3光学练习题.
工程光学习题3
![工程光学习题3](https://img.taocdn.com/s3/m/63e22f42e45c3b3567ec8b93.png)
当 m=2 时
当 m=3 时
15. 一块光栅的宽度为 10cm ,每毫米内有 500 条缝, 光栅后面放置的透镜焦距为 500nm。 问: (1)它产生的波长 λ = 632.8nm 的单色光的 1 级和 2 级谱线的半宽度是多少?(2)若 入射光线是波长为 632.8nm 和波长与之相差 0.5nm 的两种单色光, 它们的 1 级和 2 级谱 线之间的距离是多少? 解: d =
sin θ x =
α=
500 × 1.43π = 0.0286(rad ) x1 = 14.3(mm ) π × 0.025 × 10 6 500 × 2.459π 二级次极大 θ x ≈ sin θ x = = 0.04918( rad ) x1 = 24.59(mm ) π × 0.025 × 10 6
(m = 0,±1,±2 ⋅ ⋅⋅) ∴x =
mλ f d e=
x f
λ
d
f
∴d =
λf
e
=
632.8 ×10 −6 × 500 = 0.21(mm) 1.5
⎧ μ1 = 4 将⎨ 代入得 ⎩n = 1
d ∵ μ1 = n ⋅ ( ) a
2
d a 1 = 0.053(mm) ⇒ = 4 d 4 λ (2)当 m=1 时, sin θ 1 = a=
当 m=2 时, 当 m=3 时,
d 2λ sin θ 2 = d 3λ sin θ 3 = d
光学考试题——精选推荐
![光学考试题——精选推荐](https://img.taocdn.com/s3/m/1a97be0db6360b4c2e3f5727a5e9856a56122625.png)
光学考试题光学习题第⼀部分:填空题1. 光波的相⼲条件是:频率相同;;。
2.位相差和光程差的关系为,实现相长⼲涉的位相差条件为。
3.⽤波长λ的单⾊光⼊射迈克⽿孙⼲涉仪,当可动镜M1移动了0.03164mm 时,发现视场中⼼变化了100个条纹,则⼊射光波长λ=。
4. 在空⽓中⽤波长为λ单⾊光进⾏双缝⼲涉实验时,观察到⼲涉条纹相邻条纹的间距为1.33mm ,当把实验装置放在⽔中时(⽔的折射率n=1.33),则相邻条纹的间距变为_____________5.⽤波长为λ单⾊光垂直照射如图所⽰的折射率为n 2的劈尖薄膜(n 1>n 2 , n 3>n 2),观察反射光⼲涉,从劈尖顶开始,第2条明纹对应的膜厚度d =___ __.6.在单缝夫琅和费衍射⽰意图中,所画出的各条正⼊射光线间距相等,那么光线1与3在幕上P点相遇时的位相差为___ _____,P 点应为___ ______点。
7.波长λ=500nm 的单⾊平⾏光,垂直⼊射半径ρ=1mm 的圆孔,圆孔后轴线上P 点到圆孔的距离r =1m ,对于P 点⽽⾔,圆孔露出的半波带数k= ,P 点为点。
8. N 条狭缝的夫琅和费衍射,衍射的总能流是缝宽相同的单缝夫琅和费衍射光能量的倍,衍射光强中央主极⼤将增⼤为倍。
9.⼈眼瞳孔直径为3mm ,对波长为550nm 的光⽽⾔,⼈眼的最⼩分辨⾓为弧度。
13 510.爱⾥光斑的半⾓宽度θ=。
11.设天空中两颗星对于⼀望远镜的张⾓为2.42×10-6rad,它们都发出波长为550nm的光,为了分辨出这两颗星,望远镜物镜的⼝径⾄少要等于cm。
12.汽车两盏前灯相距L,与观察者相距S=10km。
夜间⼈眼瞳孔直径d=5.0mm,⼈眼敏感波长为550nm。
若只考虑⼈眼的圆孔衍射,则⼈眼可分辨出汽车两前灯的最⼩间距L 是。
13.若星光的波长是550nm,孔径为127cm的⼤型望远镜所能分辨的两颗星的最⼩⾓距离(从地上⼀点看两星的视线间夹⾓)是。
物理光学各章典型习题及部分习题解答3
![物理光学各章典型习题及部分习题解答3](https://img.taocdn.com/s3/m/a7c01afcb14e852458fb573f.png)
0
L?
解:人眼的最小可分辨角
600 10-6 0 1.22 =1.22 =1.464 10-4 (rad) D 5
L 0 d 0
1.2 L = =8200(m) -4 0 1.464 10
d0
例题3-12 人眼直径约为3mm,问人眼最小分辩角为 多少?远处两细丝相距2mm,问离开多远时恰能分辩? (视觉最敏感波长550nm)
m 0.6 103 1.4 103 / 0.4 6 107 1/ 2 3
所以P点所在的位置为第三级明纹。
( 2m 1) / 2 由 a sin
可知:
当m=3时,可分成2m+1=7个半波带。
例题3-9 人眼的最小分辨角约为1´,教室中最后一排 (距黑板15m)的学生对黑板上的两条黄线(5893Å)的最 小分辨距离为多少?并估计瞳孔直径大小。
例题3-18 用每厘米有5000条的光栅,观察钠光谱线= 5893 Å。 问:1. 光线垂直入射时;2. 光线以30度角倾斜入射时 ,最多能看到几级条纹? 解:1.由光栅方程: d sin m
m d sin
1/ 5000 2.0 10-4 < = = =3.39 -5 -5 5.893 10 5.893 10 d
当波长为的光的第一级极大也落在30度的位置上时
a sin (2m 1)
2
m=1时
2a sin 300 1300 ' 430(nm) 3 3
例3-6 单缝夫琅和费衍射实验中,垂直入射的光有两 种波中波长 1=400nm ,2 =760nm。已知单缝宽度 a=1.0×10-2cm透镜焦距 f =50cm,求两种光第一级衍 射明纹中心之间的距离。 解(1)由单缝衍射明纹公式可知
光学教程第3章_参考答案
![光学教程第3章_参考答案](https://img.taocdn.com/s3/m/16b0285a2a160b4e767f5acfa1c7aa00b42a9d56.png)
13.1 证明反射定律符合费马原理。
证明:证明:设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,设两个均匀介质的分界面是平面,它们的折射率为它们的折射率为n 1和n 2。
光线通过第一介质中指定的A 点后到达同一介质中指定的B 点。
为了确定实际光线的路径,通过A,B 两点作平面垂直于界面,'OO 是它们的交线,则实际光线在界面上的反射点C 就可由费马原理来确定,如下图所示。
(1)反证法:如果有一点'C 位于线外,则对应于'C ,必可在'OO 线上找到它的垂足''C .由于''AC 'AC >,''BC 'BC >,故光线B AC'总是大于光程B ''AC 而非极小值,这就违背了费马原理,故入射面和反射面在同一平面内得证。
面内得证。
(2)在图中建立坐XOY 坐标系,则指定点A,B 的坐标分别为(x1,y1)和(x2,y2),未知点C 的坐标为(x ,0)。
C 点是在'A 、'B 之间的,光程必小于C 点在''B A 以外的相应光程,以外的相应光程,即即21vx x <<,于是光程ACB 为 yx x n y x x n CB n AC n ACB n 2211221221111)()(+-++-=+=根据费马原理,它应取极小值,即0)(1=ACB n dx d0)sin (sin )()()()()()(21112222211212111=-=¢-¢=+---+--=i i n CB B C AC C A n y x x x x n y x x x x n ACB n dx d 所以当11'i i =,取的是极值,符合费马原理。
,取的是极值,符合费马原理。
3.2 根据费马原理可以导出在近轴条件下,从物点发出并会聚倒像点的所有光线的光程都相等。
物理光学第三章 习题答案
![物理光学第三章 习题答案](https://img.taocdn.com/s3/m/770b6a2d376baf1ffc4fadd8.png)
(2)
m 20 2 2 h 10 cos 2 40 20 4 h 16 20 2 0.707rad cos 2
3.24 牛顿环也可以在两个曲率半径很大的平凸透镜之间的空气层 中产生。如图所示,平凸透镜A和B的凸面的曲率半径分别为RA 和RB,在波长600nm的单色光垂直照射下,观察到它们之间空气 层产生的牛顿环第10个暗环的半径rAB=4mm。若有曲率半径为RC 的平凸透镜C,并且B、C组合和A、C组合产生的第10个暗环的 半径分别为rBC=4.5mm和rAC=5mm,试计算RA,RB和RC。
4.4 F-P标准具的间隔为2.5mm,问对于波长为500nm的光,条 纹系中心的干涉级是多少?如果照明光波包含波长500nm和稍 小与500nm得两种光波,它们的环条纹距离为1/100条纹间距, 求未知光波的波长。 解:条纹系中心的干涉级为:
2h m 2h m 104
e 2 0.0005(nm) 2he 499.9995(nm)
4.3 将一个波长稍小于600nm的光波与一个波长为600nm的光波 在F-P干涉仪上进行比较。当F-P干涉仪两镜面间距离改变 1.5mm时,两光波的条纹系就重合一次。试求未知光波的波长。 解: 2l n n 1
解得: n 5 103 n ' 599.88 109 (m) n 1
(3) 2nh cos 2 m 2nh sin 2 2 2 0.0022 2nh sin 2 由 sin 1 n sin 2 cos 1 1 n cos 2 2 n cos 2 2 1 0.0033 cos 条纹间距为:e f 1 6.7 10-4 m
高中物理精品试题:选修3-4 第三章 光学 第3节 实验
![高中物理精品试题:选修3-4 第三章 光学 第3节 实验](https://img.taocdn.com/s3/m/3091fe4d0a1c59eef8c75fbfc77da26925c596bb.png)
测定玻璃的折射率用双缝干涉测量光的波长1.从两只相同的手电筒射出的光,当它们在某一区域叠加后,看不到干涉图样,这是因为()A.手电筒射出的光是单色光B.干涉图样太细小看不清楚C.周围环境的光太强D.这两束光为非相干光2.在杨氏双缝干涉实验中,如果()A.用白光作为光源,屏上将呈现黑白相间的条纹B.用红光作为光源,屏上将呈现红黑相间的条纹C.若仅将入射光由红光改为蓝光,则条纹间距一定变大D.用红光照射一条狭缝,用紫光照射另一条狭缝,屏上将呈现彩色条纹3.用红光做光的双缝干涉实验,如果将其中一缝改用蓝光,下列说法正确的是()A.在光屏上出现红蓝相间的干涉条纹B.只有相干光源发出的光才能在叠加时产生干涉现象,此时不产生干涉现象C.频率不同的两列光也能发生干涉现象,此时出现彩色条纹D.尽管亮暗条纹都是光波相互叠加的结果,但此时红光与蓝光只叠加不产生干涉现象4.一束白光通过双缝后在屏上观察到干涉条纹,除中央白色条纹外,两侧还有彩色条纹,其原因是() A.各色光的波长不同,因而各色光分别产生的干涉条纹间距不同B.各色光的速度不同,造成条纹的间距不同C.各色光的强度不同,造成条纹的间距不同D.各色光通过双缝到达一确定点的距离不同5.如图所示,在双缝干涉实验中,若单缝S从双缝S1、S2的中央对称轴位置处稍微向上移动,则() A.不再产生干涉条纹B.仍可产生干涉条纹,其中央亮条纹P的位置不变C.仍可产生干涉条纹,其中央亮条纹P的位置略向上移D.仍可产生干涉条纹,其中央亮条纹P的位置略向下移6.关于光的干涉及双缝干涉实验的认识,下列说法正确的是()A.只有频率相同的两列光波才能产生干涉B.频率不同的两列光波也能产生干涉现象C.单色光从两个狭缝到达屏上某点的路程差是光波长的奇数倍时出现暗条纹D.单色光从两个狭缝到达屏上某点的路程差是光波长的整数倍时出现亮条纹E.用同一单色光做双缝干涉实验,能观察到明暗相间的不等间距的单色条纹7.如图所示的双缝干涉实验,用绿光照射单缝S时,在光屏P上观察到干涉条纹,要得到相邻条纹间距更大的干涉图样,可以()A.增大S1与S2的间距B.减小双缝屏到光屏的距离C.将绿光换为红光D.将绿光换为紫光8.如图所示为双缝干涉实验中产生的条纹图样:图甲为用绿光进行实验的图样,a为中央亮条纹;图乙为换用另一种单色光进行实验的图样,a′为中央亮条纹.则以下说法正确的是(λ绿>λ红)()A.图乙可能是用红光进行实验产生的条纹,表明红光波长较长B.图乙可能是用紫光进行实验产生的条纹,表明紫光波长较长C.图乙可能是用紫光进行实验产生的条纹,表明紫光波长较短D.图乙可能是用红光进行实验产生的条纹,表明红光波长较短9.用波长为λ的单色光照射单缝O,经过双缝M、N在屏上产生明暗相间的干涉条纹,如图所示,图中a、b、c、d、e为相邻亮条纹的位置,c为中央亮条纹,则()A.O到达a、b的路程差为零B.M、N到达b的路程差为λC.O到达a、c的路程差为4λD.M、N到达e的路程差为2λ11.某同学在做双缝干涉实验时,按装置图安装好实验装置,在光屏上却观察不到干涉图样,这可能是由于()A.光束的中央轴线与遮光筒的轴线不一致,相差较大B.没有安装滤光片C.单缝与双缝不平行D.光源发出的光束太强12.某同学按双缝干涉实验装置安装好仪器后,观察光的干涉现象,获得成功.若他在此基础上对仪器的安装做如下改动,仍能使实验成功的是()A.将遮光筒内的光屏向靠近双缝的方向移动少许,其他不动B.将滤光片移至单缝和双缝之间,其他不动C.将单缝向双缝移动少许,其他不动D.将单缝与双缝的位置互换,其他不动14.在“用双缝干涉测量光的波长”的实验中,装置如图所示.双缝间的距离d=3 mm.(1)若测量红光的波长,应选用________色的滤光片.实验时需要测定的物理量有________和________.(2)若测得双缝与屏之间的距离为0.70 m,通过测量头(与螺旋测微器原理相似,手轮转动一周,分划板前进或后退0.500 mm)观察第1条亮条纹的位置如图甲所示,观察第5条亮条纹的位置如图乙所示.则可求出红光的波长λ=________m.15.用某种单色光做双缝干涉实验时,已知双缝间距离d=0.20mm,双缝到毛玻璃屏间的距离为l=75.0 cm,如图甲所示,实验时先转动如图乙所示的测量头上的手轮,使与游标卡尺相连的分划线对准如图丙所示的第1条亮条纹,此时卡尺的主尺和游标尺的位置如图戊所示,则游标卡尺的读数x1=________ mm,然后再转动手轮,使与游标卡尺相连的分划线向右边移动,直到对准第5条亮条纹,如图丁所示,此时卡尺的主尺和游标尺的位置如图己所示,则游标卡尺的读数x2=________ mm,由以上已知数据和测量数据,可得该单色光的波长是________ mm.(保留2位有效数字)16.在用插针法测定玻璃砖折射率的实验中,甲、乙两位同学在纸上画出的界面aa′、bb′与玻璃砖位置的关系分别如图①、②所示,其中甲同学用的是矩形玻璃砖,乙同学用的是梯形玻璃砖.他们的其他操作均正确,且均以aa′、bb′为界面画光路图,则:甲同学测得的折射率与真实值相比________(填“偏大”“偏小”或“不变”).乙同学测得的折射率与真实值相比________(填“偏大”“偏小”或“不变”).17.在用插针法测定玻璃折射率的实验中,某同学由于没有量角器,他在完成了光路图后,以O点为圆心,10 cm为半径画圆,分别交线段OA于A点,交线段OO′的延长线于C点,过A点作法线NN′的垂线AB交NN′于B点,过C点作法线NN′的垂线CD交NN′于D点,如图所示.用刻度尺量得OB=8 cm,CD=4 cm,由此可得出玻璃砖的折射率n=________.1.D 2.B 3.BD 4.A 5.D 6.AD 7.C 8.A9.BD11. AC 12.ABC14.解析 (1)要测量红光的波长,应用红色滤光片.由Δx =l dλ可知要想测λ必须测定双缝到屏的距离l 和条纹间距Δx .(2)由测量头的数据可知a 1=0,a 2=0.640 mm ,所以Δx =a 2-a 1n -1=0.6404 mm =1.60×10-4 m , λ=d Δx l =3×10-3×1.60×10-40.70m ≈6.86×10-7 m.15.答案 0.3 9.5 6.1×10-4解析 由游标卡尺读数规则读出x 1=0.3 mm ,x 2=9.5 mmΔx =x 2-x 1n -1=9.24 mm =2.3 mm λ=Δx ·d l=2.3×0.20750 mm ≈6.1×10-4 mm.16.答案 偏小 不变解析 用题图①测定折射率时,玻璃砖中折射光线偏折变大了,所以折射角增大,所测折射率减小;用图②测定折射率时,只要操作正确,折射率的测定值与玻璃砖的形状无关.17.答案 1.5解析 由题图可知sin ∠AOB =AB OA ,sin ∠DOC =CD OC ,OA =OC =R ,根据n =sin θ1sin θ2知,n =sin ∠AOB sin ∠DOC =AB CD =102-824=1.5.。
高中选修3-4光学题汇总(3套)
![高中选修3-4光学题汇总(3套)](https://img.taocdn.com/s3/m/47c1b080bceb19e8b8f6ba1b.png)
1、(2011全国卷1第16题)雨后太阳光入射到水滴中发生色散而形成彩虹。
设水滴是球形的,图中的圆代表水滴过球心的截面,入射光线在过此截面的平面内,a、b、c、d代表四条不同颜色的出射光线,则它们可能依次是A.紫光、黄光、蓝光和红光B.紫光、蓝光、黄光和红光C.红光、蓝光、黄光和紫光D.红光、黄光、蓝光和紫光2、一半圆柱形透明物体横截面如图所示,地面AOB镀银,O表示半圆截面的圆心,一束光线在横截面内从M点入射,经过AB面反射后从N点射出。
已知光线在M点的入射角为30︒,∠MOA=60︒,∠NOB=30︒。
求(1)光线在M点的折射角(2)透明物体的折射率3、(2011天津第6题)甲、乙两单色光分别通过同一双缝干涉装置得到各自的干涉图样,设相邻两个亮条纹的中心距离为x∆,若x x∆>∆甲乙,则下列说法正确的是A.甲光能发生偏振现象,则乙光不能B.真空中甲光的波长一定大于乙光的波长C.甲光的频率一定大于乙光的频率D.在同一种均匀介质中甲光的传播速度大于乙光4、如图所示,扇形AOB为透明柱状介质的横截面,圆心角∠AOB=60°。
一束平行于角平分线OM的单色光由OA射入介质,经OA折射的光线恰平行于OB。
①求介质的折射率。
②折射光线中恰好射到M点的光线是否发生全反射,并求透光部分对应的弧长5、如图所示的双缝干涉实验,用绿光照射单缝S时,在光屏P上观察到干涉条纹。
要得到相邻条纹间距更大的干涉图样,可以A.增大S1与S2的间距B.减小双缝屏到光屏的距离C.将绿光换为红光D.将绿光换为紫光6、(重庆第18题).在一次讨论中,老师问道:“假如水中相同深度处有a、b、c三种不同颜色的单色点光源,有人在水面上方同等条件下观测发现,b 在水下的像最深,c照亮水面的面积比a的大。
关于这三种光在水中的性质,同学们能做出什么判断?”有同学回答如下:○1c光的频率最大○2a光的传播速度最小○3b光的折射率最大○4a光的波长比b光的短,以上回答正确的是A. ○1○2B. ○1○3C. ○2○4D. ○3○47.下列有关光现象的说法正确的是()A.红光和紫光从真空垂直射入某介质均不偏折,说明此时该介质对二者折射率相同B.以相同入射角从某介质射向空气,若紫光能发生全反射,红光也一定能发生全发射C.在某种透明介质中红光的波长一定大于真空中紫光的波长D.在光的双缝干涉实验中,若仅将入射光由紫光改为红光,则条纹间距一定变大8.把某一直角玻璃棱镜AOB平放在坐标纸上,如图所示,用一细束红光掠过纸面从C点入射,经AO面反射和折射后,反射光线和折射光线与x轴交于D、E两点.已知C、D、E三点的坐标分别为(0,12)、(-9,0)、(16,0)。
3.光学练习题
![3.光学练习题](https://img.taocdn.com/s3/m/954355eba58da0116c17499b.png)
光学练习题一、填空题1. 在用钠光(λ = 589.3 nm )照亮的缝S 和双棱镜获得干涉条纹时,将一折射率为1.33的平行平面透明膜插入双棱镜上半棱镜的光路中,如图所示.发现干涉条纹的中心极大(零级)移到原来不放膜时的第五级极大处,则膜厚为________.(1 nm = 10-9 m)8.9 μm参考解: λ5)1(=-d n =-=)1/(5n d λ8.9 μm2. 采用窄带钨丝作为双缝干涉实验的光源.已知与双缝平行的发光钨丝的宽度b = 0.24 mm ,双缝间距d = 0.4 mm .钨丝发的光经滤光片后,得到中心波长为690 nm (1 nm = 10-9m)准单色光.钨丝逐渐向双缝移近,当干涉条纹刚消失时,钨丝到双缝的距离l 是_________. 1.4×102 mm3. 以钠黄光(λ = 589.3 nm )照亮的一条缝作为双缝干涉实验的光源,光源缝到双缝的距离为20 cm ,双缝间距为0.5 mm .使光源的宽度逐渐变大,当干涉条纹刚刚消矢时,光源缝的宽度是_____________.(1nm = 10-9m)0.24 mm参考计算:光源的极限宽度为:mm 24.0(mm)10103.5895.0102039=⨯⨯⨯⨯==-λωd L4. 检验滚珠大小的干涉装置示意如图(a).S 为单色光源,波长为λ,L 为会聚透镜,M 为半透半反镜.在平晶T 1、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准件,直径为d 0.在M 上方观察时,观察到等厚条纹如图(b)所示.若轻压C 端,条纹间距变小,则可算出B 珠的直径d 1=________________;C 珠的直径d 2=________________. d 0, d 0-λ5. 用迈克耳孙干涉仪产生等厚干涉条纹,设入射光的波长为λ ,在反射镜M 2转动过程中,在总的观测区域宽度L 内,观测到总的干涉条纹数从N 1条增加到N 2条.在此过程中M 2转过的角度∆θ 是____________________)(212N N L-λ6. 测量未知单缝宽度a 的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为l (实验上应保证D ≈103a ,或D 为几米),则由单缝衍射的原理可标出a 与λ,D ,l 的关系为a =______________________.2λD / l参考解:由sin ϕ = λ / a 和几何图, 有 sin ϕ = l / 2D∴ l / 2D = λ / a =2λD / l7. 在单缝夫琅禾费衍射实验中,用单色光垂直照射,若衍射图样的中央明纹极大光强为I 0,a 为单缝宽度,λ 为入射光波长,则在衍射角θ 方向上的光强度I = __________________.图(b)12λ222220sin )sin (sin λθλθa a I ππ 或写成 220sin u u I I =, λθsin a u π=8. 在双缝衍射实验中,若缝宽a 和两缝中心间距d 满足 d / a = 5,则中心一侧第三级明条纹强度与中央明条纹强度之比I 3﹕I 0 = _____________.0.255[或2)5/35/3sin (ππ]参考解: 5==αβa d , ∴ β = 0,π,2 π,3 π,4 π当 β = 3 π α = 3 π /5 而由光强公式 I 3﹕220)sin (cos ααβ=I =ππ⋅π=22)5/35/3sin ()3(cos 0.2559. 一平面衍射光栅,透光缝宽为a ,光栅常数为d ,且d / a = 5,在单色光垂直入射光栅平面的情况下,若衍射条纹中央零级亮纹的最大强度为I 0,则第一级明纹的最大光强为_______.20)5/5/sin (ππI 或 0.875I 010. 一会聚透镜,直径为 3 cm ,焦距为20 cm .照射光波长550 nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于_________rad .这时在透镜焦平面上两个衍射图样的中心间的距离不小于_________________ μm . (1 nm = 10-9 m)2.24×10-5,4.4711. 如图所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r 的值为_______________________. π / 2-arctg(n 2 / n 1)12. 应用布儒斯特定律可以测介质的折射率.今测得此介质的起偏振角i 0=56.0,这种物质的折射率为_________________. 1.48 二、计算题1. 在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求: (1) 零级明纹到屏幕中央O 点的距离. (2) 相邻明条纹间的距离.解:(1) 如图,设P 0为零级明纹中心屏则 D O P d r r /012≈- (l 2 +r 2) - (l 1 +r 1) = 0∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()d D d r r D O P /3/120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 明纹条件λδk ±= (k =1,2,....) ()d D k x k /3λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距 d D x x x k k /1λ=-=+∆2. 如图所示,把一凸透镜L 切成两半,并稍微拉开一个距离h ,用一小遮光板把其间的缝挡住.将一波长为λ 的单色点光源S 放在轴线O ′O 上,且f O S 2=',f 是透镜的焦距.在透镜后面放一观察屏C ,已知f O O 10='.设x 轴的原点O 点处的光强为I 0.求x 轴上任一点P 点的光强I 随x 而变化的函数关系(即把I 表示成I 0,λ,h ,f 和x 的函数).解:根据几何光学作图法可知点光源S 发出的光束经过上半个透镜L 1和下半个透镜L 2分别折射后所形成的两光束和两个同相位的相干光源S 1和S 2的位置,如图所示.由透镜成像公式 fu 111=+v 和 f u 2= 得 f2=v又因SS 1和SS 2分别通过上下两个半透镜的中心,由图可得1:2:)(:21=+=u u h S S v∴ h S S 221=,且S 1S 2平面与屏的距离= 8f .根据类似双缝干涉的计算可知P 点的光强)21(cos 4)cos 1(22121φφ∆∆=+=I A I其中 θλδλφsin )2(22h π=π=∆f hx f x h λλ428)2(2π≈π≈ ∴ f hx I I λ4cos 421π=.当x = 0时,104I I =. fhx I I λ4cos 20π=.3. 如图所示,用波长为λ= 632.8 nm (1 nm = 10-9m)的单色点光源S 照射厚度为e = 1.00×10-5 m 、折射率为n 2 = 1.50、半径为R = 10.0 cm 的圆形薄膜F ,点光源S 与薄膜F 的垂直距离为d = 10.0 cm ,薄膜放在空气(折射率n 1 = 1.00)中,观察透射光的等倾干涉条纹.问最多能看到几个亮纹?(注:亮斑和亮环都是亮纹).解:对于透射光等倾条纹的第k 级明纹有:λk r e n =cos 22 中心亮斑的干涉级最高,为k ma x ,其r = 0,有: =⨯⨯⨯⨯==--752max 10328.61000.150.122λen k 47.4应取较小的整数,k ma x = 47(能看到的最高干涉级为第47级亮斑).最外面的亮纹干涉级最低,为k min ,相应的入射角为 i m = 45︒(因R =d ),相应的折射S角为r m ,据折射定律有 m m r n i n s i n s i n21= ∴ 50.145sin 00.1sin )sin (sin 1211︒==--m m i n n r = 28.13° 由 λm i n 2c o s 2k r e n m = 得:752m i n10328.613.28cos 1000.150.12cos 2--⨯︒⨯⨯⨯==λmr e n k = 41.8 应取较大的整数,k min = 42(能看到的最低干涉级为第42级亮斑). 3分∴最多能看到6个亮斑(第42,43,44,45,46,47级亮斑).4. 用迈克耳孙干涉仪精密测量长度,光源为Kr 86灯,谱线波长为605.7 nm (橙红色),谱线宽度为0.001 nm ,若仪器可测出十分之一个条纹的变化,求能测出的最小长度和测量量程.(1 nm = 10-9 m)解:每变化一个条纹,干涉仪的动镜移动半个波长,故能测出十分之一个条纹,则能测出长度的最小值为 =⨯λ21)10/1(30.3 nm ,用迈克耳孙干涉仪动镜可以测量的量程为光的相干长度之半==∆λλ/21212c l 18 cm 。
习题册_II3_光学
![习题册_II3_光学](https://img.taocdn.com/s3/m/80448001e87101f69e319502.png)
光的干涉1. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹,若将缝 2S 盖住,并在1S 、2S 连线的垂直平分面处放一反射镜M ,如图所示,则此时 (A )P 点处仍为明条纹, (B )P 点处为暗条纹,(C )不能确定P 点处是明条纹还是暗条纹, (D )无干涉条纹。
2. 在双缝干涉实验中,若初级单色光源S 到两缝1S 、2S 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下微移到图中的S ’位置,则(A )中央明条纹也向下移动,且条纹间距不变, (B )中央明条纹向上移动,且条纹间距不变, (C )中央明条纹向下移动,且条纹间距增大, (D )中央明条纹向上移动,且条纹间距增大。
3.在一双缝装置的两个缝分别被折射率为1n 和2n 的两块厚度均为e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差δ= 。
4.在双缝干涉实验中S 1S =S 2S ,用波长为λ的光照射双缝1S 和2S ,通过空气后在屏幕E 上形成干涉条纹,已知屏幕上P 点处为第三级明条纹,则1S 和2S 到P 点的光程差为 ,若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n = 。
5.杨氏双缝间距d =0.5mm ,缝与屏相距D =50cm ,若以白光入射,(1)分别求白光中A 40001=λ和A 60002=λ的两种光各自的条纹间距。
(2)这两种波长的干涉明纹在1λ的第几级明纹处发生第一次重叠? (3)重叠处距中央明纹多远?6.白色平行光垂直入射到间距为a=0.25mm的双缝上,距缝50cm处放置屏幕,分别求第一级和第五级明纹彩色带的宽度。
(设白光的波长范围是从4000埃到7600埃。
这里说的“彩色带宽度”指两个极端波长的同级明纹中心的距离)7.用cm 5106-⨯=λ的光入射杨氏双缝,光屏上P 点为第五级明纹位置,现将n =1.5的玻璃片垂直插入从1S 发出的光束的途中,则P 点变为中央明纹位置,求玻璃片的厚度。
2023年中考物理二轮专题复习:《光学》实验题 (附答案)
![2023年中考物理二轮专题复习:《光学》实验题 (附答案)](https://img.taocdn.com/s3/m/62688acd534de518964bcf84b9d528ea81c72fb3.png)
2023年中考物理二轮专题复习:《光学》实验题姓名:___________班级:___________考号:___________1.小华所在小组先后完成了以下两个光学实验,如图甲用其中一面镀膜的茶色玻璃板和两个完全相同的棋子A和棋子B,在水平桌面上探究平面镜成像的特点;如图乙在水平放置的平面镜上方竖直放一光屏,光屏由可以绕ON折转的E、F两块白板组成,探究光的反射规律:(1)在探究平面镜成像特点过程中:①实验环境有:A.几乎无光的实验室;B.有光的实验室,小华完成第一个实验,应选择______(选填“A”或“B”)中进行实验效果较好;②实验中,她在玻璃板前放置棋子A,将棋子B放在玻璃板后并移动,直到B和A的像完全重合,这说明____ __;若在水平桌面上无论怎样移动B,也不能使B与A的像完全重合,原因可能是____ __;(2)在探究光的反射规律过程中:如图乙中,E、F在同一平面上,让光线沿纸板E上的AO射向镜面,则在纸板F上得到沿OB的反射光线,在纸板前的不同位置都能看到光线,是因为光在纸板上发生了______,在实验过程中,若将纸板倾斜(即纸板与平面镜不垂直),如图丙所示,让光线仍贴着纸板沿AO方向射向镜面,此时纸板F上______(选填“能”或“不能”)看到反射光线,反射光线与入射光线______(选填“在”或“不在”)同一平面内。
2.如图所示是小明同学探究“光的反射规律”的实验装置。
他把平面镜平放在水平桌面上,白色硬纸板竖直立在平面镜上。
(1)图甲中,入射光线EO的反射角为______度。
(2)白色硬纸板在实验中的作用是____ __(写出一条即可)。
(3)为了完成“探究光的反射规律”的实验,小明的下列做法正确的是______。
A.为了研究“光在反射时可逆”,应进行的操作是改变光线OB与法线ON的夹角B.为了研究“反射角与入射角的关系”,应进行的操作是让另一束光从BO入射C.在完成了图甲实验后,如果沿ON向后转动纸板FON,此时反射光线不存在D.为了便于测量和探究,需及时地在纸板上记录入射光AO和反射光OB的径迹(4)图乙为自行车尾灯结构示意图,请在图丙中画出这条光线的反射光线。
高考物理最新光学知识点之物理光学经典测试题含答案解析(3)
![高考物理最新光学知识点之物理光学经典测试题含答案解析(3)](https://img.taocdn.com/s3/m/6c6a376b3968011ca30091b0.png)
高考物理最新光学知识点之物理光学经典测试题含答案解析(3)一、选择题1.如图所示,O1O2是半圆柱形玻璃体的对称面和纸面的交线,A、B是关于O1O2轴等距且平行的两束不同单色细光束,从玻璃体右方射出后的光路如图所示,MN是垂直于O1O2放置的光屏,沿O1O2方向不断左右移动光屏,可在屏上得到一个光斑P,根据该光路图,下列说法正确的是()A.在该玻璃体中,A光比B光的运动时间长B.光电效应实验时,用A光比B光更容易发生C.A光的频率比B光的频率高D.用同一装置做双缝干涉实验时A光产生的条纹间距比B光的大2.如图所示,一束光经玻璃三棱镜折射后分为两束单色光a、b,波长分别为λa、λb,该玻璃对单色光a、b的折射率分别为n a、n b,.则()A.λa<λb,n a>n b B.λa>λb,n a<n bC.λa<λb,n a <n b D.λa>λb,n a >n b3.已知某玻璃对蓝光的折射率比对红光的折射率大,则两种光A.在该玻璃中传播时,蓝光的速度较大B.以相同的入射角从空气斜射入该玻璃中,蓝光折射角较大C.从该玻璃中射入空气发生反射时,红光临界角较大D.用同一装置进行双缝干涉实验,蓝光的相邻条纹间距较大4.下面事实与光的干涉有关的是()A.用光导纤维传输信号B.水面上的油膜呈现彩色C.水中的气泡显得格外明亮D.一束白光通过三棱镜形成彩色光带5.如图所示是利用薄膜干涉检查平整度的装置,同样的装置也可以用于液体折射率的测定.方法是只需要将待测液体填充到两平板间的空隙(之前为空气)中,通过比对填充后的干涉条纹间距d′和填充前的干涉条纹间距d就可以计算出该液体的折射率.已知空气的折射率为1.则下列说法正确的是()A.d′<d,该液体的折射率为B.d′<d,该液体的折射率为C.d′>d,该液体的折射率为D.d′>d,该液体的折射率为6.一个不透光的薄板上有两个靠近的窄缝,红光透过双缝后,在墙上呈现明暗相间的条纹,若将其中一个窄缝挡住,在墙上可以观察到()A.光源的像B.一片红光C.仍有条纹,但宽度发生了变化D.条纹宽度与原来条纹相同,但亮度减弱7.关于电磁场和电磁波,下列说法正确的是A.变化的电磁场由发生区域向周围空间传播,形成电磁波B.电场周围总能产生磁场,磁场周围总能产生电场C.电磁波是一种物质,只能在真空中传播D.电磁波的传播速度总是与光速相等8.关于电磁场和电磁波,下列说法正确的是()A.在电场的周围,一定存在着由它激发的磁场B.变化的磁场在周围空间一定能形成电磁波C.赫兹通过实验证实了电磁波的存在D.无线电波的波长小于可见光的波长9.下列现象中,属于光的色散现象的是()A.雨后天空出现彩虹B.通过一个狭缝观察日光灯可看到彩色条纹C.海市蜃楼现象D.日光照射在肥皂泡上出现彩色条纹10.下列说法正确的是()A.不论光源与观察者怎样相对运动,光速都是一样的B.太阳光通过三棱镜形成彩色光带是光的干涉现象C.波源与观察者互相靠近和互相远离时,观察者接收到的波的频率相同D.光的双缝干涉实验中,若仅将入射光从红光改为紫光,则相邻亮条纹间距一定变大11.一细光束由a、b两种单色光混合而成,当它由真空射入水中时,经水面折射后的光路如图所示,则以下看法正确的是A.a光在水中传播速度比b光小B.b光的光子能量较大C.当该两种单色光由水中射向空气时,a光发生全反射的临界角较大D.用a光和b光在同一装置上做双缝干涉实验,a光的条纹间距大于b光的条纹间距12.5G是“第五代移动通信网络”的简称,目前世界各国正大力发展 5G网络.5G网络使用的无线电波通信频率在3.0 GHz以上的超高频段和极高频段(如图所示),比目前4G及以下网络(通信频率在0.3GHz~3.0GHz间的特高频段)拥有更大的带宽和更快的传输速率.未来5G网络的传输速率(指单位时间传送的数据量大小)可达10G bps(bps为bits per second的英文缩写,即比特率、比特/秒),是4G网络的50-100倍.关于5G网络使用的无线电波,下列说法正确的是A.在真空中的传播速度更快B.在真空中的波长更长C.衍射的本领更强D.频率更高,相同时间传递的信息量更大13.如图所示的LC振荡电路中,某时刻电流i的方向为顺时针,则以下判断正确的是A.若A板带正电,则电流i在增大B.若电容器在放电,则电流i在减小C.若电流i减小,则线圈两端电压减小D.若只减小电容C,则振荡电流周期变小14.各种不同频率范围的电磁波按频率由大到小的排列顺序是A.γ射线、紫外线、可见光、红外线B.γ射线、红外线、紫外线、可见光C.紫外线、可见光、红外线、γ射线D.红外线、可见光、紫外线、γ射线15.下列说法正确的是()A.变化的磁场产生稳定的电场,变化的电场可产生稳定的磁场B.透过平行于日光灯的窄缝观察正常发光的日光灯可看到彩色条纹,这是光的折射现象,C.通过测定超声波被血流反射回来其频率的变化可测血流速度,这是利用了多普勒效应D.光的偏振现象说明光是一种纵波16.太阳光照射下肥皂膜呈现的彩色,瀑布在阳光下呈现的彩虹以及通过狭缝观察发光的日光灯时看到的彩色条纹,这些现象分别属于()A.光的干涉、色散和衍射现象B.光的干涉、衍射和色散现象C.光的衍射、色散和干涉现象D.光的衍射、干涉和色散现象17.在杨氏干涉实验中,从两个狭缝到达像屏上的某点的光走过的路程相等,该点即为中央亮条纹的位置(即k=0对应的那条亮条纹),双缝屏上有上下两狭缝,设想在双缝屏后用一块极薄的玻璃片遮盖上方的缝,则屏上中央亮条纹的位置将( )A.向上移动 B.向下移动C.不动 D.可能向上移动,也可能向下移动18.下列说法中正确的是A.阳光下肥皂泡上的彩色条纹和雨后彩虹的形成原理是相同的B.只有大量光子才具有波动性,少量光子只具有粒子性C.电子的衍射现象说明其具有波动性,这种波不同于机械波,它属于概率波D.电子显微镜比光学显微镜的分辨率更高,是因为电子穿过样品时发生了更明显的衍射19.下面是四种与光有关的事实:①用光导纤维传播信号②用透明的标准样板和单色光检查平面的平整度③一束白光通过三棱镜形成彩色光带④水面上的油膜呈现彩色其中,与光的干涉有关的是( )A.①④B.②④C.①③D.②③20.目前雷达发出的电磁波频率多在200MHz~1000 MHz的范围内,下列关于雷达和电磁波的说法正确的是()A.真空中,上述频率范围的电磁波的波长在30m~150m之间B.电磁波是由恒定不变的电场或磁场产生的C.波长越短的电磁波,越容易绕过障碍物,便于远距离传播D.测出从发射无线电波到接收反射回来的无线电波的时间,就可以确定障碍物的距离21.关于紫外线的以下说法中正确的是A.照射紫外线可增进人体对钙质的吸收,因此人们应尽可能多地接受紫外线的照射B.紫外线是一种可见光C.紫外线有很强的荧光效应,可用来防伪D.紫外线有杀菌消毒的作用,是因为其有热效应22.下列说法正确的是()A.麦克斯韦通过实验证实了电磁波的存在B.光导纤维传送图象信息利用了光的衍射原理C.光的偏振现象说明光是纵波D.微波能使食物中的水分子热运动加剧从而实现加热的目的23.如图甲所示,在平静的水面下有一个点光源s,它发出的是两种不同颜色的a光和b 光,在水面上形成了一个被照亮的圆形区域,该区域的中间为由ab两种单色光所构成的复色光的圆形区域,周边为环状区域,且为a光的颜色(见图乙).则一下说法中正确的是()A.a光的频率比b光大B.水对a光的折射率比b光大C.a光在水中的传播速度比b光大D.在同一装置的杨氏双缝干涉实验中,a光的干涉条纹比b光窄24.根据麦克斯韦电磁场理论,下列说法中正确的是( )A.周期性变化的电场一定产生同频率的周期性变化的磁场B.变化的电场一定产生变化的磁场C.稳定的电场一定产生稳定的磁场D.均匀变化的电场一定产生均匀变化的磁场25.下列关于电磁波的说法正确的是________.A.电磁波不能产生衍射现象B.电磁波和机械波都只能在介质中传播C.根据多普勒效应可以判断遥远天体相对于地球的运动速度D.光在真空中运动的速度在不同惯性系中测得的数值可能不同【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】光线通过玻璃体后,A光的偏折程度比B光的小,则该玻璃体对A光的折射率比对B光的折射率小,根据n=c/v可知,A在玻璃中的速度较大,在该玻璃体中,A光比B光的运动时间短,选项A错误;折射率越大,光的频率越高,说明A光的频率比B光的频率低,光电效应实验时,用B光比A光更容易发生,选项BC错误;A光的频率比B光的频率低,由c=λγ知,在真空中,A光的波长比B光的长,而双缝干涉条纹间距与波长成正比,则A 光的条纹较B宽.故D正确.故选D.2.B解析:B【解析】【详解】由图知,三棱镜对b光的折射率较大,又因为光的频率越大,介质对光的折射率就越大,所以n a<n b,故b光的频率大于a光的频率,在根据cvλ=,所以b光的波长小于a光的波长,即λa>λb.A.λa<λb,n a>n b与分析结果不相符;故A项错误.B.λa>λb,n a<n b与分析结果相符;故B项正确.C.λa<λb,n a<n b与分析结果不相符;故C项错误.D.λa>λb,n a>n b与分析结果不相符;故D项错误.3.C解析:C【解析】【分析】根据题目中的蓝光的折射率比红光的折射率大,可以判断这两种光在该玻璃中的波速大小,以及波长、临界角等大小情况,然后以及相关物理知识即可解答.【详解】A.由Cvn=可知,蓝光在玻璃中的折射率大,蓝光的速度较小,故A错误;B.以相同的入射角从空气中斜射入玻璃中,蓝光的折射率大,向法线靠拢偏折得多,折射角应较小,故B错误;C.从玻璃射入空气发生全反射时的临界角由公式1sin Cn=可知,红光的折射率小,临界角大,故C正确;D.用同一装置进行双缝干涉实验,由公式Lxdλ∆=可知蓝光的波长短,相邻条纹间距小,故D错误.4.B解析:B【解析】【分析】【详解】A.光导纤维是利用光的全反射的原理传播光信号,与光的干涉无关,故A错误;B.光照射在水面上的油膜上光在油膜的上下两个表面分别发生反射,两列反射光在油膜的上表面发生薄膜干涉形成彩色干涉条纹,故与光的干涉有关,故B正确;C.光从水或玻璃射到气泡中时,由于一部分射到气泡界面上的光发生了全反射,所以气泡看起来特别明亮,与干涉无关,故C错误;D.白光是复色光,而同一种玻璃对不同的单色光的折射率不同,故虽然不同的单色光的入射角相同但经玻璃折射后的出射角不同即发生了色散,故折射的结果与光的干涉无关,故D错误。
光学3
![光学3](https://img.taocdn.com/s3/m/44581d760b1c59eef8c7b48e.png)
对可见光的上、下限值,有:
min 400nm
max
k min 1.45 760nm kmax 2.75
k 只能取整数,因此在可见光范围内: k 2
B
A2
/2
BC a sin k o 2 ( k 个半波带)
a sin 2k k 干涉相消(暗纹) 2 k 个半波带 2 干涉加强(明纹) 2k 1 a sin (2k 1) 个半波带 2 (介于明暗之间) (k 1,2,3,) a sin k 2
111页 •两个点光源相距较远,能分辨。
S1 S2
1.22
a
1.22
a
重点
1.22
a
完全可分辨
刚刚能分辨
分辨不开
1.22
a
提高仪器的分辨能力有两种:
方法一:用大口径的透镜,a大。
一般天文望远镜的口径都很大,世界 上最大的天文望远镜在智利,直径16米。
用美国的哈勃望远镜(直径5米) 观察到新星的诞生
a
附加题4.一束波长为的平行单色光垂直入 射到一单缝 AB 上,装置如图,在屏幕 D 上形成衍射图样,如果 P 是中央亮纹一侧 第一个暗纹所在的位置,则 BC 的长度为:
( A ) . ( B ) /2. ( C ) 3 /2. ( D ) 2 .
A B C L D P
F
屏
[ A ]
③中央亮条纹的亮度很大(90%),其他次亮纹 的亮度则很小,依次衰减,实际只能看到一级; (4) a越小,障碍越厉害(λ 一定),衍射越 厉害; a sin k (5) 用红色光源照射单缝则衍射现象明显。用 白色光源照射单缝,中央为白色条纹,其它条纹 发生色散现象。 x f
工程光学习题3
![工程光学习题3](https://img.taocdn.com/s3/m/8f0c20806bec0975f465e261.png)
1 (3) D 1D f 1m; f 1m; (4) R R D 1D l R (5) A 8 D, R 1D, A R P 所以P 9 D l m; p 0.11
习题7-2
一放大镜焦距f 25m m,通光孔径D 18m m, 眼睛距放大镜为 50mm,像距离眼睛在明视距 离 250mm,渐晕系数K 50%,求: ( 1 )视觉放大率;( 2)线视场; (3)物体的位置。
(6)设物高2 y 6mm,渐晕系数K 50%,求目镜的通光口径。
(250m m) (1) e 3 10 30 f 0 f e (2) D 500NA / 50 / 30 1.67m m;
l 3 (3) l l 45, l 135 l l 180 物目距离: 135 25 160 1 1 1 1 1 1 l 29.6m m l l f e l 160 25 0.5 ( 4) 2.75m NA h (5) NA n sin u 0.1 sin u t anu 0. 1 45 2h 9m m De / 2 3 (6) t an De 21.33m m 45 135 25
0
入射光电矢量方向与入射面成450 角,所以As A p A rs As 0.3347A; 则:As Ap rp A p 0.057A / Ap ) 800 20 所以 arctan(As (2)1 600,折射角 2 35.2640 代入菲涅尔公式可得:rs 0.4202 , rp 0.0424 rs As 0.4202A; 则:As Ap rp A p 0.0424 / Ap ) 84014 所以 arctan(As
工程光学 3 习题课 3
![工程光学 3 习题课 3](https://img.taocdn.com/s3/m/cbbf9745e45c3b3567ec8bda.png)
一厚透镜位于空气中,r1=100mm,d=8mm,n=1.5,若有一物体的物距 l1=200mm,经该透镜成像后的像距l'=50mm,求第二面的曲率半径r2。 若物高y1=20mm,求像高。 像方等效基点
xF ' f2 f2 ' 75 50 10.218mm 367
3-25
一个双凸透镜的两个半径为r1和r2 ,折射率为n,当厚度d取何值时,该透 镜相对于望远系统? 透镜前表面
nr f1 ' 1 n 1 f2 ' r2 1 n f1 f2 r1 n 1 nr2 1 n
解
透镜后表面
望远系统由双光组组成,组成方式为第一光组的像方焦点与第二 光组的物方焦点重合,即双光组之间的光学间隔应为零,即
式中,d 为前一光组像 方主平面与后一光组物 方主平面之间的距离。
透镜组等效焦距有关系式
已知等效焦距
即
f ' 100mm
134.832 100 d 2 123.83
解得
d 87.87mm
令前一透镜后平面与后一透镜前平面的距离为D,D即两透镜 的间隔,可知
D d lH lH ' 87.87 2.25 4.49 81.13mm
3-22
双凸透镜的曲率半径分别为100mm和200mm,中心厚度为10mm,玻璃的 折射率为1.5,试求该透镜的基点位置,并计算透镜的焦距。 透镜前表面 r1 100mm nr 1.5 100 f1 ' 1 300mm n 1 1.5 1 透镜后表面
f2 ' r1 100 200mm n 1 1.5 1 nr2 1.5 (200) 600mm 1 n 1 1.5
光学第三章习题 11级应用物理
![光学第三章习题 11级应用物理](https://img.taocdn.com/s3/m/34cad117b7360b4c2e3f6442.png)
11级应用物理 曹江勇学号:20114052004第三章 习题一、选择题:2004. 2n = 1 的空气对于1n = 1.5 的玻璃而言,其临界角c i 约为 ( B )(A )40° (B ) 42° (C )55° (D )56°2005.将折射率为 n 的薄透镜置于折射率为 n ′(>n )的介质中,则 ( B )(A )凸透镜会聚、凹透镜发散 (B )凸透镜发散、凹透镜会聚(C )凸透镜发散、凹透镜发散 (D )凸透镜会聚、凹透镜会聚2012.使一条不平行主轴的光线,无偏折(即传播方向不变)的通过厚透镜,满足的条件是入射光线必须通过( A )(A )光心。
(B )物方焦点。
(C )物方节点。
(D )象方焦点。
2016.由折射率为n=1.65 的玻璃制成的薄凸透镜,前后两球面的曲率半径均为40cm ,其焦距等于多少cm ?。
( D )(A )20 (B )21 (C )25 (D )312017.一双凸透镜的折射率为1.5,其两面曲率半径均为10cm ,若其一面涂以银,使其成为凹面镜,在距透镜20cm 处置一点光源,光自左向右射入,右为涂银面,则其所成像在多少cm 处? ( A )(A )20 (B )4 (C )3.33 (D )2.862022.一消色差透镜由两个胶合的薄透镜构成的,他们的光焦度分别为10和-6屈光度,试问组合透镜的焦距为多少cm ?(A )0.25 (B )25 (C )2.5 (D )4002049,光学系统的实物定义是( C )(A )发散入射同心光束的顶点(B )会聚入射同心光束的顶点(C )发散出射同心光束的顶点(D )会聚出射同心光束的顶点2050,光学系统的虚物定义是( B )(A )发散入射同心光束的顶点(B )会聚入射同心光束的顶点(C )发散出射同心光束的顶点(D )会聚出射同心光束的顶点2051,光学系统的实像定义是( B )(A )发散入射同心光束的顶点(B )会聚入射同心光束的顶点(C )发散出射同心光束的顶点(D)会聚出射同心光束的顶点2052,光学系统的虚像定义是( C )(A)发散入射同心光束的顶点(B)会聚入射同心光束的顶点(C)发散出射同心光束的顶点(D)会聚出射同心光束的顶点2053,身高为1.8m的人经过平面镜反射能看到自己全身的像,平面镜的高度至少需要多少米( A )(A)0.9m (B)1.8m (C)2.7m (D)3.6m2054,平面镜成像的性质为( B )(A)实物成实像(B)实物成虚像(C)虚物成虚像(D)虚物不能成像2055,平面镜成像的横向放大率为( A )(A)+1 (B)-1 (C)0 (D)∞2056,唯一能完善成像光学系统的是( B )(A)平面折射系统(B)平面反射系统(C)球面折社系统(D)球面反射系统2058,人在岸上看到水中的鱼是( D )(A)原深度的鱼(B)变深了的鱼的实像(C)变浅了的鱼的实像(D)变浅了的鱼的虚像2059,透过一块厚玻璃板观察一个发光点,看到发光点的位置是( A )(A)移近了(B)移远了(C)不变(D)不能确定2060,某水箱里注水深8cm,箱底有一硬币,则硬币的视深为多少厘米( C )(A)2 (B)4 (C)6 (D)202061,在厚15cm,折射率为1.5的玻璃板下表面上有一小颗粒,如果垂直观察,小颗粒的像位于玻璃板上表面下放多少厘米( B )(A)5 (B)10 (C)15 (D)202062,棱镜的折射率为n,当顶角a很小时,最小偏向角为( C )(A)a (B)na (C)(n-1)a (D)(n+i)a2063,棱镜的顶角为60°,当入射角为45°时,偏向角最小,那么该棱镜的折射率为( A )(A(B(C(D)22066,凹球面镜对实物成像的性质之一是( A )(A)实像都是倒立的(B)实像都是正立的(C)实像都是放大的(D)实像都是缩小的2067,凹球面镜对实物成像的性质之一是( A )(A)虚像都是正立方大的(B)虚像都是倒立方大的(C)虚像都是正立缩小的(D)虚像都是倒立缩小的2068,凸球面镜对实物成像的性质是( B )(A)虚像都是实的(B)虚像都是虚的(C)虚像都是放大的(D)虚像都是倒立的2069,凸球面镜对实物成像的性质( D )(A)实像都是正立方大的(B)实像都是倒立方大的(C)实像都是倒立缩小的(D)不可能产生实像2070,凸球面镜对实物成像的性质( C )(A)实像都是倒立缩小的(B)实像都是正立方大的(C)虚象都是正立缩小的(D)虚象都是倒立方大的2071,平行光通过置于空气中的透明介质球聚焦于球面上,则透明体的折射率为( D )(A)2 (B)1 (C)2 (D)1.52072,凸透镜的成像性质之一是( A )(A)实物始终成倒立实像(B)实物始终成正立虚像(C)虚物始终成正立实像(D)虚物始终成正立虚像2073,凸透镜对实物成像的性质之一是( A )(A)实像都是倒立的(B)实像都是正立的(C)实像都是放大的(D)实像都是缩小的2074,凸透镜对实物的成像性质之一是( D )(A)实像都是正立方大的(B)实像都是倒立方大的(C)实像都是倒立缩小的(D)实像可以放大,也可以缩小2075,凹透镜对实物成像的性质( B )(A)像都是实的(B)像都是虚的(C)像都是放大的(D)像都是倒立的2076,凹透镜对实物成像的性质( D )(A)实像都是正立方大的(B)实像都是倒立方大的(C)实像都是倒立缩小的(D)不能成实像2077,凹透镜对实物成像的性质( C )(A)实像都是倒立缩小的(B)实像都是正立方大的(C)虚象都是正立缩小的(D)虚象都是倒立方大的2078,共轴球面系统主焦点的定义是( D )(A)主轴上横向放大率等于1的一对共轭点(B)主轴上角放大率为1的一对共轭点(C)主轴上纵向放大率为1的一对共轭点(D)主轴上无限远点的共轭点2079,共轴球面系统主点的定义是( A )(A)主轴上横向放大率等于1的一对共轭点(B)主轴上角放大率为1的一对共轭点(C)主轴上纵向放大率为1的一对共轭点(D)主轴上无限远点的共轭点2080,共轴球面系统节点的定义是( B )(A)主轴上横向放大率等于1的一对共轭点(B)主轴上角放大率为1的一对共轭点(C)主轴上纵向放大率为1的一对共轭点(D)主轴上无限远点的共轭点二、填空题:1012.费马原理是指_光沿光程最大值、最小值、或恒定值的路程传播______________。
2020年中考专题三:光学作图
![2020年中考专题三:光学作图](https://img.taocdn.com/s3/m/29e89463b14e852458fb57f7.png)
2020年中考物理真题集锦——专题三:光学作图1.(2020营口,23)如图所示,水平放置的凹透镜,F是它的焦点,光线a经回透镜折射后,再经平面镜反射,以图示的角度射到竖直放置的屏幕上。
请在图中确定平面镜的位置,完成光路图并标出经平面镜反射时反射角的大小。
2.(2020眉山,1819)如图所示,探究凸透镜成像时,F是凸透镜的焦点,S是蜡烛火焰上的一点,试作出S的像S'。
3.(2020娄底,19)如图,OA是光源S发出的一条经平面镜反射后的反射光线,反射光线OA经过了凸透镜焦点F.请作出OA的入射光线和经凸透镜折射后的折射光线。
4.(2020无锡,23)请在图中画出木棒AB在平面镜中所成的像。
5.(2020雅安,18)请在图中,画出入射光线AO的反射光线并标出反射角的度数。
6.(2020泰州,22)如图甲所示,完成图中光路__________;7.(2020聊城,19)一束光从水斜射入空气中,其折射光线如图所示,请在图中作出此光线的人射光线(注意标出法线)。
8.(2020宿迁,17)作出图中物体AB在平面镜中的像A′B′。
9.(2020西宁,18)如图所示,请将光路图补充完整。
10.(2020 阜新,20)小明站在池水旁观赏游鱼,恰好看见一架飞机飞过,分别用 A代表小明的眼睛、B 代表看到的鱼、C 代表看到的飞机,请画出小明看见鱼和飞机的光路图,并用“D”大致标出鱼在池水里的实际位置。
(保留必要的作图痕迹)11.(2020鄂尔多斯,18)如图是投影仪的简化结构图。
请在图中画出入射光线经凸透镜折射及再经平面镜反射后的光路图。
12.(2020潍坊,17)如图所示,在清水池底水平放置一平面镜,一束光射向水面的A点,经水折射和平面镜一次反射后射向水面的B点,请作出该过程的光路图。
13.(2020郴州,25)画出经过凹透镜后的折射光线。
14.(2020毕节,15)如图,一束光线竖直向上射向平面镜,经反射后又射向透镜,请完成光路图____。
光学测试题3 - 解答
![光学测试题3 - 解答](https://img.taocdn.com/s3/m/074a8edc26fff705cc170a70.png)
一. 填空题1. 一物点的各光线经透镜后会聚于一个像点,各光线的光程应 相等 (可从极大值、极小值、相等、不相等中选择)。
2. 光波在不同媒质中传播时频率不变,但是速度不同。
在两种不同媒质的分界面处要发生 反射 和 折射,并遵循 反射 定律和 折射 定律。
光波在媒质中的传播速度与媒质的折射率有关,媒质的折射率大,则光波的速度 慢 。
反之,媒质的折射率小,则光波的速度 快 。
n=c/v3. 将折射率为50.11=n 的有机玻璃浸没在油中,油的折射率为10.12=n ,则临界角为 arcsin(1.1/1.5) 。
二. 选择题1. 将折射率为 n 的薄透镜置于折射率为 n ′(>n )的介质中,则( B )A 、凸透镜会聚、凹透镜发散;B 、凸透镜发散、凹透镜会聚;C 、凸透镜发散、凹透镜发散;D 、凸透镜会聚、凹透镜会聚。
2. 光线从折射率为1.4的稠密液体射向该液体和空气的分界面,入射角的正弦为0.8,则有( C )A 、出射线的折射角的正弦将小于0.8;B 、出射线的折射角的正弦将大于0.8;C 、光线将发生全反射;D 、光线将全部吸收1.4*0.8>1*sin90°三. 简答题1. 光学中费马原理的内容是什么?写出表达费马原理的公式。
光在空间两定点间传播时,实际光程为极值。
= 极值(极小值、极大值或恒定值)2. 什么叫单心光束?理想成像的条件是什么?凡具有单个顶点的光束为单心光束。
入射、出射均为单心光束/物像共轭(物点和像点一一对应)3. 什么是实物、虚物、实像、虚像?(每个定义限一个短句或作图)。
实物:发散的入射光束的顶点 虚物:汇聚的入射光束的顶点 实像:汇聚的出射光束的顶点 虚像:发散的出射光束的顶点四. 计算题1. 置于空气中的会聚透镜和发散透镜的焦距都是10cm ,求(1)与主轴成030一束平行光入射到每个透镜上,像点在何处?作出光路图;(2)在每个透镜左方的焦平面上离主轴1cm 处各置一发光点,成像在何处?作出光路图。
济南大学大学物理3光学作业题
![济南大学大学物理3光学作业题](https://img.taocdn.com/s3/m/2c278281a0116c175e0e480c.png)
P57
2. 解:设I0为入射光中自然光的强度,I1、I2分别为穿过P1 和连续穿过P1、P2的强度. (1) 由题意,入射光强为2I0,
1 I 1 2 I 0 0.5 I 0 I 0 cos 2 2
cos2=1 / 2, =45° cos245°) cos2a
得 (2)
max
所以S2到P点的光束比S1到P点的光束相位落后
2π P点合振动振幅的平方为: A A 2 A cos A 2 1分 3
2 2 2
2π 2π r2 r1 3 3 2π
∴ I / Imax = A2 / 4A2 =1 / 4
2分
∵ I∝A2
1分
1
1分 1分
3
k2 e =7.78×10-4 mm 2 n
2分
P53 5. 解:加强, 2ne+ λ /2= k λ , 2分
2ne 4ne 3000 nm 1 2k 1 2k 1 k 2
2分
k = 1, λ 1 = 3000 nm, k = 2, λ 2 = 1000 nm, k = 3, λ 3 = 600 nm, k = 4, λ 4 = 428.6 nm, k = 5, λ 5 = 333.3 nm. 2分 ∴ 在可见光范围内,干涉加强的光的波长是 λ =600 nm 和λ =428.6 nm. 2分
d sin 1
P55 13.8
7.波长为λ=480.0 nm的平行光垂直照射到宽度为a=0.40 mm的单缝上,单缝后透镜的焦距为f=60 cm,当单缝两 边缘点A、B射向P点的两条光线在P点的相位差为π时, P点离透镜焦点O的距离等于____0.36 mm __.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学练习题一、填空题1. 在用钠光(λ = 589.3 nm )照亮的缝S 和双棱镜获得干涉条纹时,将一折射率为1.33的平行平面透明膜插入双棱镜上半棱镜的光路中,如图所示.发现干涉条纹的中心极大(零级)移到原来不放膜时的第五级极大处,则膜厚为________.(1 nm = 10-9 m)8.9 μm参考解: λ5)1(=-d n =-=)1/(5n d λ8.9 μm2. 采用窄带钨丝作为双缝干涉实验的光源.已知与双缝平行的发光钨丝的宽度b = 0.24 mm ,双缝间距d = 0.4 mm .钨丝发的光经滤光片后,得到中心波长为690 nm (1 nm = 10-9m)准单色光.钨丝逐渐向双缝移近,当干涉条纹刚消失时,钨丝到双缝的距离l 是_________. 1.4×102 mm3. 以钠黄光(λ = 589.3 nm )照亮的一条缝作为双缝干涉实验的光源,光源缝到双缝的距离为20 cm ,双缝间距为0.5 mm .使光源的宽度逐渐变大,当干涉条纹刚刚消矢时,光源缝的宽度是_____________.(1nm = 10-9m)0.24 mm参考计算:光源的极限宽度为:mm 24.0(mm)10103.5895.0102039=⨯⨯⨯⨯==-λωd L4. 检验滚珠大小的干涉装置示意如图(a).S 为单色光源,波长为λ,L 为会聚透镜,M 为半透半反镜.在平晶T 1、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准件,直径为d 0.在M 上方观察时,观察到等厚条纹如图(b)所示.若轻压C 端,条纹间距变小,则可算出B 珠的直径d 1=________________;C 珠的直径d 2=________________. d 0, d 0-λ5. 用迈克耳孙干涉仪产生等厚干涉条纹,设入射光的波长为λ ,在反射镜M 2转动过程中,在总的观测区域宽度L 内,观测到总的干涉条纹数从N 1条增加到N 2条.在此过程中M 2转过的角度∆θ 是____________________)(212N N L-λ6. 测量未知单缝宽度a 的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为l (实验上应保证D ≈103a ,或D 为几米),则由单缝衍射的原理可标出a 与λ,D ,l 的关系为a =______________________.2λD / l参考解:由sin ϕ = λ / a 和几何图, 有 sin ϕ = l / 2D∴ l / 2D = λ / a =2λD / l图(b)12λ7. 在单缝夫琅禾费衍射实验中,用单色光垂直照射,若衍射图样的中央明纹极大光强为I 0,a 为单缝宽度,λ 为入射光波长,则在衍射角θ 方向上的光强度I = __________________.222220sin )sin (sin λθλθa a I ππ 或写成 220sin u u I I =, λθsin a u π=8. 在双缝衍射实验中,若缝宽a 和两缝中心间距d 满足 d / a = 5,则中心一侧第三级明条纹强度与中央明条纹强度之比I 3﹕I 0 = _____________.0.255[或2)5/35/3sin (ππ]参考解: 5==αβa d , ∴ β = 0,π,2 π,3 π,4 π当 β = 3 π α = 3 π /5 而由光强公式 I 3﹕220)sin (cos ααβ=I =ππ⋅π=22)5/35/3sin ()3(cos 0.2559. 一平面衍射光栅,透光缝宽为a ,光栅常数为d ,且d / a = 5,在单色光垂直入射光栅平面的情况下,若衍射条纹中央零级亮纹的最大强度为I 0,则第一级明纹的最大光强为_______.20)5/5/sin (ππI 或 0.875I 010. 一会聚透镜,直径为 3 cm ,焦距为20 cm .照射光波长550 nm .为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于_________rad .这时在透镜焦平面上两个衍射图样的中心间的距离不小于_________________ μm . (1 nm = 10-9 m)2.24×10-5,4.4711. 如图所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r 的值为_______________________. π / 2-arctg(n 2 / n 1)12. 应用布儒斯特定律可以测介质的折射率.今测得此介质的起偏振角i 0=56.0,这种物质的折射率为_________________. 1.48 二、计算题1. 在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求: (1) 零级明纹到屏幕中央O 点的距离. (2) 相邻明条纹间的距离.解:(1) 如图,设P 0为零级明纹中心屏则 D O P d r r /012≈- (l 2 +r 2) - (l 1 +r 1) = 0∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()d D d r r D O P /3/120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 明纹条件λδk ±= (k =1,2,....) ()d D k x k /3λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距 d D x x x k k /1λ=-=+∆2. 如图所示,把一凸透镜L 切成两半,并稍微拉开一个距离h ,用一小遮光板把其间的缝挡住.将一波长为λ 的单色点光源S 放在轴线O ′O 上,且f O S 2=',f 是透镜的焦距.在透镜后面放一观察屏C ,已知f O O 10='.设x 轴的原点O 点处的光强为I 0.求x 轴上任一点P 点的光强I 随x 而变化的函数关系(即把I 表示成I 0,λ,h ,f 和x 的函数).解:根据几何光学作图法可知点光源S 发出的光束经过上半个透镜L 1和下半个透镜L 2分别折射后所形成的两光束和两个同相位的相干光源S 1和S 2的位置,如图所示.由透镜成像公式 fu 111=+v 和 f u 2= 得 f2=v又因SS 1和SS 2分别通过上下两个半透镜的中心,由图可得1:2:)(:21=+=u u h S S v∴ h S S 221=,且S 1S 2平面与屏的距离= 8f .根据类似双缝干涉的计算可知P 点的光强)21(cos 4)cos 1(22121φφ∆∆=+=I A I其中 θλδλφsin )2(22h π=π=∆f hx f x h λλ428)2(2π≈π≈ ∴ f hx I I λ4cos 421π=.当x = 0时,104I I =. fhx I I λ4cos 20π=.3. 如图所示,用波长为λ= 632.8 nm (1 nm = 10-9m)的单色点光源S 照射厚度为e = 1.00×10-5 m 、折射率为n 2 = 1.50、半径为R = 10.0 cm 的圆形薄膜F ,点光源S 与薄膜F 的垂直距离为d = 10.0 cm ,薄膜放在空气(折射率n 1 = 1.00)中,观察透射光的等倾干涉条纹.问最多能看到几个亮纹?(注:亮斑和亮环都是亮纹).解:对于透射光等倾条纹的第k 级明纹有:λk r e n =cos 22 中心亮斑的干涉级最高,为k ma x ,其r = 0,有:S=⨯⨯⨯⨯==--752max 10328.61000.150.122λen k 47.4应取较小的整数,k ma x = 47(能看到的最高干涉级为第47级亮斑).最外面的亮纹干涉级最低,为k min ,相应的入射角为 i m = 45︒(因R =d ),相应的折射角为r m ,据折射定律有 m m r n i n s i n s i n21= ∴ 50.145sin 00.1sin )sin (sin 1211︒==--m m i n n r = 28.13° 由 λm i n 2c o s 2k r e n m = 得:752m i n10328.613.28cos 1000.150.12cos 2--⨯︒⨯⨯⨯==λmr e n k = 41.8应取较大的整数,k min = 42(能看到的最低干涉级为第42级亮斑). 3分∴最多能看到6个亮斑(第42,43,44,45,46,47级亮斑).4. 用迈克耳孙干涉仪精密测量长度,光源为Kr 86灯,谱线波长为605.7 nm (橙红色),谱线宽度为0.001 nm ,若仪器可测出十分之一个条纹的变化,求能测出的最小长度和测量量程.(1 nm = 10-9 m)解:每变化一个条纹,干涉仪的动镜移动半个波长,故能测出十分之一个条纹,则能测出长度的最小值为 =⨯λ21)10/1(30.3 nm ,用迈克耳孙干涉仪动镜可以测量的量程为光的相干长度之半==∆λλ/21212c l 18 cm 。
5. 一双缝,缝距d =0.40 mm ,两缝宽度都是a =0.080 mm ,用波长为λ=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m 的透镜求: (1) 在透镜焦平面处的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目N 和相应的级数.解:双缝干涉条纹:(1) 第k 级亮纹条件: d sin θ =k λ第k 级亮条纹位置:x k = f tg θ ≈f sin θ ≈kf λ / d相邻两亮纹的间距:∆x = x k +1-x k =(k +1)f λ / d -kf λ / d =f λ / d =2.4×10-3 m=2.4 mm(2) 单缝衍射第一暗纹: a sin θ1 = λ∆x 0 = f tg θ1≈f sin θ1≈f λ / a =12 mm ∆x 0 / ∆x =5 ∴ 双缝干涉第±5极主级大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为 k = 0,±1,±2,±3,±4级亮纹或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论的3分.6. 一平面透射多缝光栅,当用波长λ1 = 600 nm (1 nm = 10-9 m)的单色平行光垂直入射时,在衍射角θ = 30°的方向上可以看到第2∆λ = 5×10-3nm 的两条谱线.当用波长λ2 =400 nm 的单色平行光垂直入射时,在衍射角θ = 30°的方向上却看不到本应出现的第3级主极大.求光栅常数d 和总缝数N ,再求可能的缝宽a .解:据光栅公式 λψk d =sin得: =︒⨯==30sin 6002sin ψλk d 2.4×103 nm = 2.4 μm 据光栅分辨本领公式 kN R ==∆λλ/得: ==∆λλk N 60000. 在θ = 30°的方向上,波长λ2 = 400 nm 的第3级主极大缺级,因而在此处恰好是波长λ2的单缝衍射的一个极小,因此有:2330sin λ=︒d ,230sin λk a '=︒ ∴ a=k 'd / 3, k ' =1或2缝宽a 有下列两种可能: 当 k ' =1 时, 4.23131⨯==d a μm = 0.8 μm . 当 k ' =2时, a =2×d /3 = 2×2.4 /3 μm = 1.6 μm .7. 钠( Na )蒸汽灯中的黄光垂直入射于一光栅上.此黄光系由波长为589.00 nm 与589.59 nm 的两根靠得很近的谱线(钠双线)所组成.如在第三级光谱中刚能分辨得出这两条谱线,光栅需要有多少条刻线? (1 nm = 10-9 m)解:根据光栅的分辨本领R 与条纹级次k 和光栅刻线总数N 的关系式kN R ==∆λλ得==∆λλk N 1333,上式中取λ = 589.30 nm ,为平均波长.8. 一光源含有氢原子与它的同位素氘原子的混合物,这光源发射的光中有两条红线在波长λ= 656.3 nm (1 nm = 10-9 m)处,两条谱线的波长间隔∆λ = 0.18 nm .今要用一光栅在第一级光谱中把这两条谱线分辨出来,试求此光栅所需要的最小缝数.解:光栅的分辨本领R 与光栅狭缝总数N 和光栅光谱的级数k 有关. 光栅分辨本领公式为 R = λ / ∆λ = kN =⨯==∆18.013.656λλk N 3646条9. 一光束由强度相同的自然光和线偏振光混合而成.此光束垂直入射到几个叠在一起的偏振片上.(1) 欲使最后出射光振动方向垂直于原来入射光中线偏振光的振动方向,并且入射光中两种成分的光的出射光强相等,至少需要几个偏振片?它们的偏振化方向应如何放置? (2) 这种情况下最后出射光强与入射光强的比值是多少?解:设入射光中两种成分的强度都是I 0,总强度为2 I 0.(1) 通过第一个偏振片后,原自然光变为线偏振光,强度为I 0 / 2, 原线偏振光部分强度变为I 0 cos 2θ,其中θ为入射线偏振光振动方向与偏振片偏振化方向P 1的夹角.以上两部分透射光的振动方向都与P 1一致.如果二者相等,则以后不论再穿过几个偏振片,都维持强度相等(如果二者强度不相等,则以后出射强度也不相等).因此,必须有P 1P 245°45°EI 0 / 2=I 0 cos 2 θ,得θ=45︒.为了满足线偏振部分振动方向在出射后“转过”90︒,只要最后一个偏振片 偏振化方向与入射线偏振方向夹角为90︒就行了.综上所述,只要两个偏振片就行了(只有一个偏振片不可能将振动方向“转过”90︒).配置如图,E表示入射光中线偏振部分的振动方向,P 1、P 2分别是第一、第二偏振片的偏振化方向(2) 出射强度I 2=(1/2)I 0 cos 2 45︒+I 0 cos 4 45︒ =I 0 [(1 / 4)+(1 / 4)]=I 0/2 比值 I 2/(2I 0)=1 / 410. 有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知 tg i 1= n 1=1.33; tg i 2=n 2 / n 1=1.57 / 1.333, 由此得 i 1=53.12°, i 2=48.69°. 由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π 整理得 θ=i 2-r由布儒斯特定律可知,r =π / 2-i 1 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8°。