锂电池负极材料的研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子电池负极材料研究进展介绍
来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕
我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。
1锂离子电池发展状况
锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。
电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先
后商业化应用的铅酸电池、镍镉电池、镍氢电池和锂电池。其中锂离子电池是当今国际公认的理想化学能源,具有体积小、容量大、电压高等优点,被广泛用于移动电话、手提电脑、数码相机等便携式电子产品,同时日益扩大的电动汽车领域将给锂离子电池带来更大的发展空间[4]。表1给出了镍镉、镍氢以及锂离子电池的主要性能参数,从表中数据可以看出,与其他二次电池相比,锂电池具有能量密度高、循环寿命长、自放电率小、无记忆效应和绿色环保等突出优势。
我国锂离子电池的研发与应用较晚,但是发展很快,各高等院校、研究院所和部分企业都积极投入到这一领域中。我国政府也十分重视锂离子电池的开发与应用,将其列入“863”高科技计划、“九五”和“十五”重点攻关项目。2008年,我国自主研发的595辆新能源车在奥运会、残奥会上成功运行200多万公里。此后的上海世博会和广州亚运会也完全采用电动汽车作为交通工具,此外,杭州、上海等城市的部分公交线上也采用了锂离子电池为动力源的纯电动汽车。
2锂离子电池结构和特点
锂离子电池主要由正极、负极、电解液和隔膜构成。电解质主要分为固体电解质、液体电解质以及凝胶电解质。电解质对电池体系性能的影响很大,它要具有较宽的电化学窗口、良好的化学稳定性以及较高的离子电导[5]。隔膜是分隔正极与负极的高聚物膜,常用的隔膜为微孔聚丙烯或聚乙烯膜[6]。隔膜具有良好的化学稳定性,它可以阻止因活性物质迁移而引起的电池内部短路,同时具有优异的离子导电能力和良好的电子绝缘性能。电池的能量密度主要取决于它的输出电压和比容量,而电压和比容量的高低是由电极材料和电解质的电化学性能决定的,尤其是电极材料的选择。
在实际生产中,正极片是将涂覆在集流体铝箔上的含锂氧化物、碳黑等材料与黏结剂混和物烘干、辊压制成的;负极片的制作方法与正极大体相同,只不过是把石墨等负极材料涂覆在铜箔上。现在应用于新型二次锂离子电池的正极材料已经具有较好的安全性能
与电化学性能,并且兼顾环境友好等特点。锂离子电池负极材料作为提高锂离子电池容量及循环性能的重要因素,其性能也已经成为决定锂离子电池性能的关键。对于电极材料的选择,负极材料占有重要地位。
3锂离子电池负极材料
锂离子电池负极材料是锂离子电池的重要组成部分,负极材料的组成和结构对锂离子电池的电化学性能具有决定性的影响。从锂离子电池的发展简史看,负极材料的发展促使锂离子电池进入商业化阶段。最初的锂电池采用的是金属锂为负极材料,但金属锂在充放电时容易产生锂枝晶而导致起火或爆炸等安全性问题[7]。接着开发了锂合金材料解决了上述的安全性问题,但合金材料在嵌锂和脱锂时容易发生体积膨胀,导致循环性能下降。后来经过进一步的研究和比较,选择了石墨化的碳作为锂离子电池的商业化负极材料。但是石墨碳存在比容量低和倍率性能差等特点,因而锂离子电池的负极材料开发仍然是目前的科研热点。锂离子电池负极材料应具备以下特征:
(1)为了提高全电池的输出电压,锂离子在负极基体中的氧化还原电位要尽可能低;
(2)负极基体嵌入/脱出锂的过程是可逆的,并且能够允许大量锂离子嵌,提供较高的能量密度;
(3)嵌入和脱出锂的过程中负极材料的主体结构很少发生变化,这样可以确保电极材料的结构稳定性,进而实现电池良好的循环性能;
(4)随着充放电的进行,锂离子发生氧化还原的电位变化应尽量小,这样电池电压不会发生显著变化,可保持平稳的充放电平台;
(5)负极材料应具有较好的电子导电率和离子迁移率,以减少电极极化并使电池具有良好的倍率性能;
(6)电极材料表面结构良好,能与液体电解质形成良好的SEI膜,且在形成SEI膜后不与电解质继续发生反应;
(7)在整个充放电电压范围内,负极材料化学稳定性良好;
(8)成本低廉,对环境无污染。
3.1碳类负极材料
碳是自然界广泛存在的元素,其制备方法简单、来源广泛、结构复杂、种类多样。用作锂离子电池负极材料的碳类材料可分为:石墨类、无定形类和纳米结构碳材料。
石墨的储锂行为研究始于20世纪中期,石墨的主要储锂机理一般为石墨插层化合物(GIC)机理[8]。由于石墨具有平稳的电压平台和充放电电位比较低,因此可为锂离子电池提供稳定且较高的工作电压。但是它与电解液溶剂的相容性比较差,容易发生锂和有机溶剂共同插入石墨层之间,导致石墨逐渐剥落,进而影响电池的循环性能,尤其是碳酸丙烯酯(PC)为溶剂的电解液更为明显[9]。目前主要通过以下两方面改进:(1)通过改性石墨,在石墨晶体表面进行氧化,形成一些微孔结构,提高它与电解液的相容性;(2)采用碳酸乙烯酯(EC)为溶剂的电解液。通过改进可一定程度上解决石墨作为负极材料导致的循环性能差的问题,这也是石墨类碳材料可以商业化应用的原因之一。
无定形碳材料一般情况下结晶度比较低、晶面间距比较大、晶粒尺寸比较小,主要包括软碳(容易石墨化的碳)和硬碳(难以石墨化的碳)。应该指出的是软碳的嵌锂电位一般比较高,但是首次充放电平台不明显,这样使得电池的输出电压不稳定,虽然其比容量得到了一定程度的提高,但是循环性能很差。硬碳的比容量很高,层间距一般都是大于0.3