求抛物线的表达式;(2)求△ACD面积的最大值;(3)若△CED与△COB相似,求点D的坐标.参考答案一、选择题1.下列立体图形中,俯视图是正方形的是()A.B.C.D.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆,故此选项错误;B、正方体的俯视图是正方形,故此选项正确;C、三棱锥的俯视图是三角形,故此选项错误;D、圆锥的俯视图是圆,故此选项错误;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.一种零件的长是2毫米,在一幅设计图上的长是40厘米,这幅设计图的比例尺是()A.200:1B.2000:1C.1:2000D.1:200【分析】图上距离和实际距离已知,依据“比例尺=”即可求得这幅设计图的比例尺.【解答】解:因为2毫米=0.2厘米,则40厘米:0.2厘米=200:1;所以这幅设计图的比例尺为200:1;故选:A.【点评】此题主要考查比例尺的计算方法,解答时要注意单位的换算.3.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.【分析】根据锐角的余弦等于邻边比斜边求解即可.【解答】解:∵AB=5,BC=3,∴AC=4,∴cos A==.故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边4.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0B.b<a<0C.a<0<b D.b<0<a【分析】根据反比例函数的性质可以判断a、b的大小,从而可以解答本题.【解答】解:∵y=﹣,∴反比例函数y=﹣的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,∴a<b<0,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质.5.将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【分析】根据平移规律,可得答案.【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.如图,下列四个选项不一定成立的是()A.△COD∽△AOB B.△AOC∽△BOD C.△DCA∽△BAC D.△PCA∽△PBD 【分析】利用圆周角定理、园内接四边形的性质一一判断即可;【解答】解:∵∠OCD=∠OAB,∠COD=∠AOB,∴△COD∽△AOB.同法可证:△AOC∽△BOD.∵∠PCA+∠ACD=180°,∠ACD+∠ABD=180°,∴∠PCA=∠PBD,∵∠P=∠P,∴△PCA∽△PBD,故选:C.【点评】本题考查相似三角形的判定、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,⊙O的直径AB经过CD的中点H,cos∠CDB=,BD=5,则OH的长度为()A.B.C.D.【分析】连接OD,由垂径定理得出AB⊥CD,由三角函数求出DH=4,由勾股定理得出BH==3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可.【解答】解:连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵cos∠CDB==,BD=5,∴DH=4,∴BH==3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;故选:B.【点评】此题考查了垂径定理、勾股定理以及三角函数.此题难度不大,注意数形结合思想的应用.9.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EH∥CD,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∵EF∥AD,∴∠AFE=∠F AG,∴tan∠AFE=tan∠F AG===.故选:A.【点评】考查了正方形的性质,矩形的性质以及解直角三角形,此题将求∠AFE的正切值转化为求∠F AG的正切值来解答的.10.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3B.+1或﹣1C.2﹣3D.﹣1【分析】根据题意表示出AC,BC的长,进而得出等式求出m的值,进而得出答案.【解答】解:如图所示:设点C的坐标为(m,0),则A(m,m),B(m,),所以AC=m,BC=.∵AC+BC=4,∴可列方程m+=4,解得:m=2±.故=2±,所以A(2+,2+),B(2+,2﹣)或A(2﹣,2﹣),B(2﹣,2+),∴AB=2.∴△OAB的面积=×2×(2±)=2±3.故选:A.【点评】此题主要考查了反比例函数与一次函数的交点,正确表示出各线段长是解题关键.11.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4【分析】如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,利用图象法即可解决问题.【解答】解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.【点评】本题考查抛物线与x轴的交点、一元二次方程等知识,解题的关键是学会利用图象法解决问题,画出图象是解决问题的关键,属于中考选择题中的压轴题.12.如图,△ABC和△DEF的各顶点分别在双曲线y=,y=,y=在第一象限的图象上,若∠C=∠F=90°,AC∥DF∥x轴,BC∥EF∥y轴,则S△ABC ﹣S△DEF=()A.B.C.D.【分析】设点C(a,),点F(b,),由AC∥DF∥x轴、BC∥EF∥y轴利用反比例函数图象上点的坐标特征即可求出点A、B、D、E的坐标,从而得出AC、BC、DF、EF的长度,再利用三角形的面积公式即可求出S△ABC ﹣S△DEF的值.【解答】解:设点C(a,),点F(b,),则点A(,)、B(a,)、D(,)、E(b,),∴AC=,BC=,DF=,EF=,∴S△ABC ﹣S△DEF=AC•BC﹣DF•EF=﹣=.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征以及三角形的面积,根据点C、F的坐标表示出点A、B、D、E的坐标是解题的关键.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上)13.若反比例函数y=﹣的图象经过点A(m,3),则m的值是﹣2.【分析】直接把A(m,3)代入反比例函数y=﹣,求出m的值即可.【解答】解:∵反比例函数y=﹣的图象经过点A(m,3),∴3=﹣,解得m=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=50°.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.15.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,一辆小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?否;(填“是”或“否”)请简述你的理由点A到OB的距离小于OB与墙MN之间距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【分析】过点A作AC⊥OB,垂足为点C,解三角形求出AC的长度,进而作出比较即可.【解答】解:过点A作AC⊥OB,垂足为点C,在Rt△ACO中,∵∠AOC=40°,AO=1.2米,∴AC=sin∠AOC•AO≈0.64×1.2=0.768,∵汽车靠墙一侧OB与墙MN平行且距离为0.8米,∴车门不会碰到墙(点A到OB的距离小于OB与墙MN之间的距离),故答案为:否,点A到OB的距离小于OB与墙MN之间的距离;【点评】本题主要考查了解直角三角形的应用,解题的关键是正确添加辅助线,此题难度不大.16.如图,与抛物线y=x2﹣2x﹣3关于直线x=2成轴对称的函数表达式为y=(x﹣3)2﹣4.【分析】根据抛物线关于直线对称的函数的顶点关于直线对称,可得答案.【解答】解:y=x2﹣2x﹣3的顶点是(1,﹣4),(1,﹣4)关于x=2的对称点是(3,﹣4),y=x2﹣2x﹣3关于直线x=2成轴对称的函数表达式为y=(x﹣3)2﹣4,故答案为:y=(x﹣3)2﹣4.【点评】本题考查了二次函数图象与几何变换,利用抛物线关于直线对称的函数的顶点关于直线对称得出抛物线的顶点是解题关键.17.如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(﹣1,1),点C 的坐标为(﹣4,2),则这两个正方形位似中心的坐标是(2,0)或(﹣,).【分析】两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.则位似中心就是两对对应点的延长线的交点,本题分两种情况讨论即可.【解答】解:①当两个位似图形在位似中心同旁时,位似中心就是CF与x轴的交点,设直线CF解析式为y=kx+b,将C(﹣4,2),F(﹣1,1)代入,得,解得即y=﹣x+,令y=0得x=2,∴O′坐标是(2,0);②当位似中心O′在两个正方形之间时,可求直线OC解析式为y=﹣x,直线DE解析式为y=x+1,联立,解得,即O′(﹣,).故答案为:(2,0)或(﹣,).【点评】本题主要考查位似图形的性质,难度一般,注意掌握每对位似对应点与位似中心共线,另外解答本题注意分情况讨论,避免漏解.18.手机上常见的wifi标志如图所示,它由若干条圆心相同的圆弧组成,其圆心角为90°,最小的扇形半径为1.若每两个相邻圆弧的半径之差为1,由里往外的阴影部分的面积依次记为S1、S2、S3…,则S1+S2+S3+…+S20=195π.【分析】先利用扇形的面积公式分别计算出S1=π;S2=π+π;S3=π+2π,则利用此规律得到S20=π+19π,然后把它们相加即可.【解答】解:S1=π•12=π;S2=π•(32﹣22)=π+π;S3=π•(52﹣42)=π+2π;…S20=π+19π;∴S1+S2+S3+…+S20=5π+(1+2+3+…+19)π=195π.故答案为195π.【点评】本题考查了扇形面积的计算:阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(6分)()2﹣(2018﹣2019)0+(+1)(﹣1)+tan30°【分析】根据零指数幂、特殊角的三角函数值和平方差公式计算.【解答】解:原式=4﹣1+2﹣1+×=4+1=5.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(6分)已知抛物线的顶点A(1,﹣4),且与直线y=x﹣3交于点B(3,0),点C(0,﹣3)(1)求抛物线的解析式;(2)当直线高于抛物线时,直接写出自变量x的取值范围是多少?【分析】(1)设顶点式为y=a(x﹣1)2﹣4,然后把B点坐标代入求出a即可;(2)利用函数图象得到在点B、C之间直线高于抛物线,从而得到对应自变量的范围.【解答】解:(1)设抛物线解析式为y=a(x﹣1)2﹣4,把B(3,0)代入得a(3﹣1)2﹣4=0,解得a=1,所以抛物线解析式为y=(x﹣1)2﹣4;(2)如图,当0<x<3时,直线高于抛物线.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.21.(6分)如图,正方形ABCD的边长为6,点E是AB边上的一个动点,过点E作EF⊥DE交BC边于点F,当BE=2AE时,求BF的长.【分析】由同角(等角)的余角相等可得出∠ADE=∠BEF,结合∠DAE=∠EBF=90°可证出△DAE∽△EBF,由正方形的边长及BE=2AE可得出AD,AE,BE的长,再利用相似三角形的性质即可求出BF的长.【解答】解:∵∠ADE+∠AED=90°,∠AED+∠BEF=180°﹣∠DEF=90°,∴∠ADE=∠BEF.又∵∠DAE=∠EBF=90°,∴△DAE∽△EBF.∵正方形ABCD的边长为6,BE=2AE,∴AD=6,AE=2,BE=4,∴=,即=,∴BF=.【点评】本题考查了相似三角形的判定与性质以及正方形的性质,利用“两角对应相等,两个三角形相似”找出△DAE∽△EBF.22.(8分)为推进我市生态文明建设,某校在美化校园活动中,设计小组想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为216m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【分析】(1)根据AB=xm,就可以得出BC=30﹣x,由矩形的面积公式就可以得出关于x 的方程,解之可得;(2)根据题意建立不等式组求出结论,根据取值范围由二次函数的性质就可以得出结论.【解答】解:(1)根据题意知AB=xm,则BC=30﹣x(m),则x(30﹣x)=216,整理,得:x2﹣30x+216=0,解得:x1=12,x2=18;(2)花园面积S=x(30﹣x)=﹣x2+30x=﹣(x﹣15)2+225,由题意知,解得:8≤x≤13,∵a=﹣1,∴当x<15时,S随x的增大而增大,∴当x=13时,S取得最大值,最大值为221.【点评】本题考查的是二次函数的应用,熟知矩形的面积公式及二次函数的增减性是解答此题的关键.23.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.【分析】(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.【解答】(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC•cos30°=2,∴AD=BD=2,AB=2BD=4,=AB•CD=×4×2=4,∴S△ABC∵DE⊥AC,∴DE =AD =×2=,AE =AD •cos30°=3,∴S △ODE =OD •DE =×2×=, S △ADE =AE •DE =××3=,∵S △BOD =S △BCD =×S △ABC =×4=, ∴S △OEC =S △ABC ﹣S △BOD ﹣S △ODE ﹣S △ADE =4﹣﹣﹣=.【点评】此题考查了切线的判定、三角形中位线的性质、等腰三角形的性质、圆周角定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.(10分)如图是太阳能电池板支撑架的截面图,其中AB =300cm ,AB 的倾斜角为30°,BE =CA =50cm ,FE ⊥AB 于点E .点D 、F 到地面的垂直距离均为30cm ,点A 到地面的垂直距离为50cm .求CD 和EF 的长度各是多少cm (结果保留根号).【分析】过A 作AG ⊥CD 于G ,连接FD 并延长,与BA 的延长线交于H ,在Rt △CDH 和Rt △EFH 中通过解直角三角形,即可得到CD 和EF 的长度. 【解答】解:过A 作AG ⊥CD 于G ,则∠CAG =30°,在Rt△ACG中,CG=AC sin30°=50×=25,∵GD=50﹣30=20,∴CD=CG+GD=25+20=45,连接FD并延长,与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90,∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290,在Rt△EFH中,EF=EH•tan30°=290×=,答:CD和EF的长度分别是45cm和cm.【点评】本题考查了解直角三角形的应用,解题的关键是将实际问题转化为数学问题,构造直角三角形并解直角三角形.25.(10分)(1)如图1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延长CB至点D,使BD=AB.①求∠D的度数;②求tan75°的值.(2)如图2,点M的坐标为(2,0),直线MN与y轴的正半轴交于点N,∠OMN=75°.求直线MN的函数表达式.【分析】(1)在直角三角形中利用角和边之间的关系求角的度数及边长即可;(2)分别求得点M和N的坐标,利用待定系数法求函数的解析式即可.【解答】解:(1)①∵BD=AB,∴∠D=∠BAD,∴∠ABC=∠D+∠BAD=2∠D=30°,∴∠D=15°,②∵∠C=90°,∴∠CAD=90°﹣∠D=90°﹣15°=75°,∵∠ABC=30°,AC=m,∴BD=AB=2m,BC=m,∴CD=CB+BD=(2+)m,∴tan∠CAD=2+,∴tan75°=2+;(2)∵点M的坐标为(2,0),∠OMN=75°,∠MON=90°,∴ON=OM•tan∠OMN=OM•tan75°=2×(2+)=4+2,∴点N的坐标为(0,4+2),设直线MN的函数表达式为y=kx+b,∴,解得:,∴直线MN的函数表达式为y=(﹣2﹣)x+4+2.【点评】本题考查了解直角三角形及待定系数法求函数的解析式的知识,解题的关键是选择正确的边角关系解直角三角形.26.(12分)如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△P AB的周长最小,求点P的坐标.【分析】(1)先根据点A 求出k 2值,再根据反比例函数解析式求出n 值,利用待定系数法求一次函数的解析式;(2)利用三角形的面积差求解.S △AOB =S △AOC ﹣S △BOC .(3)作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点P ,此时△P AB 的周长最小,设直线A ′B 的表达式为y =ax +c ,根据待定系数法求得解析式,令y =0,即可求得P 的坐标.【解答】解:(1)∵反比例y =(x <0)的图象经过点A (﹣1,2),∴k 2=﹣1×2=﹣2,∴反比例函数表达式为:y =﹣,∵反比例y =﹣的图象经过点B (﹣4,n ), ∴﹣4n =﹣2,解得n =, ∴B 点坐标为(﹣4,),∵直线y =k 1x +b 经过点A (﹣1,2),点B (﹣4,),∴,解得:,∴一次函数表达式为:y =+.(2)设直线AB 与x 轴的交点为C ,如图1,当y=0时,x+=0,x=﹣5;∴C点坐标(﹣5,0),∴OC=5.S△AOC=•OC•|y A|=×5×2=5.S△BOC=•OC•|y B|=×5×=.S△AOB =S△AOC﹣S△BOC=5﹣=;(3)如图2,作点A关于x轴的对称点A′,连接A′B,交x轴于点P,此时△P AB的周长最小,∵点A′和A(﹣1,2)关于x轴对称,∴点A′的坐标为(﹣1,﹣2),设直线A′B的表达式为y=ax+c,∵经过点A′(﹣1,﹣2),点B(﹣4,)∴,解得:,∴直线A′B的表达式为:y=﹣x﹣,当y=0时,则x=﹣,∴P点坐标为(﹣,0).【点评】主要考查了反比例函数与一次函数的交点.熟练掌握用待定系数法确定函数的解析式是解题的关键.27.(12分)已知直线y=﹣x+2与x轴、y轴分别交于点A、C,抛物线y=﹣+bx+c 过点A、C,且与x轴交于另一点B,在第一象限的抛物线上任取一点D,分别连接CD、AD,作DE⊥AC于点E.(1)求抛物线的表达式;(2)求△ACD面积的最大值;(3)若△CED与△COB相似,求点D的坐标.【分析】(1)根据题意求得点A、C的坐标,将它们分别代入函数解析式,列出关于系数b、c的方程组,通过解方程组求得它们的值;(2)如图1,过点D作DG⊥x轴于点G,交AC于点F.利用三角形的面积公式得到二次函数关系式,由二次函数最值的求法解答;(3)需要分类讨论:①当∠DCE=∠BCO时,∠DCE=∠OAC;②当∠DCE=∠CBO时,∠DCE=∠OCA.根据相似三角形的对应边成比例求得相关线段的长度,从而得到点D 的坐标.【解答】解:(1)∵直线y=﹣x+2与x轴、y轴分别交于点A、C,∴A(4,0),C(0,2),OA=4,OC=2,(1分)将A(4,0),C(0,2)分别代入y=﹣+bx+c中,解得,∴y =﹣+x +2;(2)如图1,过点D 作DG ⊥x 轴于点G ,交AC 于点F , 设D (t ,﹣t 2+t +2),其中0<t <4,则F (t ,﹣t +2) ∴DF =﹣t 2+t +2﹣(﹣t +2)=﹣t 2+2t S △ACD =S △CDF +S △ADF =DF •OG +DF •AG =DF •(OG +AG ) =DF •OA=×4×(﹣t 2+2t ) =﹣(t ﹣2)2+4.∴当t =2时,S △ACD 最大=4.(3)设y =0,则﹣t 2+t +2=0, 解得x 1=4,x 2=﹣1, ∴B (﹣1,0),OB =1 ∵tan ∠OCB ==,tan ∠OAC ===∴∠OCB =∠OAC ∴∠OCA =∠OBC ;①当∠DCE =∠BCO 时,∠DCE =∠OAC , ∴CD ∥OA ,点D 的纵坐标与点C 纵坐标相等, 令y =2,则﹣t 2+t +2=2, 解得x 1=0,x 2=3,∴D1(3,2);②如图2,当∠DCE=∠CBO时,∠DCE=∠OCA,将△OCA沿AC翻折得△MCA,点O的对称点为点M,过点M作MH⊥y轴于点H,AN⊥MH于点N,则CM=CO=2,AM=AO=4,设HM=m,MN=HN﹣HM=OA﹣HM=4﹣m,由∠AMC=∠AOC=∠ANM=∠MHC=90°易证△CHM∽△MNA,且相似比=,∴AN=2MH=2m,CH=MN=2﹣m,在Rt△CMH中,由勾股定理得:m2+(2﹣m)2=22,解得m1=0,m2=∴MH=,OH=,M(,).设直线CM的表达式为y=kx+n,则,解得,∴y=x+2,由解得,∴D2(,)综上所述,点D的坐标为D1(3,2)、D2(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,二次函数最值的求法,勾股定理的应用,相似三角形的判定与性质.解答(3)题时,采用了“分类讨论”的数学思想,以防漏解.最新人教版九年级数学上册期末考试试题及答案一、选择题(本大题10小题每小题3分,共30分)在每小题列出的四个选项中只有一个是正确的1.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x+1)2﹣2D.y=(x+1)2﹣23.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm4.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm5.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=11 6.点A(﹣3,2)与点B(﹣3,﹣2)的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.以上各项都不对7.如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A,B 为圆心,AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.16﹣2πB.16﹣πC.8﹣2πD.8﹣π8.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落9.若关于x的一元二次方程x2+x﹣m=0有实数根,则m的取值范围是()A.m≥B.m≥﹣C.m≤D.m≤﹣10.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上11.方程(x﹣1)(x+2)=0的解是.12.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.13.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=.15.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.16.如图,PA,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为.三、解答题(一)(本大题3小题每小题6分,共18分)17.解方程:3x2﹣6x+1=2.18.(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).19.已知:抛物线y=ax2+bx+3经过点A(3,0)、B(﹣1,8),求抛物线的函数表达式,并通过配方写出抛物线的顶点坐标.四、解答题(二)(本大题3小题每小题7分,共21分)20.2015年底某市汽车拥有量为100万辆,而截止到2017年底,该市的汽车拥有量已达到144万辆.(1)求2015年底至2017年底该市汽车拥有量的年平均增长率;(2)若年增长率保持不变,预计2018年底该市汽车拥有量将达到多少万辆.21.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;。

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一元二次方程x2+2x=0的根是()A . 2B . 0C . 0或2D . 0或﹣22. (2分)若二次函数,当取、时函数值相等,则当x取时,函数值为()A .B .C .D .3. (2分) (2018九上·达孜期末) 下列图形中,既是轴对称图形,又是中心对称图形()A . 等腰三角形B . 平行四边形C . 正三角形D . 矩形4. (2分)在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A . 事件A发生的频率是B . 反复大量做这种试验,事件A只发生了7次C . 做100次这种试验,事件A一定发生7次D . 做100次这种试验,事件A可能发生7次5. (2分)下列一元二次方程中,没有实根的是()A . x2+2x﹣3=0B . x2+x+ =0C . x2+ x+1=0D . ﹣x2+3=06. (2分)已知⊙O的面积为9πcm2 ,若点0到直线l的距离为πcm,则直线l与⊙O的位置关系是()A . 相交B . 相切C . 相离D . 无法确定7. (2分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若OP=3,CD=8,则⊙O的半径为()A . 2B . 3C . 4D . 58. (2分)用一张长15厘米,宽8厘米的长方形纸围成一个圆柱,这个圆柱的侧面积是()平方厘米。

A . 120B . 60C . 376.8D . 47.19. (2分)如图,圆O是△ABC的内切圆,∠A=40°,则∠BOC的度数是()A . 110°B . 120°C . 130°D . 140°10. (2分) (2017九上·海宁开学考) 已知点E(2,1)在二次函数y=x2﹣8x+m(m为常数)的图象上,则点A(2,1)关于图象对称轴的对称点坐标是()A . (4,1)B . (5,1)C . (6,1)D . (7,1)二、填空题 (共6题;共6分)11. (1分)如果非零实数n是关于x的一元二次方程x2﹣mx+n=0的一个根,那么m﹣n=________.12. (1分) (2018九上·金华期中) 如果抛物线y=(a﹣1)x2的开口向下,那么a的取值范围是________.13. (1分)(2016·长沙) 若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.14. (1分)(2020·宁波模拟) 如图,已知像这样由7个全等的正六边形组成的图形叫做“二环蜂窝”,每个正六边形的顶点叫做格点,顶点都在格点上的三角形叫做格点三角形.已知△ABC为该二环蜂窝的一个格点三角形,则在该二环蜂窝中,以点A为顶点且与△AB C相似(不包括与△ABC全等)的格点三角形最多能作的个数为________。

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)如图是由六个完全相同的正方体堆成的物体,则这一物体的正视图是()A .B .C .D .2. (1分) (2018九上·顺义期末) 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为()A .B .C .D .3. (1分) (2019九上·长兴月考) 如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A .B .C .D .4. (1分)用配方法解方程,下列配方的结果正确的是()A .B .C .D .5. (1分)(2020·萧山模拟) 如图是墙壁上在l1 , l2两条平行线间的边长为a的正方形瓷砖,该瓷砖与平行线的较大夹角为α,则两条平行线间的距离为()A . 2asinαB . asinα+acosαC . 2acosαD . asinα-acosα6. (1分)若方程y=ax2+bx+c(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则方程的根是()A . 1,0B . -1,0D . 无法确定7. (1分) (2017九上·和平期末) 一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A .B .C .D .8. (1分)用一个2倍的放大镜照一个ΔABC,下列命题中正确的是()A . ΔABC放大后角是原来的2倍B . ΔABC放大后周长是原来的2倍C . ΔABC放大后面积是原来的2倍D . 以上的命题都不对9. (1分) (2019八下·诸暨期末) 如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2 .若设AD=xm,则可列方程()A . (50﹣)x=900B . (60﹣x)x=900C . (50﹣x)x=900D . (40﹣x)x=90010. (1分)已知三点A(x,y)、B (a,b)、C (1,-2)都在反比例函数图象y=上,若x<0,a>0,则下列式子正确的是()A . y<b<0B . y<0<bC . y>b>0二、填空题 (共5题;共5分)11. (1分)(2017·顺义模拟) 小刚身高180cm,他站立在阳光下的影子长为90cm,他把手臂竖直举起,此时影子长为115cm,那么小刚的手臂超出头顶________cm.12. (1分) (2017九上·东台月考) 方程的解为________。

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每题4分,满分24分) (共6题;共24分)1. (4分)如果把三角形的三边按一定的比例扩大,则下列说法正确的是()A . 三角形的形状不变,三边的比变大B . 三角形的形状变,三边的比变大C . 三角形的形状变,三边的比不变D . 三角形的形状不变,三边的比不变2. (4分)如图,在Rt△ABC中,CD⊥AB于点D,表示sinB错误的是()A .B .C .D .3. (4分)将二次函数y=2x2的图像先向右平移1个单位,再向上平移3个单位后所得到的图像的解析式为()A . y=(x-1)2-1B . y=(x+1)2-1C . y=(x+1)2+3D . y=(x-1)2+34. (4分) (2019八下·闵行期末) 在矩形中,下列结论中正确的是()A .B .C .D .5. (4分) (2018九上·灵石期末) 如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为()A .B .C .D .6. (4分) (2019九上·象山期末) 如图,直线1l//l2//l3 ,直线AC分别交,,于点A,B,C,直线DF分别交,,于点D,E,若,则的值为()A .B .C .D .二、填空题(本大题共12题,每题4分,满分48分) (共12题;共48分)7. (4分)(2019·秀洲模拟) 线段a=4,线段b=9,线段c是线段a与线段b的比例中项,则线段c=________8. (4分)(2020·静安模拟) 如图,在△ABC中,点D在边AB上,AB=4AD,设,,那么向量用向量、表示为________.9. (4分)(2020·淮安模拟) 在Rt△ABC中,∠C=90°,若tanA= ,则tanB=________.10. (4分)公园中儿童游乐场是两个相似三角形地块,相似比为2:3,其中大三角形地块面积为27,则小三角形地块的面积是________.11. (4分) (2018九上·福州期中) 抛物线y=-(x-2)2+3的顶点坐标是________.12. (4分) (2018九上·徐闻期中) 已知A(﹣1,y1)、B(﹣2,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:y1________y2 .13. (4分) (2018九上·泗洪月考) 已知△ABC是⊙O的内接三角形,AD是BC边上的高,AC=3,AB=5,AD=2,此圆的直径等于________.14. (4分) (2018九上·松江期中) 计算:=________.15. (4分) (2018九上·长宁期末) 如图,在Rt ABC中,∠BAC=90°,点G是重心,联结AG,过点G作DG//BC,DG交AB于点D,若AB=6,BC=9,则 ADG的周长等于________.16. (4分)(2019·甘肃) 在△ABC中∠C=90°,tanA=,则cosB=________.17. (4分)抛物线y=﹣x2﹣2x+3用配方法化成y=a(x﹣h)2+k的形式是________,抛物线与x轴的交点坐标是________,抛物线与y轴的交点坐标是________.18. (4分)在以O为坐标原点的直角坐标平面内有一点A(2,4),如果AO与x轴正半轴的夹角为α,那么sinα=________ .三、解答题(本大题共7题,满分78分) (共7题;共78分)19. (6分)(2019·益阳模拟) ()2﹣|1﹣ |﹣tan45°+(π﹣1978)0 .20. (12分) (2017九上·十堰期末) 科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x 表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y= ,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?21. (12分)(2020·青浦模拟) 如图,在平行四边形ABCD中,BE、DF分别是平行四边形的两个外角的平分线,∠EAF=∠BAD,边AE、AF分别交两条角平分线于点E、F.(1)求证:△ABE∽△FDA;(2)联结BD、EF,如果DF2=AD•AB,求证:BD=EF.22. (12分)为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,我国两艘海监船刚好在某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域,如图,在B处测得C在东北方向上,在A处测得C在北偏西30°的方向上.(1)从A处看B、C两处的视角∠BAC=________度;(2)求从C处看A、B两处的视角∠ACB的度数.23. (12分) (2016八上·望江期中) 在△ABC中,AB=AC,DE∥BC.(1)试问△ADE是否是等腰三角形,说明理由;(2)若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8.求△ABC的周长.24. (12分)(2018·温州模拟) 如图,抛物线交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分别交x轴、AC于点E、F,点P是射线DE上一动点,过点P作AC的平行线MN 交x轴于点H,交抛物线于点M,N(点M位于对称轴的左侧).设点P的纵坐标为t..(1)求抛物线的对称轴及点A的坐标.(2)当点P位于EF的中点时,求点M的坐标.(3)① 点P在线段DE上运动时,当时,求t的值.25. (12分) (2016九上·鄞州期末) 阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.参考答案一、选择题(每题4分,满分24分) (共6题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题(本大题共12题,每题4分,满分48分) (共12题;共48分) 7-1、8-1、9-1、10-1、答案:略11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本大题共7题,满分78分) (共7题;共78分)19-1、答案:略20-1、答案:略20-2、答案:略21-1、答案:略21-2、答案:略22-1、22-2、23-1、答案:略23-2、24-1、答案:略24-2、答案:略24-3、答案:略25-1、25-2、25-3、答案:略。

福建省厦门市九年级(上)期末数学试卷

福建省厦门市九年级(上)期末数学试卷

第 1 页,共 19 页
A. 平均数变大,方差不变 C. 平均数不变,方差变小
B. 平均数变小,方差不变 D. 平均数不变,方差变大
7. 地面上一个小球被推开后笔直滑行,滑行的距离要 s 与时间 t 的函数关系如图中的部分抛物线所示(其 中 P 是该抛物线的顶点)则下列说法正确的是 ( )
A. 小球滑行 6 秒停止 B. 小球滑行 12 秒停止 C. 小球滑行 6 秒回到起点 D. 小球滑行 12 秒回到起点
13. 如图,已知 AB 是⊙O 的直径,AB=2,C、D 是圆周上的点, 且∠CDB=30°,则 BC 的长为______.
第 2 页,共 19 页
14. 我们把三边长的比为 3:4:5 的三角形称为完全三角形,记命题 A:“完全三角形 是直角三角形”.若命题 B 是命题 A 的逆命题,请写出命题 B:______;并写出一 个例子(该例子能判断命题 B 是错误的)
九年级(上)期末数学试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 40.0 分)
1. 计算-5+6,结果正确的是( )
A. 1
B. −1
C. 11
D. −11
2. 如图,在△ABC 中,∠C=90°,则下列结论正确的是( )
A. ������������ = ������������ + ������������ B. ������������ = ������������ ⋅ ������������ C. ������������2 = ������������2 +������������2 D. ������������2 = ������������2 +������������2

福建省厦门市2022-2023学年九年级上学期期末质量检测数学试卷 (原卷版)

福建省厦门市2022-2023学年九年级上学期期末质量检测数学试卷 (原卷版)

2022-2023学年第一学期初中毕业班期末考试数 学(试卷满分:150分 考试时间:120分钟)注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息,核对答题卡上粘贴的条形码的“准考证号、姓名”与本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号,非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.全卷三大题,25小题,试卷共6页.4.可以直接使用2B 铅笔作图.一、选择题(本大题有84分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1. ⊙O 的半径为4,点A 在⊙O 内,则OA 的长可以是( )A. 3B. 4C. 5D. 62. 抛物线()213y x =-+的对称轴是( )A. 1x =B. =1x -C. 3x =D. 3x =-3. 如图,圆上依次有A ,B ,C ,D 四个点,AC ,BD 交于点P ,连接AB ,CD ,则图中与C Ð相等的角是( )A. A ÐB. B ÐC. D ÐD. APDÐ4. 如图,正方形ABCD 的对角线,AC BD 交于点O ,点M 在AOD △内,将点M 绕点O 逆时针旋转90°,则M 的对应点M ¢在()A. AOB V 内B. BOC V 内C. COD △内D. DOA △内5. 某园林公司购进某种树苗,为了解该种树苗的移植成活率,现对购进的第一批树苗进行随机抽样并统计,结果如图所示.若该公司第二批还需移植成活1800棵该种树苗,根据统计结果,则第二批树苗购买量较为合理的是( )A . 1620棵 B. 1800棵C. 2000棵D. 2093棵6. 点()0,5A,()4,5B 是抛物线2y axbx c =++上的两点,则该抛物线的顶点可能是( )A .()2,5 B. ()2,4 C. ()5,2 D. ()4,27. 将一个关于x 的一元二次方程配方为()2x m p +=,若23±是该方程的两个根,则p 的值是( )A. 2B. 4D. 38. 在平面直角坐标系xOy 中,ABC V 是以BC 为底边的等腰三角形,()1,A a ,(),3B b ,(),3C b t +,其中24t <<.关于点B 的位置,下列描述正确的是( )A. 在y 轴上B. 在第一象限C. 在第二象限D. 随a 的变化而不同二、填空题(本大题有8小题,每小题4分,共32分)9. 掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率是________.10. 已知1x =是方程230x mx -+=的解,则m 的值为____________.11. 在⊙O 中有两个三角形:V 和COD V ,点A ,B ,C ,D 依次在⊙O 上,如图所示.若这两个三角形关于过点O 的直线l 成轴对称,则点B 关于直线l 的对称点是____________.12. 如图,在ACB V 中,90C Ð=°,10AB =,8AC =,D 是AC 的中点,点B ,E 关于点D 成中心对称,则AE 的长为____________.13. 某小区有1300个住户,为了解小区居民的生活垃圾量(单位:kg),物业公司某日在该小区内随机抽取4栋楼的住户进行调查,结果如表一所示.表一根据表一,估计该小区居民当日生活垃圾总量为____________.14. 小桐竖直向上抛出一个小球,小球只在重力作用下的高度h(单位:m)随时间t(单位:s)变化的图象是抛物线的一部分,如图所示.小球出手时的高度是____________.15. 我国东汉初年的数学典籍《周髀算经》中总结了对几何工具“矩”(即直角形状的曲尺,如图1所示)的使用之道,其中就有“环矩以为圆”的方法.我国许多数学家对该方法作了如下更具体的描述:如图2所示,在平面内固定两个钉子A,B,保持“矩”的两边始终紧靠两钉子的内侧,转动“矩”,则“矩”的顶点C的运动路线将会是一个圆.依此描述,请用你学过的一个数学概念或定理解释“环矩以为圆”这种方法的道理:________________.16. 已知b >,抛物线21y ax bx c =-+与x 轴交于A ,B 两点(A 在B 的左侧),抛物线22y ax bx c=++与x 轴交于C ,D 两点(C 在D 的左侧),其中A ,B ,C ,D 的横坐标分别为A x ,B x ,C x ,Dx ,若当0B x x <<时,120y y <<,则当210y y <<时,x 的取值范围是____________.三、解答题(本大题有9小题,共86分)17. 解方程:2250x x +-=.18. 如图,四边形ABCD 是平行四边形,点E F 、在对角线BD 上,AE CF ,分别平分BAD Ð和DCB Ð,证明BE DF =.19. 先化简,再求值;2241244a a a a a -æö-¸ç÷+++èø,其中2a =.20. 某市为减少汽车尾气污染,改善空气质量,鼓励市民选择新能源汽车作为出行的交通工具,并大力推进新能源汽车充电基础设施建设.据统计,该市2020年新建100座充电站,2022年新建169座.求该市这两年新建充电站的数量的年平均增长率.21. 小梧是某校一名七年级新生,新学期开始,他打算每天早上和同小区里的几位新同学一起上学.小梧和同学计划每天早上7:00出发搭乘公共交通工具前往该学校,并在7:50前入校.几位同学通过查询出行软件,发现有三条路线可供选择,他们约定开学后的两周内分三组体验不同的路线并进行记录,结果如表二所示.表二(1)根据表二,求体验路线一的同学这10天平均每天上学路上所用的时间;(2)请你为小梧和他的同学选择一条较为合理的上学路线,并说明理由.22. 在ABC V 中,90C Ð=°,()045CAB a aÐ=°<<°,将ABC V 绕点A 逆时针旋转,旋转角为()0180b b °<<°,记点B ,C 的对应点分别为D ,E.(1)若ABC V 和线段AD 如图所示,请在图中作出ADE V (要求;尺规作图,不写作法,保留作图痕迹);(2)M 是AB 的中点,N 是点M 旋转后的对应点,连接MN ,CD ,BD ,则是否存在β与α的某种数量关系,使得无论α取何值时,都有MN CD =?若存在,请说明理由,并直接写出此时BC 与BD 的数量关系;若不存在,也请说明理由.23. 如果一个矩形有两个顶点在某抛物线上,那么称该矩形是该抛物线的“半接矩形”.矩形ABCD 在第一象限,点(),B m n 在抛物线2y x bx c =++(记为抛物线T )上.(1)矩形ABCD 是正方形,()1,3A ,1m =,3b =-,4c =,直接写出点C ,D 的坐标,并证明:矩形ABCD 是抛物线T 的“半接矩形”;(2)(),1A m n +,点C 在AB 边的右侧,3BC =,矩形ABCD 是抛物线T 的“半接矩形”,若矩形ABCD 的一条对称轴是2b x =-,将该矩形平移,使得平移后的矩形1111DC B A 仍是抛物线T 的“半接矩形”,请探究矩形ABCD 如何平移.24. 如图,ABC V 内接于O e ,AC =,67.5ABC Ð=°,»BC 的长为2,点P 是射线BC 上的动点()2BP m m =≥.射线OP 绕点O 逆时针旋转45°得到射线OD ,点Q 是射线OD 上的点,点Q 与点O 不重合,连接PQ ,PQ n =.(1)求O e 的半径;(2)当2222n m m =-+时,在点P 运动的过程中,点Q 的位置会随之变化,记1Q ,2Q 是其中任意两个位置,探究直线12Q Q 与O e 的位置关系.25. 某景区正在修建一条到主景点的步行道及步行道两侧的游客休息区、沿途小观景点等附属设施.把步行道的入口记为A ,步行道上某点P 到入口A 的道路长度记为l (单位:m ),把从入口A 处到P 处的步行道面积与此段步行道两侧的所有附属设施的占地面积之和记为S (单位:2m ).设P 处的步行道宽度为x (单位:m ),根据景区对主景点的规划,步行道出口的宽度为2m .用矩形面积估计不规则图形的面积是一种比较有效的方法.因此,景区管委会近似地用一边长为l ,另一边长为()x n +(n 为常量,0n >,n 的单位为m )的矩形的面积表示S .景区管委会在目前已修建的720m 的步行道上选取了部分有代表性的地点进行测算,数据如表三所示.表三根据以上信息,在合理估计的基础上,解决下列问题:(1)写出当450l =时S l的值,并说明理由;(2)当2n =时,求l 与x 的函数解析式(不需要写出x 的取值范围);(3)若景区可按此方式继续修建步行道及附属设施,请你通过计算说明常量n 至少为多少.第9页/共9页。

福建省厦门市九年级数学上学期期末质量检测试题

福建省厦门市九年级数学上学期期末质量检测试题

福建省厦门市九年级数学上学期期末质量检测试题一、选择题1.下列各数中,是有理数的是()A. √2 B. -3.14 C.0.25 D. π2.已知直线AB过点(2, -1),斜率为3,求直线AB的方程。

3.一辆汽车行驶了200km,油耗8L,求其百公里油耗量。

4.解方程:(2x - 1)(x + 3) = 0,答案是() A. x = 1/2B. x = -1/2C. x = -3D. x = 1/35.已知三角形ABC中,∠A = 50°,∠B = 80°,求∠C的度数。

二、填空题1.若一个数是有理数,则它一定是(_________)2.直线方程3x - 4y = 8的斜率为(_________)3.在一个角的两边上各选取一点,再将这两点与角的顶点分别相连,得到的两条线段叫做该角的(_________)4.一个直角三角形中,一个锐角的度数为__,则另外一个锐角的度数为__。

5.若一个有理数的分子是0,则这个有理数等于(_________)三、解答题1.某商店正在搞促销活动,一种风扇原价180元,现在打6折,求促销价。

促销价 = 原价 × 折扣 = 180元 × 0.6 = 108元所以该风扇的促销价为108元。

2.解不等式:2x + 3 > 9,给出解集。

2x + 3 > 9 2x > 9 - 3 2x > 6 x > 3所以解集为x > 3。

3.爸爸希望买一只价值800元的手表,他还差160元,请问他已经凑了价值的多少?凑的金额 = 总金额 - 差额 = 800元 - 160元 = 640元所以爸爸已经凑了价值的640元。

4.解方程:2(x + 3) = 5x - 1,给出解集。

2(x + 3) = 5x - 1 2x + 6 = 5x - 1 2x - 5x = -1 - 6 -3x = -7 x = -7/ -3 x = 7/3所以解集为x = 7/3。

2024届福建省厦门市名校九年级数学第一学期期末学业水平测试试题含解析

2024届福建省厦门市名校九年级数学第一学期期末学业水平测试试题含解析

2024届福建省厦门市名校九年级数学第一学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-,其对称轴为直线12x =-,结合图象分析下列结论:①0abc >;②30a c +>;③当0x <时,y 随x 的增大而增大;④一元二次方程20cx bx a ++=的两根分别为113x =-,212x =;⑤2404b aca-<;⑥若m ,()n m n <为方程()()3230a x x++=﹣的两个根,则3m <-且2n >,其中正确的结论有( )A .3个B .4个C .5个D .6个2.如图所示,Rt ABC ∆中,30B ∠=,3AC =,点M 为BC 中点,将ABC ∆绕点C 旋转,N 为11A B 中点,则线段MN 的最小值为( )A .12B 332C .15D .3123.如果一个正多边形的中心角为60°,那么这个正多边形的边数是( ) A .4B .5C .6D .74.把抛物线y =-12x 2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为( )A .y =-12(x +1)2+1 B .y =-12(x +1)2-1 C .y =-12 (x -1)2+ 1 D .y =-12(x -1)2-15.如图,已知Rt △ABC 中,∠C =90°,BC =3,AC =4,则sinA 的值为( ). A .34B .43C .35D .456.一元二次方程x 2-8x -1=0配方后可变形为() A .(x +4)2=17B .(x +4)2=15C .(x -4)2=17D .(x -4)2=157.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( )A .B .C .D .8.抛物线y=ax 2+bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表: x … -2 -1 0 1 2 … y…4664…观察上表,得出下面结论:①抛物线与x 轴的一个交点为(3,0); ②函数y=ax 2+bx+C 的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y 随x 增大而增大.其中正确有( )A .1个B .2个C .3个D .4个9.方程05)1(22=-+-mx x m 是关于x 的一元二次方程,则m 的值不能是( ) A .0B .12C .±1D .12-10.已知△ABC 的外接圆⊙O ,那么点O 是△ABC 的( )A .三条中线交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线交点11.若ABC ∆与DEF ∆的相似比为1:4,则ABC ∆与DEF ∆的周长比为( ) A .1:2B .1:3C .1:4D .1:1612.某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面AB 宽为80cm ,管道顶端最高点到水面的距离为20cm ,则修理人员需准备的新管道的半径为( )A .50cmB .503cmC .100cmD .80cm二、填空题(每题4分,共24分)13.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.14.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.1.根据上述数据,估计口袋中大约有_______个黄球 15.二次函数y=x 2﹣2x+3图象的顶点坐标为_____.16.关于x 的方程260x x k ++=没有实数根,则k 的取值范围为____________ 17.抛物线()2219y k x k =++-开口向下,且经过原点,则k =________.18.如图,在⊙O 中,弦AC=23,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R= .三、解答题(共78分)19.(8分)先锋中学数学课题组为了了解初中学生阅读数学教科书的现状,随机抽取某校部分初中学生进行调查,调查结果分为“重视”、“一般”、“不重视”、“说不清楚”四种情况(依次用A 、B 、C 、D 表示),依据相关数据绘制成以下不完整的统计表和统计图,请根据图表中的信息解答下列问题: 类别 频数 频率 重视a0.25一般 60 0.3 不重视 b c 说不清楚100.05(1)求样本容量及表格中a ,b ,c 的值,并补全统计图;(2)若该校共有2000名学生,请估计该校“不重视阅读数学教科书”的学生人数. 20.(8分)(1)计算:04sin458(31)2-++-. (2)用适当方法解方程:29(2x 5)40--= (3)用配方法解方程:22x 4x 30--= 21.(8分)解方程:(1)用公式法解方程:3x 2﹣x ﹣4=1 (2)用配方法解方程:x 2﹣4x ﹣5=1.22.(10分)如图,在平面直角坐标系中,O 为坐标原点,ABO ∆的边AB 垂直于x 轴、垂足为点B ,反比例函数11(0)k y x x=<的图象经过AO 的中点C 、且与AB 相交于点D .经过C 、D 两点的一次函数解析式为22y k x b =+,若点D 的坐标为(4-,1).且3AD =. (1)求反比例函数的解析式;(2)在直线CD 上有一点P ,POB ∆的面积等于8.求满足条件的点P 的坐标; (3)请观察图象直接写出不等式12k k x b x>+的解集.23.(10分)已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC 的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.24.(10分)如图,已知二次函数y=x2﹣4x+3图象与x轴分别交于点B、D,与y轴交于点C,顶点为A,分别连接AB,BC,CD,DA.(1)求四边形ABCD的面积;(2)当y>0时,自变量x的取值范围是.25.(12分)如图,直线y=2x+6与反比例函数y=kx(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?26.如图,一次函数的图象与反比例函数的图象交于两点,且点的横坐标为 .(1)求反比例函数的解析式;(2)求点的坐标.参考答案一、选择题(每题4分,共48分) 1、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断. 【题目详解】解:抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-,其对称轴为直线12x =-∴抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-和()2,0,且a b =由图象知:0a <,0c >,0b <∴0abc >故结论①正确;抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-∴90a b c -+=a b =∴6c a =- ∴330a c a +=->故结论②正确; 当12x <-时,y 随x 的增大而增大;当102x -<<时,y 随x 的增大而减小 ∴结论③错误;20cx bx a ++=,0c >∴210c bx x a a++= 抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-和()2,0∴20ax bx c ++=的两根是3-和2 ∴1b a =,6ca=- ∴210c bx x a a ++=即为:2610x x ++=-,解得113x =-,212x =; 故结论④正确;当12x =-时,2404ac b y a-=>∴2404b ac a-<故结论⑤正确;抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-和()2,0,∴()()232y ax bx c x x =+++-m ,()n m n <为方程()()3230a x x +-+=的两个根∴m ,()n m n <为方程()()323a x x +-=-的两个根∴m ,()n m n <为函数()()32y x x =+-与直线3y =-的两个交点的横坐标结合图象得:3m <-且2n > 故结论⑥成立; 故选C . 【题目点拨】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识. 2、B【分析】如图,连接CN .想办法求出CN ,CM ,根据MN ≥CN−CM 即可解决问题. 【题目详解】如图,连接CN .在Rt △ABC 中,∵AC =4,∠B =30°, ∴AB =2AC =2 3BC 3=3,∵CM =MB =12BC =32, ∵A 1N =NB 1,∴CN =12A 1B 1, ∵MN ≥CN−CM ,∴MN 32,即MN 32,∴MN 32,故选:B . 【题目点拨】本题考查解直角三角形,旋转变换等知识,解题的关键是用转化的思想思考问题,属于中考常考题型. 3、C【解题分析】试题解析:这个多边形的边数为:36060 6.÷= 故选C. 4、B【解题分析】试题分析:根据抛物线的平移规律“左加右减,上加下减”,可直接求得平移后的抛物线的解析式为:21y x+112=--().5、C【分析】根据勾股定理求出AB ,并根据正弦公式:sinA=BCAB求解即可. 【题目详解】∵∠C=90°,BC=3,AC=4∴5AB ===∴3sin 5BC A AB == 故选C. 【题目点拨】本题主要是正弦函数与勾股定理的简单应用,正确理解正弦求值公式即可. 6、C【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得. 【题目详解】解:∵2810x x --=, ∴2816116x x -+=+,即2(4)17x -=, 故选:C . 【题目点拨】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.7、A【分析】首先根据线y=kx+b 经过第一、二、四象限,可得k <0,b >0,再根据k <0,b >0判断出直线y=bx+k 的图象所过象限即可.【题目详解】根据题意可知,k <0,b >0, ∴y=bx+k 的图象经过一,三,四象限. 故选A. 【题目点拨】此题主要考查了一次函数y=kx+b 图象所过象限与系数的关系: ①k >0,b >0⇔y=kx+b 的图象在一、二、三象限; ②k >0,b <0⇔y=kx+b 的图象在一、三、四象限; ③k <0,b >0⇔y=kx+b 的图象在一、二、四象限; ④k <0,b <0⇔y=kx+b 的图象在二、三、四象限. 8、C【解题分析】从表中可知,抛物线过(0,6),(1,6),所以可得抛物线的对称轴是x=,故③正确.当x=-2时,y=0,根据对称性当抛物线与x 轴的另一个交点坐标为x=×2+2=3.故①;当x=2时,y=4,所以在对称轴的右侧,随着x增大,y 在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故②错,④对.选C. 9、C【题目详解】解:05)1(22=-+-mx x m 是关于x 的一元二次方程,则210m -≠,解得m ≠±1 故选C . 【题目点拨】本题考查一元二次方程的概念,注意二次项系数不能为零. 10、C【分析】根据三角形外接圆圆心的确定方法,结合垂直平分线的性质,即可求得.【题目详解】已知⊙O 是△ABC 的外接圆,那么点O 一定是△ABC 的三边的垂直平分线的交点, 故选:C . 【题目点拨】本题考查三角形外接圆圆心的确定,属基础题. 11、C【分析】根据相似三角形的性质解答即可.【题目详解】解:∵ABC ∆与DEF ∆的相似比为1:4,∴ABC ∆与DEF ∆的周长比为:1:4.故选:C.【题目点拨】本题考查了相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.12、A【分析】连接OA 作弦心距,就可以构造成直角三角形.设出半径弦心距也可以得到,利用勾股定理就可以求出了.【题目详解】解:如图,过点O 作 OC AB ⊥于点C ,边接AO ,11804022AC AB ==⨯= 20CO AO =-,在R t AOC △中,222AO AC OC =+,22240(20)AO AO =+-,解,得AO=50故选:A【题目点拨】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题(每题4分,共24分)13、30°【解题分析】试题解析:∵关于x 的方程22sin 0x x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°; 故答案为30°. 14、2【题目详解】解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.1,设黄球有x 个,∴0.1(x+10)=10,解得x=2.答:口袋中黄色球的个数很可能是2个.15、(1,2).【分析】先把此二次函数右边通过配方写成顶点式得:y=(x-1)2+2,从而求解.【题目详解】解:y=x 2﹣2x+3y=x 2﹣2x+1+2y=(x-1)2+2,所以,其顶点坐标是(1,2).故答案为(1,2)【题目点拨】本题考查将二次函数一般式化为顶点式求二次函数的顶点坐标,正确计算是本题的解题关键.16、9k >【分析】根据题意利用根的判别式进行分析计算,即可求出k 的取值范围.【题目详解】解:∵关于x 的方程260x x k ++=没有实数根,∴2246413640b ac k k ∆=-=-⨯⨯=-<,解得9k >.故答案为:9k >.【题目点拨】本题考查根的判别式相关,熟练掌握一元二次方程20(a 0)++=≠ax bx c 中,当∆<0时,方程没有实数根是解答此题的关键.17、3-【解题分析】把原点(0,0)代入y =(k +1)x 2+k 2﹣9,可求k ,再根据开口方向的要求检验.【题目详解】把原点(0,0)代入y =(k +1)x 2+k 2﹣9中,得:k 2﹣9=0解得:k =±1.又因为开口向下,即k +1<0,k <﹣1,所以k =﹣1.故答案为:﹣1.【题目点拨】主要考查了二次函数图象上的点与二次函数解析式的关系.要求掌握二次函数图象的性质,并会利用性质得出系数之间的数量关系进行解题.18、6.【分析】通过∠ABC=45°,可得出∠AOC=90°,根据OA=OC就可以结合勾股定理求出AC的长了.【题目详解】∵∠ABC=45°,∴∠AOC=90°,∴OA1+OC1=AC1.∴OA1+OA1=(13)1.∴OA=6.故⊙O的半径为6.故答案为:6.三、解答题(共78分)19、(1)样本容量为200,a=50,b=80,c=0.4,图见解析;(2)800人【分析】(1)由“一般”的频数及其频率可得样本容量,再根据频率=频数÷样本容量及频数之和等于总人数求解可得;(2)用总人数乘以样本中“不重视”对应的频率即可得.【题目详解】(1)样本容量为60÷0.3=200,则a=200×0.25=50,b=200﹣50﹣60﹣10=80,c=80÷200=0.4,补全条形图如下:(2)估计该校“不重视阅读数学教科书”的学生人数为2000×0.4=800(人).【题目点拨】本题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知识.20、(1)3;(2) x 1=176,x 2=136;(3) x 1=,x 2=1 【解题分析】(1)先根据特殊角的三角函数值、二次根式的性质、零指数幂和绝对值的意义逐项化简,再合并同类二次根式或同类项即可;(2)用直接开平方法求解即可;(3)先把-3移项,再把二次项系数化为1,两边都加1,把左边写成完全平方的形式,两边同时开平方即可.【题目详解】解:(1)原式=4×2 +1+2 =3; (2)(2x-5)2=49 , 2x-5=±23, 所以x 1=176,x 2=136; (3) 解:∵2x 2-4x-3=0,∴2x 2-4x=3,∴x 2−2x =32, ∴x 2−2x+1=32+1, ∴(x −1)2=52,∴x -,∴x 1=,x 2=1. 【题目点拨】本题考查了实数的混合运算,一元二次方程的解法,熟练掌握二次方程的解法是解答本题的关键.21、(1)x 1=43,x 2=-1;(2)x 1=5,x 2=-1.【分析】(1)根据一元二次方程的一般形式得出a 、b 、c 的值,利用公式法即可得答案; (2)先把常数项移项,再把方程两边同时加上一次项系数一半的平方,即可得完全平方式,直接开平方即可得答案.【题目详解】(1)3x 2﹣x ﹣4=1∵a=3,b=-1,c=-4,∴17x 6±== ∴x 1=43,x 1=-1. (2)x 2﹣4x ﹣5=1x 2﹣4x+4=5+4(x ﹣2)2=9∴x -2=3或x -2=-3∴x 1=5,x 2=-1.【题目点拨】本题考查解一元二次方程,一元二次方程的常用解法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.22、(1)y 1=4x-;(2)P(2,4)或(﹣14,﹣4);(3)x <﹣4或﹣2<x <1. 【分析】(1)把D (-4,1)代入11k y x =(x <1),利用待定系数法即可求得; (2)根据题意求得C 点的坐标,进而根据待定系数法求得直线CD 的解析式,根据三角形的面积求得P 点的纵坐标,代入直线解析式即可求得横坐标;(3)根据两函数图象的上下位置关系即可得出不等式的解集.【题目详解】(1)把(﹣4,1)代入11k y x =(x <1), 解得:k 1=﹣4,∴反比例函数的解析式为:y 1=4x-; (2)由点D 的坐标为(﹣4,1),且AD=3,∴点A 的坐标为(﹣4,4),∵点C 为OA 的中点,∴点C 的坐标为(﹣2,2),将点D(﹣4,1)和点C(﹣2,2)代入y 2=k 2x+b ,得k 2=12,b=3,即y 2=132x +, 设点P 的坐标为(m ,n)∵△POB 的面积等于8,OB=4,∴142n ⨯⨯=8, ∴4n =即4n =±,代入y 2=132x +, 得到点P 的坐标为(2,4)或(﹣14,﹣4);(3) 观察函数图象可知:当x <﹣4或﹣2<x <1时,反比例函数图象在一次函数图象的上方,∴不等式12k k x b x>+的解集为:x <﹣4或﹣2<x <1. 【题目点拨】 本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是求得C 点的坐标.23、①证明见解析;(2)S 菱形CODP =24.【解题分析】① 根据DP ∥AC ,CP ∥BD ,即可证出四边形CODP 是平行四边形,由矩形的性质得出OC=OD ,即可得出结论;② 利用S △COD =S 菱形CODP ,先求出S △COD,即可得.【题目详解】证明:①∵DP ∥AC ,CP ∥BD∴四边形CODP 是平行四边形,∵四边形ABCD 是矩形,∴BD =AC ,OD =BD ,OC =AC ,∴OD =OC ,∴四边形CODP 是菱形.②∵AD =6,AC =10∴DC ==8∵AO =CO ,∴S △COD =S △ADC =××AD×CD =12 ∵四边形CODP 是菱形,∴S △COD =S 菱形CODP =12,∴S 菱形CODP =24【题目点拨】本题考查了矩形性质和菱形的判定,解题关键是熟练掌握菱形的判定方法,由矩形的性质得出OC=OD .24、(1)4;(2)x >3或x <1.【分析】(1)四边形ABCD 的面积=12×BD ×(x C ﹣x A )=12×2×(3+1)=4; (2)从图象可以看出,当y >0时,自变量x 的取值范围是:x >3或x <1,即可求解.【题目详解】(1)函数y =x 2﹣4x +3图象与x 轴分别交于点B 、D ,与y 轴交于点C ,顶点为A ,则点B 、D 、C 、A 的坐标分别为:(3,0)、(1,0)、(0,3)、(2,﹣1);四边形ABCD 的面积=12×BD ×(x C ﹣x A )=12×2×(3+1)=4; (2)从图象可以看出,当y >0时,自变量x 的取值范围是:x >3或x <1,故答案为:x >3或x <1.【题目点拨】本题考查二次函数的图形和性质,解题时需注意将四边形的面积转化为三角形的面积进行计算,四边形ABCD 的面积=12×BD ×(x C ﹣x A ). 25、(1)m =8,反比例函数的表达式为y =8x ;(2)当n =3时,△BMN 的面积最大. 【解题分析】(1)求出点A 的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【题目详解】解:(1)∵直线y=2x+6经过点A (1,m ),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A (1,8), ∴8=1k , ∴k=8,∴反比例函数的解析式为y=8x. (2)由题意,点M ,N 的坐标为M (8n ,n ),N (62n -,n ), ∵0<n <6, ∴62n -<0, ∴S △BMN =12×(|62n -|+|8n |)×n=12×(﹣62n -+8n )×n=﹣14(n ﹣3)2+254, ∴n=3时,△BMN 的面积最大.26、(1)反比例函数的解析式是y=6x;(2)(﹣1,﹣6).【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【题目详解】(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=kx得k=6,则反比例函数的解析式是y=6x;(2)根据题意得2x﹣4=6x,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).考点:反比例函数与一次函数的交点问题.。

厦门市-九年级上期末数学试题含答案(扫描版).doc

厦门市-九年级上期末数学试题含答案(扫描版).doc

数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 选项CBADDCBCDB二、填空题(本大题共6小题,每题4分,共24分)11. 3. 12.语言. 13. (-5,4). 14. 20. 15. 42-2. 16. 32a . 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:∵ a =1,b =2,c =-2, ∴ △=b 2-4ac=12. ……………………………4分∴ x =-b ±b 2-4ac2a=-2±232. ……………………………6分 ∴ x 1=-1+3,x 2=-1-3. ……………………………8分 18.(本题满分8分)证明: 在Rt △ADC 中, ∵ ∠D =90°, ∴ DC =AC 2-AD 2=12. ………………………4分∴ DC =BC . ………………………5分 又∵ AB =AD ,AC =AC ,∴ △ABC ≌△ADC . ……………………………8分 19.(本题满分8分)(1)(本小题满分4分)解:223+2172=220(棵).答:这批工人前两天平均每天种植220棵景观树木.……………………4分 (2)(本小题满分4分)解:这批工人前五天平均每天种植的树木为:223+217+198+195+2025=207(棵). ……………………6分估计到3月10日,这批工人可种植树木2070棵. ……………………7分 由于2070<2200所以我认为公司还需增派工人. ……………………8分 (也可用前五天种植量的中位数202估计十天种植量为2020,在数据基础上,对是否需要增派工人进行合理解释即可) 20.(本题满分8分)解:如图:DCB A· · A 'C '21.(本题满分8分)证明:设该圆的圆心为点O ,在⊙O 中,∵ ︵AC =︵BF ,∴ ∠AOC =∠BOF .又 ∠AOC =2∠ABC ,∠BOF =2∠BCF , ∴ ∠ABC =∠BCF . …………………2分 ∴ AB ∥CF . …………………3分 ∴ ∠DCF =∠DEB . ∵ DC ⊥AB ,∴ ∠DEB =90°.∴ ∠DCF =90°.…………………4分∴ DF 为⊙O 直径. …………………5分 且 ∠CDF +∠DFC =90°. ∵ ∠MDC =∠DFC ,∴ ∠MDC +∠DFC =90°.即 DF ⊥MN . …………………7分 又∵ MN 过点D ,∴ 直线MN 是⊙O 的切线 . …………………8分 22.(本题满分10分)(1)(本小题满分4分)解: ∵ 一次函数y =kx +4m (m >0)的图象经过点B (p ,2m ), ∴ 2m =kp +4m . …………………2分 ∴ kp =-2m .∵ m =1,k =-1,∴ p =2. …………………3分∴ B (2,2). …………………4分 (2)(本小题满分6分)答:线段AB 上存在一点N ,使得点N 到坐标原点O 与到点C 的距离之和等于线段OB 的长. …………………5分理由:由题意,将B (p ,2m ),C (n ,0)分别代入y =kx +4m , 得kp +4m =2m 且kn +4m =0.可得n =2p .∵ n +2p =4m ,∴ p =m . …………………7分 ∴ A (m ,0),B (m ,2m ),C (2m ,0).∵ x B =x A ,∴ AB ⊥x 轴, …………………9分且 OA =AC =m . ∴ 对于线段AB 上的点N ,有NO =NC .∴ 点N 到坐标原点O 与到点C 的距离之和为NO +NC =2NO . ∵ ∠BAO =90°,在Rt △BAO ,Rt △NAO 中分别有OB 2=AB 2+OA 2=5m 2,NO 2=NA 2+OA 2=NA 2+m 2. 若2NO =OB ,则4NO 2=OB 2. 即4(NA 2+m 2)=5m 2.可得NA =12m . 即NA =14AB . …………………10分所以线段AB 上存在一点N ,使得点N 到坐标原点O 与到点C 的距离之和等于线段OB 的长,且NA =14AB .23.(本题满分11分)(1)(本小题满分5分)A BC N解:∵ 四边形ABCD 是矩形, ∴ ∠ABE =90°. 又 AB =8,BE =6,∴ AE =82+62=10. ……………………1分 设△ABE 中,边AE 上的高为h , ∵ S △ABE =12AE ⋅h =12AB ⋅BE ,∴ h =245 . ……………………3分又 AP =2x ,∴ y =245x (0<x ≤5). ……………………5分(2)(本小题满分6分)解: ∵ 四边形ABCD 是矩形,∴ ∠B =∠C =90°,AB =DC , AD =BC . ∵ E 为BC 中点, ∴ BE =EC . ∴ △ABE ≌△DCE .∴ AE =DE . ……………………6分 当点P 运动至点D 时,S △ABP =S △ABD ,由题意得125x =32-4x , 解得x =5. ……………………7分当点P 运动一周回到点A 时,S △ABP =0,由题意得32-4x =0, 解得x =8. ……………………8分 ∴ AD =2×(8-5)=6. ∴ BC =6.∴ BE =3.且AE +ED =2×5=10. ∴ AE =5.在Rt △ABE 中,AB =52-32=4. ……………………9分 设△ABE 中,边AE 上的高为h , ∵ S △ABE =12AE ⋅h =12AB ⋅BE ,∴ h =125.又 AP =2x ,∴ 当点P 从A 运动至点D 时,y =125x (0<x ≤2.5).…………10分∴ y 关于x 的函数表达式为:当0<x ≤5时,y =125x ;当5<x ≤8时,y =32-4x . ………………11分24.(本题满分11分)(1)(本小题满分4分)解:连接OC ,OB .∵ ∠ACD =40°,∠CDB =70°,∴ ∠CAB =∠CDB -∠ACD =70°-40°=30°.…………1分 ∴ ∠BOC =2∠BAC =60°, ………………2分PE DCBAODCBA∴ ︵BD l =180n r π=603180π⨯⨯=π. ………………4分(2)(本小题满分7分)解:∠ABC +∠OBP =130°. ………………………5分 证明:设∠CAB =α,∠ABC =β,∠OBA =γ,连接OC .则∠COB =2α. ∵ OB =OC ,∴ ∠OCB =∠OBC =β+γ.∵ △OCB 中,∠COB +∠OCB +∠OBC =180°,∴ 2α+2(β+γ)=180°.即α+β+γ=90°. ………………………8分 ∵ PB =PD ,∴ ∠PBD =∠PDB=40°+α. ………………………9分∴ ∠OBP =∠OBA +∠PBD=γ+40°+α=(90°-β) +40°=130°-β. ………………………11分即∠ABC +∠OBP =130°.25.(本题满分14分)(1)(本小题满分3分)解:∵ a 1=-1, ∴ y 1=-(x -m )2+5.将(1,4)代入y 1=-(x -m )2+5,得4=-(1-m )2+5. …………………………2分m =0或m =2 . ∵ m >0,∴ m =2 . …………………………3分 (2)(本小题满分4分)解:∵ c 2=0,∴ 抛物线y 2=a 2 x 2+b 2 x .将(2,0)代入y 2=a 2 x 2+b 2 x ,得4a 2+2b 2=0. 即b 2=-2a 2.∴ 抛物线的对称轴是x =1. …………………………5分 设对称轴与x 轴交于点N , 则NA =NO =1.又 ∠OMA =90°,∴ MN =12OA =1. …………………………6分∴ 当a 2>0时, M (1,-1);当a 2<0时, M (1,1).∵ 25>1, ∴M (1,-1) ……………………7分(3)(本小题满分7分)解: 由题意知,当x =m 时,y 1=5;当x =m 时,y 2=25,∴ 当x =m 时,y 1+y 2=5+25=30. ∵ y 1+y 2=x 2+16 x +13, ∴ 30=m 2+16m +13.P ABCD O解得m 1=1,m 2=-17. ∵ m >0,∴ m =1. ……………………………9分 ∴ y 1=a 1 (x -1)2+5. ∴ y 2=x 2+16 x +13-y 1=x 2+16 x +13-a 1 (x -1)2-5.即y 2=(1-a 1)x 2+(16+2a 1)x +8-a 1. ………………………12分∵ 4a 2 c 2-b 22=-8a 2,∴ y 2 顶点的纵坐标为 4a 2 c 2-b 224a 2=-2.∴ 4(1-a 1) (8-a 1)-(16+2a 1)24(1-a 1)=-2.化简得56+25a 11-a 1=-2.解得a 1=-2.经检验,a 1是原方程的解.∴ 抛物线的解析式为y 2=3x 2+12x +10. ……………………14分。

九年级上册厦门数学期末试卷(提升篇)(Word版 含解析)

九年级上册厦门数学期末试卷(提升篇)(Word版 含解析)

九年级上册厦门数学期末试卷(提升篇)(Word 版 含解析)一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=2.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36° 3.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)4.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;5.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .3C .6D .96.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .117.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .22338.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-9.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个10.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 11.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度 12.一组数据10,9,10,12,9的平均数是( ) A .11B .12C .9D .10二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.14.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.15.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.16.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;17.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)18.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.19.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C的纵坐标为﹣1,点D在反比例函数y=kx的图象上,CD平行于y轴,S△OCD=52,则k的值为________.20.如图,在由边长为1的小正方形组成的网格中.点 A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.21.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.22.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m n个数据的平均数等于______.23.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.24.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.三、解答题25.某校举行秋季运动会,甲、乙两人报名参加100 m比赛,预赛分A、B、C三组进行,运动员通过抽签决定分组.(1)甲分到A组的概率为;(2)求甲、乙恰好分到同一组的概率.26.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设 AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.27.解下列一元二次方程.(1)x2+x-6=0;(2)2(x-1)2-8=0.28.(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)29.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)30.从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.31.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于点B (-3 ,0) 和C (4 ,0)与y轴交于点A.(1) a = ,b = ;(2) 点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t为何值时,以B、M、N为顶点的三角形是等腰三角形?(3) 点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.32.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 2.C解析:C【解析】【分析】【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.3.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.4.C解析:C【解析】【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:2222==,++2133AC BC所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC =,= ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.5.A解析:A 【解析】 【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP 的长. 【详解】 连接OA ,∵PA 为⊙O 的切线, ∴∠OAP=90°, ∵∠P=30°,OB=3, ∴AO=3,则OP=6, 故BP=6-3=3. 故选A . 【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.D解析:D 【解析】 【分析】计算最大数19与最小数8的差即可. 【详解】 19-8=11, 故选:D. 【点睛】此题考查极差,即一组数据中最大值与最小值的差.7.C解析:C 【解析】 【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6, ∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a = ∵BC ∥AD , ∴AD PDBE PB= =2,∵BD =∴PD =23⨯=∴点H 的横坐标b ,∴a +b ==; 故选C . 【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.D解析:D 【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可. 【详解】过A 作AD ⊥BC 于D ,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.9.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=512AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 10.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.11.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.12.D解析:D【解析】【分析】利用平均数的求法求解即可.这组数据10,9,10,12,9的平均数是1(10910129)105++++=故选:D .【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键. 二、填空题13.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.15.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x-解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.16.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90︒,∵sin∠CAB=45,∴45BCAB=,∵AB=10,∴BC=8,∴22221086AC AB BC=-=-=,∵点D为BC的中点,∴CD=4.∵∠ACB=∠DCE=90︒,①当∠CDE1=∠ABC时,△ACB∽△E1CD,如图∴1AC BCCE CD=,即1684CE=,∴CE1=3,∵点E1在射线AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②当∠CE3D=∠ABC时,△ABC∽△DE3C,如图∴3AC BCCD CE=,即3684CE=,∴CE3=163,∴AE3=6+163=343,同理:AE4=6-163=23.故答案为:3或9 或23或343.【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.17.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB=【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或AD AE AB AC=.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵AD AEAB AC=,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或AD AE AB AC=【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 18.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.19.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D 的坐标是(2,32), ∵D 在双曲线y=k x 上, ∴代入得:k=2×32=3. 故答案为3. 考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.20.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.【详解】过点C 作CF ⊥AE ,垂足为F ,在Rt △ACD 中,CD =由网格可知,Rt △ABD 是等腰直角三角形,因此Rt △ACF 是等腰直角三角形,∴CF =AC •sin45°=2, 由AC ∥BD 可得△ACE ∽△BDE , ∴13CE AC DE BD ==,∴CE =14CD在Rt △ECF 中,sin ∠AEC =2CF CE ==.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.21.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 ,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.22..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案. 【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的 解析:mx ny m n++. 【解析】【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】 平均数等于总和除以个数,所以平均数mx ny m n+=+. 【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法. 23.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.24.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题25.(1)13;(2)13【解析】【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)1 3(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A)的结果有3种,所以P(A)=13.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.26.(1)见解析;(2)①当m=0时,存在1个矩形EFGH;②当0<m<95时,存在2个矩形EFGH;③当m=95时,存在1个矩形EFGH;④当95<m≤185时,存在2个矩形EFGH;⑤当185<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【解析】【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【详解】(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)(2)∵O到菱形边的距离为125,当⊙O与AB相切时AE=95,当过点A,C时,⊙O与AB交于A,E两点,此时AE=95×2=185,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<95时,如图,存在2个矩形EFGH;③当m=95时,如图,存在1个矩形EFGH;④当95<m≤185时,如图,存在2个矩形EFGH;⑤当185<m <5时,如图,存在1个矩形EFGH ;⑥当m =5时,不存在矩形EFGH .【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O 与菱形的边的交点个数,综合性较强.27.(1)123;2x x =-=;(2)123;1x x ==-【解析】【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.【详解】解:(1)x 2+x -6=0;(3)(2)0x x +-=∴123;2x x =-=(2)2(x -1)2-8=0.22(1)8x -=2(1)4x -=12x -=±∴123;1x x ==-【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.28.(1)相切,证明见解析;(2)答案见解析【解析】【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=12AB,CN12CD,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.29.(1)75cm(2)63cm【解析】解:(1)在Rt△ACD中,AC=45,CD=60,∴AD=22456075+=,∴车架档AD的长为75cm.(2)过点E作EF⊥AB,垂足为点F,距离EF=AEsin75°=(45+20)sin75°≈62.7835≈63.∴车座点E到车架档AB的距离是63cm.(1)在Rt△ACD中利用勾股定理求AD即可.(2)过点E作EF⊥AB,在Rt△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.30.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,x乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,2 s甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.31.(1)13-,13;(2)52530,,21111t=;(3)511(,)24【解析】【分析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN时,即5-t=t,②当BM=NM=5-t时,过点M作ME⊥OB,因为AO⊥BO,所以ME∥AO,可得:BM BEBA BO=即可解答;③当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=即可解答;(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设出点P坐标,易证△BGO∽△BPD,所以BO GOBD PD=,即可解答.【详解】解:解:(1)∵抛物线过点B (-3 ,0) 和C (4 ,0),∴9340 16440a ba b-+⎧⎨++⎩==,解得:1313ab⎧=-⎪⎪⎨⎪=⎪⎩;(2)∵B (-3 ,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒时,AM=t,BN=t,BM=AB-AM=5-t,①如图:当BM=BN时,即5-t=t,解得:t=5 2 ;,②如图,当BM=NM=5-t时,过点M作ME⊥OB,因为BN=t,由三线合一得:BE=12BN=12t,又因为AO⊥BO,所以ME∥AO,所以BM BEBA BO=,即15-253tt=,解得:t=3011;③如图:当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=,即5t253t-=,解得:t=2511.(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=32,设P (m,-13m2+13m+4),因为GO∥PD,∴△BGO∽△BPD,∴BO GOBD PD=,即2332113+433m m m=-++,解得:m1=52,m2=-3(点P在第一象限,所以不符合题意,舍去),m1=52时,-13m2+13m+4=114故点P的坐标为511(,)24【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.32.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b+⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.。

厦门市九年级(上)期末数学试卷

厦门市九年级(上)期末数学试卷

厦门市九年级(上)期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)下列各式中计算结果为9的是()A.(﹣2)+(﹣7)B.﹣32C.(﹣3)2D.3×3﹣12.(4分)如图,点E在四边形ABCD的边BC的延长线上,则下列两个角是同位角的是()A.∠BAC和∠ACB B.∠B和∠DCE C.∠B和∠BAD D.∠B和∠ACD 3.(4分)一元二次方程x2﹣2x﹣5=0根的判别式的值是()A.24B.16C.﹣16D.﹣244.(4分)已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A.AO=BOB.BO=EOC.点A关于点O的对称点是点DD.点D 在BO的延长线上5.(4分)已知菱形ABCD的对角线AC与BD交于点O,则下列结论正确的是()A.点O到顶点A的距离大于到顶点B的距离B.点O到顶点A的距离等于到顶点B的距离C.点O到边AB的距离大于到边BC的距离D.点O到边AB的距离等于到边BC的距离6.(4分)已知(4+)•a=b,若b是整数,则a的值可能是()A.B.4+C.8﹣2D.2﹣7.(4分)已知抛物线y=ax2+bx+c和y=max2+mbx+mc,其中a,b,c,m均为正数,且m≠1.则关于这两条抛物线,下列判断正确的是()A.顶点的纵坐标相同B.对称轴相同C.与y轴的交点相同D.其中一条经过平移可以与另一条重合8.(4分)一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.M号衬衫数13457包数207101112一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.9.(4分)已知甲、乙两个函数图象上的部分点的横坐标x与纵坐标y如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是()x﹣2024y甲5432y乙65 3.50A.a<﹣2B.﹣2<a<0C.0<a<2D.2<a<4 10.(4分)一组割草人要把两块草地上的草割掉,大草地的面积为S,小草地的面积为S,上午,全体组员都在大草地上割草,下午,一半人继续在大草地割草,到下午5时将剩下的草割完;另一半人到小草地上割草,等到下午5时还剩下一部分没割完.若上、下午的劳动时间相同,每个割草人的工作效率也相等,则没割完的这部分草地的面积是()A.S B.S C.S D.S二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)﹣3的相反数是.12.(4分)甲、乙两人参加某商场的招聘测试,测试由语言和商品知识两个项目组成,他们各自的成绩(百分制)如下表所示.该商场根据成绩在两人之间录用了乙,则本次招聘测试中权重较大的是项目.应聘者语言商品知识甲7080乙807013.(4分)在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°得到点B,则点B的坐标是.14.(4分)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣1.5t2,则飞机着陆后从开始滑行到完全停止所用的时间是秒.15.(4分)如图,AB为半圆O的直径,直线CE与半圆O相切于点C,点D是的中点,CB=4,四边形ABCD的面积为2AC,则圆心O到直线CE的距离是.16.(4分)如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD 上的动点,且AE+AF=a,则线段EF的最小值为.三、解答题(本大题有9小题,共86分)17.(8分)解方程:x2+2x﹣2=0.18.(8分)如图,在四边形ABCD中,AB=AD=5,BC=12,AC=13,∠ADC=90°.求证:△ABC≌△ADC.19.(8分)2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图所示.(1)这批工人前两天平均每天种植多少棵景观树木?(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请运用统计知识说明理由.20.(8分)如图,在平面直角坐标系中,已知某个二次函数的图象经过点A(1,m),B(2,n),C(4,t),且点B是该二次函数图象的顶点.请在图中描出该函数图象上另外的两个点,并画出图象.21.(8分)如图,圆中的弦AB与弦CD垂直于点E,点F在上,=,直线MN过点D,且∠MDC=∠DFC,求证:直线MN是该圆的切线.22.(10分)在平面直角坐标系中,一次函数y=kx+4m(m>0)的图象经过点B (p,2m),其中m>0.(1)若m=1,且k=﹣1,求点B的坐标;(2)已知点A(m,0),若直线y=kx+4m与x轴交于点C(n,0),n+2p=4m,试判断线段AB上是否存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长,并说明理由.23.(11分)如图,在矩形ABCD中,点E在BC边上,动点P以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从A 出发经x(x>0)秒后,△ABP的面积是y.(1)若AB=6厘米,BE=8厘米,当点P在线段AE上时,求y关于x的函数表达式;(2)已知点E是BC的中点,当点P在线段ED上时,y=x;当点P在线段AD 上时,y=32﹣4x.求y关于x的函数表达式.24.(11分)在⊙O中,点C在劣弧上,D是弦AB上的点,∠ACD=40°.(1)如图1,若⊙O的半径为3,∠CDB=70°,求的长;(2)如图2,若DC的延长线上存在点P,使得PD=PB,试探究∠ABC与∠OBP 的数量关系,并加以证明.25.(14分)已知y1=a1(x﹣m)2+5,点(m,25)在抛物线y2=a2x2+b2x+c2上,其中m>0.(1)若a1=﹣1,点(1,4)在抛物线y1=a1(x﹣m)2+5上,求m的值;(2)记O为坐标原点,抛物线y2=a2x2+b2x+c2的顶点为M,若c2=0,点A(2,0)在此抛物线上,∠OMA=90°,求点M的坐标;(3)若y1+y2=x2+16x+13,且4a2c2﹣b22=﹣8a2,求抛物线y2=a2x2+b2x+c2的解析式.厦门市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)下列各式中计算结果为9的是()A.(﹣2)+(﹣7)B.﹣32C.(﹣3)2D.3×3﹣1【分析】根据同号相加,取相同符号,并把绝对值相加可得(﹣2)+(﹣7)=﹣9;根据乘方的意义可得﹣32=﹣3×3=﹣9,(﹣3)2=(﹣3)×(﹣3)=9,根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得3×3﹣1=3×=1.【解答】解:A、(﹣2)+(﹣7)=﹣9,故此选项错误;B、﹣32=﹣9,故此选项错误;C、(﹣3)2=9,故此选项正确;D、3×3﹣1=1,故此选项错误;故选:C.【点评】此题主要考查了有理数的加法,乘方,以及负整数指数幂,关键是熟练掌握各计算法则.2.(4分)如图,点E在四边形ABCD的边BC的延长线上,则下列两个角是同位角的是()A.∠BAC和∠ACB B.∠B和∠DCE C.∠B和∠BAD D.∠B和∠ACD 【分析】利用同位角、内错角及同旁内角的定义分别判断后即可确定正确的选项.【解答】解:A、∠BAC和∠ACB是同旁内角,不符合题意;B、∠B和∠DCE是同位角,符合题意;C、∠B和∠BAD是同旁内角,不符合题意;D、∠B和∠ACD不属于同位角、内错角及同旁内角的任何一种,不符合题意,故选:B.【点评】本题考查了同位角、内错角及同旁内角的知识,牢记它们的定义是解答本题的关键,难度不大.3.(4分)一元二次方程x2﹣2x﹣5=0根的判别式的值是()A.24B.16C.﹣16D.﹣24【分析】根据方程的系数结合根的判别式△=b2﹣4ac,代入数据即可得出结论.【解答】解:在方程x2﹣2x﹣5=0中,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24.故选:A.【点评】本题考查了根的判别式,牢记一元二次方程根的判别式为△=b2﹣4ac 是解题的关键.4.(4分)已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A.AO=BOB.BO=EOC.点A关于点O的对称点是点DD.点D 在BO的延长线上【分析】根据中心对称的性质:中心对称点平分对应点连线的线段解答即可.【解答】解:A、AO=OE,错误;B、BO=DO,错误;C、点A关于点O的对称点是点E,错误;D、点D 在BO的延长线上,正确;故选:D.【点评】本题考查了中心对称的知识,难度不大,其实中心对称即是旋转的特例.5.(4分)已知菱形ABCD的对角线AC与BD交于点O,则下列结论正确的是()A.点O到顶点A的距离大于到顶点B的距离B.点O到顶点A的距离等于到顶点B的距离C.点O到边AB的距离大于到边BC的距离D.点O到边AB的距离等于到边BC的距离【分析】由菱形的性质即可得出结论.【解答】解:A、点O到顶点A的距离大于到顶点B的距离,不正确;B、点O到顶点A的距离等于到顶点B的距离,不正确;C、点O到边AB的距离大于到边BC的距离,不正确;D、点O到边AB的距离大于到边BC的距离,正确;故选:D.【点评】此题考查了菱形的性质.注意熟记定理是解此题的关键.6.(4分)已知(4+)•a=b,若b是整数,则a的值可能是()A.B.4+C.8﹣2D.2﹣【分析】根据分母有理化的法则进行计算即可.【解答】解:因为(4+)•a=b,b是整数,可得:a=8﹣2,故选:C.【点评】此题考查分母有理化问题,关键是根据分母有理化的法则进行解答.7.(4分)已知抛物线y=ax2+bx+c和y=max2+mbx+mc,其中a,b,c,m均为正数,且m≠1.则关于这两条抛物线,下列判断正确的是()A.顶点的纵坐标相同B.对称轴相同C.与y轴的交点相同D.其中一条经过平移可以与另一条重合【分析】由y=max2+mbx+mc=m(ax2+bx+c)进行判断即可.【解答】解:∵y=max2+mbx+mc=m(ax2+bx+c),∴抛物线对称轴相同,但最小值不同,∵ma≠a,∴两抛物线开口大小不同,∴经过平移后两抛物线不会重合,故选:B.【点评】本题主要考查二次函数的性质,掌握二次函数的开口大小由二次项系数的绝对值的大小决定、抛物线的顶点公式是解题的关键.8.(4分)一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.M号衬衫数13457包数207101112一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.B.C.D.【分析】直接利用概率公式计算.【解答】解:一位零售商从60包中任意选取一包,包中混入M号衬衫数不超过3的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(4分)已知甲、乙两个函数图象上的部分点的横坐标x与纵坐标y如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是()x﹣2024y甲5432y乙65 3.50A.a<﹣2B.﹣2<a<0C.0<a<2D.2<a<4【分析】根据题意结合表格中数据得出两图象交点进而得出答案.【解答】解:由表格中数据可得:甲、乙有公共点,则交点的横坐标x的范围为2<x<4.故选:D.【点评】此题主要考查了函数图象,正确得出交点坐标是解题关键.10.(4分)一组割草人要把两块草地上的草割掉,大草地的面积为S,小草地的面积为S,上午,全体组员都在大草地上割草,下午,一半人继续在大草地割草,到下午5时将剩下的草割完;另一半人到小草地上割草,等到下午5时还剩下一部分没割完.若上、下午的劳动时间相同,每个割草人的工作效率也相等,则没割完的这部分草地的面积是()A.S B.S C.S D.S【分析】设一半人半天的割草量为1份,则全体组员半天在大草地上的割草量为2份;所以在大草地上的割草量为1+2=3份.因为大草地的面积比小草地大1倍,因此小草地上的总割草量为1.5份.在这1.5份中有一半人半天割草量1份,则剩下没割完的这部分草地的面积就是0.5份,即得出结论..【解答】解:以半组人割半天为1份来看,大的一块地正好分3份割完,即S=3份,则小草地上的总割草量为3÷2=1.5(份),∵一半人半天割1份,∴剩下:1.5﹣1=0.5(份),∵1份=S,∴0.5份=S,故选:B.【点评】本题考查了列代数式;这种类型的题目,分析起来较复杂,关键是抓住题中给出的量,得出没割完的这部分草地面积所占的份数.二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)﹣3的相反数是3.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.12.(4分)甲、乙两人参加某商场的招聘测试,测试由语言和商品知识两个项目组成,他们各自的成绩(百分制)如下表所示.该商场根据成绩在两人之间录用了乙,则本次招聘测试中权重较大的是语言项目.应聘者语言商品知识甲7080乙8070【分析】设语言类的权重为x(0<x<1),则商品知识的权重为(1﹣x),根据甲的平均成绩小于乙的平均成绩列出不等式,求解可得.【解答】解:设语言类的权重为x(0<x<1),则商品知识的权重为(1﹣x),根据题意得:70x+80(1﹣x)<80x+70(1﹣x),解得:x>0.5,∴本次招聘测试中权重较大的是语言项目,故答案为:语言.【点评】本题主要考查加权平均数的计算,熟练掌握加权平均数的定义是解题的关键.13.(4分)在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°得到点B,则点B的坐标是(﹣5,4).【分析】分别过A、B作x轴的垂线,垂足分别为C、D,可证明△AOC≌△OBD,可求得BD和OB的长,则可求得B点坐标.【解答】解:如图,分别过A、B作x轴的垂线,垂足分别为C、D,∵A(4,5),∴OC=4,AC=5,∵把点A(4,5)逆时针旋转90°得到点B,∴OA=OB,且∠AOB=90°,∴∠BOD+∠AOC=∠AOC+∠CAO=90°,∴∠BOD=∠CAO,在△AOC和△OBD中∴△AOC≌△OBD(AAS),∴OD=AC=5,BD=OC=4,∴B(﹣5,4),故答案为:(﹣5,4).【点评】本题主要考查旋转的性质,构造三角形全等求得线段的长度是解题的关键,注意旋转前后对应线段相等.14.(4分)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣1.5t2,则飞机着陆后从开始滑行到完全停止所用的时间是20秒.【分析】根据二次函数的解析式求得其对称轴即可得答案.【解答】解:∵当s=0时,60t﹣1.5t2=0,解得:t=40或t=0,∴飞机着陆后从开始滑行到完全停止所用的时间是=20秒,故答案为:20.【点评】本题主要考查二次函数的应用,熟练掌握二次函数的性质是解题的关键.15.(4分)如图,AB 为半圆O 的直径,直线CE 与半圆O 相切于点C ,点D 是的中点,CB=4,四边形ABCD 的面积为2AC ,则圆心O 到直线CE 的距离是 4﹣2 .【分析】如图连接OD 交AC 于G ,连接OC ,根据S四边形ADCB =S △ADC +S △ABC ,得到•AC•DG +•AC•BC=2AC ,求出DG=2﹣4,OD=DG +OG=4﹣2,由此即可解决问题.【解答】解:如图连接OD 交AC 于G ,连接OC .∵=,∴OD ⊥AC ,∴AG=GC ,∵OA=OB ,∴OG=•BC=2,∵S 四边形ADCB =S △ADC +S △ABC ,∴•AC•DG +•AC•BC=2AC , ∴DG +4=4, ∴DG=4﹣4,∴OD=DG +OG=4﹣2, ∵EC 是切线,∴OC ⊥EC ,∴圆心O 到直线CE 的距离为4﹣2. 故答案为4﹣2.【点评】本题考查切线的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会用分割法求面积,属于中考常考题型.16.(4分)如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD 上的动点,且AE+AF=a,则线段EF的最小值为a.【分析】由在边长为a的菱形ABCD中,易得△ABC、△CAD都是边长为a的正三角形,继而证得△ACE≌△DCF,继而证得△CEF是正三角形,继而可得当动点E运动到点B或点A时,CE的值最大,当CE⊥AB,即E为AB的中点时,EF的值最小.【解答】解:连接AC、CE、CF,如图所示:∵四边形ABCD是边长为a的菱形,∠B=60°,∴△ABC、△CAD都是边长为a的正三角形,∴AB=BC=CD=AC=AD,∠CAE=∠ACB=∠ACD=∠CDF=60°,∵AE+AF=a,∴AE=a﹣AF=AD﹣AF=DE,在△ACE和△DCF中,,∴△ACE≌△DCF(SAS),∴∠ACE=∠DCF,∴∠ACE+∠ACF=∠DCF+∠ACF,∴∠ECF=∠ACD=60°,∴△CEF是正三角形,∴EF=CE=CF,当动点E运动到点B或点A时,CE的最大值为a,当CE⊥AB,即E为BD的中点时,CE的最小值为a,∵EF=CE,∴EF的最小值为a.故答案为:a.【点评】此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.注意证得△ACE≌△DCF是解此题的关键.三、解答题(本大题有9小题,共86分)17.(8分)解方程:x2+2x﹣2=0.【分析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:原方程化为:x2+2x=2,x2+2x+1=3(x+1)2=3,x+1=±x1=﹣1+,x2=﹣1﹣.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.(8分)如图,在四边形ABCD中,AB=AD=5,BC=12,AC=13,∠ADC=90°.求证:△ABC≌△ADC.【分析】利用勾股定理可求得DC,再结合条件可证明△ABC≌△ADC.【解答】证明:在Rt△ADC中,∵∠D=90°,∴DC==12,∴DC=BC,在△ABC和△ADC中,∴△ABC≌△ADC(SSS).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.19.(8分)2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图所示.(1)这批工人前两天平均每天种植多少棵景观树木?(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请运用统计知识说明理由.【分析】(1)根据这批工人前两天种植景观树的数量,即可得到平均每天种植的数量;(2)先根据这批工人前五天平均每天种植的树木的数量,估计到3月10日,这批工人可种植树木2070棵,根据2070<2200,即可得出公司还需增派工人.【解答】解:(1)=220(棵).答:这批工人前两天平均每天种植220棵景观树木.(2)这批工人前五天平均每天种植的树木为:=207(棵).估计到3月10日,这批工人可种植树木2070棵,由于2070<2200,所以我认为公司还需增派工人.【点评】本题主要考查了折线统计图,解题时注意:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.20.(8分)如图,在平面直角坐标系中,已知某个二次函数的图象经过点A(1,m),B(2,n),C(4,t),且点B是该二次函数图象的顶点.请在图中描出该函数图象上另外的两个点,并画出图象.【分析】利用抛物线的对称性可过A、C分别作平行x轴的线段,且分别被对称轴平分,即可求得另外的两个点,利用描点法可画出函数图象.【解答】解:∵点B是该二次函数图象的顶点,∴抛物线对称轴为x=2,∵C(4,t),∴C关于对称轴对称的点C′在y轴上,∵A(1,m),∴A关于对称轴对称的点A′横坐标为3,利用描点法可画出函数图象,如图.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点到对称轴的距离相等且纵坐标相等是解题的关键.21.(8分)如图,圆中的弦AB与弦CD垂直于点E,点F在上,=,直线MN过点D,且∠MDC=∠DFC,求证:直线MN是该圆的切线.【分析】利用同弧所对的圆周角相等的出∠AOC=∠BOF,再用同角的余角相等,即可判断出垂直,即可.【解答】证明:设该圆的圆心为点O,在⊙O中,∵=,∴∠AOC=∠BOF.又∠AOC=2∠ABC,∠BOF=2∠BCF,∴∠ABC=∠BCF.∴AB∥CF.∴∠DCF=∠DEB.∵DC⊥AB,∴∠DEB=90°.∴∠DCF=90°.∴DF为⊙O直径.且∠CDF+∠DFC=90°.∵∠MDC=∠DFC,∴∠MDC+∠DFC=90°.即DF⊥MN.又∵MN过点D,∴直线MN是⊙O的切线.【点评】此题是切线的判定,主要考查了圆的性质,垂直的判断方法,同角的余角相等,得出DF是直径是解本题的关键.22.(10分)在平面直角坐标系中,一次函数y=kx+4m(m>0)的图象经过点B (p,2m),其中m>0.(1)若m=1,且k=﹣1,求点B的坐标;(2)已知点A(m,0),若直线y=kx+4m与x轴交于点C(n,0),n+2p=4m,试判断线段AB上是否存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长,并说明理由.【分析】(1)根据待定系数法解答即可;(2)用待定系数法确定函数的解析式,再根据勾股定理解答即可.【解答】解:(1)∵一次函数y=kx+4m(m>0)的图象经过点B(p,2m),∴2m=kp+4m.∴kp=﹣2m.∵m=1,k=﹣1,∴p=2.∴B(2,2).(2)线段AB上存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长.理由如下:由题意,将B(p,2m),C(n,0)分别代入y=kx+4m,得kp+4m=2m且kn+4m=0.可得n=2p.∵n+2p=4m,∴p=m.∴A(m,0),B(m,2m),C(2m,0).∵x B=x A,∴AB⊥x轴,且OA=AC=m.∴对于线段AB上的点N,有NO=NC.∴点N到坐标原点O与到点C的距离之和为NO+NC=2NO.∵∠BAO=90°,在Rt△BAO,Rt△NAO中分别有OB2=AB2+OA2=5m2,NO2=NA2+OA2=NA2+m2.若2NO=OB,则4NO2=OB2.即4(NA2+m2)=5m2.可得NA=m.即NA=AB.所以线段AB上存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长,且NA=AB.【点评】此题考查点的坐标与解析式的关系以及待定系数法的应用,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.23.(11分)如图,在矩形ABCD中,点E在BC边上,动点P以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从A 出发经x(x>0)秒后,△ABP的面积是y.(1)若AB=6厘米,BE=8厘米,当点P在线段AE上时,求y关于x的函数表达式;(2)已知点E是BC的中点,当点P在线段ED上时,y=x;当点P在线段AD 上时,y=32﹣4x.求y关于x的函数表达式.【分析】(1)设△ABE中,边AE上的高为h,由S△ABE=AE•h=AB•BE,AP=2x,即可解决问题.(2)分别求出当点P在线段AE上时,当点P在线段AD上时,x的取值范围即可解决问题.【解答】解:(1)∵四边形ABCD是矩形,∴∠ABE=90°.又AB=6,BE=8,∴AE==10,设△ABE中,边AE上的高为h,∵S=AE•h=AB•BE,△ABE∴h=,又AP=2x,∴y=x(0<x≤5).(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC,AD=BC.∵E为BC中点,∴BE=EC.∴△ABE≌△DCE.∴AE=DE,当点P运动至点D时,S△ABP =S△ABD,由题意得x=32﹣4x,解得x=5,当点P运动一周回到点A时,S△ABP=0,由题意得32﹣4x=0,解得x=8,∴AD=2×(8﹣5)=6,∴BC=6,∴BE=3,且AE+ED=2×5=10,∴AE=5,在Rt△ABE中,AB==4,设△ABE中,边AE上的高为h,∵S△ABE=AE•h=AB•BE,∴h=,又AP=2x,∴当点P从A运动至点D时,y=x(0<x≤2.5),∴y关于x的函数表达式为:当0<x≤5时,y=x;当5<x≤8时,y=32﹣4x.【点评】本题考查函数的应用,矩形的性质、三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(11分)在⊙O中,点C在劣弧上,D是弦AB上的点,∠ACD=40°.(1)如图1,若⊙O的半径为3,∠CDB=70°,求的长;(2)如图2,若DC的延长线上存在点P,使得PD=PB,试探究∠ABC与∠OBP 的数量关系,并加以证明.【分析】(1)如图1,连接OC,OB.根据三角形的外角的性质得到∠CAB=∠CDB ﹣∠ACD=70°﹣40°=30°,根据圆周角定理得到∠BOC=2∠BAC=60°,于是得到结论;(2)设∠CAB=α,∠ABC=β,∠OBA=γ,如图2,连接OC,则∠COB=2α,根据等腰三角形的性质得到∠OCB=∠OBC=β+γ,根据三角形的内角和得到α+β+γ=90°,于是得到结论.【解答】解:(1)如图1,连接OC,OB.∵∠ACD=40°,∠CDB=70°∴∠CAB=∠CDB﹣∠ACD=70°﹣40°=30°,∴∠BOC=2∠BAC=60°,∴===π.(2)∠ABC+∠OBP=130°,证明:设∠CAB=α,∠ABC=β,∠OBA=γ,如图2,连接OC,则∠COB=2α,∵OB=OC,∴∠OCB=∠OBC=β+γ,∵△OCB中,∠COB+∠OCB+∠OBC=180°,∴2α+2(β+γ)=180°,即α+β+γ=90°,∵PB=PD,∴∠PBD=∠PDB=40°+α,∴∠OBP=∠OBA+∠PBD=γ+40°+α=(90°﹣β)+40°=130°﹣β,即∠ABC+∠OBP=130°.【点评】本题考查了弧长的计算,圆周角定理,三角形的内角和,正确的作出辅助线是解题的关键.25.(14分)已知y1=a1(x﹣m)2+5,点(m,25)在抛物线y2=a2x2+b2x+c2上,其中m>0.(1)若a1=﹣1,点(1,4)在抛物线y1=a1(x﹣m)2+5上,求m的值;(2)记O为坐标原点,抛物线y2=a2x2+b2x+c2的顶点为M,若c2=0,点A(2,0)在此抛物线上,∠OMA=90°,求点M的坐标;(3)若y1+y2=x2+16x+13,且4a2c2﹣b22=﹣8a2,求抛物线y2=a2x2+b2x+c2的解析式.【分析】(1)将a1=﹣1和点(1,4)代入抛物线y1=a1(x﹣m)2+5即可求出m;(2)先将(2,0)和c2=0代入y2=a2x2+b2x+c2中即可得出b2=﹣2a2.进而求出抛物线的对称轴,由∠OMA=90°,得出点M的坐标,(3)方法一:根据点(m,25)在抛物线y2=a2x2+b2x+c2上得出a2 m 2+b2 m+c2=25①,再根据y1+y2=x2+16x+13,得出a1+a2=1②,b2﹣2a1m=16③,a1m2+c2=8④,再结合4a2c2﹣b22=﹣8a2,联立即可求出m及a2,b2,c2,即可得出抛物线解析式.方法二:先根据x=m时两个函数的值分别求出,再求和,再利用y1+y2=x2+16x+13,求出m,进而利用4a2c2﹣b22=﹣8a2,求出抛物线的顶点坐标的纵坐标,最后用恒等式y1+y2=(a1+a2)x2﹣2(a1+a2h)x+a1+a2h2+3=x2+16 x+13,得出a1+a2=1①,﹣2(a1+a2h)=16②,a1+a2h2+3=13③,联立这三个式子即可求出a2,h即可得出结论.方法三:先求出m的值,进而利用4a2c2﹣b22=﹣8a2,求出抛物线的顶点坐标的纵坐标,再用a1表示出y2和它的顶点坐标的纵坐标建立方程求出a1即可得出结论.【解答】解:(1)∵a1=﹣1,∴y1=﹣(x﹣m)2+5.将(1,4)代入y1=﹣(x﹣m)2+5,得4=﹣(1﹣m)2+5.m=0或m=2.∵m>0,∴m=2.(2)∵c2=0,∴抛物线y2=a2 x2+b2 x.将(2,0)代入y2=a2 x2+b2 x,得4a2+2b2=0.即b2=﹣2a2.∴抛物线的对称轴是x=1.设对称轴与x轴交于点N,根据抛物线的对称性得,△OAM是等腰三角形,∴NA=NO=1.∵∠OMA=90°,∴MN=OA=1.∴当a2>0时,M(1,﹣1);当a2<0时,M(1,1).∵25>1,∴M(1,﹣1),(3)方法一:∵点(m,25)在抛物线y2=a2 x2+b2x+c2上,∴a2 m 2+b2 m+c2=25①∵y1+y2=(a1+a2)x2+(b2﹣2a1m)x+5+a1m2+c2=x2+16x+13,∴a1+a2=1②,b2﹣2a1m=16③a1m2+c2=8④由③得,b2m=16m+2a1m2⑤,由④得,c2=8a1m2⑥将⑤⑥代入方程①得,a2 m 2+16m+2 m 2 a1+8﹣m 2 a1=25.整理得,m 2+16m﹣17=0.解得m1=1,m2=﹣17.∵m>0,∴m=1.将m=1代入③得,b2=16+2a1=12+2(1﹣a2)=18﹣2a2,将m=1代入④得,c2=8﹣a1=8﹣(1﹣a2)=7+a2.∵4a2 c2﹣b22=﹣8a2,∴4a2(7+a2)﹣(18﹣2a2)2=﹣8a2.∴a2=3.∴b2=18﹣2×3=12,c2=7+3=10.∴抛物线y2=a2x2+b2x+c2的解析式为y=3x2+12x+10.方法二,由题意知,当x=m时,y1=5;当x=m时,y2=25;∴当x=m时,y1+y2=5+25=30.∵y1+y2=x2+16 x+13,∴30=m2+16m+13.解得m1=1,m2=﹣17.∵m>0,∴m=1.∵4a2 c2﹣b22=﹣8a2,∴==﹣2∴y2顶点的纵坐标为﹣2.设抛物线y2的解析式为y2=a2(x﹣h)2﹣2.∴y1+y2=a1(x﹣1)2+5+a2(x﹣h)2﹣2.∵y1+y2=(a1+a2)x2﹣2(a1+a2h)x+a1+a2h2+3=x2+16 x+13,∴a1+a2=1①,﹣2(a1+a2h)=16②,a1+a2h2+3=13③,将①代入②③化简得,a2h﹣a2=﹣9④,a2h2﹣a2=9⑤,联立④⑤,解得h=﹣2,a2=3.∴抛物线的解析式为y2=3(x+2)2﹣2=3x2+12x+10.方法三、由题意知,当x=m时,y1=5;当x=m时,y2=25,∴当x=m时,y1+y2=5+25=30.∵y1+y2=x2+16x+13,∴30=m2+16m+13,∴m=1或m=﹣17,∵m>0,∴m=1,∴y1=a1 (x﹣1)+5.∵y1+y2=x2+16x+13,∴y2=x2+16 x+13﹣y1=x2+16x+13﹣a1 (x﹣1)2﹣5.即y2=(1﹣a1)x2+(16+2a1)x+8﹣a1.∵4a2c2﹣b22=﹣8a2,∴==﹣2∴y2顶点的纵坐标为﹣2.∴=﹣2∴a1=﹣2.∴y2=3x2+12x+10.【点评】此题是二次函数综合题,主要考查了待定系数法,抛物线的性质,等腰直角三角形的性质,恒等式,解本题的关键是列出方程,解方程组是解本题的难点,是一道很好的中考题.。

福建省厦门市九年级上学期数学期末试卷

福建省厦门市九年级上学期数学期末试卷

福建省厦门市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·凉山期末) 如图所示,抛物线的对称轴是直线,且图像经过点(3,0),则的值为()A . 0B . -1C . 1D . 22. (2分)(2018·余姚模拟) 如图,矩形ABCD的对角线BD经过坐标原点O,矩形的边分别平行于坐标轴,反比例函数 (k>0)的图象分别与BC,CD交于点M、N.若点A(-2,-2),且△OMN的面积为,则k=()A . 2.5B . 2C . 1.5D . 13. (2分)下列事件中,属于必然事件的是()A . 打开电视正在播放广告B . 任意两个有理数的和是正有理数C . 黑暗中,从一大串钥匙中随便选了一把,用它打开了门D . 在室外,当气温低于零摄氏度,水会结冰4. (2分)(2018·苏州模拟) 下列图形中,是中心对称图形的是()A .B .C .D .5. (2分) (2020九上·景县期末) 用直接开平方法解方程(x-3)2=8,得方程的根为()A . x=3+2B . x=3-2C . x1=3+2 ,x2=3-2D . x1=3+2 ,x2=3-26. (2分)一次函数y=ax+b与反比例函数y=的图象如图所示,则()A . a>0,b>0.c>0B . a<0,b<0.c<0C . a<0,b>0.c>0D . a<0,b<0.c>07. (2分) (2019九上·白云期中) 在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A .B .C .D .8. (2分)如图,∠AOB是⊙O的圆心角,∠AOB=80°,则弧AB所对圆周角∠ACB的度数是()A . 40°B . 45°C . 50°D . 80°9. (2分) (2020九上·兰陵期末) 共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为,则所列方程正确是()A .B .C .D .10. (2分)(2018·南宁模拟) 不透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同.从中任意摸出一个球,记下颜色后,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是()A .B .C .D .二、填空题 (共3题;共4分)11. (1分)小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为________事件(填“必然”或“不可能”或“随机”).12. (2分)(2020·青浦模拟) 在△ABC中,AB=AC=3,BC=2,将△ABC绕着点B顺时针旋转,如果点A 落在射线BC上的点A'处.那么AA'=________.13. (1分) (2018九上·通州期末) 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,已知 .求作:的角平分线 .小霞的作法如下:①如图,在平面内任取一点;②以点为圆心,为半径作圆,交射线于点,交射线于点;③连接,过点作射线垂直线段,交⊙ 于点;④连接 .所以射线为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是________.三、解答题 (共10题;共59分)14. (1分) (2017九上·宝坻月考) 抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是________.15. (5分) (2019九上·瑞安开学考)(1)解方程:x2-2x-2=0.(2)解不等式组:16. (10分)(2016·海曙模拟) 张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;(2)求出a的值;(3)求张师傅途中加油多少升?17. (10分) (2019九上·红桥期中) 已知函数y=﹣xm﹣1+bx﹣3(m , b为常数)是二次函数,其图象的对称轴为直线x=1(1)求该二次函教的解析式;(2)当﹣2≤x≤0时,求该二次函数的函数值y的取值范围.18. (2分) (2018九上·商南月考) 如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.19. (2分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y= (x >0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB≌△ACD.(1)若b=﹣2,求k的值;(2)求k与b之间的函数关系式.20. (2分)(2017·广东模拟) 有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为.(Ⅰ)用列表或画树状图的方法写出点Q的所有可能坐标;(Ⅱ)求点Q落在抛物线y=x2-2x-1上的概率.21. (15分) (2019九上·克东期末) 在如图所示的平面直角坐标系中,解答下列问题:(1)将绕点逆时针方向旋转,画出旋转后的;(2)求线段在旋转过程中所扫过的面积.22. (10分)某公司销售A,B两种产品,根据市场调研,确定两条信息:信息1:销售A种产品所获利润y:(万元)与销售产品x(吨)之间存在二次函数关系,如图所示:信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y2=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最大是多少万元.23. (2分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2 ,求点E运动路径的长度.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共3题;共4分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:三、解答题 (共10题;共59分)答案:14-1、考点:解析:答案:15-1、答案:15-2、考点:解析:答案:16-1、答案:16-2、答案:16-3、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。

【初三数学】厦门市九年级数学上期末考试检测试卷(含答案解析)

【初三数学】厦门市九年级数学上期末考试检测试卷(含答案解析)

九年级上册数学期末考试试题【答案】一.选择题(满分30分,每小题3分)1.用因式分解法解方程,下列方法中正确的是()A.(2x﹣2)(3x﹣4)=0,∴2﹣2x=0或3x﹣4=0B.(x+3)(x﹣1)=1,∴x+3=0或x﹣1=1C.(x﹣2)(x﹣3)=2×3,∴x﹣2=2或x﹣3=3D.x(x+2)=0,∴x+2=02.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.3.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=04.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.5.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E 恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°6.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数7.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣29.若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是()A.60 B.60πC.65 D.65π10.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6C.3D.9二.填空题(满分18分,每小题3分)11.如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为.12.如图,在△ABC中,M、N分别是AB、AC上的点,MN∥BC,若S△MBC:S△CMN=3:1,则S△AMN:S△ABC=.13.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A 位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是海里.14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx、y=x(k>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB的面积是.16.设△ABC外接圆的半径为R,内切圆的半径为r,内心为I,延长AI交外接圆于D,则AI•ID=.三.解答题(共9小题,满分72分)17.(6分)水果店老板以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,老板决定降价销售.(1)若这种水果每斤售价降低x元,则每天的销售量是斤(用含x的代数式表示,需要化简);(2)销售这种水果要想每天盈利300元,老板需将每斤的售价定为多少元?18.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.19.(6分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.20.(6分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.21.(7分)如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE 于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.22.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.23.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?24.(10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.25.(13分)已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD.(1)如图1,当点P在线段OC上时,求证:OP=CD;(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;(3)如图2,抛物线y=﹣x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形?若存在,请求出t的值;若不存在,请说明理由.参考答案一.选择题1.用因式分解法解方程,下列方法中正确的是()A.(2x﹣2)(3x﹣4)=0,∴2﹣2x=0或3x﹣4=0B.(x+3)(x﹣1)=1,∴x+3=0或x﹣1=1C.(x﹣2)(x﹣3)=2×3,∴x﹣2=2或x﹣3=3D.x(x+2)=0,∴x+2=0【分析】用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.解:用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.所以第一个正确.故选:A.【点评】此题考查了学生对因式分解方法应用的条件的理解,提高了学生学以致用的能力.2.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选:C.【点评】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角A的对边a 与邻边b的比叫做∠A的正切.3.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=0【分析】根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△=0时,方程有两个相等的实数根”即可找出结论.解:A、∵△=(﹣4)2﹣4×1×(﹣4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;B、∵△=(﹣36)2﹣4×1×36=1152>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=42﹣4×4×1=0,∴该方程有两个相等的实数根,C符合题意;D、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.4.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,2.据此可作出判断.解:从左面看可得到从左到右分别是3,2个正方形.故选:A.【点评】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E 恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.6.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.7.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.8.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣2【分析】先确定物线y=﹣2x2的顶点坐标为(0,0),再把点(0,0)平移所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后的抛物线解析式.解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是()A.60 B.60πC.65 D.65π【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.解:该圆锥的侧面面积=•2π•5•13=65π.故选:D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6C.3D.9【分析】连接DF,根据垂径定理得到=,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.解:连接DF,∵直径CD过弦EF的中点G,∴=,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠DCF=12×=6,故选:B.【点评】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为x2<x<x3.【分析】根据函数图象写出x轴上方且抛物线在双曲线上方部分的x的取值范围即可.解:由图可知,x2<x<x3时,0<<ax2+bx+c,所以,不等式组0<<ax2+bx+c的解集是x2<x<x3.故答案为:x2<x<x3.【点评】本题考查了二次函数与不等式组,此类题目,准确识图,利用数形结合的思想求解更简便.12.如图,在△ABC中,M、N分别是AB、AC上的点,MN∥BC,若S△MBC:S△CMN=3:1,则S△AMN:S△ABC=1:9 .【分析】根据三角形的面积得出MN:BC,进而利用相似三角形的性质解答即可.解:∵S△MBC:S△CMN=3:1,∴MN:BC=1:3,∵MN∥BC,∴△AMN∽△ABC,∴S△AMN:S△ABC=1:9,故答案为:1:9.【点评】此题考查相似三角形的判定和性质,关键是根据三角形的面积得出MN:BC.13.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A 位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是海里.【分析】作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=20海里,∠NCA=10°,则∠ABC=∠ABD﹣∠C BD=30°.由BD∥CN,得出∠BCN=∠DBC=20°,那么∠ACB=∠ACN+∠BCN=30°=∠ABC,根据等角对等边得出AB=AC,由等腰三角形三线合一的性质得到CM=BC=10海里.然后在直角△ACM中,利用余弦函数的定义得出AC=,代入数据计算即可.解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=20海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=10海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故答案为:.【点评】本题考查了解直角三角形的应用﹣方向角问题,平行线的性质,等腰三角形的判定与性质,余弦函数的定义,难度适中.求出CM=BC=10海里是解题的关键.14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有15 个.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出白球个数即可.解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.【点评】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx、y=x(k>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB的面积是 2 .【分析】根据AB两点分别在反比例函数和正比例函数图象上,且存在相同k值,可先证明点A 横坐标和B纵坐标相等,利用旋转知识证明△AOB面积为△A′OB的面积,再利用反比例函数k的几何意义.解:如图,过B作BD⊥x轴于点D,过A作AC⊥y轴于点C设点A横坐标为a,则A(a,)∵A在正比例函数y=kx图象上∴=ka∴k=同理,设点B横坐标为b,则B(b,)∴=∴∴∴ab=2当点A坐标为(a,)时,点B坐标为(,a)∴OC=OD将△AOC绕点O顺时针旋转90°,得到△ODA′∵BD⊥x轴∴B、D、A′共线∵∠AOB=45°,∠AOA′=90°∴∠BOA′=45°∵OA=OA′,OB=OB∴△AOB≌△A′OB∵S△BOD=S△AOC=2×=1∴S△AOB=2故答案为:2【点评】本题为代数几何综合题,考查了三角形全等、旋转和反比例函数中k的几何意义.解答的切入点,是设出相应坐标,找出相关数量构造方程.16.设△ABC外接圆的半径为R,内切圆的半径为r,内心为I,延长AI交外接圆于D,则AI•ID=2R•r.【分析】如图作IF⊥AB于F,设△ABC的外心为O,作OM⊥BD于M,连接OB、OD.由△AFI∽△OMD,推出=,可得DM•AI=R•r,再证明DI=DB=2DM即可解决问题;解:如图作IF⊥AB于F,设△ABC的外心为O,作OM⊥BD于M,连接OB、OD.∵OM⊥BD,OB=OD,∴∠BOM=∠DOM,BM=DM,∵∠BAD=∠BOD,∴∠FAI=∠MOD,∵∠AFI=∠OMD=90°,∴△AFI∽△OMD,∴=,∴DM•AI=R•r,∵∠BAI=∠CAI,∠CAI=∠DBE,∠ABI=∠CBI,又∵∠BID=∠ABI+∠BAI,∠DBI=∠DBC+∠IBC,∴∠DIB=∠DBI,∴DB=DI=2DM,∴DM=DI,∴DI•AI=R•r,∴AI•DI=2R•r.故答案为2R•r.【点评】本题考查三角形的外心与内心、相似三角形的判定和性质、垂径定理、圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.三.解答题(共9小题,满分72分)17.(6分)水果店老板以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,老板决定降价销售.(1)若这种水果每斤售价降低x元,则每天的销售量是100+200x斤(用含x的代数式表示,需要化简);(2)销售这种水果要想每天盈利300元,老板需将每斤的售价定为多少元?【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤);故答案为:100+200x(2)设这种水果每斤售价降低x元,根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.4﹣1=3,答:老板需将每斤的售价定为3元.【点评】本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量,从而利润.第二问,根据售价和销售量的关系,以利润做为等量关系列方程求解.18.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点评】本题考查借助树状图或列表法求概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.(6分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.【分析】(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO=(180°﹣∠AOD)=(180°﹣70°)=55°,∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.【点评】本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.20.(6分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.【分析】(1)由函数图象可设函数解析式,再将图中坐标代入解析式,利用待定系数法即可求得y与x的关系式;(2)将y=20代入y=,即可得到a的值;(3)要想喝到不超过40℃的开水,7:30加20分钟即可接水,一直到8:10;解:(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)代入y=k1x+b,得k1=10,b=20,所以当0≤x≤8时,y=10x+20;当8<x≤a时,设y=,将(8,100)代入,得k2=800,所以当8<x≤a时,y=;故当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)将y=20代入y=,解得a=40;(3)8:10﹣8分钟=8:02,∵10x+20≤40,∴0<x≤2,∵≤40,∴20≤x<40.所以李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前能喝到不超过40℃的热水,则需要在7:50~8:10时间段内接水.【点评】本题考查了一次函数与反比例函数的应用,解题的关键是利用待定系数法求出两个函数的解析式.21.(7分)如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE 于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.【分析】根据直角三角形的两锐角互余,以及对顶角相等,旋转的性质,即可证得BF是DE的垂直平分线,据此即可证得.证明:∵将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,∴DE=BC,∠ADF=∠ABC,∵BC=2EF,∴DF=EF,∴DE=2EF,∵在直角△ABC中,∠ABC+∠ACB=90°,又∵∠ABC=∠ADE,∴∠ACB+∠ADE=90°.∵∠FCD=∠ACB,∴∠FCD+∠ADE=90°,∴∠CFD=90°,∴BF⊥DE,∵EF=FD,∴BF垂直平分DE,∴BD=BE,∴△BDE是等腰三角形.【点评】本题考查了旋转的性质,等腰三角形的判定,线段垂直平分线的判定和性质,熟练掌握各定理是解题的关键.22.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.【分析】(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;(2)根据含30°的直角三角形的性质证明即可;(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵阴影部分的面积=×r×r﹣=2﹣π.解得:r2=4,即r=2,即⊙O的半径的长为2.【点评】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.23.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值,即可确定销售单价应控制在什么范围内.解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点评】本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程,再求解.24.(10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.【分析】(1)△ABC是等腰直角三角形,四边形ADEF是正方形,易证得△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)①由△BAD≌△CAF,可得∠ABM=∠GCM,又由对顶角相等,易证得△BMA∽△CMG,根据相似三角形的对应角相等,可得BGC=∠BAC=90°,即可证得BD⊥CF;②首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM=AB=,然后利用△BMA∽△CMG,求得CG的长,再由勾股定理即可求得线段BG的长.解(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS).∴BD=CF.(2)①证明:设BG交AC于点M.∵△BAD≌△CAF(已证),∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°.∴BD⊥CF.②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM===.∵△BMA∽△CMG,∴.∴.∴CG=.∴在Rt△BGC中,BG==.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的性质、矩形的性质、勾股定理以及三角函数等知识.此题综合性很强,难度较大,注意数形结合思想的应用,注意辅助线的作法.25.(13分)已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD.(1)如图1,当点P在线段OC上时,求证:OP=CD;(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;(3)如图2,抛物线y=﹣x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形?若存在,请求出t的值;若不存在,请说明理由.【分析】(1)证OP=CD,可以证明它们所在的三角形全等,即证明:△AOP≌△OCD;已知的条件有:∠AOP=∠OCD=90°,OA=OC=4,只需再找出一组对应角相等即可,通过图示可以发现∠OAP、∠HAP是同角的余角,这两个角相等,那么证明三角形全等的全部条件都已得出,则结论可证.(2)点P在x轴上运动,那么就需分三种情况讨论:①点P在x轴负半轴上;可以延续(1)的解题思路,先证明△AOP、△OCD全等,那么得到的条件是OP=CD,然后用t表示OP、BD的长,再根据给出的相似三角形得到的比例线段,列等式求出此时t的值,要注意t的正负值的判断;②点P在线段OC上时;由于OP、CD都小于等于正方形的边长(即OA、AB),所以只有OP=BD时,给出的两个三角形才有可能相似(此时是全等),可据此求出t的值;③点P在点C的右侧时;方法同①.(3)这道题要分两种情况讨论:①线段PC为平行四边形的对角线,那么点Q、D关于PC的中点对称,即两点的纵坐标互为相反数,而QP∥CD,即Q、P的横坐标相同,那么先用t表示出Q点的坐标,代入抛物线的解析式中,即可确定t的值;②线段PC为平行四边形的边;先用t表示出PC的长,把点D向左或向右平移PC长个单位就。

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷

福建省厦门市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九上·鄞州期末) 下列事件中,是必然事件的是()A . 抛掷一枚硬币正面向上B . 从一副完整扑克牌中任抽一张,恰好抽到红桃AC . 今天太阳从西边升起D . 从4件红衣服和2件黑衣服中任抽3件有红衣服2. (2分)(2018·红桥模拟) cos30°的值为()A . 1B .C .D .3. (2分) (2016九上·北区期中) 如图,四边形ABCD内接于⊙O,若∠A=62°,则∠BCE等于()A . 28°B . 31°C . 62°D . 118°4. (2分) (2016九上·宁波期末) 抛物线y=﹣2x2+4的顶点坐标为()A . (4,0)B . (0,4)C . (4,2)D . (4,﹣2)5. (2分) (2019九上·昌图期末) 一条线段的黄金分割点有()A . 1个B . 2个C . 3个D . 无数个6. (2分)(2014·杭州) 在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A . 3sin40°B . 3sin50°C . 3tan40°D . 3tan50°7. (2分)(2020·许昌模拟) 如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是()A .B .C .D .8. (2分)(2017·盘锦模拟) 如图,⊙O的半径为5,弦AB长为8,过AB的中点E有一动弦CD(点C只在弦AB所对的劣弧上运动,且不与A、B重合),设CE=x,ED=y,下列图象中能够表示y与x之间函数关系的是()A .B .C .D .9. (2分)已知:二次函数y=x2-4x-a,下列说法中错误的是()A . 当x<1时,y随x的增大而减小B . 若图象与x轴有交点,则a≤4C . 当a=3时,不等式x2-4x+a<0的解集是1<x<3D . 若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=310. (2分)(2015•随州)如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019九上·德清期末) 若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有________合格品.12. (1分)对于每个非零自然数n,抛物线与x轴交于AnBn两点,以AnBn 表示这两点间的距离,则A1B1+A2B2+…+A2016B2016的值是________.13. (1分) (2017九上·姜堰开学考) 已知如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.若点P是AB上的一动点,则OP的取值范围是________.14. (1分)有公共顶点的两条射线分别表示南偏东20°与北偏东30°,则这两条射线组成的角为________ 度.15. (1分)如图,在菱形ABCD中,DE⊥AB ,垂足是E , DE=6,sinA= ,则菱形ABCD的周长是________16. (1分)(2013·南通) 如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4 cm,则EF+CF的长为________cm.三、解答题 (共7题;共60分)17. (5分)近年深圳进行高中招生制度改革,某初中学校获得保送(指标生)名额若干,现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等.(1)若学校只有一个名额,则随机选到小斌的概率是多少.(2)若学校争取到两个名额,请用树状图或列表法求随机选到保送的学生恰好是一男一女的概率.18. (5分)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD分别与AE、AF相交于G、H.(1)在图中找出与△ABE相似的三角形,并说明理由;(2)若AG=AH,求证:四边形ABCD是菱形.19. (10分)如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13. (1分) 关于x的一元二次方程x2﹣(k+2)x+ k2﹣1=0的两根互为倒数,则k的值是________.
14. (1分) 圆的内接等腰三角形ABC,圆的半径为10,如果底边BC的长为16,那么△ABC的面积为________
15. (1分) △ABC与△A′B′C′是位似图形,且△ABC与△ 的位似比是1:2,已知△ABC的面积是3,则△ 的面积是________。
A . x(x+1)=182
B . x(x﹣1)=182
C . x(x﹣1)=182×2
D . x(x+1)=182×2
6. (2分) 若关于 的一元二次方程x2-2x+m=0有两个不相等的实数根,则 的取值范围是( )。
A . m<-1
B . m<1
C . m>-1
D . m>1
7. (2分) 将抛物线 先向上平移3个单位,再向左平移2个单位后得到的抛物线解析式为( )
福建省厦门市九年级上学期期末数学试卷
姓名:________班级:________ 成绩:________
一、 选择题 (共12题;共24分)
1. (2分) (2016·温州) 如图, 中, 为 上一点, 则 的长是( )
A .
B .
C .
D .
2. (2分) 如图,是由四个相同的正方体组合而成的两个几何体,则下列表述正确的是( )
(3) 若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
21. (10分) (2018九上·潮南期末) 已知抛物线y=ax2+bx﹣8(a≠0)的对称轴是直线x=1,
(1) 求证:2a+b=0;
A . 2个
B . 20个
C . 40个
D . 48个
4. (2分) 已知⊙O的半径为10cm , 如果一条直线和圆心O的距离为10cm , 那么这条直线和这个圆的位置关系为( )
A . 相离
B . 相切
C . 相交
D . 相交或相离
5. (2分) 某生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了180件,如果全组有x名学生,则根据题意列出的方程是( )
16. (1分) (2016九上·江海月考) 如图,已知Rt△ABC是⊙O的内接三角形,其中直角边AC=6、BC=8,则⊙O的半径是________.
17. (1分) 对任意两实数a、b,定义运算“*”如下: . 根据这个规则,则方程 =9的解为________.
18. (1分) 如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是________ .
(2) 若关于x的方程ax2+bx﹣8=0,有一个根为4,求方程的另一个根.
22. (6分) (2011·苏州) 如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1: ,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.
A . 图甲的主视图与图乙的左视图形状相同
B . 图甲的左视图与图乙的俯视图形状相同
C . 图甲的俯视图与图乙的俯视图形状相同
D . 图甲的主视图与图乙的主视图形状相同
3. (2分) 一个不透明的布袋中装着只有颜色不同的红、黄两种小球,其中红色小球有8个,为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,然后放回袋中,再次搅匀……多次试验发现摸到红球的频率是 , 则估计黄色小球的数目是( )
(1)
山坡坡角(即∠ABC)的度数等于________度;
(2)
求A、B两点间的距离(结果精确到0.1米,参考数据: ≈1.732).
23. (10分) (2017·重庆模拟) 满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.
步数
频数
频率
0≤x<4000
8
a
4000≤x<8000
15
0.3
8000≤x<12000
12
b
12000≤x<16000
c
0பைடு நூலகம்2
16000≤x<20000
3
0.06
20000≤x<24000
d
0.04
请根据以上信息,解答下列问题:
(1) 写出a,b,c,d的值并补全频数分布直方图;
(2) 本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
A .
B .
C .
D .
8. (2分) 如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有( )
A . 4个
B . 3个
C . 2个
D . 1个
9. (2分) 如图,A,B是反比例函数y= 的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则
A . S=2
A . >4ac
B . m>n
C . 方程a +bx+c=﹣4的两根为﹣5或﹣1
D . a +bx+c≥﹣6
12. (2分) 二次函数y=kx2-6x+3的图象与x轴有两个交点,则k的取值范围是( )
A . k<3
B . k<3且k≠0
C . k≤3
D . k≤3且k≠0
二、 填空题 (共6题;共6分)
B . 2<S<4
C . S=4
D . S>4
10. (2分) 在⊙O中,弦AB与CD相交于点M,AM=4,MB=3,则CM•MD=( )
A . 28
B . 21
C . 12
D . 7
11. (2分) 如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点A,点(﹣2,m)和(﹣5,n)在该抛物线上,则下列结论中不正确的是( )
三、 解答题 (共7题;共66分)
19. (5分) 解下列方程:
(1)x(x﹣1)+2(x﹣1)=0;
(2)x2+1.5=3x.
20. (15分) (2018·枣庄) 现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
相关文档
最新文档