2017中考数学统计和概率

合集下载

河北省2017年中考数学真题试题(含解析)

河北省2017年中考数学真题试题(含解析)

河北省2017年中考数学真题试题第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( )A .2(3)−B .32−÷C .0(2017)⨯−D .23−【答案】A.【解析】试题分析:因为负数的偶数次方是正数,异号两数相除商为负,零乘以任何数都等于0,较小的数减去较大的数差为负数,故答案选A.考点:乘方,有理数的除法,有理数的乘法,有理数的减法.2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( )A .1B .2−C .0.813D .8.13 【答案】D.【解析】试题分析:科学记数法中,a 的整数位数是一位,故答案选D.考点:科学记数法.3.用量角器测量MON ∠的度数,操作正确的是( )【答案】C.考点:角的比较. 4.23222333m n ⨯⨯⨯=+++个个……( ) A .23n m B .23m n C .32m n D .23m n【答案】B.【解析】 试题分析:m 个2相乘表示为2m ,n 个3相加表示为3n ,故答案选B.考点:有理数的乘方.5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④【答案】C.考点:中心对称图形.6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分【答案】B.考点:绝对值,倒数,相反数,立方根,平均数.7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( )A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变【答案】D.【解析】试题分析:角的度数与角的边的大小没有关系,故答案选D.考点:角的比较.8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )【答案】A. 【解析】试题分析:主视图从图形的正面观察得到的图形,注意后排左上角的那个小正方体,故答案选A. 考点:三视图.9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥.③∵四边形ABCD 是菱形, ④∴AB AD =.证明步骤正确的顺序是( )A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【答案】D.考点:菱形的性质,等腰三角形的性质.10.如图,码头A在码头B的正西方向,甲、乙两船分别从A、B同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( )A.北偏东55︒B.北偏西55︒C.北偏东35︒D.北偏西35︒【答案】D.考点:方向角.11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的( )【答案】A.【解析】 试题分析:正方形的对角线的长是10214.14≈,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+−=B .004446++=C .34446++=D .14446−÷+= 【答案】D.考点:算术平方根,立方根,0指数幂,负数指数幂.13.若321x x −=−( )11x +−,则( )中的数是( ) A .1−B .2−C .3−D .任意实数 【答案】B.【解析】试题分析:因为321222111x x x x x −−−==−−−−,故答案选B. 考点:分式的加减.14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断【答案】B.考点:中位数,扇形统计图.15.如图,若抛物线23y x =−+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数k y x=(0x >)的图象是( )【答案】D.【解析】试题分析:因为在封闭区域内的整数点的个数是4,所以k=4,故答案选D.考点:二次函数的图象,反比例函数的图象.16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分)【答案】C.考点:正多边形的有关计算.二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为 m .【答案】100.考点:三角形的中位线定理.18.如图,依据尺规作图的痕迹,计算α∠=°.【答案】56.【解析】试题分析:如图,根据作图痕迹可知,GH垂直平分AC,AG平分∠CAD. ∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ABC=68°。

中考数学复习:专题8-1 浅议列举法解中考概率题的策略

中考数学复习:专题8-1 浅议列举法解中考概率题的策略

专题01浅议列举法解中考概率题的策略【专题综述】考查学生用列举法解决随机事件发生的概率是近几年中考数学命题的热点之一.用列举法求概率必须满足两个条件:一是一次试验中,可能出现的结果是有限多个;二是各种结果发生的可能性相等.常用的公式是:如果在一次实验中,有n种可能的结果,并且它们发生的可能性相同,事件A出现m种结果,那么事件A发生的概率为()mP An=.列举法有直接列举法.列表法和画树状图法.而中考数学中概率型应用题与学生的生活紧密联系,问题背景丰富,包括掷骰子游戏、摸球游戏、手心手背游戏、纸牌游戏、转盘实验等等.解题的关键是读懂并领会题意,分清数量之间的关系,把实际问题转化为数学问题.具体做法是准确建立概率模型,用列表法或画树状图列举出所有可能的结果,再利用概率公式计算每个事件发生的概率,最后比较概率的大小.概率相等就公平,否则就不公平,从而求得答案.【方法解读】一、田忌赛马中的概率问题—用直接列举法例1:田忌赛马的故事为人熟知.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强.(1)如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)错解:P∴ (田忌获胜)31 93 ==.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:双方马的对阵中,共有6种等可能的结果,只有1种对抗情况田忌能赢,所以田忌获胜的概率16P .【解读】 (1)直接列举法就是把要数的对象一一列举出来分析求解的方法,求解的关键在于正确列举出试验结果的各种可能性.正确理解题意,将齐王与田忌的马的对阵排序一一列举出来即可求得.(2)要恰当列表,写出双方对阵的所有情况,可求得结果.注意:列表法或画树状图法并非求概率的万能解法,有的题用直接列举法解很为简便.学#科网【举一反三】用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A. B. C. D.【来源】2017年山东省烟台市芝罘区九年级(上)期末数学试卷(五四学制)【答案】B【解析】列表如下:红红蓝红紫蓝紫紫共有9种情况,其中配成紫色的有3种,所以恰能配成紫色的概率=故选B.二、考查简单事件发生的概率—用列表法(树状图法)例2:某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500mI)、红茶(500mI)和可乐(600ml).抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样.②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”).③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”.④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样,∴一次“有效随机转动”可获得“乐”字的概率为15.(2)如图,画树状图,得:共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2 25.【解读】 (1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案.(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案. 本题的考点是列表法或树状图法;概率公式. 注意此题是放回实验,用到的知识点为概率公式:()mP An=.【举一反三】一个不透明的箱子里只有 2 个白球和1个红球,它们除颜色外其他均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,再摸出一个球,用画出树状图或列表的方法,求两次摸出的球都是白球的概率.【来源】广东省深圳高级中学2017-2018学年初三上期末数试题【答案】(1).(2).【解析】试题分析:(1)根据概率公式列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解.(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以,P(两次摸出的球都是白球)==.点睛:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.三、判断游戏的公平性—用列表法(树状图法)求出概率例3:某中学要在全校学生中举办“中国梦我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由(骰子:六个面上分别刻有1 ,2,3,4,5,6个小圆点的小正方体).解:(1)因为,向上一面的点数为奇数有3种情况,所以,小亮掷得向上一面的点数为奇数的概率是: 31 62 .(2)填表如下:由表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. 所以,P (小亮胜)=91364=,P (小丽胜)= 91364=,因此,游戏是公平的.’ 【解读】(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平.此题主要考查了判断游戏公平性问题.首先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平. 而用列举法(树形图法)求出概率,解答此类问题的关键在于列举出所有可能的结果. 【举一反三】在学习概率的课堂上,老师提出问题:一口袋装有除颜色外均相同的2个红球1个白球和1个篮球,小刚和小明想通过摸球来决定谁去看电影,同学甲设计了如下的方案:第一次随机从口袋中摸出一球(不放回);第二次再任意摸出一球,两人胜负规则如下:摸到“一红一白”,则小刚看电影;摸到“一白一蓝”,则小明看电影.(1)同学甲的方案公平吗?请用列表或画树状图的方法说明;(2)你若认为这个方案不公平,那么请你改变一下规则,设计一个公平的方案. 【来源】2017-2018学年天津市宁河县九年级(上)期末数学试卷【答案】(1)不公平,理由见解析;(2)拿出一个红球或放进一个蓝球,其他不变.游戏就公平了.解:(1)同学甲的方案不公平.理由如下:由树状图可以看出:共有12种可能,摸到“一红一白”有4种,摸到“一白一蓝”的概率有2种,故小刚获胜的概率为412=13,小明获胜的概率为212=16,所以这个游戏不公平.(2)拿出一个红球或放进一个蓝球,其他不变.游戏就公平了.【强化训练】1.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,然后放回,再随机摸出一个小球,两次摸出的小球标号的和为5的概率是()A.16B.29C.13D.12【来源】2016届辽宁大连市中考模拟数学试卷(一)(带解析)【答案】B【解析】试题分析:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号的和为5的有2种,因此两次摸出的小球标号的和为5的概率是29.故选:B.学3科4网考点:列表法与树状图法2.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是()A. 23B.110C.15D.14【来源】2017年中考真题精品解析数学(贵州黔西南州卷)【答案】B【解析】解:∵20个球中红球有2个,∴任意摸出一个球是红球的概率是220=110,故选B.点睛:本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3.某同学家长应邀参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是_____.班级节次1班第1节语文第2节英语第3节数学第4节音乐【来源】2017年初中毕业升学考试(湖南湘潭卷)数学(带解析)【答案】1 4考点:简单的概率计算4.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了_______名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【来源】2015年初中毕业升学考试(四川资阳卷)数学(带解析)【答案】(1)20;(2)详见解析;(3)12.【解析】试题解析:(1)20.(2)如图列表如下:A 类中的两名男生分别记为A1和A2 男A1 男A2 女A 男D 男A1男D 男A2男D 女A 男D 女D男A1女D男A2女D女A 女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:2163 考点:条形统计图;扇形统计图;用列表法求概率.5.如图,转盘中6个扇形的面积都相等,任意转动转盘一次,当转盘停止转动时,指针指向奇数的概率是______.【来源】2017年中考真题精品解析 数学(江苏镇江卷) 【答案】23. 【解析】解:图中共有6个相等的区域,含奇数的有1,1,3,3共4个,转盘停止时指针指向奇数的概率是46=23.故答案为: 23. 点睛:此题主要考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=mn.6.在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=-x+5的图象上的概率;(3)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.【来源】辽宁省盖州市东城中学2017届九年级中考模拟数学试题【答案】(1)画树状图见解析;(2)13;(3)不公平,理由见解析.本题解析:(1)画树状图得:则点Q所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),2,4),(3,1),(3,2),(3,4)(4,1),(4,2),(4,3)共12种;(2)这个游戏不公平.因为点(x,y)在函数y=﹣x+5的图象上的概率为:41123=;共有12种等可能的结果,在函数y=﹣x+5的图象上的有:(1,4),(2,3),(3,2),(4,1),∴点(x,y)在函数y=﹣x+5的图象上的概率为:41 123=;(3)∵x、y满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y满足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况,∴P(小明胜)=41123=,P(小红胜)=61122=,∴P(小明胜)≠P(小红胜),∴不公平;公平的游戏规则为:若x、y满足xy≥6则小明胜,若x、y满足xy<6则小红胜.7.为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格【来源】2017年初中毕业升学考试(江苏盐城卷)数学(带解析)【答案】(1)12;(2)14(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.考点:列表法与树状图法;概率公式.学!科2网8.传统节日“端午节”的早晨,小文妈妈为小文准备了四个粽子作早点:一个枣馅粽,一个肉馅粽,两个花生馅粽,四个粽子除内部馅料不同外,其它一切均相同.(1)小文吃前两个粽子刚好都是花生馅粽的概率为;(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请说明理由.【来源】2017年中考真题精品解析 数学(辽宁锦州卷)【答案】(1)16;(2)会增大. (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小文吃前两个都是花生的情况,再利用概率公式即可求得给小文再增加一个花生馅的粽子,比较大小即可. 试题解析:解:(1)分别用A ,B ,C 表示一个枣馅粽,一个肉馅粽,两个花生馅粽,画树状图得:∵共有12种等可能的结果,小文吃前两个粽子刚好都是花生馅的有2种情况,∴小文吃前两个粽子刚好都是花生馅粽的概率: 212=16,故答案为: 16; (2)会增大,理由:分别用A ,B ,C 表示一个枣馅粽,一个肉馅粽,三个花生馅粽,画树状图得:∵共有20种等可能的结果,两个都是花生的有6种情况,∴都是花生的概率为: 620 =310>16; ∴给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性会增大.点睛:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.图1是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数1-, 2-, 3-,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为A (如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止).图2是背面完全一样、牌面数字分别是2, 3, 4, 5的四张扑克牌,把四张扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一张牌的牌面数字记为B .计算A B +的值.(1)用树状图或列表法求0A B +=的概率.(2)甲乙两人玩游戏,规定:当A B +是正数时,甲胜;否则,乙胜,你认为这个游戏规则对甲乙双方公平吗?请说明理由.【来源】【全国百强校】陕西省西安市高新第一中学2017届九年级下学期模拟四数学试题【答案】(1)树状图见解析;(2)这个游戏规则对甲乙双方不公平,理由见解析.【解析】试题分析:(1)根据题意可以写出所有的可能性,从而可以求得A +B =0的概率;(2)根据题意可以写出所有的可能性,从而可以求得甲获胜的概率和乙获胜的概率.(2)这个游戏规则对甲乙双方不公平,理由:由题意可得,A +B 的所有可能性是:﹣1+2=1,﹣1+3=2,﹣1+4=3,﹣1+5=4,﹣2+2=0,﹣2+3=1,﹣2+4=2,﹣2+5=3,﹣3+2=﹣1,﹣3+3=0,﹣3+4=1,﹣3+5=2,∴A +B 的和为正数的概率是: 93124= ,∴甲获胜的概率为34,乙获胜的概率为14,∵34≠14,∴这个游戏规则对甲乙双方不公平. 点睛:本题考查游戏公平性、列表法和树状图法,解答此类问题的关键是明确题意,写出所有的可能性.10.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A :自带白开水;B :瓶装矿泉水;C :碳酸饮料;D :非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.【来源】2017年中考真题精品解析数学(辽宁盘锦卷)精编word版(解析版)【答案】(1)50;(2)2.6;(3)104000元;(4)35.试题解析:解:(1)∵抽查的总人数为:20÷40%=50人,∴C类人数=50﹣20﹣5﹣15=10人,补全条形统计图如下:(2)该班同学用于饮品上的人均花费=(5×0+20×2+3×10+4×15)÷50=2.6元;(3)我市初中生每天用于饮品上的花费=40000×2.6=104000元.(4)列表得:或画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)=1220=35.点睛:本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.学~科1网。

专题07 统计与概率-备战2017年中考2014-2016年辽宁省中考数学试卷分类汇编(原卷版)

专题07 统计与概率-备战2017年中考2014-2016年辽宁省中考数学试卷分类汇编(原卷版)

2017版【中考3年】辽宁省2014-2016年中考数学分类解析专题07统计与概率一、选择题1.【2014辽宁省本溪市3分】某中学排球队12名队员的年龄情况如下表:则这个队员年龄的众数是()A. 12岁 B. 13岁 C.14岁 D.15岁2.【2014辽宁省大连市3分】甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为()A.16B.13C.12D.563.【2014辽宁省丹东市3分】下列事件中,必然事件是()A.抛掷一枚硬币,正面朝上B.打开电视,正在播放广告C.体育课上,小刚跑完1000米所用时间为1分钟D.袋中只有4个球,且都是红球,任意摸出一球是红球4.【2014辽宁省抚顺市3分】下列事件是必然事件的是()A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.半径分别为3和5的两圆相外切,则两圆的圆心距为8D.三角形的内角和是360°5.【2014辽宁省阜新市3分】在某校开展的“厉行节约,你我有责”活动中,七年级某班对学生7天内收集饮料瓶的情况统计如下(单位:个):76,90,64,100,84,64,73.则这组数据的众数和中位数分别是( )A.64,100 B. 64,76 C. 76,64 D.64,846.【2014辽宁省沈阳市3分】已知一组数据:1,2,6,3,3,下列说法正确的是()A.众数是3 B.中位数是6 C.平均数是4 D.方差是57.【2015辽宁省朝阳市3分】一组数据2,3,1,2,2的中位数、众数和方差分别是()A.1,2,0.4B.2,2,4.4C.2,2,0.4D.2,1,0.48.【2015辽宁省大连市3分】某舞蹈队10名队员的年龄如下表所示:则这10名队员年龄的众数是()A. 16B.14C.4D.39.【2015辽宁省丹东市3分】如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是( ).A. 5.2B. 4.6.C. 4D. 3.610.【2015辽宁省本溪市3分】射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁11.【2015辽宁省本溪市3分】在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个12.【2015辽宁省抚顺市3分】学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元13.【2015辽宁省抚顺市3分】如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H 在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A.12B.13C.14D.1814.【2015辽宁省阜新市3分】某中学篮球队12名队员的年龄如下表所示:则这12名队员年龄的众数和平均数分别是()A.15,15B.15,16C.16,16D.16,16.515.【2015辽宁省阜新市3分】张老师随机抽取6名学生,测试他们的打字能力,测得他们每分钟打字个数分别为:100,80,70,80,90,95,那么这组数据的中位数是()A.80B.90C.85D.7516.【2015辽宁省阜新市3分】下列事件属于必然事件的是()A.蒙上眼睛射击正中靶心B.买一张彩票一定中奖C.打开电视机,电视正在播放新闻联播D.月球绕着地球转17.【2015辽宁省锦州市3分】下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零18.【2015辽宁省辽阳市3分】一组数据:2,3,6,6,7,8,8,8的中位数是()A.6B.6.5C.7D.819.【2015辽宁省辽阳市3分】下列事件为必然事件的是()A.如果a,b是实数,那么a•b=b•aB.抛掷一枚均匀的硬币,落地后正面朝上C.汽车行驶到交通岗遇到绿色的信号灯D.口袋中装有3个红球,从中随机摸出一球,这个球的白球20.【2015辽宁省盘锦市3分】甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:据上表计算,甲、乙两名同学四次数学测试成绩的方差分别为2=17S 甲,2=25S 乙,下列说法正确的是( ) A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定21.【2015辽宁省铁岭市3分】2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:则苏炳添这五次比赛成绩的众数和平均数分别为( )A .10.06秒,10.06秒B .10.10秒,10.06秒C .10.06秒,10.08秒D .10.08秒,10.06秒 22.【2015辽宁省铁岭市3分】一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为( )A .13 B .12 C .34 D .2323.【2015辽宁省沈阳市】下列事件为必然事件的是( ) A .经过有交通信号灯的路口,遇到红灯 B .明天一定会下雨 C .抛出的篮球会下落D .任意买一张电影票,座位号是2的倍数24.【2015辽宁省沈阳市】一组数据2、3、4、4、5、5、5的中位数和众数分别是( ) A .3.5,5 B .4,4 C .4,5 D .4.5,425.【2015辽宁省营口市3分】云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是( ). A .100元,100元 B .100元,200元 C .200元,100元 D .200元,200元26.【2016辽宁省大连市3分】一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.27.【2016辽宁省丹东市3分】一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6 B.7,6 C.7,8 D.8,728.【2016辽宁省抚顺市】下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量29.【2016辽宁省抚顺市】下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100℃时,水沸腾C.任意画一个三角形,其内角和是360°D.射击运动员射击一次,命中靶心30.【2016辽宁葫芦岛市3分】九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()A.方差 B.众数 C.平均数D.中位数31.【2016辽宁葫芦岛市3分】在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球51个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()3A.2 B.3 C.4 D.1232.【2016辽宁沈阳市2分】“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件32.【2016辽宁沈阳市2分】已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2 B.众数是8 C.中位数是6 D.中位数是733.【2016辽宁营口市】为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是()A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查二、填空题1.【2014辽宁省本溪市3分】在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是2.【2014辽宁省大连市3分】如表是某校女子排球队队员的年龄分布:则该校女子排球队队员的平均年龄为岁.3.【2014辽宁省丹东市3分】一组数据2,3,x,5,7的平均数是4,则这组数据的众数是.4.【2014辽宁省抚顺市3分】一组数据3,5,7,8,4,7的中位数是5.【2014辽宁省抚顺市3分】把标号分别为a,b,c的三个小球(除标号外,其余均相同)放在一个不透明的口袋中,充分混合后,随机地摸出一个小球,记下标号后放回,充分混合后,再随机地摸出一个小球,两次摸出的小球的标号相同的概率是.6.【2014辽宁省阜新市3分】任意掷一枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),朝上的面的数字大于2的概率是 .7.【2015辽宁省朝阳市3分】小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是.8.【2015辽宁省大连市3分】一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,将这枚骰子连续掷两次,其点数之和为7的概率为:__________.9.【2015辽宁省丹东市3分】如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为 .10.【2015辽宁省本溪市3分】从﹣1、-21、1这三个数中任取两个不同的数作为点A 的坐标,则点A 在第二象限的概率是 .11.【2015辽宁省抚顺市3分】已知数据:﹣1,4,2,﹣2, x 的众数是2,那么这组数据的平均数为 . 12.【2015辽宁省阜新市3分】为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.13.【2015辽宁省葫芦岛市3分】甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S 甲2=1,S 乙2=0.8,则射击成绩较稳定的是 .(填“甲”或“乙”) 14.【2015辽宁省锦州市3分】数据4,7,7,8,9的众数是 .15.【2015辽宁省锦州市3分】如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到0.1).16.【2015辽宁省辽阳市3分】某校组织“书香校园”读书活动,某班图书角现有文学书18本,科普书9本,人物传记12本,军事书6本,小明随机抽取一本,恰好是人物传记的概率是 .17.【2015辽宁省铁岭市3分】在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有 个.18.【2015辽宁省沈阳市】某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm ,若甲跳远成绩的方差为2S 甲=65.84,乙跳远成绩的方差为2S 乙=285.21,则成绩比较稳定的是 .(填“甲”或“乙”) 19.【2015辽宁省沈阳市】在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为14,那么袋中的黑球有 个.20.【2015辽宁省营口市3分】如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.21.【2016辽宁省大连市3分】下表是某校女子排球队队员的年龄分布则该校女子排球队队员的平均年龄是岁.22.【2016辽宁省丹东市3分】一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是.23.【2016辽宁省抚顺市】某校九年二班在体育加试中全班所有学生的得分情况如表所示:从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为.24.【2016辽宁省抚顺市】八年三班五名男生的身高(单位:米)分别为1.68,1.70,1.68,1.72,1.75,则这五名男生身高的中位数是米.25.【2016辽宁葫芦岛市3分】某广告公司全体员工年薪的具体情况如表:则该公司全体员工年薪的中位数是万元.26.【2016辽宁葫芦岛市3分】如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.27.【2016辽宁营口市】已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是.三、解答题1.【2014辽宁省本溪市12分】某中学对全校1200名学生进行“校园安全知识”的教育活动,从1200名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为A、B、C、D四个等级,绘制了图①、图②两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)求本次抽查的学生共有多少人?(2)将条形统计图和扇形统计图补充完整;(3)求扇形统计图中“A”所在扇形圆心角的度数;(4)估计全校“D”等级的学生有多少人?2.【2014辽宁省大连市分】某地为了解气温变化情况,对某月中午12时的气温(单位:℃)进行了统计.如表是根据有关数据制作的统计图表的一部分.根据以上信息解答下列问题:(1)这个月中午12时的气温在8℃至12℃(不含12℃)的天数为天,占这个月总天数的百分比为 %,这个月共有天;(2)统计表中的a= ,这个月中行12时的气温在范围内的天数最多;(3)求这个月中午12时的气温不低于16℃的天数占该月总天数的百分比.3.【2014辽宁省丹东市10分】某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球;C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生?(2)请将两个统计图补充完整.(3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?4.【2014辽宁省丹东市10分】甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.5.【2014辽宁省抚顺市12分】居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.6.【2014辽宁省阜新市10分】“分组合作学习”成为我市推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“分组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:请结合图中信息解答下列问题:(1)求出分组前...学生学习兴趣为“高”的所占的百分比为;(2)补全分组后...学生学习兴趣的统计图;(3)通过“分组合作学习”前后对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?请根据你的估计情况谈谈对“分组合作学习”这项举措的看法.7.【2014辽宁省沈阳市10分】在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图(树形图)法求小明两次摸出的球颜色不同的概率.8.【2014辽宁省沈阳市10分】2014年世界杯足球赛于北京时间6月13日2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查.为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷.从收集到的4800份有效问卷中随机抽取部分问卷进行了统计,绘制了统计图表的一部分如下:根据统计图表提供的信息,解答下列问题:(1)a=,b=;(2)根据以上信息,请直接在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军.9.【2015辽宁省朝阳市8分】某校申报“跳绳特色运动”学校一年后,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.(1)补全频数分布直方图,扇形图中m= ;(2)若把每组中各个数据用这组数据的中间值代替(如A组80≤x<100的中间值是(801002=90次),则这次调查的样本平均数是多少?(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校2100名学生中“1分钟跳绳”成绩为优秀的大约有多少人?10.【2015辽宁省朝阳市8分】在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)11.【2015辽宁省大连市12分】某地区共有1800名初三学生,为解决这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有_________人,达到优秀的人数占本次测试人数的百分比为____%.(2)本次测试学生人数为_________人,其中,体质健康成绩为及格的有________人,不及格的人数占本次测试总人数的百分比是__________%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.12.【2015辽宁省丹东市10分】某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的) ,并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个..统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.13.【2015辽宁省丹东市10分】一个不透明的口袋中装有4个分别标有数字-1,-2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P (x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.14.【2015辽宁省本溪市12分】某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为人,被调查学生的课外阅读时间的中位数是小时,众数是小时;(2)请你补全条形统计图;(3)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是;(4)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?15.【2015辽宁省抚顺市12分】电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是.16.【2015辽宁省阜新市10分】为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了名学生,两幅统计图中的m= ,n= .(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?17.【2015辽宁省葫芦岛市12分】某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.请根据所给信息解答以下问题:(1)请补全扇形统计图和条形统计图;(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为.18.【2015辽宁省锦州市10分】2015年5月,某校组织了以“德润书香”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数和成绩进行整理,制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,比赛成绩达到90分以上(含90分)的为优秀作品,据此估计该校参赛作品中,优秀作品有多少份?19.【2015辽宁省锦州市10分】育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.20.【2015辽宁省辽阳市10分】校文艺部在全校范围内随机抽取一部分同学,对同学们喜爱的四种“明星真人秀”节目进行问卷调查(每位同学只能选择一种最喜爱的节目),并将调查结果整理后分别绘制成如图所示的不完整的扇形统计图和条形统计图).。

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_用样本估计总体-综合题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_用样本估计总体-综合题专训及答案

备考2023年中考数学一轮复习-统计与概率_数据收集与处理_用样本估计总体-综合题专训及答案用样本估计总体综合题专训1、(2017东城.中考模拟) 某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?2、(2018平房.中考模拟) 随着2018年两会的隆重召开,中学校园掀起了关注时事政治的热潮我区及时开展“做一个关心国家大事的中学生”主题活动。

为了了解我区中学生获取时事新闻的主要途径,分别从电脑上网、手机上网、听广播、看电视、看报纸五个方面,在全区范围内随机抽取了若干名中学生进行问卷调查(每名中学生只选一种主要途径),根据调查结果绘制了如图所示的不完整的统计图请根据统计图的信息回答下列问题:(1)本次调查共抽取了中学生多少人?(2)求本次调查中,以听广播获取时事新闻为主要途径的人数并补全条形统计图;(3)若本区共有中学生7000人,请你估计我区以看电视获取时事新闻为主要途径的中学生有多少人?3、(2018城.中考模拟) 某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。

请根据图中信息,解答下列问题:(1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。

(2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数. 4、(2018嘉兴.中考模拟) 每年农历五月初五是我国的传统佳节“端午节”,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的栗子粽、豆沙粽、红枣粽、蛋黄粽、大肉粽(以下分别用A,B,C,D,E表示)这五种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)本次被调查的市民有多少人,请补全条形统计图;(2)扇形统计图中大肉粽对应的圆心角是度;(3)若该市有居民约200万人,估计其中喜爱大肉粽的有多少人.5、(2018宁波.中考真卷) 在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查.调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示.根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.6、(2018衢州.中考真卷) 为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”“文明交通”、“关爱老人”、“义务植树”“社区服务”等五项,活动期间,随机抽取了部分学生对志者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如所示不完整的折线统计图和扇形统计图。

黑龙江省哈尔滨市2017届中考数学试卷(附答案解析)

黑龙江省哈尔滨市2017届中考数学试卷(附答案解析)

2017年黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.(3分)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C. D.4.(3分)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C. D.6.(3分)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.(3分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是()A.43°B.35°C.34°D.44°8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)将57600000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)把多项式4ax2﹣9ay2分解因式的结果是.14.(3分)计算﹣6的结果是.15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值为.16.(3分)不等式组的解集是.17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.(3分)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为度.19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为.20.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE ⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.(7分)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.23.(8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.(8分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.(10分)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.(10分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB 于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c 交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD 于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.2017年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•哈尔滨)﹣7的倒数是()A.7 B.﹣7 C.D.﹣【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣7的倒数是﹣,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2017•哈尔滨)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)(2017•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•哈尔滨)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.【点评】此题主要考查了二次函数的性质,关键是熟记:抛物线y=a(x﹣h)2+k 的顶点坐标是(h,k),对称轴是x=h.5.(3分)(2017•哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C. D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)(2017•哈尔滨)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【分析】根据分式方程的解法即可求出答案.【解答】解:2(x﹣1)=x+3,2x﹣2=x+3,x=5,令x=5代入(x+3)(x﹣1)≠0,故选(C)【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.7.(3分)(2017•哈尔滨)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.8.(3分)(2017•哈尔滨)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.【分析】利用锐角三角函数定义求出cosB的值即可.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A【点评】此题考查了锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.9.(3分)(2017•哈尔滨)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D))∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选(C)【点评】本题考查相似三角形的判定与性质,解题的关键是熟练运用相似三角形的性质,本题属于中等题型10.(3分)(2017•哈尔滨)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【分析】根据特殊点的实际意义即可求出答案.【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选:D.【点评】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)(2017•哈尔滨)将57600000用科学记数法表示为 5.76×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:57600000用科学记数法表示为5.76×107,故答案为:5.76×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•哈尔滨)函数y=中,自变量x的取值范围是x≠2.【分析】根据分式有意义的条件:分母不为0进行解答即可.【解答】解:由x﹣2≠0得,x≠2,故答案为x≠2.【点评】本题考查了函数自变量的取值范围问题,掌握分式有意义的条件:分母不为0是解题的关键.13.(3分)(2017•哈尔滨)把多项式4ax2﹣9ay2分解因式的结果是a(2x+3y)(2x﹣3y).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),故答案为:a(2x+3y)(2x﹣3y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2017•哈尔滨)计算﹣6的结果是.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.15.(3分)(2017•哈尔滨)已知反比例函数y=的图象经过点(1,2),则k的值为1.【分析】直接把点(1,2)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,2),∴2=3k﹣1,解得k=1.故答案为:1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.(3分)(2017•哈尔滨)不等式组的解集是2≤x<3.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.故答案为2≤x<3.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.(3分)(2017•哈尔滨)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为;故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(3分)(2017•哈尔滨)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为15度.【分析】利用扇形的弧长公式计算即可.【解答】解:设扇形的圆心角为n°,则=4π,解得,n=15,故答案为:15.【点评】本题考查的是弧长的计算,掌握弧长公式l=是解题的关键.19.(3分)(2017•哈尔滨)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC 与BD相交于点O,点E在AC上,若OE=,则CE的长为4或2.【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB=BD=3,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2;故答案为:4或2.【点评】本题考查了菱形的性质、勾股定理、等边三角形的判定与性质;熟练掌握菱形的性质,由勾股定理求出OA是解决问题的关键.20.(3分)(2017•哈尔滨)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.【点评】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问题的关键.三、解答题(本大题共60分)21.(7分)(2017•哈尔滨)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷﹣===,当x=4sin60°﹣2=4×=﹣2时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.22.(7分)(2017•哈尔滨)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)首先根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;【解答】解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==.【点评】本题考查﹣应用与作图设计、勾股定理、等腰三角形的性质和判定、平行四边形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,利用数形结合的思想思考问题,属于中考常考题型.23.(8分)(2017•哈尔滨)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【分析】(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,(3)1350×=540(名),答:估计最喜欢太阳岛风景区的学生有540名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)(2017•哈尔滨)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的判定条件,本题属于基础题型.25.(10分)(2017•哈尔滨)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y元.由题意,得,解得:答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.【点评】本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.26.(10分)(2017•哈尔滨)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM ≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.【解答】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.【点评】本题主要考查了垂径定理,圆周角定理,全等三角形的判定与性质定理,三角函数的定义等相关知识,作出恰当的辅助线构建全等三角形是解答此题的关键.27.(10分)(2017•哈尔滨)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD 于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据S=S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;△ABC(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD 于点K,OG⊥OS交KB于G,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBG≌△OCS,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣t﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.【解答】解:(1)∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,=S△AMC+S△AMB,∵S△ABC∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,OG ⊥OS交KB于G,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBG=∠OCS,∵OB=OC,∠BOG=∠COS,∴△OBG≌△OCS,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.【点评】本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、解方程(方程组)、相似三角形(或三角函数)、勾股定理等重要知识点.。

2017届中考数学精学巧练备考秘籍第4章统计与概率第19课时概率问题及其简单应用

2017届中考数学精学巧练备考秘籍第4章统计与概率第19课时概率问题及其简单应用

第4章 统计与概率【精学】考点一、确定事件和随机事件 1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。

不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。

2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。

考点二、随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。

要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。

所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。

考点三、概率的意义与表示方法 1、概率的意义一般地,在大量重复试验中,如果事件A 发生的频率m n会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

2、事件和概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P 考点四、确定事件和随机事件的概率之间的关系 1、确定事件概率(1)当A 是必然发生的事件时,P (A )=1 (2)当A 是不可能发生的事件时,P (A )=0 2、确定事件和随机事件的概率之间的关系考点五、古典概型1、古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。

我们把具有这两个特点的试验称为古典概型。

2、古典概型的概率的求法一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的mm中结果,那么事件A发生的概率为P(A)=n考点六、列表法求概率1、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。

2、列表法的应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

2017年江西省中考数学试题(含答案)

2017年江西省中考数学试题(含答案)

江西省2017年中等学校招生考试数学试卷(江西 毛庆云)说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列四个数中,最小的数是( ). A .-12B .0C .-2D .2【答案】 C.【考点】 有理数大小比较.【分析】 根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】 解:在-12 ,0,-2,2这四个数中,大小顺序为:﹣2<-12<0<2,所以最小的数是-12.故选C .【点评】 本题主要考查了有理数的大小的比较,解题的关键是熟练掌握有理数大小比较的 法则,属于基础题.2.某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,这给数据的众数和中位数分别是( ). A .25,25 B .28,28C .25,28D .28,31【答案】 B .【考点】 众数和中位数.【分析】 根据中位数的定义“将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数”;众数是指一组数据中出现次数最多的那个数。

【解答】 这组数据中28出现4次,最多,所以众数为28。

由小到大排列为:23,25,25,28,28,28,31,所以中位数为28,选B 。

【点评】 本题考查的是统计初步中的基本概念——中位数和众数,要知道什么是中位数、众数.3.下列运算正确的是是( ). A .a 2+a 3=a 5B .(-2a 2)3=-6a 5C .(2a+1)(2a-1)=2a 2-1D .(2a 3-a 2)÷2a=2a-1【答案】 D.【考点】 代数式的运算。

【分析】 本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.根据法则直接计算.【解答】 A 选项中3a 与2a 不是同类项,不能相加(合并),3a 与2a 相乘才得5a ;B 是幂的乘方,幂的运算性质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方(底数不变,指数相乘),结果应该-86a ;C 是平方差公式的应用,结果应该是24a 1-;D.是多项式除以单项式,除以2a 变成乘以它的倒数,约分后得2a-1。

备考2023年中考数学一轮复习-统计与概率_概率_利用频率估计概率

备考2023年中考数学一轮复习-统计与概率_概率_利用频率估计概率

备考2023年中考数学一轮复习-统计与概率_概率_利用频率估计概率利用频率估计概率专训单选题:1、(2017北京.中考真卷) 如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A . ①B . ②C . ①②D . ①③2、(2019阜新.中考真卷) 一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A . 12B . 10C . 8D . 63、(2015本溪.中考真卷) 在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A . 16个B . 20个C . 25个D . 30个4、(2015南通.中考真卷) 在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A . 12B . 15C . 18D . 215、(2019嘉兴.中考模拟) 对某校600名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,学生体重在60kg以上的人数为()A . 120B . 150C . 180D . 3306、(2019武汉.中考模拟) 如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A . 0.33B . 0.34C . 0.20D . 0.357、(2019花都.中考模拟) 在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球实验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中白色球可能()A . 4个B . 6个C . 34个D . 36个8、(2020无为.中考模拟) 某校生物兴趣小组为了解种子发芽情况,重复做了大量种子发芽的实验,结果如下:根据以上数据,估计该种子发芽的概率是()A . 0.90B . 0.98C . 0.95D . 0.919、(2021张店.中考模拟) 某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A . 从一副扑克牌中任意抽取一张,这张牌是“红色的”B . 掷一枚质地均匀的硬币,落地时结果是“正面朝上”C . 在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”D . 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是610、在一个不透明的口袋中装有3个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有()A . 6个B . 15个C . 13个D . 12个填空题:11、(2017昆都仑.中考模拟) 在一个不透明的口袋中有3个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在15%左右,则口袋中的白球大约有________个.12、(2017泰兴.中考模拟) 如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为________.13、(2019瑞安.中考模拟) 瑞安某服装厂对一批服装质量抽检情况如下:抽检件数(件)10 100 200 500 1000正品件数(件)10 97 194 475 950根据表格中的数据,从这批服装中任选一件是正品的概率约为________.14、(2018郴州.中考真卷) (2018·郴州) 某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示,则这个厂生产的瓷砖是合格品的概率估计值是________。

2017年中考数学试题(含答案解析) (2)

2017年中考数学试题(含答案解析) (2)

鄂州市2017年中考数学试卷数学试题注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。

2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试题卷上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

6.考生不准使用计算器。

一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-错误!未找到引用源。

1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109错误!未找到引用源。

C.23⨯107错误!未找到引用源。

D.2.3⨯109错误!未找到引用源。

3.下列运算正确的是()A. 5x -3x =2B. 错误!未找到引用源。

(x -1)2= x2 -1C. 错误!未找到引用源。

(-2x2)3= -6x6D. x6÷x2= x4错误!未找到引用源。

4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x x x x ⎧--⎪⎨⎪-<-⎩≤下列说法正确的是( )A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x ≤76C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB ∥CD ,E 为CD 上一点,射线EF 经过点A ,EC =EA , 若∠CAE =30°,则∠BAF =( ) A. 30° B. 40°C. 50°D. 60°7.已知二次函数y = (x +m )2 - n 的图象如图所示,则一次函数y = mx + n 与反比例函数mny x=的图象可能是( )(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min 到家,再过5min 小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y (单位:m )与小东打完电话后的步行时间t (单位:min )之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m ; (2)小东与妈妈相遇后,妈妈回家速度是50m/min ; (3)小东打完电话后,经过27min 到达学校; (4)小东家离学校的距离为2900m. 其中正确的个数是( ) A .1个B .2个C .3个D .4个9.如图抛物线2y ax bx c =++错误!未找到引用源。

中考数学专题训练之四--统计与概率(含答案)

中考数学专题训练之四--统计与概率(含答案)

第十三章统计与概率1.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元,3元,2元,1元. 某天的销售情况如图所示,则这天销售的矿泉水的平均单价()A. 1.95 元B. 2.15元C. 2.25元D. 2.75元2 河南省游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是03 现有4张卡片,其中3张卡片正面上的图案是“♢”,1张卡片正面上的图案是“♣”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.916B.34C.38D.124.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分5.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.6.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与应该选择()A 甲B 乙C 丙D 丁7.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是()A 255分B 184分C 84.5分D 86分8.下列说法中,正确的是()15%10%20%55%DCBA9、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是()A 47B 48C 48.5D 4910.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众位数为168 C.极差为35 D.平均数为170 11.某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x甲=610千克,x乙=608千克,亩产量的方差分别是229.6 S=甲,2 2.7S=乙,则关于两种小麦推广种植的合理决策是()A 甲的平均亩产量较高,应推广甲B 甲、乙的平均亩产量相差不多,均可推广C 甲的平均亩产量较高,且亩产量比较稳定,应推广甲D 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙12. 现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球2个红球,这些球除颜色外完全相同。

2017中考数学知识点总结:概率统计的9个考点

2017中考数学知识点总结:概率统计的9个考点

2017中考数学知识点总结:概率统计的9个考点考点1:确定事件和随机事件考核要求:(1)明白必定事件、不会事件、随机事件的概念,懂确定事件与必定事件、不会事件的关系;(2)能区分简单日子事件中的必定事件、不会事件、随机事件。

考点2:事件发生的也许性大小,事件的概率考核要求:(1)懂各种事件发生的也许性大小别同,能推断一些随机事件发生的也许事件的大小并排出大小顺序;(2)懂概率的含义和表示符号,了解必定事件、不会事件的概率和随机事件概率的取值范围;(3)明白随机事件发生的频率之间的区不和联系,会依照大数次试验所得频率恐怕事件的概率。

注意:(1)在给也许性的大小排序前可先用“一定发生”、“非常有也许发生”、“也许发生”、“别太也许发生”、“一定不可能发生”等词语来表述事件发生的也许性的大小;(2)事件的概率是确定的常数,而概率是别确定的,可是近似值,与试验的次数的多少有关,惟独当试验次数脚够大时才干更精确。

考点3:等也许试验中事件的概率咨询题及概率计算考核要求(1)明白等也许试验的概念,会用等也许试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”办法求等也许事件的概率,会用区域面积之比解决简单的概率咨询题;(3)形成对概率的初步认识,了解机遇与风险、规则公平性与决策合理性等简单概率咨询题。

注意:(1)计算前要先确定是否为也许事件;(2)用枚举法或画“树形图”办法求等也许事件的概率过程中要将所有等也许事情思考完整。

考点4:数据整理与统计图表考核要求:(1)懂数据整理分析的意义,懂普查和抽样调查这两种收集数据的办法及其区不;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的办法,并能经过图表猎取有关信息。

考点5:统计的含义考核要求:(1)懂统计的意义和普通研究过程;(2)认识个体、总体和样本的区不,了解样本恐怕总体的思想办法。

考点6:平均数、加权平均数的概念和计算考核要求:(1)明白平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式。

浙江省中考数学复习 第一部分 考点研究 第八单元 统计与概率 第31课时 数据的收集与整理试题-人教

浙江省中考数学复习 第一部分 考点研究 第八单元 统计与概率 第31课时 数据的收集与整理试题-人教

第八单元统计与概率第31课时数据的收集与整理(建议答题时间:40分钟)命题点1 调查方式的选取1. (2017某某模拟)要反映2017年末某某市各个县(区)常住人口占某某市总人口的比例,宜采用( )A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数直方图2. (2017某某)下列调查方式中,合适的是( )A. 调查你所在班级同学的身高,采用抽样调查的方式B. 调查湘江的水质情况,采用抽样调查的方式C. 调查CCTV5《NBA总决赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式3. (2017贺州)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是________.(填“全面调查”或“抽样调查”)命题点2 总体、个体、样本、样本容量4. (2017内江)为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最适合的是( )A. 随机抽取100位女性老人B. 随机抽取100位男性老人C. 随机抽取公园内100位老人D. 在城市和乡镇各选10个点,每个点任选5位老人5. (2017某某)为了估计鱼塘中鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做了记号的,那么可以估计这个鱼塘鱼的数量约为( )A. 1250条B. 1750条C. 2500条D. 5000条命题点3 分析统计图(表)6. (2017某某)某单位组织职工开展植树活动,植树量与人数之间的关系如图,下列说法不正确...的是( )A. 参加本次植树活动共有30人B. 每人植树量的众数是4棵C. 每人植树量的中位数是5棵D. 每人植树量的平均数是5棵第6题图7. (2017株洲)株洲市展览馆某天四个时间段的进出馆人数统计如下表,则馆内人数变化最大的时间段是( )9:00-10:00 10:00-11:0014:00-15:0015:00-16:00进馆人数50 24 55 32 出馆人数30 65 28 45A. 9:00-10:00B. 10:00-11:00C. 14:00-15:00D. 15:00-16:008. (2017某某)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是( )A. 认为依情况而定的占27%B. 认为该扶的在统计图中所对应的圆心角是234°C. 认为不该扶的占8%D. 认为该扶的占92%第8题图9. (2017某某)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )第9题图A. 280B. 240C. 300D. 26010. (2017某某)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形统计图中,第一小组对应的圆心角度数是( )第10题图A. 45°B. 60°C. 72°D. 120°11. 关注国家政策(2017)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.第11题图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理...的是( )A. 与2015年相比,2016年我国与东欧地区的贸易额有所增长B. 2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D. 2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多12. 下面是某市2013~2016年私人汽车年增长率和拥有量的统计图,该市私人汽车拥有量年净增量最多的是________年,私人汽车拥有量年增长率最大的是________年.第12题图13. (2017某某)在“弘扬传统文化,打造书香校园”的活动中,学校计划开展四项活动:“A-国学诵读”,“B-演讲”,“C-课本剧”,“D-书法”.要求每位同学必须且只能参加其中一项活动.学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为________人;扇形统计图中,希望参加活动D所占圆心角为________度;根据题某某息补全条形统计图;(2)学校现有800名学生,请根据图某某息,估算全校学生希望参加活动A有多少人?第13题图14. (2017某某)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:第14题图请根据以上两图解答下列问题:(1)该班总人数是________;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.15. (2017聊城)为了绿化环境,育英中学八年级三班同学都积极参加植树活动.今年植树节时,该班同学植树情况的部分数据如图所示.请根据统计图信息,回答下列问题:(1)八年级三班共有多少名同学?(2)条形统计图中,m=________,n=________;(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.第15题图16. (2017某某)某数学学习为吸引更多人注册加入,举行了一个为期5天的推广活动.在活动期间,加入该的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入153 550 653 b 725 人数(人)累计总3353 3903 a 5156 5881 人数(人)第16题图(1)表格中a=________,b=________;(2)请把上面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是________(只需填写正确说法前的序号).①在活动之前,该已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该新加入的总人数为2528人.17. (2017某某)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目.以下是根据调查结果绘制的统计图表的一部分.类别 A B C D E节目类型新闻体育动画娱乐戏曲人数12 30 m 54 9第17题图根据以上信息,解答下列问题:(1)被调查的学生中,最喜爱体育节目的有________人,这些学生数占被调查总人数的百分比为________%;(2)被调查学生的总数为________人,统计表中m的值为________,统计图中n的值为________;(3)在统计图中,E类所对应扇形圆心角的度数为________°;(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.答案1.C 【解析】条形统计图能清楚的看到各个县区人口数量的多少,便于相互比较;折线统计图能从图中清楚看出数量增减变化的情况及数量的多少;扇形统计图可以从图中看出各个部分与总数的百分比,以及各个部分直接的关系.所以要反应各个县(区)常住人口占某某市总人口的比例,宜采用扇形统计图.2.B 【解析】普查所涉及的调查对象数量多、耗费大量的人力、物力和财力,但调查的数据全面准确;抽样调查适用于普查比较困难时的情况,抽样调查的样本容量小,操作简单.对于A.班级同学的数量不多,所以应该采用普查的方式;B.要了解湘江的水质情况,采用抽样调查的方式;C.要调查收视率,采用抽样调查的方式;D.要了解全市初中学生的业余爱好,采用抽样调查的方式.3.抽样调查【解析】由于全市中小学生太多,调查X围广,工作量大,故适合采用抽样调查的方式.4.D 【解析】调查方式有全面调查和抽样调查,抽样调查在抽取样本时,调查对象要具有普遍性和代表性.选项A随机抽取100女性老人不具有代表性;选项B随机抽取100位男性老人不具有代表性;选项C随机抽取公园内100位老人不具有普遍性和代表性;选项D在城市和乡镇各选10个点,每个点任选5位老人具有普遍性和代表性.所以最适合的方法为选项D.5.A 【解析】根据题意得,再次打捞出的2条有记号的鱼占样本总量的250,则估计鱼塘中有记号的鱼占鱼总量的250,设鱼总量为x,则50x=250,解得x=1250,经检验,x=1250符合题意,故这个鱼塘中鱼的数量约为1250条.6.D 【解析】本次参加植树活动的人共有4+10+8+6+2=30人;其中植树量为4棵的人数最多,为10人,∴每人植树量的众数为4棵;将每人植树量从少到多排列,第15、16人植树均为5棵,其平均数为5棵,∴其中位数为5棵;所有人植树量的平均数为:3×4+4×10+5×8+6×6+7×230=7115. 7.B 【解析】在9:00-10:00,人数变化是50-30=20人;在10:00-11:00,人数变化是65-24=41人;在14:00-15:00,人数变化是55-28=27人;在15:00-16:00,人数变化是45-32=13人.故人数变化最大的时间段是10:00-11:00.8.D 【解析】由扇形统计图可知,依情况而定的占27%,故A 正确;认为该扶的占65%,所对应的圆心角为360°×65%=234°,故B 正确;认为不该扶的占1-27%-65%=8%,故C 正确;认为该扶的占65%,而不是92%,故D 不正确.9.A 【解析】由频数直方图可知,参加社团活动在8~10小时之间的学生数是100-8-24-30-10=28人,∴在所抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的比例为28100,由样本估计总体可得全校1000名学生参加社团活动时间在8~10小时之间的学生数大约是1000×0.28=280人.10.C 【解析】∵第一小组所占百分比为1212+20+13+5+10×100%=20%,∴该百分比与360°的积就是相应的圆心角度数,即360°×20%=72°.11.B 【解析】12. 2016,2015 【解析】根据条形统计图可知,2016年的净增量为183-150=33,2015年的净增量为150-120=30,2014年的净增量为120-100=20,故净增量最多的是2016年,根据折线统计图可知私人汽车拥有量年增长率最大的是2015年.13. 解:(1)60; 72;【解法提示】12÷20%=60(人), 360°×(1-2760×100%-15%-20%)=72°.希望参加D 项目有60-27-60×15%-12=12(人)所占圆心角为360×1260×100%=72°. 补全条形统计图如下:第13题解图(2)800×(2760×100%)=360(人), 答:全校学生中希望参加活动A 的约有360人.14. 解:(1)40;【解法提示】22÷55%=40(人),∴该班总人数为40人.(2)补全统计图如下:第14题解图①第14题解图②(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.15. 解:(1)由两图可知,植树4棵的人数为11人,占全班人数的22%,∴八年级三班总人数为11÷22%=50人;(2)10,7;【解法提示】由扇形统计图可知,植树5棵的人数占全班人数的14%,∴n =50×14%=7(人),m =50-(4+18+11+7)=10(人).(3)所求扇形圆心角的度数为360°×1050=72°. 16. 解:(1)4556,600;【解法提示】a =3903+653=4556,b =5156-4556=600.(2)补全统计图如解图:第16题解图(3)①.【解法提示】3353-153=3200,故①正确;第三天到第四天新加入人数减少,故②错误;153+550+653+600+725=2681,故③错误.17.解:(1)30,20;(2)150,45,36;【解法提示】被调查学生的总人数为30÷20%=150人,m=150-12-30-54-9=45,n%=54150×100%=36%,∴n=36.(3)21.6;【解法提示】最喜爱E类节目的人数占总调查人数的百分比为9150×100%=6%,E类所对应扇形圆心角的度数为360°×6%=21.6°.(4)最喜爱新闻节目的学生人数占总调查人数的百分比为12150×100%=8%,∴估计该校最喜爱新闻节目的学生人数为2000×8%=160人.。

初中数学中考知识点考点学习课件PPT之统计知识点学习PPT

初中数学中考知识点考点学习课件PPT之统计知识点学习PPT
78.5
(2) 这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.
[答案] 不正确.理由:因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩.
(3) 请对该校学生“航空航天知识”的掌握情况作出合理的评价.
[答案] 测试成绩不低于80分的人数占测试人数的 ,说明该校学生对“航空航天知识”的掌握情况较好.(注:答案不唯一,合理即可)
8.[2021河南,17] 2021年4月,教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确要求初中生每天睡眠时间应达到9小时.某初级中学为了解学生睡眠时间的情况,从本校学生中随机抽取500名进行问卷调查,并将调查结果用统计图描述如下.
(2) 综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.
[答案] 工厂应选购乙分装机.理由:比较甲、乙两台机器的统计量可知,甲与乙的平均数相同,中位数相差不大,乙的方差较小,且不合格率更低.以上分析说明,乙机器的分装合格率更高,且稳定性更好,所以,乙机器的分装效果更好,工厂应选购乙机器.
.成绩频数分布表:
频数
7
9
12
16
6
.成绩在 这一组的是(单位:分):70 71 72 72 74 77 78 78 78 7979 79根据以上信息,回答下列问题.
(1) 在这次测试中,成绩的中位数是_____分,成绩不低于80分的人数占测试人数的百分比为______.
B
(第2题)
A.5分 B.4分 C.3分 D.
3.[2019河南,7] 某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。

上海市中考数学真题汇编 统计与概率

上海市中考数学真题汇编  统计与概率

上海市中考数学真题汇编统计与概率一、单选题1.(2018·上海)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30B.25和29C.28和30D.28和29【答案】D【解析】【解答】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故答案为:D.【分析】对这组数据按从小到大重新排列顺序后处于最中间位置的是第4个数28,故这组数据的中位数是28,在这组数据中,29出现的次数最多,出现了2次,故这组数据的众数是29。

2.(2017·上海)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6B.0和8C.5和6D.5和8【答案】C【解析】【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.3.(2020·上海)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图【答案】B【解析】【解答】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故答案为:B.【分析】根据统计图的特点判定即可.4.(2019·上海)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【答案】A【解析】【解答】甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为15[(7−8)2+3×(8−8)2+(9−8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为15[(6−8)2+(7−8)2+(8−8)2+(9−8)2+(10−8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低.故答案为:A.【分析】根据题意,分别计算两名学生的平均数。

2017年天津市中考数学试卷含答案

2017年天津市中考数学试卷含答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前天津市2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(3)5-+的结果等于( ) A .2B .2-C .8D .8- 2.cos60的值等于( )AB .1 CD .123.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .80.126310 ⨯ B .71.26310⨯ C .612.6310⨯ D .5126.310⨯ 5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.计算111a a a +++的结果为( )A .1B .aC .1a +D .11a + 8.方程组2,315y x x y =⎧⎨+=⎩的解是( )A .2,3x y =⎧⎨=⎩B .4,3x y =⎧⎨=⎩C .4,8x y =⎧⎨=⎩D .3,6x y =⎧⎨=⎩9.如图,将ABC △绕点B 顺时针旋转60得DBE △,点C 的对应点E 恰好落在AB 的延长线上,连接AD .下列结论一定正确的是 ( )A .ABD E ∠=∠B .CBEC ∠=∠ C .AD BC ∥ D .AD BC =10.若点1(1,)A y -,2(1,)B y ,3(3,)C y 在反比例函数3y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .231y y y <<C .321y y y <<D .213y y y <<11. 如图,在ABC △中,AB AC =,AD ,CE 是ABC △的两条中线,P 是AD 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .BCB .CEC .ADD .AC12.已知抛物线243y x x =-+于x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为( )A .221y x x =++B .221y x x =+-ABCDABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)C .221y x x =-+D .221y x x =--第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.计算74xx ÷的结果等于 .14.计算(4的结果等于 .15.不透明袋子中装有6个球,其中有5个红球,1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ; (2)在ABC △的内部有一点P ,满足::1:2:3PAB PBC PCA S S S =△△△,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解不等式组12,54 3.x x x +⎧⎨+⎩≥①≤②请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为 . 20.(本小题满分8分)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:图1 图2(1)本次接受调查的跳水运动员人数为 ,图1中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数. 21.(本小题满分10分)已知AB 是O 的直径,AT 是O 的切线,50ABT ∠=,BT 交O 于点C ,E 是AB上一点,延长CE 交O 于点D .图1图2(1)如图1,求T ∠和CDB ∠的大小;(2)如图2,当BE BC =时,求CDO ∠的大小.22.(本小题满分10分)如图,一艘海轮位于灯塔P 的北偏东64方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:sin 640.90≈,cos640.44≈,tan 64 2.05≈取1.414.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)23.(本小题满分10分)用A4纸复印文件.在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)(2)1212关于x 的函数关系式;(3)当70x >时,顾客在哪家复印店复印花费少?请说明理由.24.(本小题满分10分)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点A ,点(0,1)B ,点(00)O ,.P 是边AB 上的一点(点P 不与点A ,B 重合),沿着OP 折叠该纸片,得点A 的对应点A '.图1 图2(1)如图1,当点A '在第一象限,且满足A B OB '⊥时,求点A '的坐标; (2)如图2,当P 为AB 中点时,求A B '的长;(3)当30BPA '∠=时,求点P 的坐标(直接写出结果即可).25.(本小题满分10分)已知抛物线23y x bx =+-(b 是常数)经过点(1,0)A -. (1)求该抛物线的解析式和顶点坐标;(2)(,)P m t 为抛物线上的一个动点,P 关于原点的对称点为P '. ①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,2P A '取得最小值时,求m 的值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)1cos602=. 【解析】3638<【提示】利用二次根式的性质,得出【考点】无理数的估算【解析】ABC △绕点60得DBE △60,AB =ABD ∴△是等边三角形,60DAB ∴∠=,DAB CBE ∴∠=∠,AD BC ∴∥.60,AB 【解析】3k =-<,10y >,数学试卷 第9页(共18页) 数学试卷 第10页(共18页)231y y y ∴<<.【提示】根据反比例函数的性质判断即可. 【考点】反比例函数的图象和性质 11.【答案】B【解析】如图连接PC ,AB AC =,BD CD =,AD BC ∴⊥,PB PC ∴=,PB PE PC PE ∴+=+,PE PC CE +≥,∴P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.【提示】如图连接PC ,只要证明PB PC =,即可推出PB PE PC PE +=+,由P E P C C E +≥,推出P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.【考点】等腰三角形的性质 12.【答案】A【解析】当0y =,则2043x x -=+,(1)(3)0x x --=,解得11x =,23x =,(1,0)A ∴,(3,0)B ,2243(2)1y x x x =+=---,∴M 点坐标为(2,1)-,平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为22(1)21y x x x =+=++.【提示】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A ,B ,M 点坐标,进而得出平移方向和距离,即可得出平移后解析式. 【考点】二次函数图象的平移交换第Ⅱ卷二、填空题 13.【答案】3x【解析】共【解析】若正比例函数.P 直角45,∴△1,∴数学试卷 第11页(共18页) 数学试卷 第12页(共18页)四边形DEMG 的面积,PAB PBC PCA S S S ∴=△△△.(2)解不等式②,得3x ≤;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为13x ≤≤.【提示】(1)移项、合并同类项即可求得答案; (2)移项、合并同类项、系数化为1即可求得答案; (3)根据不等式解集在数轴上的表示方法,画出即可;(4)根据各不等式解集在数轴上的表示,由公共部分即可确定不等式组的解集. 【考点】解不等式组 20.【答案】(1)40 30(2)平均数为15 众数为16 中位数为15【解析】(1)410%40÷=(人),10027.5257.51030m =----=;(2)平均数(134141015111612173)4015=⨯+⨯+⨯+⨯+⨯÷=,16出现12次,次数最多,众数为16;按大小顺序排列,中间两个数都为15,中位数为15.【提示】(1)÷=频数所占百分比样本容量,10027.5257.51030m =----=; (2)根据平均数、众数和中位数的定义求解即可. 【考点】统计的初步知识运用21.【答案】(1)40T ∠=40CDB ∠=(2)15CDO ∠=【解析】(1)如图①,连接AC , AT 是⊙O 切线,AB 是⊙O 的直径,AT AB ∴⊥,即90TAB ∠=,50ABT∠=,9040ABT∴∠-∠=;由AB是⊙的直径,得90ACB=,9040CAB ABC∴∠=-∠=,40CAB=;AD,50,65,65BCD∴∠∠,OA OD=65ODA OAD=∠,50ADC∠=,655015CDO ODA ADC∴∠=∠-∠=-=.90,根据的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等65,利用同圆的半径相等65,由此可得结论【考点】圆的切线性质,三角形的内角和定理,圆的相关性质,等腰三角形的性质64,45B∠,PAsin120sin64PA A=,cos120cos64AC PA A=;PCB中,45B∠=,PC BC∴,12045=120cos64120sin641200.90+≈⨯所以BP的长为153海里,BA的长为161海里.数学试卷第13页(共18页)数学试卷第14页(共18页)数学试卷 第15页(共18页) 数学试卷 第16页(共18页))点A B OB '⊥90,在Rt A '△2OA OB '-∴点A '的坐标为P 60,180120BPO ∴∠∠=-,120OPA '=,180,OB ∴,又OB PA =,∴四边形OPA A B OP '=3)设(P x45,(,)P x y ,32P ⎛-∴ ⎝30,OA 30BPA '∠=,∴∠OA AP '∴∥,PA '∥∴四边形OAPA 30A ∠=,PM ∴把32y =30时,点⎝⎭⎝⎭60,求120,由120,1PA=,证出,得出四边形B OP=45,得出点330,OAM,由直角三角形的性质求出)抛物线2y x-=(2)①由点P'与点抛物线的顶点坐标为P(10)A-,,2( P A'∴=10 m>,∴∴m的值为数学试卷第17页(共18页)数学试卷第18页(共18页)。

2017年广东省东莞市中考数学试卷含详解

2017年广东省东莞市中考数学试卷含详解

2017年广东省东莞市中考数学)含详解(试卷.2017年广东省东莞市中考数学试卷30103分)小题,每小题一、选择题(本大题共分,共51).的相反数是(5DC A B5.﹣...﹣2“”“”国家投资越来越活跃,据商务部门一带一路一带一路倡议提出三年以来,.广东企业到20164000000000美元,将年广东省对沿线国家的实际投资额超过发布的数据显示,4000000000)用科学记数法表示为(91091010D40.41010 4 CA0.410 B×××..×..3A=70°A的补角为(,则∠).已知∠20°30° D70° CA110° B....23xk=02xk4的值为(的一个根,则常数﹣ +.如果)是方程21 DB2CA1.﹣...﹣590“”的演讲比赛中,五位评委给选手小明的平分分别为:.阳光少年,,在学校举行励志青春85908095,则这组数据的众数是(,),,8085 D95 AB90 C....6.下列所述图形中,既是轴对称图形又是中心对称图形的是() BD CA.正五边形.圆.等边三角形.平行四边形7.如图,在同一平面直角坐标系中,直线y=kx(≠k(0)k≠0)与双曲线y=112ABA12B的坐标为(,则点两点,已知点的坐标为())相交于,,A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8).下列运算正确的是(3254262424?a=aDaB2a=3aaA a=a C=a aa+.)+.(..2DACABCDO9DA=DCCBE=50°)内接于⊙的大小为(,,∠.如图,四边形,则∠50° C65° DA130° B100°....BFFBCDEAC10ABCDE,下边的中点,相交于点是与.如图,已知正方形,连接,点=2SS=2SS=4SS=SS,其中正确的;③;②列结论:①;④CDFADFCEFCDFADFCEFABFADF△△△△△△△△)是(DC A B .②④.②③.①③.①④2464分)小题,每小题二、填空题(本大题共分,共2 11a a= . + .分解因式: 720°12nn= ..一个边形的内角和是,则”“ 0“=”b“”aab 13,在数轴上的对应点的位置如图所示,><或).已知实数.,则+(填5234141,,,,.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为,.随机摸出一个小球,摸出的小球标号为偶数的概率是3 8a154a3b=16b.的值为,则整式+ .已知+﹣ABCDAB=5BC=32ABCD16沿过,)操作:将矩形纸片中,,先按图(.如图,矩形纸片F3ABADEAF)操作,沿过点点的直线折叠,使点处,折痕为落在边上的点;再按图( HFGEFCHA .的直线折叠,使点落在上的点处,折痕为,则、两点间的距离为31836分)三、解答题(本大题共分,共小题,每小题10﹣π1771..计算:|﹣)|﹣(+﹣()x=x?4182,其中﹣).先化简,再求值:.(+)(3019女生每人整本,.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理1240504020680求本.共能整理本,本;若男生每人整理共能整理本,女生每人整理理本,男生、女生志愿者各有多少人?2173分)小题,每小题四、解答题(本大题共分,共BA20ABC.>∠.如图,在△中,∠EDABBC1ABDE(用尺规作图,保留作图,(分别相交于点)作边的垂直平分线,,与;痕迹,不要求写作法)AECAEB=50°21的度数.(,若∠)在(,求∠)的条件下,连接BADBAD=FADADEF21ABCD为锐角.∠都是菱形,∠,∠.如图所示,已知四边形,BF1AD;)求证:(⊥ADCBF=BC2的度数.,求∠()若22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表体重(千人数组边 4克)5045x<≤A125550x<≤Bm60x55<≤C8065x60<≤D407065x<≤E16 1m= ;((直接写出结果))填空:①C度;②在扇形统计图中,组所在扇形的圆心角的度数等于6010002千克的学生大约有多少人?名学生,(请估算九年级体重低于)如果该校九年级有2739分)小题,每小题五、解答题(本大题共分,共203A10B23y=xbaxx)两点,(,(.如图,在平面直角坐标系中,抛物线)﹣,++,交轴于CPBPy.是抛物线上在第一象限内的一点,直线轴相交于点点与2b1y=axx的解析式;()求抛物线+﹣+P2PBC的坐标;是线段()当点的中点时,求点OCB32sin 的值.()在()的条件下,求∠5AB=4,点E为线段OB上一点(不与O,如图,24.AB是⊙O的直径,B 重合),CEOBOCECDCDB的延长过点作,⊥作直径,交⊙的切线交于点,,垂足为点PAFPCFCB.,于点⊥线于点,连接(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;p3=)时,求劣弧(的长度(结果保留)当25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的A02C20DACAC,)坐标分别是(,点,上一动点(不与)和是对角线(,BDDEDBxEDEDBBDEF.以线段⊥为邻边作矩形,交轴于点,,重合),连结,作(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC 是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;3=;)①求证:(②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.625.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的20DACAA02CC,坐标分别是(),,点)和上一动点(不与(是对角线,BDDEDBxEDEDBBDEF.以线段⊥为邻边作矩形,交轴于点,,重合),连结,作(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;=3;()①求证:②设AD=x,矩形BDEF的面积为y,求y 关于x的函数关系式(可利用①的结论),并求出y的最小值.72017年参考答案与试题解析30103分)小题,每小题一、选择题(本大题共分,共51).的相反数是(5C DA B5.﹣.﹣..14:相反数.【考点】【分析】根据相反数的概念解答即可.55.的相反数是﹣【解答】解:根据相反数的定义有:D.故选:2“”“”国家投资越来越活跃,广东企业到.据商务部门一带一路一带一路倡议提出三年以来,20164000000000美元,将发布的数据显示,年广东省对沿线国家的实际投资额超过4000000000)用科学记数法表示为(910109104 C10A0.44 B0.41010 D×.××..×.1I—表示较大的数.【考点】:科学记数法n1a10a10nn的值×|<的形式,其中为整数.确定≤|【分析】科学记数法的表示形式为,an的绝对值与小数点移动的位数相同.当时,小数点移动了多少位,时,要看把原数变成10n1n是负数.时,时,原数绝对值大于是正数;当原数的绝对值小于9104000000000=4.×【解答】解:C.故选:3A=70°A的补角为(.已知∠),则∠ BA110°20°30°70° C D....IL:余角和补角.【考点】A的度数求出其补角即可.【分析】由∠A=70°,【解答】解:∵∠110°A,的补角为∴∠A故选23xk=0xk24的值为(的一个根,则常数).如果是方程﹣+A211 DC2B..﹣.﹣.A3:一元二次方程的解.【考点】 8kx=2k的值.代入已知方程列出关于的新方程,通过解方程来求【分析】把2k=02x3x的一个根,是一元二次方程﹣【解答】解:∵+2k=0322,×+﹣∴k=2.解得,B.故选:590“”的演讲比赛中,五位评委给选手小明的平分分别为:阳光少年,.,在学校举行励志青春85908095,则这组数据的众数是(,,),A95 B90 C85 D80....W5:众数.【考点】【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.9090.出现了两次,次数最多,所以这组数据的众数是【解答】解:数据B.故选6.下列所述图形中,既是轴对称图形又是中心对称图形的是() D B CA.正五边形.等边三角形.圆.平行四边形P3R5:轴对称图形.【考点】:中心对称图形;【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.D.故选7y=kxkk0A0y=与双曲线()相交于),≠.如图,在同一平面直角坐标系中,直线(≠121BA12B的坐标为(,则点两点,已知点的坐标为(),)2D2 1 2 1A2B1C1).(﹣,﹣.(﹣,﹣).(﹣,﹣).(﹣,﹣)G8:反比例函数与一次函数的交点问题.【考点】【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对 9称.AB关于原点对称,【解答】解:∵点与B12)点的坐标为(﹣.∴,﹣A.故选:8.下列运算正确的是()2432526442?a a2a=3aaBa=aA=aa Ca=a D+..(.)+.473546:同底数幂的乘法.:幂的乘方与积的乘方;【考点】:合并同类项;【分析】根据整式的加法和幂的运算法则逐一判断即可.2a=3aaA,此选项错误;【解答】解:+、523?a=aaB,此选项正确;、428=aCa,此选项错误;)、(42aaD不是同类项,不能合并,此选项错误;、与B.故选:9ABCDODA=DCCBE=50°DAC的大小为(,则∠,,∠).如图,四边形内接于⊙50°65°C D B100° 130°A....M6:圆内接四边形的性质.【考点】ABCADC的度的度数,再由圆内接四边形的性质求出∠【分析】先根据补角的性质求出∠DAC的度数.数,由等腰三角形的性质求得∠CBE=50°,【解答】解:∵∠=130°ABC=180°CBE=180°50°,﹣∠∴∠﹣ABCDO的内接四边形,为⊙∵四边形130°D=180°=50°ABC=180°,﹣∴∠﹣∠DA=DC,∵DAC==65°,∴∠C.故选 0110ABCDEBCDEACFBF,下,点与是,连接边的中点,相交于点.如图,已知正方形S=SS=4SS=2SS=2S,其中正确的;②列结论:①;④;③CDFADFABFCEFADFADFCDFCEF △△△△△△△△)是(D C AB.②④.①④.②③.①③LE:正方形的性质.【考点】AFD AFBS=SBE=EC=BC=AD,,故①正确,由由△【分析】,即可推出≌△ADFABF △△ADEC===S=2SS=4SS=2S,故②③,∥,可得,推出,CDFCEFCEFCDFADFADF△△△△△△错误④正确,由此即可判断.ABCD是正方形,解:∵四边形【解答】ADCBAD=BC=ABFAD=FAB,∴,∠∥,∠AFBAFD中,和△在△,AFDAFB,≌△∴△S=S,故①正确,∴ADF ABF△△BE=EC=BC=ADADEC,∵,∥===,∴S=2SS=4SS=2S,,∴,CDFADFCDFCEFCEFADF△△△△△△故②③错误④正确,C.故选112446分)二、填空题(本大题共分,共小题,每小题21a11aa=a.+ .分解因式:(+)53:因式分解﹣提公因式法.【考点】直接提取公因式分解因式得出即可.【分析】21a=aaa.(++【解答】解:)1aa.+()故答案为:6720°n=12n.,则边形的内角和是.一个L3:多边形内角与外角.【考点】?180°2n,依此列方程可求解.多边形的内角和可以表示成()﹣【分析】nn,边形边数为【解答】解:设所求正?180°=720°n2,﹣)则(n=6.解得”ab0“”13b““=”a,+>.<在数轴上的对应点的位置如图所示,<或.)已知实数则,(填292A:实数与数轴.【考点】:实数大小比较;“ab异号两数相加,取绝【分析】首先根据数轴判断出、的符号和二者绝对值的大小,根据”来解答即可.对值较大的符号,并用较大的绝对值减去较小的绝对值ba在原点右边,在原点左边,【解答】解:∵ba0,<<∴ba离开原点的距离大,离开原点的距离比∵ba,|>∴|||0ab.+<∴故答案为:<.5431412,,,.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为,,随机摸出一个小球,摸出的小球标号为偶数的概率是.X4:概率公式.【考点】2个,然后根据概率公式列式计算即可得解.【分析】确定出偶数有2452个,这【解答】解:∵个小球中,标号为偶数的有、,∴摸出的小球标号为偶数的概率是 21.故答案为:133b=18a6b154a. +﹣﹣.已知 +的值为,则整式33:代数式求值.【考点】6b8a的值,然后整体代入进行计算即可得解.先求出+【分析】3b=14a,【解答】解:∵+6b=28a,+∴13=6b3=28a;﹣﹣﹣+1.故答案为:﹣ABCDBC=3216ABCDAB=5沿过,先按图(.如图,矩形纸片,中,)操作:将矩形纸片FAF3DABEA)操作,沿过点落在边处,折痕为的直线折叠,使点上的点;再按图(点HAEFHFGC.处,折痕为两点间的距离为,则的直线折叠,使点落在、上的点LBPB:矩形的性质.:翻折变换(折叠问题)【考点】;HF=3EH=EFAE=AD=33AHRtAEH﹣【分析】中,连接﹣.由题意可知在如图,△中,AH=2=1,计算即可.,根据AH3.中,连接【解答】解:如图2=1HF=3AE=AD=3RtAEHEH=EF,,由题意可知在﹣△中,﹣==AH=,∴.故答案为0769-8598 8066 咨询电话东莞市虎门铧师培训中心有限公司1836分)小题,每小题三、解答题(本大题共分,共 31.10﹣π1177.+|﹣(﹣()).计算:|﹣2C6E6F:负整数指数幂.【考点】:零指数幂;:实数的运算;【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.=713=9.﹣+【解答】解:原式218x=?x4(.+))(,其中﹣.先化简,再求值:6D:分式的化简求值.【考点】x的值代入求解可得.先计算括号内分式的加法,再计算乘法即可化简原式,将【分析】=?x22x[(+))](【解答】﹣解:原式+22x=?x))﹣((+=2x,x=时,当=2.原式1930本,若男生每人整理女生每人整.学校团委组织志愿者到图书馆整理一批新进的图书.2068050401240本.求女生每人整理共能整理本,本;若男生每人整理共能整理本,理本,男生、女生志愿者各有多少人?9A:二元一次方程组的应用.【考点】xy“30本,女生每人人,根据【分析】设男生志愿者有若男生每人整理人,女生志愿者有2068050401240本,共能整理本,共能整理整理本,女生每人整理本;若男生每人整理”xy的二元一次方程组,解之即可得出结论.本、,即可得出关于yx人,【解答】解:设男生志愿者有人,女生志愿者有,根据题意得:.解得:1216人.答:男生志愿者有人,女生志愿者有3721分)小题,每小题四、解答题(本大题共分,共BABCA20.中,∠.如图,在△>∠1ABDEAB BCDE(用尺规作图,保留作图,分别相交于点,()作边的垂直平分线,与;痕迹,不要求写作法) 41AECAEB=50°21的度数.,若∠()在(,求∠)的条件下,连接KGN2—:线段垂直平分线的性质.:作图基本作图;【考点】1)根据题意作出图形即可;【分析】(2DEABAE=BEEAB=∠(的垂直平分线,得到)由于,根据等腰三角形的性质得到∠是B=50°,由三角形的外角的性质即可得到结论.1)如图所示;解:(【解答】2DEAB的垂直平分线,是()∵AE=BE,∴EAB=B=50°,∠∴∠AEC=EABB=100°.∠∠∴∠+BADBAD=ADEFFAD21ABCD为锐角.都是菱形,∠∠,∠.如图所示,已知四边形,BF1AD;⊥()求证:2BF=BCADC的度数.(,求∠)若L8:菱形的性质.【考点】 51.1DBDFAB=AD=FASASBAD证明△【分析】()连结.根据菱形四边相等得出、,再利用FADDB=DFDBFAB=AFABF在线段,那么的垂直平分线上,又,得出在线段≌△,即BFAD;的垂直平分线上,进而证明⊥2ADBFHDGBCGDG=CDCDGC=30°,⊥,证明于于)设,作.在直角△⊥中得出∠(C=150°ADC=180°.﹣∠再根据平行线的性质即可求出∠DFDB1.【解答】(、)证明:如图,连结ADEFABCD都是菱形,∵四边形,AD=DE=EF=FAAB=BC=CD=DA.∴,FADBAD中,在△与△,FADBAD,∴△≌△DB=DF,∴BFD的垂直平分线上,∴在线段AB=AF,∵BFA的垂直平分线上,∴在线段BFAD的垂直平分线,是线段∴BFAD;⊥∴BGDHBCGADBFHDG2是矩形,⊥于于,作,则四边形⊥()如图,设BFDG=BH=.∴BC=CDBF=BC,,∵CDDG=.∴CDCGD=90°DG=CDG,中,∵∠在直角△,C=30°,∴∠ADBC,∵∥C=150°ADC=180°.﹣∠∴∠ 6122.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题体重频数分布体重(组人克)50x45<≤A1255x50<≤Bm6055x<≤C806560x<≤D407065x<≤E1652m=1;(直接写出结果)()填空:①144C度;组所在扇形的圆心角的度数等于②在扇形统计图中,6010002千克的学生大约有多少人?名学生,(如果该校九年级有)请估算九年级体重低于V7VBV5:频数(率)分布表.:扇形统计图;:用样本估计总体;【考点】C1Dm 组的百分比【分析】)①根据组的人数及百分比进行计算即可得到(的值;②根据即可得到所在扇形的圆心角的度数;602千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于()根据体重低于60千克的学生数量. 71.20%=200140,)①调查的人数为:(人)÷【解答】解:(16=5240m=2001280;∴﹣﹣﹣﹣C=144°360°组所在扇形的圆心角的度数为×②;14452;故答案为:,2601000=720千克的学生大约有)九年级体重低于×((人).3927分)五、解答题(本大题共分,共小题,每小题2axbxA1y=x0B3023)两点,﹣((+,+,交)轴于,.如图,在平面直角坐标系中,抛物线PBPyC.与点轴相交于点是抛物线上在第一象限内的一点,直线2bxax1y=的解析式;+﹣(+)求抛物线2PBCP的坐标;(是线段)当点的中点时,求点32sinOCB的值.(∠)在()的条件下,求HAxH8T7:解直角三角:抛物线与:待定系数法求二次函数解析式;轴的交点;【考点】形.2axbay=xb1AB可得解析式;﹣,解得+【分析】(,)将点、+代入抛物线2C0PP1P)中抛物线解析式,易得点横坐标为可得点横坐标代入((点横坐标,将)由点坐标;3PCABCBCsin长,利用(、)由、点的坐标可得的坐标,利用勾股定理可得点坐标,OCB=∠可得结果.2axbBy=x1A可得,代入抛物线﹣+(【解答】解:+)将点、,a=4b=3,解得,,﹣24xxy=3;﹣﹣+∴抛物线的解析式为:y2C轴上,)∵点(在 81.x=0C,所以点横坐标PBC的中点,∵点是线段==Px横坐标∴点,P23y=x4xP上,﹣在抛物线+∵点﹣3==y,∴﹣PP;,∴点)的坐标为(BCP3P的中点,是线段的坐标为(,())∵点,点0=C2,的纵坐标为﹣×∴点0C,的坐标为(),∴点=BC=,∴=OCB=sin=∠.∴AB=4O CE24AB EOBOB的直径,.如图,,点重合)为线段上一点(不与,作,是⊙AFDB PCOBOCECD,于点的延长线于点,垂足为点⊥,交⊙的切线交,作直径,过点CB FPC.于点⊥,连接ECP CB1的平分线;是∠()求证:CF=CE2;()求证:=π3时,求劣弧的长度(结果保留)()当MNMC S9M2:弧长的:相似三角形的判定与性质;【考点】:垂径定理;:切线的性质;计算.1)根据等角的余角相等证明即可;【分析】( 91.ACECF=CEACF2即可;,只要证明△)欲证明(≌△3BMPF M CE=CM=CF CE=CM=CF=4aPC=4a PM=a,利用相似⊥,设于,.则(,)作BCMBM tan的值即可解决问题;,求出∠三角形的性质求出OC=OB1,()证明:∵【解答】OBC OCB=,∴∠∠ABCE PF O,∵的切线,是⊙⊥CEB=90°OCP=,∴∠∠OBC=90°BCEPCB OCB=90°,+∠+,∠∴∠∠BCP BCE=,∠∴∠PCEBC.平分∠∴AC2.)证明:连接(AB是直径,∵ACB=90°,∴∠BCE=90°ACF=90°ACEBCP,,∠∠∴∠++∠BCEBCP=,∵∠∠ACE ACF=,∴∠∠AC=ACAEC=90°F=,∠∵∠,ACEACF,∴△≌△CF=CE.∴0769-8598 8066 咨询电话东莞市虎门铧师培训中心有限公司PM=aCE=CM=CF=4aPC=4aM3BM PF CE=CM=CF,)解:作,⊥(于,设.则,PMB BMC,∵△∽△=,∴22=CM?PM=3aBM,∴a BM=,∴=tanBCM=,∠∴BCM=30°,∴∠BOC=60°OBC=OCB=,∴∠∠∠π==.∴的长 0225OABCOAC的坐标分别是是矩形,点.如图,在平面直角坐标系中,,为原点,四边形A0C0DACABD2C2(,,重合),连结,),点(是对角线,作上一动点(不与)和BDEFDBxEDEDEDB.轴于点,以线段为邻边作矩形⊥,,交2B21;()(,)填空:点的坐标为2DDECAD的长度;若不(,使得△)是否存在这样的点是等腰三角形?若存在,请求出存在,请说明理由;= 3;()①求证:xyAD=xBDEFy,并求出②设关于,矩形的函数关系式(可利用①的结论)的面积为,求y的最小值.SO:相似形综合题.【考点】BC1AB的长即可解决问题;【分析】(、)求出CDEBEKDKKCBBE2四点共圆,的中点、,连接、,取、.首先证明、()存在.连ACO=tanDBC=ACD=60°ACO=30°DCE=EDC=EBC∠∠∠,可得∠,∠由∠,推出∠,EDC=ED=ECDBC=DCE=DEC∠,推出∠∠是等腰三角形,观察图象可知,只有∠由△DC=BC=2DBCBCD=60°EBC=30°DBC=,由此即是等边三角形,推出∠,推出∠,可得△可解决问题;DCE=30°DBC=EB32DC,由此即可解决问∠()①由()可知,、、、四点共圆,推出∠题; 12DEBDxDHABH的长,构建二次函数即可解决问题;⊥表示于、.想办法用②作AOCB1是矩形,()∵四边形【解答】解:BAO=90°BCO=BC=OA=2OC=AB=2,∴,∠,∠22B.,∴)(22.,故答案为()2)存在.理由如下:(KCDKBEK BE.的中点、,连接连接,取BCE=90°BDE=,∠∵∠KD=KB=KE=KC,∴CDEB四点共圆,、、∴、EBCDCE EDC=DBC=,,∠∴∠∠∠=tan ACO=,∵∠ACB=60°ACO=30°,∠∴∠ED=ECDEC1,中,△①如图是等腰三角形,观察图象可知,只有EBC=30°EDC=DBC=DCE=,∠∴∠∠∠BCD=60°DBC=,∠∴∠DBC是等边三角形,∴△DC=BC=2,∴OA=2AOC ACO=30°Rt,中,∵∠在,△AC=2AO=4,∴2=2CD=4AD=AC.﹣∴﹣DEC AD=2是等腰三角形.时,△∴当CDE=15°DEC=DCE2CD=CEDBC=,中,∵△是等腰三角形,易知②如图∠,∠∠ADB=75°ABD=,∴∠∠AB=AD=2,∴ 2222AD.的值为综上所述,满足条件的或CE2BD3四点共圆,)可知,、、(、)①由(DCE=30°DBC=,∠∴∠DBE=tan,∠∴=.∴HAB2DH.中,作于⊥②如图ACO=30°AD=xDAH=RtADH,,∠在中,∵△∠xAH==DH=AD=x,∴,xBH=2,∴﹣=BD=RtBDH,在中,△?BD=DE=,∴2212y=6x=xBDEF, []﹣的面积为()+∴矩形242xy=x,即+﹣23y=x,)∴+(﹣yx=3 0 有最小值时,∴>∵, 32- 24 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2016·哈尔滨)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图1所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;
(3)若海静中学共有1 500名学生,请你估计该中学最喜爱律师职业的学生有多少名?
图1
2.(2016·资阳)近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图2所示的两幅不完整的统计图.
(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;
(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?
注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”(100 km≤R<150 km),B 表示“纯电动乘用车”(150 km≤R<250 km),C表示“纯电动乘用车”(R≥250 km),D为“插电式混合动力汽车”.
图2
3.(2016·荆门)秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如图3不完整的图表:
请根据上述统计图表,解答下列问题:
(1)在表中,a=_______,b=_______,c=_______;(2)补全频数直方图;
(3)根据以上选取的数据,计算七年级学生的平均成绩.
(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?
4.(2016·昆明)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或画树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.
5.(2016·成都)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.
(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);
(2)我们知道,满足a2+b2=c2的三个正整数a,b,c称为勾股数,求抽到的两张卡片上
的数都是勾股数的概率.
图4
6.(2016·陕西)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:
(1)求一次“有效随机转动”可获得“乐”字的概率;
(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或画树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.
图5
7. 一个不透明的袋子中装有20只颜色不同、质地相同的小球,5个黄球,8个黑球,7个红球。

(1)求从袋中摸出一个球,恰好是黄球的概率是多少?
(2)从袋中取出若干个黑球,搅匀后,再取出一个黑球的概率1/3,求取出了几个黑球。

8. 某商场为了吸引顾客,设立了转盘抽奖,每次消费满200元就能抽奖一次,若转盘转动停止后,指针分别落在红、黄、绿三种颜色区域,可分别获得200元、100元和50元的购物券,购物券可在商场继续购物,若消费者不愿意抽奖,可直接获得30元购物券。

(1)求转动一次转盘,获得购物券的概率。

(2)转动转盘和直接获得30元购物券,那种对消费者更有利?。

相关文档
最新文档