电气工程及其自动化专业英语课文翻译第五章第一节
专业英语翻译第一章
注:电气工程及其自动化专业英语翻译 1~7面班级:1002班学号:20姓名:王定瑞PART 1 FUNDAMENTALS OF ELECTRIC ENGINEERINGChapter 1 Circuit Fundamentals第1部分的电气工程基础第1章电路原理Electrostatic Charges静电荷Protons and electrons are parts of atoms that make up all things in our world. The positive charge of a proton is similar to the negative charge of an electron. However, a positive charge is the opposite of a negative charge. These charges are called electrostatic charges. Each charged particle is surrounded by an electrostatic field.质子和电子部件的原子构成一切事物在我们的世界。
正电荷的质子是类似于负电荷的电子。
然而,一个正电荷的反面是一个负电荷。
这些指控被称为静电荷。
每个带电粒子周围是一个静电场。
The effect that electrostatic charges have on each other is very important. They either repel (move away) or attract (come together) each other. It is said that like charges repel and unlike charges attract.这个效应,静电指控对方是非常重要的。
他们要么排斥(离开)或吸引(一起)每个其他。
电气工程及其自动化英语英译汉
1```In the generator mode ,it,s operating speed isslightly higger than it,s synchronous speed and ie needs magnetizing revctive pover form the symtem that it is connected to in order to suuply pover .在发电方式下他的工作速度比同步转速稍高些,并了解供电力,他需要他所连接的系统吸收磁化无功功率。
2```in the barking mode of operyetion ,a three –phase indection motor running at a steady –speedcan be brought to a quick stop by interchanging two of stator leads感应电机运行电动状态时,其转速低于同步转速,运行在发电状态时,其转速高于同步转速,这就需要从与之间相连的系统电源提供励磁的无功功率。
3```obviously ,dc machine applications are very significant,but the advantages of the dc machinemmust be weighed against its greatr initial investment cost and the maintenance problems associated with its brush-commutator system..同步是指状态运行时点击以恒定的转速和频率运行。
4```with a cylindyical rotor the reluctance of the magnetic circuit of the field is independent of itsactual diretion and relative to the direct axis.圆柱形转子的磁场磁路的磁阻与直轴有关,而与磁场的实际方向无关。
电气工程专业英语汉语及翻译
电气工程专业英语姓名:吕海龙学号:20080345班级:08电气专业:电气工程及其自动化Electric Devices and SystemsAlthough transformers have no moving parts , they are essential to electromechanical energy conversion . They make it possible to increase or decrease the voltage lever that results in low costs ,and can be distributed and used safely . In addition , they can provide matching of impedances , and regulate the flow of power in a network.When we see a transformer on a utility pole all we is a cylinder with a few w ires sticking out. These wires enter the transformer through bushings that provide isolation between the wires and the tank. Inside the tank these is an iron core linking coils, most probably made with copper, and insulated. The system of insulation is also associated with that of cooling the core/coil assembly. Often the insulation is paper, and the whole assembly may be immersed in insulating oil, used to both increase the dielectric strength of the paper and to transfer beat from the core-coil assembly to the outer walls of the tank to air. Figure shows the cutout of a typical distribution transformer.Few ideal versions of human constructions exist, and the transformer offers no exception. An ideal transformer is based on very simple concepts, and a large number of assumptions. This is the transformer one learns about in high school.Let us take an iron core with infinite permeability and two coils wound around it, one with N1 and the other with N2 turns, as shown in figure. All the magnetic flux is to remain in the iron. We assign sots at one terminal of each coil in the following fashion: if the flux in the core changes, inducing a voltage in the coils, and the dotted terminal of one coil is positive with respect its other terminal, so is the dotted terminal of the other coil. Or, the corollary to this, current into dotted terminals produces flux in the same direction,Assume that somehow a time varying flux is established in the iron. Then the flux linkages in each coil will be. V oltages will be induced in these two coil.On the other hand, currents flowing in the coils are related to the field intensity H. if currents flowing in the direction shown, i1 into the dotted terminal of coil 1, and i2 out of the dotted terminal of coil 2. we recognize that this is practically impossible, but so is the existence of an ideal transformer.Equations describe this ideal transformer, a two port network. The symbol of a network that is defined by these two equations is in the figure. An ideal transformer has an interesting characteristic. A two-port network that contains it and impedances can be replaced by an equivalent other, as discussed below. Consider the circuit in figure. Seen as a two port network. Generally a circuit on a side 1 can be transferred to side 2 by multiplying its component impedances , the voltage sources and the current sources, while keeping the topology the same.To develop the equivalent for a transformer we’ll gradually relax the assumptions that we had first imposed. First we’ll relax the assumption that the permeability of the iron is infinite. In that case equation does not revert to, but rather it becomes where is the reluctance of the path around the core of the transformer and the flux on this path. To preserve the ideal transformer equations as part of our new transformer, we can split i1 to two components: one i1, will satisfy the ideal transformer equation, and the other, i1 will just balance the right hand side. The figure shows this.We can replace the current source, i1 , with something simpler if we remember that the rate of change of flux is related to the induced voltage.Since the current i1 flows through something , where the voltage across it Is proportional to its derivative, we can consider that this something could be an inductance. This idea gives rise tothe equivalent circuit in figure,. Let us now relax the assumption that all the flux has to remain in the iron as shown in figure. Let us call the flux in the iron, magnetizing flux, the flux that leaks out of the core and links only coil 1. since links only coil 1, then it should be related only to the current there, and the same should be true for the second leakage flux.Again for a given frequency, the power losses in the core increase with the voltage. These losses cannot be allowed to exceed limit, beyond which the temperature of the hottest spot in the transformer will rise above the point that will decrease dramatically the life of the insulation. Limits therefore are put to E1 and E2, and these limits are the voltage limits of the transformer.Similarly, winding Joule losses have to be limited, resulting in limits to the currents I1 and I2.Typically a transformer is described by its rated voltages, that give both the limits and turns radio. The ratio of the rated currents is the inverse of the ratio of the voltages if we neglect the magnetizing current. Instead of the transformer rated currents, a transformer is described by its rated apparent power.Under rated conditions, maximum current and voltage, in typical transformers the magnetizing current, does not exceed 1% of the current in the transformer. Its effect therefore in the voltage drop on the leakage inductance and winding resistance is negligible.Under maximum current, total voltage drops on the winding resistances and leakage inductances do not exceed in typical transformer 6% of the rated voltage. The effect therefore of the winding current on the voltages E1 and E2 is small, and their effect on the magnetizing current can be neglected.These considerations allow us to modify the equivalent circuit in figure, to obtain the slightly inaccurate but much more useful equivalent circuits in figures.Adjustable Speed DrivesBy definition, adjustable speed drives of any type provide a means of variably changing speed to better match operating requirements. Such drives are available in mechanical, fluid and electrical typed.The most common mechanical versions use combinations of belts and sheaves, or chains and sprockets, to adjust speed in set, selectable ratios-2:1,4:1,8:1 and so forth. Traction drives, a more sophisticated mechanical control scheme, allow incremental speed adjustments. Here, output speed is varied by changing the contact points between metallic disks, or between balls and cones.Adjustable speed fluid drives provide smooth, stepless adjustable speed control. There are three major types. Hydrostatic drives use electric motors or internal combustion engines as prime movers in combination with hydraulic pumps, which in turn drive hydraulic motors. Hydrokinetic and hydroviscous drives directly couple input and output shafts. Hydrokinetic versions adjust speed by varying the amount of fluid in a vortex that serves as the input-to-output coupler. Hydroviscous drives, also called oil shear drives, adjust speed by controlling oil-film thickness, and therefore slippage, between rotating metallic disk.An eddy current drive, while technically an electrical drive, nevertheless functions much like a hydrokinetic or hydrovidcous fluid drive in that it serves as a coupler between a prime mover and driven load. In an eddy current drive, the coupling consists of a primary magnetic field and secondary fields created by induced eddy currents. They amount of magnetic slippage allowed among the fields controls the driving speed.In most industrial applications, mechanical, fluid or eddy current drives are paired with constant-speed electric motors. On the other hand, solid state electrical drives, create adjustable speed motors, allowing speeds from zero RPM to beyond the motor’s base speed. Controlling the speed of the motor has several benefits, including increased energy efficiency by eliminating energy losses in mechanical speed changing devices. In addition, by reducing, or often eliminating, the need for wear-prone mechanical components, electrical drives foster increased overall system reliability, as well as lower maintenance costs. For these and other reasons, electrical drives are the fastest growing type of adjustable speed drive..There are two basic drive types related to the type of motor controlled-dc and AC. A DC direct current drive controls the speed of a DC motor by varying the armature voltage (and sometimes also the field voltage ). An alternating current drive controls the speed of an AC motor by varying the frequency and voltage supplied to the motor.Direct current drives are easy to apply and technologically straightforward, They work by rectifying AC voltage from the power line to DC voltage, then feeding adjustable voltage to a DC motor. With permanent magnet DC motors, only the armature voltage is controlled. The more voltage supplied, the faster the armature turns. With wound-field motors, voltage must be supplied to both the armature and the field. In industry, the following three types of DC drives are most common, as shown in the figure.Drives: these are named for the silicon controlled rectifiers (also called thyristors ) used to convert AC to controlled voltage DC. Inexpensive and easy to use, these drives come in a variety of enclosures, and in unidirectional or reversing styles.Regenerative SCR Drives: Also called four quadrant drives, these allow the DC motor to provide both motoring and braking torque, Power coming back from the motor during braking is regenerated back to the power line and not lost.Pulse Width Modulated DC Drives: Abbreviated PWM and also called, generically, transistorized DC drives, these provide smoother speed control with higher efficiency and less motor heating, Unlike SCR drives, PWM types have three elements. The first converts AC to DC, the second filters and regulates the fixed DC voltage, and the third controls average voltage by creating a stream of variable width DC pulses. The filtering section and higher level of control modulation account for the PWM drive’s improved performance compared with a common SCR drive.AC drive operation begins in much the same fashion as a DC drive. Alternating line voltage is first rectified to produce DC. But because an AC motor is used, this DC voltage must be changed back, of inverted, to an adjustable-frequency alternating voltage. The drive’s inverter section accomplishes this, In years past, this was accomplished using SCR. However, modern AC drives use a series of transistors to invert DC to adjustable-Frequency AC. An example is shown in figure.This synthesized alternating current is then fed to the AC motor at the frequency and voltage required to produce the desired motor speed. For example, a 60 Hz synthesized frequency, the same as standard line frequency in the United states, produces 100% of rated motor speed. A lower frequency produces a lower speed, and a higher frequency a higher speed. In this way, an AC drive can produce motor speeds from, approximately,15 to200% of a motor’s normally rated RPM-- by delivering frequencies of 9 HZ to 120 Hz, respectively.Today, AC drives are becoming the systems of choice in many industries,. Their use ofsimple and rugged three-phase induction motor means that AC drive systems are the most reliab le and least maintenance prone of all. Plus, microprocessor advancements have enabled the creation of so-called vector drives, which provide greatly enhance response, operation down to zero speed and positioning accuracy. V ector drives, especially when combined with feedback devices such as tachometers, encoders and resolvers in a closed-loop system, are continuing to replace DC drives in demanding applications. An Example is shown in the figure.By far the most popular AC drive today is the pulse width modulated type. Though originally developed for smaller-horsepower applications, PWM is now used in drives of hundreds or even thousands of horsepower—as well as remaining the staple technology in the vast majority of small integral and fractional horsepower ―micro‖ and ―sub-micro‖ AC drives, as shown in the figure.Pulse width modulated refers to the inverter’s ability to vary the output voltage to the motor by altering the width and polarity of voltage pulses, The voltage and frequency are synthesized using this stream of voltage pulses. This is accomplished through microprocessor commands to a series of power semiconductors that serve as on-off switches. Today, these switches are usually IGBTs, of isolated gate bipolar transistor. A big advantage to these devices is their fast switching speed resulting in higher pulse of carrier frequency, which minimizes motor noise.Power semiconductor devicesThe modern age of power electronics began with the introduction of thyristors in the late 1950s. Now there are several types of power devices available for high-power and high-frequency applications. The most notable power devices are gate turn-off thyristor, power darlington transistors, power mosfets, and insulated-gate bipolar transistors. Power semiconductor devices are the most important functional elements in all power conversion applications. The power devices are mainly used as switches to convert power from one form to another. They are used in motor control systems, uninterrupted power supplies, high-voltage dc transmission, power supplies, induction heating, and in many other power conversion applications. A review of the basic characteristics of these power devices is presented in this section.The thyristor, also called a silicon-controlled rectifier, is basically a four-layer three-junction pn device. It has three terminals: anode, cathode, and gate. The device is turned on by applying a short pulse across the gate and cathode. Once the device turns on, the gate loses its control to turn off the device. The turn-off is achieved by applying a reverse voltage across the anode and cathode. The thyristors symbol and its volt-ampere characteristics are shown in the figure. There are basically two classifications of thyristors: converter grade and inverter grade. The difference between a converter-grade and an inverter-grade thyristor is the low turn –off time (on the order of a few microseconds) for the latter. The converter-grade thyristors are slow type and are used in natural commutation (or phase-controlled) applications. Inverter-grade thyristors are used in forced commutation applications such as dc-dc choppers and dc-ac inverters. The inverter-grade thyristors are turned off by forcing the current to zero using an external commutation circuit. This requires additional commutating components, thus resulting in additional losses in the inverter.Thyristors are highly rugged devices in terms of transient currents, di / dt, and dv/dt capability. The forward voltage drop in thyristors is about 1.5 to 2 V, and even at higher currents of the order of 100 A, it seldom exceeds 3 V. While the forward voltage determines the on-state power loss of the device at any given current, the switching power loss becomes a dominating factor affecting the device junction temperature at high operating frequencies. Because of this, themaximum switching frequencies possible using thyristors are limited in comparison with other power devices considered in this section.Thyristors have withstand capability and can be protected by fuses. The nonrepetitive surge current capability for thyristors is about 10 times their rated root mean square current. They must be protected by snubber networks for dv/dt and di/dt effects. If the specified dv/dt is exceeded, thyristors may start conducting without applying a gate pulse. In dc-to-ac conversion applications it is necessary to use an antiparalled diode of similar rating across each main thyristor. Thyristors are available up to 6000 V, 3500 A.Power mosfets are marketed by different manufacturers with differences in internal geometry and with different names such as megamos, hexfet, sipmos, and tmos. They have unique features that make them potentially attractive for switching applications. They are essentially voltage-driven rather than current-driven devices, unlike bipolar transistors.The gate of a mosfet is isolated electrically from the source by a layer of silicon oxide. The gate draws only a minute leakage current of the order of nanoamperes. Hence the gate drive circuit is simple and power loss in the gate control circuit is practically negligible. Although in steady state the gate draws virtually no current, this is not so under transient conditions. The gate-to-source and gate-to-drain capacitances have to be charged and discharged appropriately to obtain the desired switching speed, and the drive circuit must have a sufficiently to output impedance to supply the required charging and discharging currents. The circuit symbol of a power mosfet is shown in the figure.Power mosfets are majority carrier devices, and there is no minority carrier storage time. Hence they have exceptionally fast rise and fall times. They are essentially resistive devices when turned on, while bipolar transistors present a more or less constant over the normal operating range. Power dissipation in mosfets is I, and in bipolar it is Ic, and in bipolar it is Id. At low currents, therefore, a power mosfet may have a lower conduction loss than a comparable bipolar device, but at higher currents, the conduction loss will exceed that of bipolar. Also, the R increases with temperature.An important feature of a power mosfet is the absence of a secondary breakdown effect, which is present in a bipolar transistor, and as a result, it has an extremely rugged switching performance. In mosfets, R increases with temperature, and thus the current is automatically diverted away from the hot spot. The drain body junction appears as an antiparalled diode between source and drain. Thus power mosfet will not support voltage in the reverse direction. Although this in verse diode is relatively fast, it is slow by comparison with the mosfet. Recent devices have the didde recovery time as low as 100 ns. Since mosfet cannot be protected by fuses, an electronic protection technique has to be used.With the advancement in MOS technology, ruggedized MOSF are replacing the conventional MOSEFs. The need to ruggedize power MOSFETs is related to device reliability. If a MOSFET is operating within its specification range at all times, its chances for failing catastrophically are minimal. However, if its absolute maximum rating is exceeded, failure probability increases dramatically. Under actual operating conditions, a MOSFET may be subjected to transients—either externally from the power bus supplying the circuit or from the circuit itself due, for example, to inductive kicks going beyond the absolute maximum ratings. Such conditions are likely in almost every application, and in most cases are beyond a designer’s control. Rugged devices are made to be more tolerant for over-voltage transients. Ruggedness is the ability of aMOSFET to operate in an environment of dynamic electrical stresses, without activating any of the parasitic bipolar junction transistors. The rugged device can withstand higher levels of diode recovery dv/dt and static dv/dt.(单词量:3115)译文:变压器尽管变压器没有旋转的不见,但是它在本质上还是属于几点能量交换设备。
电气自动化及其专业英语翻译 (1)
电力系统现代社会比以往任何时候更为依赖电能供应。
如果全世界电能供应全部中断的话,不可想象整个世界将会糟糕到什么程度。
为现代社会供电的电力系统(或电能系统)已经成为这个工业化世界不可缺少的组成部分。
托马斯.爱迪生建立了世界上第一个完整的电力系统(包括一台发电机、电能、电缆、熔断器测量仪表和负载),它就是位于纽约市的具有历史意义的珍珠街发电厂,该电厂位于1882年9月投入运行。
这是一个直流系统,由一台蒸汽机驱动的电流发电机和方圆大约1.5km范围内的59个用户组成。
负荷完全由白炽灯组成,通过地下电缆系统用110v电压供电,随后几年内,类似的电力系统在世界各地的城市陆续投运。
由于法兰克.史博格在1884年研制出电动机,电动机负荷开始接入这类系统。
由此开始电力系统逐渐发展为世界上最大的工业系统之一。
尽管初期直流系统广泛采用,但后来它们几乎完全被交流系统取代。
到1886年,直流系统的缺点变得日益明显。
直流系统只能在发电机的短距离范围内输送电力。
对于长距离输送电而言,为了将输电损耗(I2R)和电压降落控制在可接受的水平,必须采用高的电压等级。
如此高的电压对于发电还是用电都是不可接受的的,因此必须有一个方便的电压变换方法随着法国巴黎的吕西安.戈拉尔和约翰.吉布斯发明了变压器和交流输电方式,交流电力系统得到了广泛的应用。
1889年,第一条交流输电线路在北美洲投入运行,它位于奥勒冈州的威廉特瀑布和波特兰之间。
这是一条单相输电线路,输电电压4000v,输电距离21km。
在尼古拉.特斯拉发明多相输电系统后,交流输电系统变得更具优势。
到1888年,拥有了交流电动机、发电机、变压器和输电系统等多项技术专利。
威斯汀豪斯公司购买了这些早期发明的专利,这些专利为当今的交流电力系统奠定了基础。
19世纪80年代,在将电力工业的标准模式定为直流或交流的问题上产生了激烈的争论。
到了世纪之交,交流系统战胜了直流系统,这是因为下列原因:1在交流系统中可以方便地实现电压等级的交换,从而实现了在不同电压的水平上发电、输电用电的灵活性。
电气工程及其自动化专业英语翻译(精选多篇)
电气工程及其自动化专业英语翻译(精选多篇)第一篇:电气工程及其自动化专业英语翻译Electric Power Systems.The modern society depends on the electricity supply more heavily than ever before.It can not be imagined what the world should be if the electricity supply were interrupted all over the world.Electric power systems(or electric energy systems), providing electricity to the modern society, have become indispensable components of the industrial world.The first complete electric power system(comprising a generator, cable, fuse, meter, and loads)was built by Thomas Edison – the historic Pearl Street Station in New York City which began operation in September 1882.This was a DC system consisting of a steam-engine-driven DC generator supplying power to 59 customers within an area roughly 1.5 km in radius.The load, which consisted entirely of incandescent lamps, was supplied at 110 V through an underground cable system..Within a few years similar systems were in operation in most large cities throughout the world.With the development of motors by Frank Sprague in 1884, motor loads were added to such systems.This was the beginning of what would develop into one of the largest industries in the world.In spite of the initial widespread use of DC systems, they were almost completely superseded by AC systems.By 1886, the limitations of DC systems were becoming increasingly apparent.They could deliver power only a short distance from generators.To keep transmission power losses(I 2 R)and voltage drops to acceptable levels, voltage levels had to be high for long-distance power transmission.Such high voltages were not acceptable for generation and consumption of power;therefore, a convenient means for voltage transformationbecame a necessity.The development of the transformer and AC transmission by L.Gaulard and JD Gibbs of Paris, France, led to AC electric power systems.In 1889, the first AC transmission line in North America was put into operation in Oregon between Willamette Falls and Portland.It was a single-phase line transmitting power at 4,000 V over a distance of 21 km.With the development of polyphase systems by Nikola Tesla, the AC system became even more attractive.By 1888, Tesla held several patents on AC motors, generators, transformers, and transmission systems.Westinghouse bought the patents to these early inventions, and they formed the basis of the present-day AC systems.In the 1890s, there was considerable controversy over whether the electric utility industry should be standardized on DC or AC.By the turn of the century, the AC system had won out over the DC system for the following reasons:(1)Voltage levels can be easily transformed in AC systems, thusproviding the flexibility for use of different voltages for generation, transmission, and consumption.(2)AC generators are much simpler than DC generators.(3)AC motors are much simpler and cheaper than DC motors.The first three-phase line in North America went into operation in 1893——a 2,300 V, 12 km line in southern California.In the early period of AC power transmission, frequency was not standardized.This poses a problem for interconnection.Eventually 60 Hz was adopted as standard in North America, although 50 Hz was used in many other countries.The increasing need for transmitting large amounts of power over longer distance created an incentive to use progressively high voltage levels.To avoid the proliferation of anunlimited number of voltages, the industry has standardized voltage levels.In USA, the standards are 115, 138, 161, and 230 kV for the high voltage(HV)class, and 345, 500 and 765 kV for the extra-high voltage(EHV)class.In China, the voltage levels in use are 10, 35, 110 for HV class, and 220, 330(only in Northwest China)and500 kVforEHVclass.Thefirst750kVtransmission line will be built in the near future in Northwest China.With the development of the AC/DC converting equipment, high voltage DC(HVDC)transmission systems have become more attractive and economical in special situations.The HVDC transmission can be used for transmission of large blocks of power over long distance, and providing an asynchronous link between systems where AC interconnection would be impractical because of system stability consideration or because nominal frequencies of the systems are different.The basic requirement to a power system is to provide an uninterrupted energy supply to customers with acceptable voltages and frequency.Because electricity can not be massively stored under a simple and economic way, the production and consumption of electricity must be done simultaneously.A fault or misoperation in any stages of a power system may possibly result in interruption of electricity supply to the customers.Therefore, a normal continuous operation of the power system to provide a reliable power supply to the customers is of paramount importance.Power system stability may be broadly defined as the property of a power system that enables it to remain in a state of operating equilibrium under normal operating conditions and to regain an acceptable state of equilibrium after being subjected to a disturbance..Instability in a power system may be manifested in many different ways depending on the system configurationand operating mode.Traditionally, the stability problem has been one of maintaining synchronous operation.Since power systems rely on synchronous machines for generation of electrical power, a necessary condition for satisfactory system operation is that all synchronous machines remain in synchronism or, colloquially “in step”.This asp ect of stability is influenced by the dynamics of generator rotor angles and power-angle relationships, and then referred to “ rotor angle stability ”译文:电力系统现代社会比以往任何时候更多地依赖于电力供应。
电气工程与自动化专业英语中文翻译
第一章 电路基本原理第一节 电流与电压u(t )和i(t )这两个变量是电路中最基本的概念,描述了电路中各种不同的关系.电荷与电流电荷与电流的概念是解释一切电气现象的基础原则。
而电荷也是电路的最基本的量。
电荷是构成物质的原子的电气属性,单位是库仑(C )。
通过基础物理学,我们了解到一切物质都是由被称为原子的基本粒子构造而成的,每个原子中都包含电子、质子和中子。
我们还知道电子上的电荷带负电,每个电子上的电量是1.60210×10—19库仑。
质子带与电子相等的正电荷。
原子上质子与电子的数目相等,使其呈中性.我们来考虑电荷的运动。
电或电荷的独特之处就是它们可以移动,也就是说电荷可以从一个地方移动到另一个地方,从而转换成另外一种形式的能量。
当把一根导线接在电池(一种电源)的两端时,电荷受迫而运动;正电荷与负电荷分别向相反的两个方向移动。
这种电荷的移动产生了电流。
习惯上,我们把正电荷移动的方向或负电荷移动的反方向称为电流的方向,如图1-1所示。
这种说法是由美国科学家、发明家本杰明·富兰克林提出的。
即使我们知道金属导体中的电流是由于带负电荷的电子(运动)而产生的,(我们)也使用默认的习惯,将正电荷运动的方向定义为电流的方向.因此,电流是单位时间内电荷的变化率,单位是安培(ampere,A ).在数学上,电流i 、电荷q 和时间t 的关系为i=dtdq (1—1)将等式的两边同时进行积分,则可得到电荷在时间t 和t 0之间的变化。
有q== 0t t idt (1-2)在等式(1—1)中我们给电流i 的定义表现了电流不是一个定值量,电荷随时间的变化不同,电流也与之呈不同的函数关系。
电压、电能与电功率使电子在导体中定向运动需要做功或能量转换.功由外电动势提供,最典型的就是图1—1中的电池.外电动势也可理解为电压或电位差。
电路中,a 、b 两点之间的电压U ab 等于从a 到b 移动单位电荷所需能量(所做的功),有U ab =dqdw (1—3) w 代表电能,单位是焦耳(J );q 代表电量.单位是库仑(C )。
电气工程及其自动化专业英语课后翻译
电气工程及其自动化专业英语课后翻译The pony was revised in January 2021——电流之比才是恒定的,并且这个比值也取决于温度以及其它环境因素。
我们通常应当把线性电阻器仅仅称为电阻器。
只有当需要强调元件性质的时候才使用更长的形式称呼它。
而对于任何非线性电阻器我们应当始终这么称呼它,非线性电阻器不应当必然地被视为不需要的元件。
如果一个电路有两个或多个独立源,求出具体变量值(电流或电压)的一种方法是使用节点分析法或网孔分析法。
另一种方法是求出每个独立源对变量的作用然后把它们进行叠加。
而这种方法被称为叠加法。
叠加法原理表明线性电路某个元件两端的电压(或流过元件的电流)等于每个独立源单独作用时该元件两端的电压(或流过元件的电流)的代数和。
相电压与相电流之比等于电路的阻抗,符号为字母Z ,阻抗是一个具有量纲为欧姆的复数量。
阻抗不是一个相量,因此不能通过把它乘以 并取其实部把它转换成时域形式。
但是,我们把电感器看作是通过其电感量L 表现为时域形式而通过其阻抗jwL 表现为频域形式,电容在时域里为电容量C 而在频域里为 ,阻抗是某种程度上的频域变量而非时域变量。
无论是星型连接的电源还是三角形连接的电源都有重要的实际应用意义。
星型连接的电源用于长距离电力传输,此时电阻损耗(I2R)将达到最小。
这是由于星型连接的线电压是三角形连接的线电压的 倍,于是,对于相同的功率来说,三角型连接的线电流是星形连接的线电流的 倍。
三角形连接的电源使用在根据三相电源而需要的三个单相电路中。
这种从三相到单相的转变用在住宅布线中因为家用照明和设备使用单相电源。
三相电33源用在需要大功率的工业布线中。
在某些应用场合,无论负载是星形连接还是三角形连接并不重要。
模拟电子电路是关于其中电压和电流是对物理量进行模拟的且连续变化那些系统。
复制音乐的电子电路必须具有与声音成正比的电压和电流。
一个高保真的放大系统要尽可能保持模拟量不失真,我们要仔细地设计模拟电子电路以使电压和电流反映输入信号。
电气工程及其自动化专业英语第一章课文翻译
第一章第一篇sectiongTwo variables u(t) and i(t) are the most basic concepts in an electric circuit, they characterize the various relationships in an electric circuitu(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
Charge and CurrentThe concept of electric charge is the underlying principle for explaining all electrical phenomena. Also, the most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter consists, measured in coulombs (C). 电荷和电流电荷的概念是用来解释所有电气现象的基本概念。
也即,电路中最基本的量是电荷。
电荷是构成物质的原子微粒的电气属性,它是以库仑为单位来度量的。
We know from elementary physics that all matter is made of fundamental building blocks known as atoms and that each atom consists of electrons, protons, and neutrons. We also know that the charge e on an electron is negative and equal in magnitude to 1.60210×10 19C, while a proton carries a positive charge of the same magnitude as the electron. The presence of equal numbers of protons and electrons leaves an atom neutrally charged. 我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
自动化专业英语 原文和翻译 P1U5
第五单元A Types of DC Motors直流电机分类The types of commercially available DC motors basically fall into four categories: ⑴permanent-magnet DC motors, ⑵series-wound DC motors, ⑶shunt-wound DC motors, and ⑷compound-wound DC motors. Each of these motors has different characteristics due to its basic circuit arrangement and physical properties.[1]现在可以买到的直流电机基本上有四种:⑴永磁直流电机,⑵串励直流电机,⑶并励直流电机,⑷复励直流电机。
每种类型的电动机由于其基本电路和物理特性的不同而具有不同的机械特性。
Permanent-magnet DC Motors永磁直流电机The permanent-magnet DC motors, shown in Fig. 1-5A-1, is constructed in the same manner as its DC generator counterpart. The permanent-magnet DC motor is used for low-torque applications.When this type of motor is used, the DC power supply is connected directly to the armature conductors through the brush/commutator assembly. The magnetic field is produced by permanent magnets mounted on the stator. The rotor of permanent magnet motors is a wound armature.永磁直流电机,如图Fig. 1-5A-1所示,是用与直流发电机同样的方法建造的。
(完整版)电气工程及其自动化专业英语第五章课文翻译
Most people can formulate a mental picture of a computer, but computers do so many things and come in such a variety of shapes and sizes that it might seem difficult to distill their common characteristics into an all-purpose definition. At its core, a computer is a device that accepts input, processes data, stores data, and produces output, all according to a series of stored instructions.Computer input is whatever is put into a computer system. Input can be supplied by a person, by the environment, or by another computer。
Examples of the kinds of input that a computer can accept include the words and symbols in a document, numbers for a calculation, pictures, temperatures from a thermostat,audio signals from a microphone, and instructions from a computer program. An input device, such as a keyboard or mouse, gathers input and transforms it into a series of electronic signals for the computer.In the context of computing, data refers to the symbols that represent facts, objects, and ideas. Computers manipulate data in many ways, and we call this manipulation processing。
电气工程及其自动化专业英语课文翻译
unit1 taxe A 电力变压器的结构和原理在许多能量转换系统中,变压器是一个不了缺少的原件。
它使得在经济的发电机所产生电能并以最经历的传输电压传输电能,同时对于特定的使用者合适的电压使用电能成为可能。
变压器同样广泛的应用于低功率低电流的电子电路和控制电路中,来执行像匹配电源组抗和负载以求得最大的传输效率。
隔离一个电路与另一个电路在两个电路之间隔离直流电而保证交流电继续通道的功能。
在本质上,变压器是一个由两个或多个绕组通过相互的磁通耦合而组成的,如果这其中的一个绕组,原边连接到交流电压源将产生交流磁通它的幅值决定于原边的电压所提供的电压频率及匝数。
感应磁通将与其他绕组交链,在副边中将感应出一个电压其幅值将取决于副边的匝数及感应磁通量和频率。
通过使原副边匝数比例适应,任何所期望的电压比例或转换比例都可以得到。
变压器工作的本质仅要求存在与两个绕组相交链的时变的感应磁通。
这样的作用也可以发生在通过空气耦合的两组绕组中,但用铁心或其他铁磁材料可以使绕组之间的耦合作用增强,因为一大部分磁通被限制在与两个绕组交链的高磁导率的路径中。
这种变压器通常被称作为心式变压器。
大部分变压器都是这种类型。
以下的讨论几乎全部围绕心事变压器。
为减少铁心中的涡流所产生的损耗,磁路通常由一叠薄的叠片所组成。
如图1.1所示两种常见的结构形式用示意图表示出来。
芯式变压器的绕组绕在两个矩形铁心柱上,壳式变压器的绕组绕在三个铁心柱中间的那个铁心柱上,。
0.14毫米厚的硅钢片通常被用于在低频率低于几百Hz下运行的变压器中,硅钢片具有价格低铁心损耗小,在高磁通密度下,磁导率高的理想性能,能用做高频率低能耗的标准的通讯电路中的小型变压器的铁心是由被称为铁氧体的粉末压缩制成的铁磁合金所构成的。
在这些结构中,大部分的磁通被限制在固定的铁心中与两个绕组相交链。
绕组也产生多余的磁通,像漏磁通,只经过一个绕组和另外的绕组不相交链。
虽然漏磁通只是所有磁通的一小部分,但它在决定变压器的运行情况中起着重要的作用。
电气工程及其自动化专业英语翻译
第一章 电路基本原理第一节 电流和电压u(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
电荷和电流电荷的概念是用来解释所有电气现象的基本概念。
也即,电路中最基本的量是电荷。
电荷是构成物质的原子微粒的电气属性,它是以库仑为单位来度量的。
我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
我们还知道电子的电量是负的并且在数值上等于 1.602100×10-12C ,而质子所带的正电量在数值上与电子相等。
质子和电子数量相同使得原子呈现电中性。
让我们来考虑一下电荷的流动。
电荷或电的特性是其运动的特性,也就是,它可以从一个地方被移送到另一个地方,在此它可以被转换成另外一种形式的能量。
当我们把一根导线连接到某一电池上时(一种电动势源),电荷被外力驱使移动;正电荷朝一个方向移动而负电荷朝相反的方向移动。
这种电荷的移动产生了电流。
我们可以很方便地把电流看作是正电荷的移动,也即,与负电荷的流动方向相反,如图1-1所示。
这一惯例是由美国科学家和发明家本杰明-富兰克林引入的。
虽然我们现在知道金属导体中的电流是由负电荷引起的,但我们将遵循通用的惯例,即把电流看作是正电荷的单纯的流动。
于是电流就是电荷的时率,它是以安培为单位来度量的。
从数学上来说,电流i 、电荷q 以及时间t 之间的关系是:从时间t0到时间t 所移送的电荷可由方程(1-1)两边积分求得。
我们算得:我们通过方程(1-1)定义电流的方式表明电流不必是一个恒值函数,电荷可以不同的方式随时间而变化,这些不同的方式可用各种数学函数表达出来。
电压,能量和功率在导体中朝一个特定的方向移动电荷需要一些功或者能量的传递,这个功是由外部的电动势来完成的。
图1-1所示的电池就是一个典型的例子。
这种电动势也被称为电压或电位差。
电路中a 、b 两点间的电压等于从a 到b 移动单位电荷所需的能量(或所需做的功)。
电气工程及其自动化专业英语翻译共24页word资料
第一章电路基本原理第一节电流和电压u(t)和i(t)这两个变量是电路中最基本的两个变量,它们刻划了电路的各种关系。
电荷和电流电荷的概念是用来解释所有电气现象的基本概念。
也即,电路中最基本的量是电荷。
电荷是构成物质的原子微粒的电气属性,它是以库仑为单位来度量的。
我们从基础物理得知一切物质是由被称为原子的基本构造部分组成的,并且每个原子是由电子,质子和中子组成的。
我们还知道电子的电量是负的并且在数值上等于1.602100×10-12C,而质子所带的正电量在数值上与电子相等。
质子和电子数量相同使得原子呈现电中性。
让我们来考虑一下电荷的流动。
电荷或电的特性是其运动的特性,也就是,它可以从一个地方被移送到另一个地方,在此它可以被转换成另外一种形式的能量。
当我们把一根导线连接到某一电池上时(一种电动势源),电荷被外力驱使移动;正电荷朝一个方向移动而负电荷朝相反的方向移动。
这种电荷的移动产生了电流。
我们可以很方便地把电流看作是正电荷的移动,也即,与负电荷的流动方向相反,如图1-1所示。
这一惯例是由美国科学家和发明家本杰明-富兰克林引入的。
虽然我们现在知道金属导体中的电流是由负电荷引起的,但我们将遵循通用的惯例,即把电流看作是正电荷的单纯的流动。
于是电流就是电荷的时率,它是以安培为单位来度量的。
从数学上来说,电流i、电荷q以及时间t之间的关系是:从时间t0到时间t所移送的电荷可由方程(1-1)两边积分求得。
我们算得:我们通过方程(1-1)定义电流的方式表明电流不必是一个恒值函数,电荷可以不同的方式随时间而变化,这些不同的方式可用各种数学函数表达出来。
电压,能量和功率在导体中朝一个特定的方向移动电荷需要一些功或者能量的传递,这个功是由外部的电动势来完成的。
图1-1所示的电池就是一个典型的例子。
这种电动势也被称为电压或电位差。
电路中a、b两点间的电压等于从a到b移动单位电荷所需的能量(或所需做的功)。
数学表达式为:式中w是单位为焦耳的能量而q是单位为库仑的电荷。
电气工程及其自动化专业英语 译文
第1课译文 电网络电路或电网络是由电阻、电感和电容等器件以某种方式联接在一起所组成的。
如果电网络中不包含任何能源,比如电池和发电机,就叫做无源网络。
相反,如果存在一个或多个能源,则组合的系统(电网络)则称为有源网络。
当研究电网络的特性时,我们感兴趣的是电路中的电压和电流。
既然网络是由无源元件组成的,我们就必须首先来定义它们的电特性。
就电阻来说,其电压——电流关系由欧姆定律来决定。
欧姆定律指出,电阻两端的电压等于流过电阻的电流乘以该电阻的值。
从数学上看,这表示为iR u = (1-1)式中,u 表示电压,其单位为伏特(V);i 表示电流,其单位为安培(A);R 表示电阻,其单位为欧姆(Ω)。
纯电感两端的电压由法拉第定律来定义。
法拉第定律指出,电感两端的电压正比于流过电感的电流随时间的变化率。
这样,我们就得出dtdi L u = (1-2) 式中,di /dt 是电流变化率,其单位为每秒安培(A/s);L 是电感,其单位为亨利(H)。
电容两端产生的电压正比于累积在电容两极板上的电荷。
因为累积的电荷可用电荷增量dq 的和或积分来表示,因此有⎰=dq C u 1 (1-3) 式中,电容C 是与电压和电荷有关的比例常数。
由定义可知,电流等于电荷随时间的变化率,即可以表示为i =dq /dt 。
因此,电荷的增量dq 就等于电流乘以相应的时间增量,或者dq =idt 。
这样,式(1-3)就可写为⎰=idt C u 1 (1-4) 式中C 为电容,其单位是法拉(F)。
表1-1是对三种无源电路元件的表示式(1-1)、(1-2)和(1-4)的概括。
注意,根据习惯使用的电流标注方法,电压降的方向表示流过每一个元件的电流方向。
有源电装置涉及到把不同的能量转换成电能的形式。
例如电池将其存储的化学能转换成了电能,发电机将其旋转电枢的机械能转换成了电能。
有源电路元件有两种基本形式,即电压源和电流源。
在它们的理想形式中,一方面电压源产生与流过其电流无关的恒定电压。
电气工程及其自动化专业英语课文翻译第五章第三节
第三节 输入和输出设备
扩展槽,扩展卡和扩展端口 在计算机中,数据从一个元件经过被称 为数据总线的线路向另一个传送.数据总线 的一部分在RAM和微处理器之间连接.数 据总线的另一部分和外围设备之间延伸的部 分称为扩展总线.当数据沿着扩展总线移动 时,它可能经过扩展槽,扩展卡,扩展端口 以及电线.
�
一台台式计算机最多可有三种类型的扩展槽: 1) ISA(工业标准结构)槽是一种早期的技术, 目前仅使用于某些调制解调器以及其它相对 速度较慢的设备.很多新的计算机只有很少 ISA槽或没有ISA槽. 2) PCI(外部设备互连)槽提供了较快的转换 速度和32位或64位数据总线.这些槽特别用 来安放图形卡,声卡,视频捕获卡,调制解 调器或网络接口卡.
图像质量是与屏幕尺寸,点距,分辨率以 及彩色深度有关的一个指标.屏幕尺寸是以 英寸为单位从屏幕的一角对角地穿过屏幕到 达屏幕另一角的测量尺寸.典型的监视器屏 幕范围从13~21.点距(DP)是对图像清晰 度的一个度量,一个较小的点距意味着一个 清晰的图像.从技术上来说,点距是相似颜 色像素之间的以毫米为单位的距离——像素 是指形成图像的小光斑.一个光斑对目前的 监视器来说,通常是在0.23~0.26之间,
扩展卡是主板上用于插入扩展卡的一 种细长的插座.扩展卡是一块小电路板, 它使计算机具有控制存储设备,输入设备 或输出设备的能力.扩展卡也被称为"扩 展板","控制板"或"适配器ቤተ መጻሕፍቲ ባይዱ.
大多数台式计算机具有四个到八个扩展 槽,但某些扩展槽通常包括扩展卡,一个 图形卡(有时也称为"视频卡")为数据 传送至监视器提供了一个路径.一个调制 解调器提供了将数据通过电话线或电视电 缆线进行发送的方法.一个声卡载有数据 传送至扬声器或耳机,或从话筒将数据传 送回来.一个网卡使你将你的计算机和局 域网连接在一起.如果你想连接一台扫描 仪或连接从数码相机或摄像机下载的视频 图像,你可以增加其它的扩展卡.
电气工程及其自动化专业英语第五单元课件
New Words
central processing unit 中央处理单元
workstation
n. 工作站
mainframe
n. 主机,主机架
supercomputer
超级计算机
server 服务器
client 客户
microcomputer 微型计算机
desktop computer 台式计算机
(1) Until recently geneticists were not interested in particular genes.
基因学家们最近才开始对特定基因感兴趣。
(2) Don't start working before having checked the instrument thoroughly.
译为:由于手持式计算机处理速度慢、屏幕小,无法像台式电脑和笔记 本那样处理多种任务。
Notes
[10]. Because of its cost, a workstation is often dedicated to design tasks, and is not used for typical microcomputer applications, such as word processing, photo editing, and accessing the Web.
“covered with a thin…… casing”为过去分词作后置定语,可改为 定语从句形式,如:which is covered with ……
译为:软盘是一个由轻便聚酯薄膜塑料构成圆盘,它的外面覆盖一层薄的 磁氧化物,里面封铅作为保护层。
Notes
[15]. The storage capacity of a hard-disk unit is many times that of a floppy disk and much faster.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在计算机工业中,"服务器"这个术语有 多种含义.它可以指计算机硬件,特定类型的 软件或是指硬软件结合.在任何场合,一个服 务器的目的是通过向计算机提供数据而为网络 上的(例如互联网或局域网)计算机服务.一 台个人计算机,服务站或者向服务器申请数据 的软件被称为客户,例如在网络上,一个服务 器可能会用一个网页来回应客户的要求.另外 的服务器可能会处理来往于所有互联网上的客 户的电子邮件的稳定的数据流.一个服务器可 能还会允许同一局域网内的客户共享文件或可 以使用同一台中央打印机.
计算机储存数据所以它可以处理数据. 大多数计算机有不止一个地方来储存数据, 这取决于这些数据如何被使用.(随机)存 储器是计算机暂时储存将要被处理储存或输 出的数据的地方.(只读)存储器是数据可 以被永久储存而不需要马上被处理的地方. 输出是计算机产生的结果,举几个例子 计算机输出包括报告,文件,音乐,照片以 及图片,输出设备用来显示,打印或传送处 理结果.
个人计算机系统 一个计算机系统通常是指一台计算机以 及与它相连的输入,输出以及存储设备.就 实质内容来说,一个个人计算机系统就是一 台台式计算机或一台笔记本电脑.除个人计 算机之间装饰部分不同以外,一个个人计算 机系统通常包括以下几种设备:
1)计算机系统单元 系统单元包括主电路板, 微处理器,电源以及存储设备,对于大多数 笔记本电脑系统单元还包括一个机内键盘和 喇叭. 2)显示设备 大多数台式计算机使用一个单 独的监视器作为显示器,然而笔记本电脑使 用一个与系统单元相连的LCD屏(液晶显示 屏)作为显示器. 3)键盘 大多数计算机配有一个键盘作为主 要输入设备. 4)鼠标 鼠标是另外一个旨在显示屏上处理 图像目标和控制的输入设备.
被人们大力宣传为工作站的计算机通 常是指设计来完成特定任务的功能强大的台 式计算机.工作站能够处理需要快速处理的 任务,例如医学成像以及计算机辅助设计. 某些工作站包含不止一个微处理器,并且大 多数具有特别为产生和显示三维和动画图像 而设计的电路.由于其成本高,所以一个工 作站通常用来设计任务,而不是用来作为典 型的微型计算机来应用,例如文字处理,图 像编辑以及网络访问.
计算机是一种万能的机器,它能执行相 当惊人的各种各样的任务,但某些种类的计 算机比其它种类的更善于处理特定的任务. 计算机可以分为个人计算机,掌上电脑,工 作站,主机,超级计算机以及服务器. 个人计算机是一种微型计算机,它能够 满足个人的计算需要,它特别提供了适应各 种各样计算应用的方法,比如说文字处理, 相片编辑,电子邮件以及进入互联网,个人 计算机可以被当作台式计算机以及笔记本电 脑一样使用.
8)刻录机 很多计算机——特别是台式计 算机——包含一台可用来产生和复制CD的 刻录机. 9)声卡和喇叭 台式计算机有一个基本的 内置的喇叭,这种喇叭仅限于发出哗哗声. 如果要产生高品质音乐,讲话以及音乐效果, 就需要一块小电路板,这块电路板称为声卡. 台式计算机的声卡将信号传送到外接的音箱. 一台笔记本电脑的声卡将信号发送到内置在 笔记本电脑系统单元的喇叭中.
第五章 计算机
第一节 计算机基础
大多数人都能描绘一台计算机,但由于 计算机能做许多事情,有许多形状和规格, 以致人们难以提取其共同特征形成通用的 定义.就其实质来说,计算机是一种设备, 这种设备能接收输入,处理数据,储存数 据,并能产生输出.所有这些都是根据一 系列储存的指 统的东西.输入可以由一个人,一个设施, 或另一台计算机来完成.计算机所能接收 的输入内容的种类包括某个文件中的文字 和符号,计算数字,图片,恒温器的温度, 话筒中的音频信号,以及计算机程序中的 指令.输入设备,比如某个键盘或鼠标, 把输入集合在一起并把它转换成计算机的 一系列电子信号.
7)CD-ROM驱动器以及DVD驱动器 一个 CD-ROM(盒装的磁盘只读存储器)驱动 器是一个使用激光技术来读永久存储在计 算机中或音频CD中的数据的存储设备.一 个DVD(数字视频磁盘)驱动器能够从计 算机CD,音频CD,计算机DVD或DVD电 子磁盘中读取数据.CD-ROM驱动器和 DVD驱动器不能用来在磁盘上写数据, "ROM"中的"RO"表示"只读",意味着 驱动器可以从磁盘上读取数据,而不能用 来将数据反复写在磁盘上.
掌上电脑被设计成能够放进口袋,能依 靠电池工作,并且当你放在手上它时能够运 行.它也被称作PDA(个人数字助手)和手 掌上的电脑,这种类型的计算机典型性地被 作为电子图书,通讯录,计算器以及记事本 来使用.由于其速度较慢且显示屏较小,所 以掌上电脑功能不够强大无法执行台式计算 机及个人电脑所能完成的很多任务.掌上电 脑旨在成为计算助手而非成为你的主要计算 机.
与局域网相连接的普通的个人计算机也 可以被称为工作站.计算机网络是由两台或 多台计算机以及其它连接在一起为了共享数 据和程序的设备而组成的.一个LAN(局域 网)仅仅是一个限定地理区域内的计算机网 络,例如一个学校计算机实验室或一个小商 行. 主机(或简写为"mainframe")是一种大 型昂贵的能够同时为成百上千用户处理数据 的计算机.主机通常由商行或政府使用用来 提供对大量数据的集中存储,处理以及管理. 主机使我们在需要可靠性,数据安全性以及 集中处理的情况下提供了可选择的计算机.
如果某种计算机在其制造的时代是世界 上最快的计算机之一,那么这种计算机就属 于超级计算机类型.由于它们的速度,超级 计算机能够处理其它计算机所不能处理的复 杂任务.超级计算机的典型的作用包括破解 密码,建立世界范围的天气系统模型以及模 拟核爆炸.超级计算机上所完成的一个使人 留下深刻印象的仿真是对数以千计的尘埃微 粒的运动进行追踪,这些尘埃微粒就象被一 场龙卷风所抛掷一样.
5)软盘驱动器 软盘驱动器是从软盘上读取 数据或向软盘写入数据的存储设备.一个软 盘是一张柔软的聚酯薄膜塑料圆盘,圆盘上 覆盖着一层薄的磁性氧化物并被封装在一个 保护套里.大多数通常使用在目前个人计算 机中的软盘是尺寸为4又1/3寸而容量为 1.44MB的盘子. 6)硬盘驱动器 硬盘包含一个或多个装入硬 盘驱动器内的金属盘片,硬盘可以用磁道来 储存数十亿的数据符号.一个硬盘单元的存 储容量是软盘的好几倍并且存储速度要快得 多,硬盘通常安装在计算机系统单元内部.
10)调制解调器 实际上所有的个人计算机 系统包括一个内置的调制解调器,它可以被 用来通过标准电话线与互联网相连接. 11)打印机 一台计算机的打印机是能够在 纸上产生计算机输出文本或绘画图像的输出 设备. 除以上提到的这些设备以外,某些其它 的外围设备可以连接在计算机系统上来增强 计算机的功能,例如数码相机,扫描仪,游 戏杆或图形板.
在计算内容中,数据指的是代表事实, 目标以及想法的符号.计算机以多种方式操 作数据,而我们把这种操作称之为"处理". 告诉计算机如何执行处理任务的一系列指令 被称为计算机程序,或简称为"程序".这 些程序构成支持计算机执行特定的任务的软 件.在计算机中,大多数的处理过程发生在 被称为中央处理单元(CPU)的元件中, CPU有时也被称为"计算机的大脑".
�