第二讲:三角形一边的平行线性质定理
三角形一边的平行线(二)
第3讲三角形一边的平行线(二)知识框架本讲主要讲解三角形一边平行线判定定理及推论,以及平行线分线段成比例定理;重点是理清该判定定理及其推论之间的区别和联系,难点是灵活运用本节的三个定理及两个推论,并理解和掌握“作平行线”这一主要的作辅助线的方法,为学习相似三角形的性质和判定做好准备.3.1 三角形一边的平行线判定定理及推论我们来讨论三角形一边平行线性质定理的逆命题是否正确.如图,在ABC△中,点D、E分别在边AB、AC上,如果AD AEDB EC=,那么DE//BC吗?解析:要肯定上述问题结论的正确,只要证明有一个平行四边形的相对两边分别在直线DE和BC上.如图,过点C作平行于AB的直线CF,交直线DE于点F,得四边形BCFD.证明:∵CF//AB∵AD AECF EC=(三角形一边平行线性质定理的推论)又∵AD AE DB EC=∵ AD ADCF DB=,得CF DB=.由CF//DB,CF DB=,可知四边形BCFD是平行四边形∵ DF//BC,即DE//BC.根据比例的性质可知,在关系式∵AD AEDB EC=、∵AD AEAB AC=、∵BD CEAB AC=中,由其中一个可推出其余两个.因此,以关系式∵、∵、∵之一为已知条件,都可推出DE//BC.这样,就得到以下定理:三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,如果点D 、E 分别在边AB 、AC 的延长线或反向延长线上,且具备条件∵、∵、∵之一,那么也可以用上述同样的方法推出DE //BC .由此由得到:三角形一边的平行线判定定理的推论 如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.思考:如图,点D 、E 分别在边AB 、AC 上,如果DE ADBC AB=,那么能否得到DE //BC ,为什么?例1. 如图,在ABC △中,点D 、E 分别在边AB 、AC 上,根据下列条件,试判断DE 与BC是 否平行. (1)3cm AD =,4cm DB =, 1.8cm AE =, 2.4cm CE =; (2)6cm AD =,9cm BD =,4cm AE =,10cm AC =; (3)8cm AD =,16cm AC =,6cm AE =,12cm AB =;(4)2AB BD =,2AC CE =.例2. 如图,::1:3AM MB AN NC ==,则:MN BC =__________.例1题图 例2题图例题分析例3. 如图,ABC △中,E 点在边AB 上,F 点在边AC 上,下列命题中不正确的是( )(A )若EF //BC ,则AE AFEB FC=; (B )若AE AFEB FC=,则EF //BC ; (C )若EF //BC ,则AE EFAB BC=;(D )若AE EFAB BC=,则EF //BC . 例4. 如图,点D 、F 在ABC △的边AB 上,点E 在边AC 上,且DE //BC ,AF ADAD AB=.求证:EF //DC .例5. 点D 、E 分别在ABC △的边AB 、AC 上,且DE //BC ,以DE 为一边作平行四边形DEFG ,延长BG 、CF 交于点H ,连接AH ,求证:AH //EF .例6.如图,M为AB的中点,EF//AB,联结EM、FM分别交AF、BE于点C和点D.求证:CD//AB.例7.如图,在菱形ABCD中,点E、F分别在边BC、CD上,BAF DAE∠=∠,AE与BD交于点G,又DF AD FC DF=.求证:四边形BEFG是平行四边形.3.2 平行线分线段成比例定理如图,已知ABC△,直线1l与边AB、AC分别相交于点D、E,直线2l与边AB、AC分别相交于点F、G,12////l l BC.那么所截得的线段是否成比例?解析:对于这个问题,只需讨论DF EGFB GC=是否成立即可.证明:如图,过点D作直线AC的平行线'l,设直线'l与BC、2l分别交于点'C、'G,则'DG EG=,''G C GC=.利用三角形一边的平行线的性质定理和等量代换,可得DF EGFB GC=.根据上述结论,在利用比例的性质,可知截得的线段成比例.如图,将ABC△的三边AB AC BC、、改为三条直线,则上述结论表述为:直线DB与EC被三条平行的直线所截,截得的对应线段成比例.于是得到:平行线分线段成比例定理两条直线被三条平行线所截,截得的对应线段成比例.如图5,当直线2l过DB中点M,即DM MB=时,则EN NC=.也就是说:两直线被三条平行线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.这是平行线分线段成比例定理的特例,也称为平行线等分线段定理.例1.如图,1l//2l//3l,3AB=,8AC=,10DF=,则EF的长为__________.例1题图知识精讲例题分析例2. 如图,直线1l 、2l 、3l 分别交直线4l 于点A 、B 、C ,交直线5l 于点D 、E 、F ,且1l //2l //3l .已知3AB =,5AC =,9DF =,则EF 的长为________.例3. 如图,ABC △中,90C ∠=︒,四边形EDFC 为内接正方形,5AC =,3BC =,则:AE DF =___________.例2题图 例3题图例4. 命题“梯形ABCD 中,AD //BC ,点E 、F 在AB 、CD 上,且::AE EB DF FC =,则EF //BC ”是__________命题.(填“真”或“假”) 例5. 已知线段a 、b 、c ,求作线段x ,使::a b c x =.例6. 如图,AB 、CD 、EF 都垂直于直线l ,12AB =,7EF =,:2:3BD DF =,求CD 的长.例7. 如图,ABC △中,M 为BC 中点,O 为AM 上一点,BO 的延长线交AC 于点D ,CO的延长线交AB 于点E ,PQ //BC ,且PQ 过点O 与AB 、AC 分别交于点P 和点Q .求证:(1)PO OQ =;(2)DE //BC .例8. 如图,在等腰梯形ABCD 中,AB //CD ,两对角线AC 和BD 相交于点O ,过点O 作EF//AB ,且10EF =,若:1:3AE ED =,求梯形ABCD 中位线的长.例9. 如图,已知点A 、C 、E 和点B 、F 、D 分别是O ∠两边上的点,且AB //ED ,BC//EF .求证:AF //CD .例10.如图,M、N分别是ABC△两边AB、AC的中点,P是MN上任一点,延长BP、CP交AC、AB于K、H,求AH AKHB KC+的值.例11.如图,矩形ABCD中,AC、BD相交于点O,OE BC⊥于点E.(1)连接DE交OC于点F,作FG BC⊥于点G,求证:点G是线段BC的一个三等分点;(2)请你仿照(1)的作法,在原图上作出BC的一个四等分点(要求保留作图痕迹,可不写作法及证明过程).3.3 课堂检测1. 如图,ABC △中,点D 、E 分别在边AB 、AC 上,已知=3AD ,5AB =,2AE =,43EC =,由此判断DE 和BC 的位置关系是__________,理由是_________________________.2. 在ABC △中,直线DE 交AB 于点D ,交AC 于点E ,以下能推出DE //BC 的条件是( )(A )23AB AD =,12EC AE =; (B )23AD AB =,23DE BC =;(C )23AD DB =,23CE AE =; (D )43AD AB =,43AE EC =.3. 在ABC △中,点D 、E 分别在边AB 和BC 上,2AD =,3DB =,10BC =,要使DE//AC ,则BE =__________. 4. 如图,ABC △中,DE //BC ,AF ADDF DB=,求证:EF //CD .5. 如图,已知AD //BE //CF ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F .(1)如果6AB =,10BC =,8EF =,求DE 的长; (2)如果:3:5DE EF =,24AC =,求AB 、BC 的长.6. 如图,平行四边形ABCD 中,AC 、BD 相交于点O ,2AB =,3BC =,1AF =,BA的延长线交OF 的延长线于点E ,求AE .7. 如图,在ABC △中,点E 、F 分别在AB 、AC 上,且EF //BC ,D 为BC 的中点,ED 、FD 的延长线分别交AC 、AB 的延长线于点H 、点G ,连接HG ,求证:EF //GH .8. 如图1,在菱形ABCD 中,点G 是CD 边上的一点,联结BG 交AC 于F ,过F 作FH//CD 交BC 于H ,可以证明结论FH FGAB BG=成立(不必证明). (1)如图2,上述条件中,若点G 在CD 的延长线上,其他条件不变时,结论FH FGAB BG=是否仍成立?若成立,请给出证明;若不成立,请说明理由;(2)在(1)的条件下,若已知4AB =,60ADC ∠=︒,9CG =,求线段BG 与FG 的长.BC=,在线段AB上9.如图,矩形ABCD中,对角线AC、BD相交于点O,4AB=,3取一点P,过点P作AC的平行线交BC于点E,连接EO,并延长交AD于点F,连接PF.(1)求证:PF//BD;(2)设的AP长为x,PEF△的面积为y,求y与x的函数关系式,并写出它的定义域.3.4 课后作业1. 在A ∠的一边上顺次有B 、C 两点,在另一边上顺次有D 、E 两点,下列条件能判断BD //CE 的个数是().(1)3cm AB =,4cm BC =, 1.8cm AD =, 2.2cm DE =; (2):2:3AB AD =, 1.8cm AE =, 1.2cm AC =; (3)5cm AB =,6cm BC =, 4.4cm AE =, 2.4cm DE =; (4)10cm AB =,15cm AC =,10cm BD =,15cm EC =. (A )1个;(B )2个;(C )3个;(D )4个2.ADE △中,点B 和点C 分别在AD 、AE 上,且2AB BD =,2AC CE =,则:BC DE =_______.3. 已知点D 、E 分别是ABC △的边AB 、AC 的反向延长线上的点,如果25AD AB =, 当=AEAC_______时,BD //CE . 4. 如图,在ABC △中,点D 、E 、F 分别在AC 、AB 、BC 上,且3DE =, 4.5BF =,25AD AE AC AB ==.求证:EF //AC .5. 如图,在梯形ABCD 中,EF //AB //CD ,两对角线AC 和BD 相交于点O ,且分别与EF相交于点M 、N ,下列比例式中正确的是( )(A )AO BO ABCO DO CD ==; (B )AM BN MNCM DN AB ==; (C )AE AB BF DE CD CF==;(D )BD AC ABDN CM MN==. 6. 如图,1l //2l ,:2:5AF FB =,:4:1BC CD =,则不成立的是( )(A ):2:1AE EC =; (B ):2:5FG GD =; (C ):2:5GF FD =;(D ):1:2AG BC =第5题图 第6题图7. 如图,直线1l //2l //3l ,若5cm AB =,8cm BC =,2cm EG =,3cm GF =,求线段DE 与GC 的长.8. 如图,已知线段AB ,在线段AB 上求作一点C ,使得:1:2AC BC =.9. 如图,ABC △中,90C ∠=︒,点G 是三角形的重心,8AB =. (1)求GC 的长;(2)过点G 的直线MN //AB ,交AC 于点M ,交BC 于点N ,求MN 的长.AB10. 如图,E 、F 、G 、H 分别是四边形ABCD 各边的点,且AE FD EB AF ⋅=⋅,BG HC GC DH ⋅=⋅,连接EH 、GF 相交于点O .求证:OE GO FO OH ⋅=⋅.11. 如图,D 是线段BC 上一点,且23BD DC =,CE 交AB 于点F ,:1:3AE ED =, 求:AF BF 的值.12. 梯形ABCD 中,点E 在AB 上,点F 在CD 上,且AD a =,BC b =.(1)如图(a ),如果点E 、F 分别为AB 、CD 的中点,求证:EF //BC 且2a bEF +=; (2)如图(b ),如果AE DF mEB FC n==,判断EF 和BC 是否平行,并证明你的结论,并用a 、b 、m 、n 的代数式表示EF .图(a ) 图(b )。
三角形一边的平行线性质定理
1.
三角形一边平行线性质定理: 平行于三角形一边的直线截其他两边所在直线, 截得的对应线段成比例。 三角形一边平行线性质定理推论 平行于三角形一边的直线截其他两边所在 的直线,截得的三角形的三边与原三角形的三边 对应成比例。
三角形重心性质 三角形的重心到一个顶点的距离,等于它 到这个顶点对边中点的距离的两倍。
6. 如图,在△ABC中,DE//BC,AE=3,DE=4,
4.5 DF=2,CF=5, 则EC的长为______.
7. 如图,菱形ADEF内接于△ABC,AB=16, BC=14,,
8 则BE=_______.
8. 在
ABCD中,点E在DC上,若DE:EC=1:2,则
3:5 BF:BE=_________.
2.例题分析
1、如图,△ABC与△DEF是相似图形, 且AB=1.7cm,BC=2.9cm,AC=3.7cm,DE=3.4cm, A 50 , B 70
求 DF,EF,∠C, ∠D, ∠E, ∠F.
A D
B
C
Eቤተ መጻሕፍቲ ባይዱ
F
问题拓展
两个矩形、两个等腰三角形、两个正方形、 两个等腰直角三角形一定是相似图形吗?为什么呢?
(二)、某两地的实际距离是5000米,画在地图上的距离是 20厘米,求图距与实际距离之比是多少?
24.2 比例线段(1)
图形的相似与线段长度的比及比例有密切关联, 为了研究相似形,需先研究比例线段。 一般来说,两个数或两个同类的量 a与b相除,叫 b 做a与b的比,记作a:b(或表示为 a ),其中b≠0, a除以b 所得的商叫做比值,如果a:b的比值等于k, 那么a =kb。
24.1 放缩与相似形
一、 情景引入
三角形一边的平行线知识讲解
三角形一边的平行线 知识讲解责编:常春芳【学习目标】1、掌握三角形一边的平行线性质定理及推论;判定定理及推论;以及平行线分线段成比例定理的推导与应用;2、了解三角形的重心的意义和性质并能应用它解题;3、经历运用分类思想针对图形运动的不同位置分别探究的过程,初步领略运用运动观点、化归和分类讨论等思想进行数学思考的策略.【要点梳理】要点一、三角形一边的平行线性质定理及推论1.性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.要点诠释:(1)主要的基本图形:分A 型和X 型;A 型 X 型(2)常用的比例式:,,AD AE AD AE DB EC DB EC AB AC AB AC=== 3.三角形的重心:三角形三条中线的交点叫做三角形的重心.要点诠释:(1)重心的性质:三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.(2)重心的画法:两条中线的交点.要点二、三角形一边的平行线判定定理及推论1.判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.2.推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.要点诠释:判断平行线的条件中,只能是被截的两条直线的对应线段成比例(被判断的平行线本身不能参与作比例).要点三、平行线分线段成比例定理1.性质定理:两条直线被三条平行的直线所截,截得的对应线段成比例.2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.要点诠释:(1)平行线等分线段定理是平行线分线段成比例定理的特例;(2)平行线分线段成比例没有逆定理;(3) 由于平行线分线段成比例定理中,平行线本身没有参与作比例,因此,有关平行线段的计算问题通常转化到“A”、“X”型中.【典型例题】类型一、三角形一边的平行线性质定理1. 如图已知直线截△ABC 三边所在的直线分别于E 、F 、D 三点且AD=BE.求证:EF:FD=CA :CB.【答案与解析】过D 作DK ∥AB 交EC 于K 点.则,,即 又∵AD=BE ,∴.【总结升华】运用三角形一边的平行线性质定理,即只要有平行线就可推出对应线段成比例.举一反三【变式】如图,在⊿ABC, DG ∥EC, EG ∥BC,求证:2AE AB AD =⋅ 【答案】∵DG ∥EC,∴AD AG AE AC=, ∵EG ∥BC,∴AE AG AB AC =, ADEG∴AD AE AE AB=, 即2AE AB AD =⋅.2.已知,△ABC 中,G 是三角形的重心, AG ⊥GC ,AG=3,GC=4,求BG 的长.【答案与解析】延长BG 交AC 于点D,∵G 是三角形的重心,∴点D 是线段AC 的中点,又∵AG ⊥GC ,AG=3,GC=4,∴AC=5,即DG=,∵BG:GD=2:1.∴BG=5.【总结升华】三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.类型二、三角形一边的平行线判定定理3. 如图,AM 是△ABC 的中线,P 是AM 上任意一点,BP 、CP 的延长线分别交AC 、AB 于E 、D 两点.求证:DE ∥BC.【答案与解析】延长AM 到H ,使HM=MP ,连接BH 、CH∵BM=MC∴四边形BPCH 是平行四边形GBCA∵BH∥CD,CH∥BE在△ABH和△ACH中,有,∴DE∥BC【总结升华】平行线所截得的对应线段成比例,而两条平行线中的线段与所截得的线段不成比例.举一反三【变式】如图,在△ABC(AB>AC)的边AB上取一点D,在边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P,求证:BP BD CP CE=.【答案】过点C作CF∥AB交DP于点F, ∵CF∥AB,∴∠ADE=∠EFC∵AD=AE,∴∠ADE=∠AED=∠FEC∴∠EFC=∠FEC∴CF=CE∵CF∥AB∴BP BD CP CF=,即BP BD CP CE=.类型三、平行线分线段成比例定理4. 如图,已知点D、F在△ABC的边AB上,点E在边AC上,且DE∥BC,,求证:EF∥DC.【答案与解析】证明:∵DE∥BC,∴=,∵=,∴=,∴=,∴EF∥DC.【总结升华】本题考查了平行线分线段成比例.注意找准对应关系,以防错解.举一反三【变式】如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A.12B. 2C.25D.35【答案】D提示:∵AG=2,GB=1,∴AB=AG+BG=3,∵直线l1∥l2∥l3,∴=,。
24.3(3)三角形一边的平行线
H
6.如图,在Rt△ABC中,∠ACB=90°.半径为1的圆A与 边AB相交于点D,与边AC相交于点E,连结DE并延长, 与线段BC的延长线交于点P. (3)若 ,设CE=x,△ABC的周长为y,求y关于x的函数 关系式.
H
6.过△ ABC的顶点C任作一直线,与边AB及中 线AD分别交于和E.求证:AE:ED=2AF:FB
三角形一边的 平行线的判定
1.三角形一边的平行线的性质定理
平行于三角形一边的直线截其他两 边所在的直线,截得的对应线段成 比例.
字母 A 型
A
复 习
字母 X 型
E D
A
D B
E C
B C
2.三角形一边的平行线的性质定理的推论
平行于三角形的一边的直线,截其它两 边所在的直线,截得的三角形的三边与 原三角形的三边对应成比例.
所得的对应线段成比例,那么
A
这条直线平行于三角形的第三边
AD AE 已知: DB EC 求证: DE∥BC
C
D B
E’
E
问题二
AB AC 已知: AD AE
A求证: DE∥BC NhomakorabeaB D
C E
问题三
AD AE 已知: AB AC
求证: DE∥BC
E D
A
M
N
B
C
1.三角形一边的平行线的判定定理 A
问题四
AD DE 若 那么 DE∥BC吗? AB BC 你能举反例吗?
A
A
E'
D B
E C
B
D
E C
练一练
1. △ABC的边AB、AC上各有一点D、E, 使DE//BC的条件是( )
沪教版 九年级数学 暑假同步讲义 第3讲 三角形边的平行线(二)(提高版)
三角形一边的平行线是九年级数学上学期第一章第二节的内容,本讲主要讲解三角形一边平行线判定定理及推论,以及平行线分线段成比例定理;重点是理清该判定定理及其推论之间的区别和联系,难点是灵活运用本节的三个定理及两个推论,并理解和掌握“作平行线”这一主要的作辅助线的方法,为学习相似三角形的性质和判定做好准备.1、三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.2、三角形一边的平行线判定定理推论如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,在ABC∆中,直线l 与AB、AC 所在直线交于点D和点E,如果AD AEDB EC=那么l//BC.三角形一边的平行线(二)内容分析知识结构模块一:三角形一边的平行线判定定理及推论知识精讲AB CD EAB CD E AB CDE2 / 13ABC DEFM A B C D PNMABCDEF【例1】 点D 、E 分别在ABC ∆的边AB 、AC 上,如果DE ADBC AB=,能否得到DE //BC ,为什么?【例2】 如图,M 为AB 的中点,EF //AB ,联结EM 、FM 分别交AF 、BE 于点C 和点D .求证:CD //AB .【例3】 如图,MC //ND ,且::PB AB PD CD =.求证:BN //AM .【例4】 如图,D 、F 是ABC ∆的AB 边上的两点,满足2AD AF AB =.联结CD ,过点F 作FE //DC ,交边AC 于点E ,联结DE . 求证:DE //BC .例题解析ABC A’B’ C’OA BCD EF GH【例5】 如图,AC //''A C ,BC //''B C .求证:AB //''A B .【例6】 将上题中的四边形OABC 绕点O 旋转180︒得下图,而其他已知条件不变,结论还成立吗?【例7】 点D 、E 分别在ABC ∆的边AB 、AC 上,且DE //BC ,以DE 为一边作平行四边形DEFG ,延长BG 、CF 交于点H ,连接AH ,求证:AH //EF .AB CA’B’C’O4 / 13AB CDEFG k A DBCE F P QA B CDEF GABCDEFOGH【例8】 如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD 上,BAF DAE ∠=∠,AE 与BD 交于点G ,又DF ADFC DF=. 求证:四边形BEFG 是平行四边形.【例9】 如图,E 、F 、G 、H 分别是四边形ABCD 各边的点,且AE FD EB AF =,BG HC GC DH =,连接EH 、GF 相交于点O .求证:OE GO FO OH =.【例10】 如图,在梯形ABCD 中,AD //BC ,AD a =,BC b =,E 、F 分别是AD 、BC 的中点,且AF 交BE 于P ,CE 交DF 于Q ,求PQ 的长.【例11】 如图,点G 是ABC ∆的重心,过点G 作直线k ,交AB 于点E ,交AC 于点F .求证:1BE CFAE AF +=.ABA BCNMG1、 平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例. 如图,直线1l //2l //3l ,直线m 与直线n 被直线1l 、2l 、3l 所截,那么DF EGFB GC=.2、 平行线等分线段定理两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上截得的线段也相等.【例12】 如图,已知线段AB ,在直线AB 上求作一点C ,使得:1:2AC BC =.【例13】 如图,ABC ∆中,90C ∠=︒,点G 是三角形的重心,8AB =.(1)求GC 的长;(2)过点G 的直线MN //AB ,交AC 于点M ,交BC 于点N ,求MN 的长.模块二:平行线分线段成比例定理知识精讲例题解析BCD E FG6 / 13ABCDEFlABDCE FABCD EOP QM【例14】 如图,D 是线段BC 上一点,且23BD DC =,CE 交AB 于点F ,:1:3AE ED =,求:AF BF 的值.【例15】 如图,AB 、CD 、EF 都垂直于直线l ,12AB =,7EF =,:2:3BD DF =,求CD 的长.【例16】 如图,ABC ∆中,M 为BC 中点,O 为AM 上一点,BO 的延长线交AC 于点D ,CO 的延长线交AB 于点E ,PQ //BC ,且PQ 过点O 与AB 、AC 分别交于点P 和点Q .求证: (1)PO OQ =; (2)DE //BC .A BCPNM H KA BCD EFOABCDEFO【例17】 如图,在等腰梯形ABCD 中,AB //CD ,两对角线AC 和BD 相交于点O ,过点O 作EF //AB ,且10EF =,若:1:3AE ED =,求梯形ABCD 中位线的长.【例18】 如图,已知点A 、C 、E 和点B 、F 、D 分别是O ∠两边上的点,且AB //ED ,BC //EF .求证:AF //CD .【例19】 如图,M 、N 分别是ABC ∆两边AB 、AC 的中点,P 是MN 上任一点,延长BP 、CP 交AC 、AB 于K 、H ,求AH AKHB KC +的值.8 / 13ABCDPABCDE FGO【例20】 如图,矩形ABCD 中,AC 、BD 相交于点O ,OE BC ⊥于点E .(1)连接DE 交OC 于点F ,作FG BC ⊥于点G ,求证:点G 是线段BC 的一个三等分点;(2)请你仿照(1)的作法,在原图上作出BC 的一个四等分点(要求保留作图痕迹,可不写作法及证明过程).【例21】 如图,ABC ∆中,12BC =,82AC =45C ∠=︒,P 是BC 边上的一个动点,过点P 作PD //AB 与AC 相交于点D ,连接AP ,设线段BP 的长为x ,APD ∆的面积为y .(1)求y 与x 之间的函数关系式,并指出函数的定义域;(2)是否存在一个位置的点P ,使APD ∆的面积等于APB ∆的面积的13?如果存在,求出BP 的长;如果不存在,请说明理由.ABC D EF GHABCD E FABCDEFO【习题1】如图,已知AD //BE //CF ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F .(1)如果6AB =,10BC =,8EF =,求DE 的长; (2)如果:3:5DE EF =,24AC =,求AB 、BC 的长.【习题2】如图,平行四边形ABCD 中,AC 、BD 相交于点O ,2AB =,3BC =,1AF =,BA 的延长线交OF 的延长线于点E ,求AE .【习题3】如图,在ABC ∆中,点E 、F 分别在AB 、AC 上,且EF //BC ,D 为BC的中点,ED 、FD 的延长线分别交AC 、AB 的延长线于点H 、点G ,连接HG ,求证:EF //GH .随堂检测10 / 13ABCDEFOPA B C DFGH【习题4】如图1,在菱形ABCD 中,点G 是CD 边上的一点,联结BG 交AC 于F ,过F 作FH //CD 交BC 于H ,可以证明结论FH FGAB BG =成立(不必证明). (1)如图2,上述条件中,若点G 在CD 的延长线上,其他条件不变时,结论FH FGAB BG=是否仍成立?若成立,请给出证明;若不成立,请说明理由; (2)在(1)的条件下,若已知4AB =,60ADC ∠=︒,9CG =,求线段BG 与FG 的长.图1图2【习题5】如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,4AB =,3BC =,在线段AB 上取一点P ,过点P 作AC 的平行线交BC 于点E ,连接EO ,并延长交AD 于点F ,连接PF . (1)求证:PF //BD ;(2)设的AP 长为x ,PEF ∆的面积为y ,求y 与x 的函数关系式,并写出它的定义域.ABCD FG HABCDEF ABCD E F ONMABCDE FG【作业1】如图,在ABC ∆中,点D 、E 、F 分别在AC 、AB 、BC 上,且3DE =,4.5BF =,25AD AE AC AB ==. 求证:EF //AC .【作业2】如图,在梯形ABCD 中,EF //AB //CD ,两对角线AC 和BD 相交于点O ,且分别与EF 相交于点M 、N ,下列比例式中正确的是( )A .AO BO AB CO DO CD== B .AM BN MNCM DN AB==C .AE AB BF DE CD CF ==D .BD AC AB DN CM MN==【作业3】如图,1l //2l ,:2:5AF FB =,:4:1BC CD =,则不成立的是(////) A .:2:1AE EC = B .:2:5FG GD = C .:2:5GF FD = D .:1:2AG BC =课后作业12 / 13ABCDEFABCDE F ABA BCD E FG【作业4】如图,直线1l //2l //3l ,若5AB cm =,8BC cm =,2EG cm =,3GF cm =,求线段DE 与GC 的长.【作业5】 如图,已知线段AB ,在线段AB 上求作一点C ,使得:2AC BC =【作业6】梯形ABCD 中,点E 在AB 上,点F 在CD 上,且AD a =,BC b =. (1) 如图(a ),如果点E 、F 分别为AB 、CD 的中点,求证:EF //BC 且2a bEF +=; (2) 如图(b ),如果AE DF mEB FC n==,判断EF 和BC 是否平行,并证明你的结论,并用a 、b 、m 、n 的代数式表示EF .F E A (D)B CNMBCNMB CNMADE F ADEF 【作业7】 已知MN //EF //BC ,点A 、D 为直线MN 上的两动点,AD a =,BC b =,AE mBE n=. (1)当点A 、D 重合,即0a =时(如图1),试求EF ;(用含a 、b 、m 、n 的代数式表示)(2)请直接应用(1)的结论解决下面问题:当A 、D 不重合,即0a ≠,○1如图2这种情况时,试求EF ;(用含a 、b 、m 、n 的代数式表示) ○2如图3这种情况时,试猜想EF 与a 、b 之间有何种数量关系?并证明你的猜想.。
初三数学第二课
CBDCCB初三数学第二课:三角形一边的平行线(一)知识要点:1.三角形一边平行线性质定理:平行于三角形一边的直线截其它两边所在直线,截得的线段对应成比例.2.推论:两边所在的直线,原三角形的三边对应成比例.性质定理和推论的推理表达式为:如图:1.∵DE∥BC∴2.∵DE∥BC∴3.三角形的重心定理:三角形的重心到一个顶点的距离,等于它到对边中点距离的两倍.如图:点G是△ABC重心,则AG=2GD例题讲解:例题1.如图,已知D E∥BC,AE:EC=3:2,BD=4,BC=15,求DE和AB例题2.如图,△ABC是等腰直角三角形,点G是其重心,GD∥AB,求DG:BC的值.例题3.如图,已知梯形ABCD的对角线交于点O,过点O作MN∥BC交AB与点M,交CD于点N.求证:OM=ON12(第1题)B (第2题)B(第3题)(第4题)C D CB A(第7题)A(第8题)(第1题)(第2题)(第3题)CB(第4题)巩固练习: 一. 选择题:1.如图,在△ABC 中,D E ∥BC,DF ∥AC,则下列比例式中正确的是( )A.AE ECBC FC D AC DF BC DE C FBCFEC AE B BCDEEC AE ====...2.如图, 在△ABC 中,D E ∥BC,若) (S :S ,32ADC ADE ==∆∆则DB AD A.2:3 B.4:9 C.2:5 D.3:53.如图,在△APM 中,N 是MP 上一点,C 为AP 上一点,且B N ∥AM,ND ∥MC, 则下列结论正确的是( ) A.NCNDNB MA D MCNDPB PA C PDPCPB PA B NMPNDA PD ====...4.如图,四边形ADEF 是菱形,且AB=14cm ,BC=12cm ,AC=10cm,则BE=( ) A .5cm B.6cm C.7cm D.8cm5.已知,线段a,b,c,求做线段x ,使2ax=bc ,则可能正确的是( )6. 在△ABC 中,D,E 分别在BA 和CA 的延长线上, D E ∥BC,下列等式成立的是( )ECEA DB DA D BC DE DB DA C AB EA AC DA B EC AC DB DA A ====....7.如图, 在△ABC 中,AC=8,BC=6,EC=5,且D E ∥BC,则DE=( )A.320.25.518.49D C B8.如图,在直角△ABC 中,∠C=90°,中线BF,AE 相交于点G, 若AB=2,则CG=( ) A.1 B.0.5 C.31.32D 二.填空题:1.如图,在△ABC 中,D E ∥BC,AC=9,DB=2,AD=4,则AE=2.如图,C,D 在△AOB 两边AO,BO 的延长线上,A B ∥CD,且OA=2,OC=3,AB=5,BD=6,则OB=3.如图,在△ABC 中,D E ∥BC,32=EC AE ,DE=5,则BC= 4.如图,已知在梯形ABCD 中,AD ∥BC,AD=3,BC=8,AB=4,两腰的延长线相交于点E,则EA=3(第5题)B(第8题)CB(第7题)C(第10题)C(第9题)C(第11题)DBDPC5.如图,在△ABC 中,D E ∥BC,EF ∥AB,23DB AD ,FC=4,则DE= 6.如图,E 是□ABCD 中AD 边上一点,且ED=2AE,BE 和AC 交于点F,则AF:FC= 7.如图,在△ABC 中,D E ∥BC,AD:DB=4:3,则DE:BC=8.如图,DE ∥AB,DF ∥BC,AD:AC=2:3,AB=9,BC=6,则□BEDF 的周长为9.如图, △ABC 的两条中线BD,CE 交于点G , E F ∥BD,则AF:FC= 10.如图,在△ABC 中,D E ∥BC,且AD:AB=2:3,则EO:EB= 11.如图,在△ABC 中,E 是AC 的中点,DC=BC,则DE:EF=12.如图,A C ∥BD,则线段x 是线段 的第四比例项。
三角形的一边的平行线判定定理及其推论
三角形的一边的平行线判定定理及其推论好嘞,今天咱们来聊聊三角形和它的一边的平行线判定定理。
这听起来可能有点枯燥,不过别担心,我会尽量让它变得有趣,咱们就当是在喝茶聊天,轻松一下。
三角形,哎,这个小家伙,虽然形状简单,但在几何里可真是个大明星。
它有三个角、三条边,看似平常,但却隐藏了很多有趣的秘密。
说到平行线,这个词儿你肯定不陌生,生活中到处都是平行线,比如铁轨、马路两旁的树,咱们平时走路、开车都在和它们打交道。
啥是三角形的一边的平行线判定定理呢?想象一下,你有一个三角形,像个披萨切了三角形,感觉都饿了。
现在在这三角形的某一边,咱们要画一条平行线,这条线就得和三角形的一边保持平行。
根据这个定理,如果你能找到一个角的对边与这条平行线相交,哎,你会发现这个三角形的某个角和交点的角是相等的,真是个神奇的现象!就像在舞会上,两个人跳舞时,竟然有一个神秘的默契,动作一模一样。
这个小小的定理告诉我们,平行线和三角形之间的关系其实是非常亲密的。
再说说这个定理的推论,听起来好像很高深,其实不然。
咱们看看,平行线有啥妙用。
比如,在生活中设计房子,建筑师经常得用到这些原理。
他们在画图时,得确保墙壁、窗户和楼梯的设计是多么的和谐,跟平行线就有着密不可分的联系。
你说,这能不重要吗?设计一个好房子,简直就像造一个美丽的梦,谁不想住得舒服呢?再举个例子,咱们在学校学几何的时候,老师总是让我们找角、找边,甚至让我们画图。
每次拿起尺子,哎呀,心里就会想,能不能一次性把这个图画得漂亮些。
掌握了平行线的定理,画三角形就像骑自行车一样,越骑越顺手。
你会发现,只要你能找到平行线和三角形的那些联系,画图再也不会是个麻烦事。
如果说生活是一本书,那么几何就像是其中的一章,虽然有点难懂,但只要细细品味,里面的智慧和乐趣就会慢慢显露。
三角形的一边的平行线判定定理,虽然简单,却在不知不觉中教会我们许多道理。
比如,平行线代表着一种稳定和平衡的状态,就像人际关系中那些相互理解的朋友,总是在一条线上,互不干扰却又相互支持。
三角形一边平行线性质定理题型+答案详解
基础知识点三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边所在直线,截得的对应线段成比例。
如图(1),若DE//BC ,则AD AE DB EC =或AD AE AB AC =或DB CEAB AC =如图(2),若DE//BC ,则AB AC AE AD =或AB AC EB DC =或EA DAEB DC=EDE(2)(1)CBADC BA三角形一边的平行线性质定理推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例。
如图(1)已知:△ABC 中,点D 、E 分别在AB 、AC 上,且DE//BC ,则AD DE AEAB BC AC==; 如图(2)已知:△ABC 中,点D 、E 分别在CA 、BA 的延长线上,且DE//BC ,则AB BC ACAE DE AD==. EDE(2)(1)CBADC BA同高(或等高)的两个三角形的面积之比等于对应底边的比(2)(1)DCBADCBA如图(1):ABD ADCS BDSDC =如图(2):若AD//BC,则ADC ABCS ADSBC=三角形重心(三中线交点):三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍。
1、三角形三条中线交于一点,三角形三条中线的交点叫做三角形的重心。
2、三角形的重心到一个顶点的距离,等于它到这个顶点对边中点距离的两倍。
例题解析如图,在ABC ∆中,DE //BC ,下列各式中错误的是( ). A.AD AB AE AC = B.BD EC AD AE = C.AD DE DB BC = D.AE DEAC BC =答案:C变式:如图,已知在ABC ∆中,DE //BC ,EF //CD ,那么下列线段的比中与AEAC相等的有( )个。
①AF AB②AF AD ③FD FB④ADABA.0B.1C.2D.3答案:C,①和④例题讲解:在△ABC 中,DE//BC ,DE 与AB 相交于D ,与AC 相交于E 。
三角形与底边平行线定理
三角形与底边平行线定理三角形与底边平行线定理是几何学中的重要定理之一,它为我们研究三角形提供了有力的工具和方法。
本文将从定理的表述、证明、应用以及实际生活中的意义等多个方面,全面介绍三角形与底边平行线定理。
三角形与底边平行线定理是指:如果一条直线与一个三角形的两条边分别相交,并且与第三边平行,那么这条直线将三角形分割成两个面积相等的小三角形。
首先,我们来看一下该定理的证明过程。
假设有一个三角形ABC,其中直线DE与AB、AC两边相交,并且DE与BC平行。
要证明的是,面积(△ADE)=面积(△BDEC)。
证明过程如下:首先,连接BD和CE,得到四边形BCDE。
因为DE与BC平行,所以由平行线定理可知,△BEC与△BDE是相似三角形,而且它们的相似比为BC:BD=CE:DE。
又因为△ABC与△AED有相同的高,且底边分别为AB和DE,所以它们的面积比为面积(△ADE):面积(△ABC) = DE:AB。
即面积(△ADE) = (DE/AB) * 面积(△ABC)。
同样地,根据四边形面积的性质,面积(△BDEC) = (CE/(CE+BD)) * 面积(△ABC)。
而根据相似比的定义,BC/(BC+BD) = CE/(CE+BD)。
由此可得:CE/(CE+BD) = DE/AB。
将上述结论带入面积公式,可得到面积(△BDEC) = 面积(△ADE),即两个小三角形的面积相等。
通过上述证明可以看出,三角形与底边平行线定理是建立在相似三角形和平行线定理的基础上的,它将一个三角形切割成两个具有相等面积的小三角形。
接下来,我们来看一下这个定理的应用。
三角形与底边平行线定理在许多几何问题中都起着重要的作用。
例如,在解决三角形的面积问题时,可以利用该定理将三角形分割成两个面积相等的小三角形,从而简化计算的复杂度。
此外,该定理还可以应用在解决实际生活中的问题中。
例如,在设计房屋或者建筑物的工程中,我们经常需要确定不规则形状的地块的面积。
沪教版九年级上册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)
沪教版初三数学上册知识点梳理重点题型(常考知识点)巩固练习相似形及比例线段(基础)知识讲解【学习目标】1、能通过生活中的实例认识图形的相似,能通过观察直观地判断两个图形是否相似;2、了解比例线段的概念及有关性质;3、探索相似图形的性质,知道两相似多边形的主要特征,并根据相似多边形的特征识别两个多边形是否相似,并会运用性质进行相关的计算,提高推理能力.【要点梳理】要点一、相似图形在数学上,我们把形状相同的图形称为相似图形或相似形.要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等;要点二、相似多边形【:图形的相似二、图形的相似 2】相似多边形的概念:如果两个多边形的对应角相等,对应边的长度成比例,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.要点三、比例线段【:图形的相似预备知识】1.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.2.比例的性质:(1)基本性质:若a:b=c:d,则ad=bc;(2)合比性质:如果如果(3)等比性质:如果(4)比例中项:若a:b=b:c,则=ac,b称为a、c的比例中项.要点诠释:通常四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b的单位一致,c,d的单位一致也可以。
要点四、黄金分割如果点P把线段AB分割成AP和PB,(AP>PB)两段,其中AP是AB和PB的比例中项,那么就称这种分割为黄金分割,点P是线段AB的黄金分割点.≈0.618AB(叫做黄金分割值).要点诠释:线段的黄金分割点有两个.【典型例题】类型一、相似图形1. 下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个B.2个C.3个D.4个【答案】C.【解析】解:(1)所有菱形的对应角不一定相等,故菱形不一定都相似;(2)等腰直角三角形都相似,正确;(3)正方形都相似,正确;(4)矩形对应边比值不一定相等,不矩形不一定都相似;(5)正六边形都相似,正确,故符合题意的有3个.故选:C.【总结升华】此题主要考查了相似图形,应注意:①相似图形的形状必须完全相同;②相似图形的大小不一定相同;③两个物体形状相同、大小相同时它们是全等的,全等是相似的一种特殊情况.举一反三:【变式】如图,左边是一个横放的长方形,右边的图形是把左边的长方形各边放大两倍,并竖立起来以后得到的,这两个图形是相似的吗?【答案】这两个图形是相似的,这两个图形形状是一样,对应线段的比都是1:2,虽然它们的摆放方法、位置不一样,但这并不会影响到它们的相似性.类型二、相似多边形2. 如图,已知四边形相似于四边形,求四边形的周长.【答案与解析】∵四边形相似于四边形∴,即∴∴四边形的周长.【总结升华】先根据相似多边形的对应边的比相等,求出四边形的未知边的长,然后即可求出该四边形的周长举一反三:【变式】如图所示的相似四边形中,求未知边x、y的长度和角的大小.【答案】根据题意,两个四边形是相似形,得,解得.3. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?【答案与解析】解:∵矩形MFGN与矩形ABCD相似,当时,S有最大值,为.【总结升华】借助相似,把最值问题转移到函数问题上,是解决这类题型最好方法之一.类型三、比例线段4.(2016•兰州模拟)若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.【思路点拨】根据比例的性质,对选项一一分析,选择正确答案.【答案】B.【解析】A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、=⇒b:a=2:3,故选项错误;D、=⇒a:b=3:2,故选项错误.故选B.【总结升华】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.举一反三:【变式】判断下列线段a、b、c、d是否是成比例线段:(1)a=4,b=6,c=5,d=10;(2)a=2,b=,c=,d=.【答案】(1) ∵,,∴,∴线段a、b、c、d不是成比例线段.(2) ∵,,∴,∴线段a、b、c、d是成比例线段.5. 主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20米,一个主持人现站在舞台AB的黄金分割点点C处,则下列结论一定正确的是()①AB:AC=AC:BC;②AC≈6.18米;③;④.A. ①②③④B. ①②③C. ①③D. ④【答案】D.【解析】解:AB的黄金分割点为点C处,若AC>BC,则AB:AC=AC:BC,所以①不一定正确;AC≈0.618AB≈12.36或AC≈20﹣12.36=7.64,所以②错误;若AC为较长线段时,AC=AB=10(﹣1),BC=10(3﹣);若BC为较长线段时,BC=AB=10(﹣1),AC=10(3﹣),所以③不一定正确,④正确.故选D.【总结升华】黄金分割知识的理解和运用要结合生活实践.沪教版初三数学上册知识点梳理重点题型(常考知识点)巩固练习相似形及比例线段(基础)巩固练习【巩固练习】一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3 cm的两地,它们的实际距离为()A.3 kmB.30 kmC.300 kmD.3 000 km2. (2016•滨江区模拟)由5a=6b(a≠0),可得比例式()A.B.C.D.3.如图,用放大镜将图形放大,这种图形的改变是()A.相似B.平移 C.轴对称D.旋转4. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是相似图形,如图所示,则小鱼上的点(a,b)对应大鱼上的点( )A.(-2a,-2b) B.(-a,-2b) C.(-2b,-2a) D.(-2a,-b)5. 一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则此三角形其它两边的和是()A.19 B.17 C.24 D.216. .△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 ( )A.B.C.或D.二. 填空题7. 两地实际距离为1 500 m,图上距离为5 cm,这张图的比例尺为_______.8. (2016•浦东新区一模)已知,那么= .9.判定两个多边形相似的方法是:当两个多边形的对应边_______,对应角_______时,两个多边形相似.10.已知则11.两个三角形相似,其中一个三角形两个内角分别是40°,60°,则另一个三角形的最大角为______,最小角为____________.12. (2015春·庆阳校级月考)要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一条最短边长为2,则另外一个三角形的周长为 .三综合题13. 已知,求的值.14. (1)已知a、b、c、d是成比例线段,其中a=3dcm,b=2cm,c=6cm,求线段d的长;(2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段a和b的比例中项,求线段c的长.15. 市场上供应的某种纸有如下特征:每次对折后,所得的长方形均和原长方形相似,则纸张(矩形)的长与宽应满足什么条件?【答案与解析】一、选择题1.【答案】B.【解析】图上距离︰实际距离=比例尺.2.【答案】D.【解析】A、⇒ab=30,故选项错误;B、⇒ab=30,故选项错误;C、⇒6a=5b,故选项错误;D、⇒5(a﹣b)=b,即5a=6b,故选项正确.故选D.3.【答案】A【解析】根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选A.4.【答案】 A【解析】由图可知,小鱼和大鱼的相似比为1:2,若将小鱼放大1倍,则小鱼和大鱼关于原点对称.5.【答案】C【解析】相似三角形对应边的比相等6.【答案】A【解析】相似比AB︰A1B1=,A1B1︰A2B2=,计算出AB︰A2B2.二、填空题7.【答案】.1:30 000【解析】比例尺=图上距离︰实际距离.8.【答案】.【解析】∵的两个内项是y、1,两个外项是x、3,∴,根据合比定理,知==4;又∵上式的两个内项是x和4,两个外项是x+y和1,∴.9.【答案】成比例;相等.10.【答案】【解析】提示:设11.【答案】80°,40°.12.【答案】7.5.【解析】设另一个三角形周长是x.∵一个三角形的三边长是4,5,6,∴这个三角形的周长为:4+5+6=15.∵与它相似的另一个三角形最短的一边长是2,∴,解得:x=7.5.∴另一个三角形的周长是7.5.三、解答题13.【解析】设=k则∴==14.【解析】解:(1)∵a、b、c、d是成比例线段,∴a:b=c:d,∵a=3cm,b=2cm,c=6cm,∴d=4cm;(2)∵线段c是线段a和b的比例中项,a=4cm,b=9cm.∴c2=ab=36,解得:c=±6,又∵线段是正数,∴c=6cm.15.【解析】如图,为了方便分析可先画出草图,根据题意知两个矩形的长边之比应等于短边之比.设矩形的长为,宽为,由相似多边形的特征得,即纸张的长与宽之比为.沪教版初三数学上册知识点梳理重点题型(常考知识点)巩固练习三角形一边的平行线知识讲解【学习目标】1、掌握三角形一边的平行线性质定理及推论;判定定理及推论;以及平行线分线段成比例定理的推导与应用;2、了解三角形的重心的意义和性质并能应用它解题;3、经历运用分类思想针对图形运动的不同位置分别探究的过程,初步领略运用运动观点、化归和分类讨论等思想进行数学思考的策略.【要点梳理】要点一、三角形一边的平行线性质定理及推论1.性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.要点诠释:(1)主要的基本图形:分A型和X型;A型 X型(2)常用的比例式:3.三角形的重心:三角形三条中线的交点叫做三角形的重心.要点诠释:(1)重心的性质:三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.(2)重心的画法:两条中线的交点.要点二、三角形一边的平行线判定定理及推论1.判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.2.推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.要点诠释:判断平行线的条件中,只能是被截的两条直线的对应线段成比例(被判断的平行线本身不能参与作比例).要点三、平行线分线段成比例定理1.性质定理:两条直线被三条平行的直线所截,截得的对应线段成比例.2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.要点诠释:(1)平行线等分线段定理是平行线分线段成比例定理的特例;(2)平行线分线段成比例没有逆定理;(3) 由于平行线分线段成比例定理中,平行线本身没有参与作比例,因此,有关平行线段的计算问题通常转化到“A”、“X”型中.【典型例题】类型一、三角形一边的平行线性质定理1. 如图已知直线截△ABC三边所在的直线分别于E、F、D三点且AD=BE.求证:EF:FD=CA:CB.【答案与解析】过D作DK∥AB交EC于K点.则,,即又∵AD=BE,∴.【总结升华】运用三角形一边的平行线性质定理,即只要有平行线就可推出对应线段成比例.举一反三【变式】如图,在⊿ABC, DG∥EC, EG∥BC,求证:【答案】∵DG∥EC,∴,∵EG∥BC,∴,∴,即.2.已知,△ABC中,G是三角形的重心, AG⊥GC,AG=3,GC=4,求BG的长.【答案与解析】延长BG交AC于点D,∵G是三角形的重心,∴点D是线段AC的中点,又∵AG⊥GC,AG=3,GC=4,∴AC=5,即DG=2.5,∵BG:GD=2:1.∴BG=5.【总结升华】三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.类型二、三角形一边的平行线判定定理3. 如图,AM是△ABC的中线,P是AM上任意一点,BP、CP的延长线分别交AC、AB于E、D两点.求证:DE∥BC.【答案与解析】延长AM到H,使HM=MP,连接BH、CH∵BM=MC∴四边形BPCH是平行四边形∵BH∥CD,CH∥BE在△ABH和△ACH中,有,∴DE∥BC【总结升华】平行线所截得的对应线段成比例,而两条平行线中的线段与所截得的线段不成比例.举一反三【变式】如图,在△ABC(AB>AC)的边AB上取一点D,在边AC 上取一点E,使AD=AE,直线DE和BC的延长线交于点P,求证:.【答案】过点C作CF∥AB交DP于点F,∵CF∥AB,∴∠ADE=∠EFC∵AD=AE,∴∠ADE=∠AED=∠FEC∴∠EFC=∠FEC∴CF=CE∵CF∥AB∴,即.类型三、平行线分线段成比例定理4. (2016•兰州)如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.【思路点拨】直接利用平行线分线段成比例定理写出答案即可.【答案】C.【解析】解:∵DE∥BC,∴==,故选C.【总结升华】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大.举一反三【变式】(2015•舟山)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC 与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A. B. 2 C. D.【答案】D提示:∵AG=2,GB=1,∴AB=AG+BG=3,∵直线l1∥l2∥l3,∴=,沪教版初三数学上册知识点梳理重点题型(常考知识点)巩固练习三角形一边的平行线【巩固练习】一.选择题1.(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c 于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.12. 如图,在△ABC中,DE∥BC,则下列比例式成立的是( )A.B. C.D.3. 在△ABC中,点D在AB上,点E在AC上,且DE∥BC,,则等于( )A.B.C. D.4. 如图,△ABC中,DE∥AC交AB、BC于D、E,如果AB=7cm,AC=5cm,AD=3cm,则DE=( )A.B. C.D.5. 如图,在△ABC中,如果DE∥BC,DF∥AC,则下列比例式中不正确的是( )A.B.C. D.6. 如图,△ABC中,G是BC中点,E是AG中点,CE的延长线交AB于D,则EC:DE的值为( )A.2 B.3 C.D.二. 填空题7. (2016•无锡一模)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是.8. 如图,DE∥BC,BF:EF=4:3,则AC:AE=____________.9.已知点G是△ABC的重心,AD是BC边上的中线,如果GD=2cm,那么AD=______.10. 如图,△PMN,点A,B分别在MP,NP的延长线上,,则________.11. 如图,四边形ABCD中,AC、BD相交于点P,若AP=8,CP=12,BC=15.则AD=_________.12.(2015•香坊区三模)如图,△ABC中,D、F在AB边上,E、G 在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则EC 的长为 .三.综合题13. 如图,已知,AB∥CD∥EF,OA=14,AC=16,CE=8,BD=12,求OB、DF的长.14.已知:如图,在△ABC中,AB=AC,且,EG∥CD.证明:AE=AF.15. 如图,△ABC中,AD是中线,点F在AD上,且AF:FD=1:2,BF的延长线交AC于E,求AE:EC=?【答案与解析】一、选择题1.【答案】B.【解析】∵a∥b∥c,∴==.故选B.2.【答案】 D.3.【答案】 C.【解析】∵DE∥BC,∴,又∵,∴,即=.4.【答案】D.【解析】∵DE∥AC,∴,又∵AB=7cm,AC=5cm,AD=3cm,∴BD=4,即DE=.5.【答案】C.【解析】提示:∵ DE∥BC,DF∥AC,∴DE=CF, DF=CE.6.【答案】B.【解析】作GM∥CD交AB于点M,∵E是AG中点,∴MG=2DE,又∵G是BC中点,∴CD=2MG=4DE∴EC=3DG,即EC:DE=3:1.二、填空题7.【答案】2.【解析】∵BC=AC,∴=,∵AD∥BE∥CF,∴=,∵DE=4,∴=2,∴EF=2.8.【答案】4:3.【解析】∵DE∥BC, BF:EF=4:3,∴9.【答案】6cm.【解析】∵点G是重心,∴AG:GD=2:1,又∵GD=2,∴AG=4,即AD=6cm.10.【答案】3:2.【解析】∵,∴.11.【答案】10.12.【答案】9.【解析】∵DE∥FG∥BC,∴=,而AD:DF:FB=3:2:1,∴=,∴=,∴EC=9.三、解答题13. 【解析】∵AB∥CD∥EF,∴,又∵OA=14,AC=16,BD=12,∴OB=.同理,CE=8,∴DF=6.14.【解析】证明:∵EG∥CD,∴=,且,∴=,∴=,即=,∵AB=AC,∴AE=AF.15.【解析】作DG∥BE,∵AD是中线,∴EG=GC,又∵AF:FD=1:2,∴EG=2AE,即EC=4AE,∴AE:EC=1:4.沪教版初三数学上册知识点梳理重点题型(常考知识点)巩固练习相似三角形的判定--知识讲解(基础)【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理【高清课程名称:相似三角形的判定(1)高清:394497:相似三角形的判定】1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).【答案】①②④⑤.类型二、相似三角形的判定2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数. 【答案与解析】∵四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;当△CDF∽△AED时,相似比.【总结升华】此题考查了相似三角形的判定(有两角对应相等的两三角形相似)与性质(相似三角形的对应边成比例).解题的关键是要仔细识图,灵活应用数形结合思想.举一反三:【高清课程名称:相似三角形的判定(2)高清:394499:例4及变式应用】【变式】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.【答案】∵ AD、CE是△ABC的高,∴∠AEF=∠CDF=90°,又∵∠AFE=∠CFE,∴△AEF∽△CDF.∴, 即AF·FD=CF·FE.3. (2016•福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【思路点拨】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【答案与解析】解:(1)∵AD=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【总结升华】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.【思路点拨】从求证可以判断是运用相似,再根据BP2=PE·PF,可以判定所给的线段不能组成相似三角形,这就需要考虑线段的等量转移了.【答案与解析】连接,,,是的中垂线,,,,.,.又,∽,,.【总结升华】根据求证确定相似三角形,是解决此类题型的捷径.举一反三:【变式】如图,F是△ABC的AC边上一点,D为CB延长线一点,且AF=BD,连接DF, 交AB于E. 求证:.【答案】过点F作FG∥BC,交AB于G.则△DBE∽△FGE△AGF∽△ABC∵,又∵AF=BD,∴∵△AGF∽△ABC∴,即.沪教版初三数学上册知识点梳理重点题型(常考知识点)巩固练习相似三角形的判定--巩固练习(基础)【巩固练习】一、选择题1. 下列判断中正确的是( ).A.全等三角形不一定是相似三角形B.不全等的三角形一定不是相似三角形C.不相似的三角形一定不全等D.相似三角形一定不是全等三角形2.已知△ABC的三边长分别为、、 2, △A′B′C′的两边长分别是1和, 如果△ABC与△A′B′C′ 相似, 那么△A′B′C′ 的第三边长应该是 ( ).A. B. C. D.3.(2015•大庆校级模拟)如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.4. (2016•盐城)如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个5.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有().A.ΔADE∽ΔAEF B.ΔECF∽ΔAEF C.ΔADE ∽ΔECF D.ΔAEF∽ΔABF6. 如图所示在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为( ).A. B.8 C.10 D.16二、填空题7. (2016•娄底)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)8如图所示,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=________.9.如图所示,在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).10.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________.11.如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,则图中与△OEF相似的三角形为_________.12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE 交CD于点F,则图中相似三角形共有_________对.三.解答题13. 如图,在△ABC中,DE∥BC,AD=3,AE=2,BD=4,求的值及AC、EC的长度.14. 如图在梯形ABCD中,AD∥BC,∠A=90°,且,求证:BD⊥CD.15.如图,在△ABC中,已知∠BAC=90°,AD⊥BC于D,E是AB上一点,AF⊥CE于F,AD交CE于G点,(1)求证:AC2=CE•CF;(2)若∠B=38°,求∠CFD的度数.【答案与解析】一.选择题1.【答案】C.2.【答案】A.【解析】根据三边对应成比例,可以确定,所以第三边是3.【答案】B.【解析】已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选B.4.【答案】C.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.5.【答案】C.【解析】∵∠AEF=90°, ∴∠1+∠2=90°,又∵∠D=∠C=90°,∴∠3+∠2=90°,即∠1=∠3,∴△ADE∽△ECF.6.【答案】C.【解析】∵ EF∥AB,∴,∵,∴,,∴ CD=10,故选C.二. 填空题7.【答案】AB∥DE.【解析】∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.8.【答案】 3 .【解析】∵∠C=∠E,∠CAB=∠EAD,∴△ACB∽△AED,∴,BC=4,在Rt△ABC中,.9.【答案】;.10.【答案】4.【解析】∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,又∵AC⊥CE,∴∠BCA+∠DCE=90°,∴∠BCA=∠E,∴△ABC∽△CDE.∵C是线段BD的中点,ED=1,BD=4∴BC=CD=2∴,即AB=4.11.【答案】△OAB,△OCD.12.【答案】3.【解析】∵平行四边形ABCD,∴AD∥BE.AB∥CD∴△EFC∽△EAB; △EFC∽△AFD; △AFD∽△EAB.三综合题13.【解析】∵DE∥BC,∴△ADE∽△ABC,∵,,∴,∴AC=,∴EC=AC-AE=.14.【解析】∵AD∥BC,∴∠ADB=∠DBC,又∵,∴△ABD∽△DCB,∴∠A=∠BDC,∵∠A=90°,∴∠BDC=90°,∴BD⊥CD .15.【解析】解:(1)∵AD⊥BC,∴∠CFA=90°,∵∠BAC=90°,∴∠C FA=∠BAC,∵∠ACF=∠FCA,∴△CAF∽△CEA,∴=,∴CA2=CE•CF;(2)∵∠CAB=∠CDA,∠ACD=∠BCA,∴△CAD∽△CB A,∴=,∴C A2=CB×CD,同理可得:CA2=CF×CE,∴CD•BC=CF•CE,∴=,∵∠DCF=∠ECB,∴△CDF∽△CEB,∴∠CFD=∠B,∵∠B=38°,∴∠CFD=38°.沪教版初三数学上册知识点梳理重点题型(常考知识点)巩固练习相似三角形的性质及应用--知识讲解(基础)【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】要点一、相似三角形的性质【高清课程名称:相似三角形的性质及应用高清:394500:相似形的性质】1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.【高清课程名称:相似三角形的性质及应用高清:394500:应用举例及总结】要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
4-三角形一边平行线判定定理
1.已知:如图,点D,F在 的边AB上,点E在边AC上,且DE//BC, ,求证:EF∥DC .
2.如图,在平行四边形ABCD中,E是AB的中点,在AD上截取AF=FD,EF交AC于点G.求的值.
3.如图,已知在△ABC中,点D、E、F分别在AB、BC、CA上,且,CF=CE.求证:四边形CFDE是菱形。
三、练习
1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为( )
(A) (B) (C) (D)
2.如图,AD是△ABC的中线,E是AC边上的三等分点,BE交AD于点F.则AF:FD为( )
3.如图,梯形ABCD的中位线MN与对角线BD、AC分别相交于点E、F,若AD:BC=1:3.则EF:MN等于( ).
一、基础知ቤተ መጻሕፍቲ ባይዱ点
1、三角形一边平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.
如果D ,E分别在AB,AC的延长线上时,或在反向延长线上时,以上结论同样成立.
2、三角形一边的平行线判定定理推论如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
4、如图,在△ABC中,点D是AC的中点,3BE=2EC,AE与BD相交于点F.求DF:BF的值.
5.如图4,点O为△ABC的中线AD上任意一点,BO、CO的延长线分别交AC、AB于点E、F,连结EF,且 。求证:EF∥BC.
6、如图,D、E分别为△ABC的AB和AC上的点,且BC的延长线于F点,且求证:DB=EC.
4.如图,BD、CE是△ABC的中线,P、Q分别是BD、EC的中点.则PQ:BC等于( )
三角形一边平行线判定定理完整题型+答案
基础知识点三角形一边平行线的判定定理:如果一条直线截三角形两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。
(由成比例得平行)A如图,若EC AE DB AD =(或AC AE AB AD =或ACEC AB BD =),则DE//BCD EB C三角形一边平行线的判定定理的推论:如果一条直线截三角形两边的延长线(这两条延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于第三边。
若CE AC BD AB =(或AE AC AD AB =或AC EC AD BD =) 若AC AE AB AD =(或EC AE BD AD =或CEAC BD AB =) 则DE//BC 则DE//BC例题解析例题解析:在△ABC 中,点D 、E 在边AB 、AC 上,根据下列给定的条件,试判断DE 与BC 是否平行? 并说明理由.(1)AD=3cm ,DB=4cm ,AE=1.8cm ,CE=2.4cm ;(2)AD=6cm ,BD=9cm ,AE=4cm ,AC=10cm;答案:(1)是;(2)不是.变式:在△ABC 中,点D 、E 在边AB 、AC 上,根据下列给定的条件,试判断DE 与BC 是否平行? 并说明理由.(1)AD=8cm ,AC=16cm ,AE=6cm ,AB=12cm;(2)AB=3BD ,AE=32AC;(3)AB=2BD ,AC=2CE.答案:(1)不是;(2)是;(3)是.例题解析:如图,点D 、E 分别在AB 、AC 上,以下能推得DE//BC 的条件是( )。
A.AD:AB=DE:BCB.AD:DB=DE:BCC.AD:DB=AE:ECD.AE:AC=AD:DB 答案:解析:∵AD:DB=AE:EC ,∴DE//BC ,故选:C .变式:在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件中不能判定DE//BC 的是( )。
A.= B.= C.= D.=解析:∵=,∴DE//BC ,选项A 不符合题意;∵=,∴DE//BC ,选项B 不符合题意; ∵=,∴DE//BC ,选项C 不符合题意;=,DE//BC 不一定成立,选项D 符合题意.故选:D .例题解析:已知:如图,点D ,F 在△ABC 的边AB 上,点E 在边AC 上,且DE//BC ,ABAD AD AF =,求证:EF//DC. 解答:证明:∵DE//BC ,∴AC AE AB AD =, ∵AB AD =,∴AC AD =,∴ADAC =,∴EF//DC.变式:如图,在△ABC 中,EF//CD ,DE//BC 。
三角形一边的平行线(解析版)
三角形一边的平行线【知识梳理】1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 如图,已知ABC ∆,直线//l BC ,且与AB 、AC 所在直线交于点D 和点E ,那么AD AEDB EC=.2、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例. 如图,点D 、E 分别在ABC ∆的边AB 、AC 上, //DE BC ,那么DE AD AE BC AB AC ==.3、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍. 4、三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边. 5、三角形一边的平行线判定定理推论如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,在ABC ∆中,直线l 与AB 、AC 所在直线交于点D 和点E ,如果AD AEDB EC=那么l //BC .6、平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例. 如图,直线1l //2l //3l ,直线m 与直线n 被直线1l 、2l 、3l 所截,那么DF EGFB GC=.7、平行线等分线段定理两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上截得的线段也相等.【考点剖析】 一.三角形的重心(共13小题)1.(2023•青浦区一模)三角形的重心是( ) A .三角形三条角平分线的交点 B .三角形三条中线的交点C .三角形三条边的垂直平分线的交点D .三角形三条高的交点【分析】根据三角形的重心概念作出回答,结合选项得出结果. 【解答】解:三角形的重心是三角形三条中线的交点. 故选:B .【点评】考查了三角形的重心的概念.三角形的外心是三角形的三条垂直平分线的交点;三角形的内心是三角形的三条角平分线的交点.2.(2023•奉贤区一模)在△ABC 中,AD 是BC 边上的中线,G 是重心.如果AD =6,那么线段DG 的长是 .BCD E FG【分析】根据重心的性质三角形的重心到一顶点的距离等于到对边中点距离的2倍,直接求得结果.【解答】解:∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,∴DG=AG=2.故答案为:2.【点评】本题考查的是三角形的重心,熟知心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.3.(2022秋•杨浦区期末)如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC 的长为.【分析】延长AG交BC于点D,根据重心的性质可知点D为BC的中点,且AG=2DG=4,则AD=6,再根据直角三角形斜边的中线等于斜边的一半即可求解.【解答】解:如图,延长AG交BC于点D.∵点G是△ABC的重心,AG=4,∴点D为BC的中点,且AG=4,∴DG=2,∴AD=AG+DG=6,∵△ABC中,∠BAC=90°,AD是斜边的中线,∴BC=2AD=12.故答案为12.【点评】本题考查了三角形重心的定义及性质,三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1.同时考查了直角三角形的性质.4.(2022秋•青浦区校级期末)如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=10,则线段GE的长为()A.B.C.D.【分析】因为点G是△ABC的重心,根据三角形的重心是三角形三条中线的交点以及重心的性质:重心到顶点的距离与重心到对边中点的距离之比是2:1,可知点D为BC的中点,,根据GE⊥AC,可得∠AEG=90°,进而证得△AEG∽△ACD,从而得到,代入数值即可求解.【解答】解:如图,连接AG并延长交BC于点D.∵点G是△ABC的重心,∴点D为BC的中点,,∵CB=10,∴,∵GE⊥AC,∴∠AEG=90°,∵∠C=90°,∴∠AEG=∠C=90°,∵∠EAG=∠CAD(公共角),∴△AEG∽△ACD,∴,∵,∴,∴,∴.故选:D.【点评】本题考查了相似三角形的判定和性质,三角形的重心的定义及其性质,熟练运用三角形重心的性质是解题的关键.5.(2021秋•松江区期末)如图,已知点G是△ABC的重心,那么S△BCG:S△ABC等于()A.1:2B.1:3C.2:3D.2:5【分析】连接AG延长交BC于点D,由G是重心可得D是BC的中点,所以S△ABD=S△ACD,S△BG=S△CDG,又由重心定理可AG=2GD,则2S△BGD=S△ABG,进而得到3S△BDG=S△ABC,即可求解.【解答】解:连接AG延长交BC于点D,∵G是△ABC的重心,∴D是BC的中点,∴S△ABD=S△ACD,S△BDG=S△CDG,∵AG=2GD,∴2S△BDG=S△ABG,∴3S△BGD=S△ABD,∴3S△BDG=S△ABC,∴S△BDG:S△ABC=1:3,故选:B.【点评】本题考查三角形的重心,熟练掌握三角形重心定理,利用等底、等高三角形面积的特点求解是解题的关键.6.(2022秋•杨浦区校级期末)如图,G是△ABC的重心,延长BG交AC于点D,延长CG交AB于点E,P、Q分别是△BCE和△BCD的重心,BC长为6,则PQ的长为.【分析】连接DE,由G是△ABC的重心,可证DE是△ABC的中位线,从而可求出DE的长.延长EP交BC 于F点,连接DF,利用三角形重心的定义和性质得到EP=2PF,DQ=2QF,再证明△FPQ∽△FED得到即可.【解答】解:连接DE,延长EP交BC于F点,连接DF,如图,∵G是△ABC的重心,∴D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴.∵P点是△BCE的重心,∴F点为BC的中点,EP=2PF,∵Q点是△BCD的重心,∴点Q在中线DF上,DQ=2QF,∵∠PFQ=∠EFD,,∴△FPQ∽△FED,∴,∴,故答案为:1.【点评】本题考查了三角形的重心,三角形的中位线,相似三角形的判定与性质.三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.7.(2022秋•徐汇区期末)在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,以AC为边在△ABC外作等边△ACD,设点E、F分别是△ABC和△ACD的重心,则两重心E与F之间的距离是.【分析】取AC中点O,连接OB、OD、BD、EF.根据含30度角的直角三角形的性质求出AC=2BC=2,利用勾股定理得出AB=,根据等边三角形的性质得出CD=AD=AC=2,∠CAD=60°,那么∠BAD=∠BAC+∠CAD=90°,利用勾股定理求出BD=.然后证明△EOF∽△BOD,得出EF=BD=.【解答】解:如图,取AC中点O,连接OB、OD、BD、EF.在Rt△ABC中,∠B=90°,∠30°,BC=1,∴AC=2BC=2,AB===,∵△ACD是等边三角形,∴CD=AD=AC=2,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=90°,∴BD===.∵点E、F分别是△ABC和△ACD的重心,∴==,又∠EOF=∠BOD,∴△EOF∽△BOD,∴===,∴EF=BD=.故答案为:.【点评】本题考查了相似三角形的判定与性质,含30度角的直角三角形的性质,等边三角形的性质,三角形重心的定义与性质,掌握重心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.8.(2022秋•黄浦区月考)已知点G是△ABC的重心,那么S△ABG:S△ABC=.【分析】三角形的重心是三角形三边中线的交点,重心到顶点的距离与重心到对边中点的距离之比为2:1,由此即可计算.【解答】解:延长AG交BC于D,∵点G是△ABC的重心,∴BD=CD,AG:DG=2:1,∴AG:AD=2:3,∴S△ABG:S△ABD=2:3,∵S△ABD:S△ABC=1:2,∴S△ABG:S△ABC=1:3.故答案为:1:3.【点评】本题考查三角形的重心,关键是掌握三角形重心的性质.9.(2023•金山区一模)如图,△ABC为等腰直角三角形,∠A=90°,AB=6,G1为△ABC的重心,E为线段AB上任意一动点,以CE为斜边作等腰Rt△CDE(点D在直线BC的上方),G2为Rt△CDE的重心,设G1、G2两点的距离为d,那么在点E运动过程中d的取值范围是.【分析】分别求出d的最小值和最大值,即可得到d的取值范围.【解答】解:当E与B重合时,G1与G2重合,此时d最小为0,当E与A重合时,G1G2最大,连接并延长AG1交BC于H,连接并延长DG2交AC于K,连接HK,过G2作G2T⊥AH于T,如图:∵G1为等腰直角三角形ABC的重心,∴H为BC中点,∴∠AHB=∠AHC=90°,∴△ABH和△ACH是等腰直角三角形,∴BH=CH=AH==3,∵AG1=2G1H,∴AG1=2,G1H=,∵G2是为等腰Rt△CDE的重心,∴K为AC中点,∴∠AKD=∠CKD=90°,∠AKH=∠CKH=90°,∴∠AKD+∠AKH=180°,∴D,K,H共线,∵AK=CK=DK=AC=AB=3=HK,∴G2K=DK=1,G2D=DK﹣G2K=2,∴G2H=G2K+HK=4,∵TG2∥ED,∴====,即==,∴TG2=2,TH=2,∴TG1=TH﹣G1H=,∴G1G2==,∴G1G2最大值为,∴G1G2的范围是0≤G1G2≤,故答案为:0≤d≤.【点评】本题考查三角形的重心,涉及等腰直角三角形的性质及应用,解题的关键是掌握三角形重心的性质.10.(2023•松江区一模)已知△ABC,P是边BC上一点,△P AB、△P AC的重心分别为G1、G2,那么的值为.【分析】由重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1,得到△AG1G2∽△ADE,推出△AG1G2的面积:△ADE的面积=4:9,而△ADE的面积=×△ABC的面积,即可解决问题.【解答】解:延长AG1交PB于D,延长AG2交PC于E,∵△PAB、△PAC的重心分别为G1、G2,∴AG1:AD=AG2:AE=2:3,D是PB中点,E是PC中点,∵∠G1AG2=∠DAE,∴△AG1G2∽△ADE,∴△AG1G2的面积:△ADE的面积=4:9,∵D是PB中点,E是PC中点,∴△ADE的面积=×△ABC的面积,∴的值为.故答案为:.【点评】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质,关键是掌握三角形重心的性质.11.(2022秋•徐汇区期中)已知点G是等腰直角三角形ABC的重心,AC=BC=6,那么AG的长为.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=6,∴CD=BC=3,由勾股定理得:AD==3,∴AG=×=2,故答案为:2.【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.12.(2018•宝山区校级自主招生)G为重心,DE过重心,S△ABC=1,求S△ADE的最值,并证明结论.【分析】设AD=mAB,AE=nAC,由G为△ABC重心得=3,再由当==时,有最大值,则mn有最小值,而无论D、E任何移动,mn,即可求出S△ADE的最值.【解答】解:S△ADE的最大值为,最小值为.证明:假设△ABC面积为S1,△ADE面积为S2,设AD=mAB,AE=nAC,∵G为△ABC重心,∴=3,∴S2=AD•AE•sinA=mAB•nAC•sinA=mnS1,当==时,有最大值,则mn有最小值,而无论D、E任何移动,mn,∴S1≤S2≤S1,∴S△ADE的最大值为,最小值为.【点评】本题主要考查了三角形重心的性质,解决此题的关键是根据G为△ABC重心得到=3.13.(2019秋•嘉定区校级月考)如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,且EF+BC=7.2cm,求BC的长.【分析】如果连接AG并延长,交BC于点P,由三角形的重心的性质可知AG=2GP,则AG:AP=2:3.又EF∥BC,根据相似三角形的判定可知△AGF∽△APC,得出AF:AC=2:3,最后由EF∥BC,得出△AEF∽△ABC,从而求出EF:BC=AF:AC=2:3,结合EF+BC=7.2cm来求BC的长度.【解答】解:如图,连接AG并延长,交BC于点P.∵G为△ABC的重心,∴AG=2GP,∴AG:AP=2:3,∵EF过点G且EF∥BC,∴△AGF∽△APC,∴AF:AC=AG:AP=2:3.又∵EF∥BC,∴△AEF∽△ABC,∴==.又EF+BC=7.2cm,∴BC=4.32cm.【点评】本题主要考查了三角形的重心的性质,相似三角形的判定及性质.三角形三边的中线相交于一点,这点叫做三角形的重心.重心到顶点的距离等于它到对边中点距离的两倍.平行于三角形一边的直线截其它两边,所得三角形与原三角形相似.相似三角形的三边对应成比例.二.平行线分线段成比例(共1914.(2022秋•徐汇区期末)在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=3,BC=10,要使DE∥AC,那么BE必须等于.【分析】此题主要考查了平行线分线段成比例定理的逆定理,根据题意得出要使DE∥AC,必须即可得出BE的长.【解答】解:∵在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=3,BC=10,∴要使DE∥AC,∴,∴,解得:BE=6.故答案为:6.【点评】此题主要考查了平行线分线段成比例定理的逆定理,根据题意得出要使DE∥AC,必须是解决问题的关键.15.(2022秋•闵行区期末)如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:1,BF=10,那么DF等于()A.B.C.D.【分析】由AB∥CD∥EF,可得出=,代入AC=3CE,BF=10,即可求出DF的长.【解答】解:∵AB∥CD∥EF,∴=,即=,∴DF=.故选:C.【点评】本题考查了平行线分线段成比例,牢记“三条平行线截两条直线,所得的对应线段成比例”是解题的关键.16.(2023•宝山区一模)在△ABC中,点D、E分别在边AB、AC上,如果AD:BD=1:3,那么下列条件中能判断DE∥BC的是()A.=B.=C.=D.【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,进而可得出结论.【解答】解:∵AD:BD=1:3,∴,∴当时,,∴DE∥BC,故A选项能够判断DE∥BC;而C,B,D选项不能判断DE∥BC.故选:A.【点评】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.17.(2022秋•嘉定区校级期末)如果点H、G分别在△DEF中的边DE和DF上,那么不能判定HG∥EF 的比例式是()A.DH:EH=DG:GF B.HG:EF=DH:DEC.EH:DE=GF:DF D.DE:DF=DH:DG【分析】根据平行线分线段成比例定理判断即可.【解答】解:A、当DH:EH=DG:GF,即=时,HG∥EF,本选项不符合题意;B、当HG:EF=DH:DE∥EF,本选项符合题意;C、当EH:DE=GF:DF,即=时,HG∥EF,本选项不符合题意;D、当DE:DF=DH:DG,即=时,HG∥EF,本选项不符合题意;故选:B.【点评】本题考查的是平行线分线段成比例定理成比例定理,灵活运用定理、找准对应关系是解题的关键.18.(2023•徐汇区一模)如图,a∥b∥c,若,则下面结论错误的是()A.B.C.D.【分析】已知a∥b∥c,根据平行线分线段成比例定理,对各项进行分析即可.【解答】解:由,得==,故A不符合题意;∵a∥b∥c,∴==,故B不符合题意;根据已知条件得不出=,故C符合题意;由=,得==,故D不符合题意;故选:C.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.19.(2021秋•嘉定区期末)如图,已知AB∥CD∥EF,AC:AE=3:5,那么下列结论正确的是()A.BD:DF=2:3B.AB:CD=2:3C.CD:EF=3:5D.DF:BF=2:5【分析】根据平行线分线段成比例定理判断即可.【解答】解:∵AB∥CD∥EF,∴BD:DF=AC:CE=3:2,A选项错误,不符合题意;AB:CD的值无法确定,B选项错误,不符合题意;CD:EF的值无法确定,C选项错误,不符合题意;DF:BF=CE:AE=2:5,D选项正确,符合题意;故选:D.【点评】本题考查的是平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例,灵活运用定理、找准对应关系是解题的关键.20.(2023•长宁区一模)如图,AD∥BE∥CF,已知AB=5,DE=6,AC=15,那么EF的长等于.【分析】由AD∥BE∥CF,可得=,即=,可解得DF=18,从而EF=DF﹣DE=12.【解答】解:如图:∵AD∥BE∥CF,∴=,∵AB=5,DE=6,AC=15,∴=,解得DF=18,∴EF=DF﹣DE=18﹣6=12,故答案为:12.【点评】本题考查平行线分线段成比例,解题的关键是掌握平行线分线段成比例定理,列出比列式.21.(2023•松江区一模)如图,已知直线AD∥BE∥CF,如果=,DE=3,那么线段EF的长是.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AD∥BE∥CF,∴=,∵DE=3,∴=,∴EF=,故答案为:.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.22.(2022秋•松江区月考)如图,在△ABC中,点D在AB上,点E在AC上,且DE∥BC,AD=3,AB =4,AC=6,求EC.【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【解答】解:∵DE∥BC,∴=,即=,解得:AE=,∴EC=AC﹣AE=6﹣=.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.(2022秋•松江区月考)如图,DE∥BC,EF∥CG,AD:AB=1:3,AE=3.(1)求EC的值;(2)求证:AD•AG=AF•AB.【分析】(1)由平行可得=,可求得AC,且EC=AC﹣AE,可求得EC;(2)由平行可知==,可得出结论.【解答】(1)解:∵DE∥BC,∴=,又=,AE=3,∴=,解得AC=9,∴EC=AC﹣AE=9﹣3=6;(2)证明:∵DE∥BC,EF∥CG,∴==,∴AD•AG=AF•AB.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段所得线段对应成比例是解题的关键.24.(2023•崇明区一模)四边形ABCD中,点F在边AD上,BF的延长线交CD的延长线于E点,下列式子中能判断AD∥BC的式子是()A.=B.=C.=D.=【分析】根据各个选项中的条件和图形,利用相似三角形的判定和性质、平行线的判定,可以判断哪个选项符合题意.【解答】解:当时,无法判断AD∥BC,故选项A不符合题意;当=时,∠AFB=∠DFE,则△AFB∽△DFE,故∠ABF=∠DEF,AB∥CD,但无法判断AD∥BC,故选项B不符合题意;当时,无法判断AD∥BC,故选项C不符合题意;当时,∠FED=∠BEC,则△FED∽△BEC,故∠EFD=∠EBC,可以判断判断AD∥BC,故选项D符合题意;故选:D.【点评】本题考查平行线分线段成比例、平行线的判定、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.(2022秋•杨浦区校级期末)如图,已知AB∥CD∥EF,AD:AF=3:5,BE=24,那么BC的长等于()A.4B.C.D.8【分析】根据平行线分线段成比例得到,即可求出BC.【解答】解:∵AB∥CD∥EF,∴,∵BE=24,∴,解得:.故选:C.【点评】本题考查了平行线分线段成比例;熟练掌握三条平行线截两条直线,所得的对应线段成比例是本题的关键.26.(2022秋•浦东新区期末)如图,DF∥AC,DE∥BC,下列各式中正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理逐个判定即可.【解答】解:A.∵DE∥BC,∴=,∴=,故本选项符合题意;B.∵DF∥AC,∴=,故本选项不符合题意;C.∵DE∥BC,∴=,∴=,即=,故本选项不符合题意;D.∵DE∥BC,DF∥AC,∴,,∴=,故本选项不符合题意;故选:A.【点评】本题考查了平行线分线段成比例定理和比例的性质,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.27.(2022秋•青浦区校级期末)如图,已知直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,AB=6,BC=3,DF=12,则DE=.【分析】根据平行线分线段成比例,即可进行解答.【解答】解:∵l1∥l2∥l3,∴,即,∵DF=12,∴DE+DE=12,解得:DE=8.故答案为:8.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.掌握平行线分线段成比例是解题关键.28.(2022•宝山区二模)已知:如图,点D、E、F分别在△ABC的边AB、AC、BC上,DF∥AC,BD=2AD,AE=2EC.(1)如果AB=2AC,求证:四边形ADFE是菱形;(2)如果AB=AC,且BC=1,联结DE,求DE的长.【分析】(1)根据菱形的判定方法解答即可;(2)根据相似三角形的判定和性质解答即可.【解答】(1)证明:∵BD=2AD,AE=2EC,∴=,∵DF∥AC,∴=,∴=,∴EF∥AB,又∵DF∥AC,∴四边形ADFE是平行四边形,∵AB=2AC,AE=AC,∴AE=AB,∴AD=AE,∵四边形ADFE是平行四边形,∴四边形ADFE是菱形;(2)如图,在△ADE和△ACB中,∠A是公共角,===,===,∴△ADE∽△ACB,∵BC=1,∴DE=.【点评】本题主要考查了菱形的判定和相似三角形的判定和性质,熟练掌握这些判定定理和性质定理是解答本题的关键.29.(2021秋•杨浦区校级月考)如图,点D为△ABC中内部一点,点E、F、G分别为线段AB、AC、AD 上一点,且EG∥BD,GF∥DC.(1)求证:EF∥BC;(2)当,求的值.【分析】(1)先根据相似比的性质得出=,=,故可得出=,由此即可得出结论;(2)先根据EF∥BC得出∠AEF=∠ABC,再由DG∥BD得出∠AEG=∠ABD,故可得出∠GEF=∠DBC,同理可得,∠GEF=∠DBC,故可得出△EGF∽△BDC根据相似三角形面积的比等于相似比的平方即可得出结论.【解答】(1)证明:∵EG∥BD,∴=,∵GF∥DC,∴=,∴=,∴EF∥BC;(2)解:∵EF∥BC,∴∠AEF=∠ABC,∵EG∥BD,∴∠AEG=∠ABD,∴∠AEF﹣∠AEG=∠ABC﹣∠AED,即∠GEF=∠DBC,同理可得,∠GEF=∠DBC,∴△EGF∽△BDC,∵,∴==,∴=()2=.【点评】熟知相似三角形对应边的比等于相似比,面积的比等于相似比的平方是解答此题的关键.30.(2021秋•宝山区校级月考)如图,已知直线l1、l2、l3分别截直线l4于点A、B、C,截直线l5于点D、E、F,且l1∥l2∥l3.(1)如果AB=4,BC=8,EF=12,求DE的长.(2)如果DE:EF=2:3,AB=6,求AC的长.【分析】(1)由平行线分线段成比例定理得出比例式,即可得出DE的长;(2)由平行线分线段成比例定理得出比例式,求出BC的长,即可得出AC的长.【解答】解:(1)∵l1∥l2∥l3.∴==,∴DE=EF=6;(2)∵l1∥l2∥l3.∴=,∴BC=AB=×6=9,∴AC=AB+BC=6+9=15.【点评】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,并能进行推理计算是解决问题的关键.31.(2022秋•奉贤区期中)如图,已知直线l1∥l2∥l3,直线AC和DF被l1、l2、l3所截.若AB=3cm,BC =5cm,EF=4cm.(1)求DE、DF的长;(2)如果AD=40cm,CF=80cm,求BE的长.【分析】(1)利用平行线分线段成比例定理求解;(2)过点A作AK∥DF交BE于点J,交CF于点K,则AD=JE=FK=40cm.求出BJ,可得结论.【解答】解:(1)∵l1∥l2∥l3,∴=,∴=,∴DE=(cm),∴DF=DE+EF=4+=(cm).(2)如图,过点A作AK∥DF交BE于点J,交CF于点K,则AD=JE=FK=40cm.∴CK=CF﹣FK=40cm,∵BJ∥CK,∴=,∴=,∴BJ=15cm,∴BE=BJ+JE=15+40=55cm.【点评】本题考查平行线分线段成比例定理,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.32.(2022秋•浦东新区校级月考)如图,已知点A、C、E和点B、F、D分别是∠O两边上的点,且AB∥ED,BC∥EF,AF、BC交于点M,CD、EF交于点N.(1)求证:AF∥CD;(2)若OA:AC:CE=3:2AM=1,求线段DN的长.【分析】(1)根据平行线分线段成比例定理,由AB∥DE得到OA•OD=OE•OB,由BC∥EF得到OC•OF=OE •OB,所以OA•OD=OC•OF,即=,于是可判断AF∥CD;(2)先利用BC∥EF得到==,则可设OB=5x,BF=4x,再由AF∥CD得到==,==,所以FD=6x,接着由FN∥BC得到==,于是可设DN=3a,则CN=2a,然后证明四边形MFNC为平行四边形得到MF=CN=2a,最后利用=得到=,求出a从而得到DN的长.【解答】(1)证明:∵AB∥DE,∴=,即OA•OD=OE•OB,∵BC∥EF,∴=,即OC•OF=OE•OB,∴OA•OD=OC•OF,即=,∴AF∥CD;(2)解:∵OA:AC:CE=3:2:4,∴OC:CE=5:4,∵BC∥EF,∴==,设OB=5x,则BF=4x,∵AF∥CD,∴==,==∴FD=OF=×9x=6x,∵FN∥BC,∴===,设DN=3a,则CN=2a,∵FN∥CM,MF∥CN,∴四边形MFNC为平行四边形,∴MF=CN=2a,∵=,即=,解得a=1,∴DN=3a=3.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.【过关检测】一、单选题A.4【答案】C【分析】根据平行线分线段成比例得到35BC ADBE AF==,即可求出BC.【详解】解:∵AB CD EF∥∥,∴35 BC ADBE AF==,∵24 BE=,∴3 245 BC=,解得:725 BC=.故选:C【点睛】本题考查了平行线分线段成比例;熟练掌握三条平行线截两条直线,所得的对应线段成比例是本题的关键.九年级校考期中)在ABC中,分别在ABC的边【答案】A【分析】根据平行线分线段成比例定理对各个选项进行判断即可.【详解】解:A、AD DEAB BC=,不能判定DE BC∥,故A符合题意;B、∵AD AE AB AC=,∴DE BC∥,故B不符合题意;C、∵AED C∠=∠,∴DE BC∥,故C不符合题意;D、∵AD AE BD EC=,∴DE BC∥,故D不符合题意.故选:A.【点睛】本题主要考查了平行线分线段成比例定理,平行线的判定,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.九年级单元测试)在ABC中,点【答案】B【分析】根据题目的已知条件画出图形,然后利用平行线分线段成比例解答即可.【详解】如图:∵DE∥AC,AE:EB=3:2,∴32 AE CDEB BD==∴23BD CD =∵DF AB ∥, ∴23AF BD FC CD == 故选:B【点睛】本题考查了平行线分线段成比例,熟练掌握平行线分线段成比例这个基本事实是解题的关键. 在ABC 的边 【答案】A【分析】根据平行线分线段成比例可得47AE AD AC AB ==,则可以推出当47AF AE AD AC ==,即37DF AD =时,EF CD ∥.【详解】解:DE BC ∥,43AD DB =,∴44437AE AD AD AC AB AD DB ====++,∴当47AF AE AD AC ==时,EF CD ∥,此时74377DF AD AF AD AD −−===,故A 选项符合题意; B ,C ,D 选项均不能得出EF CD ∥.故选A .【点睛】本题考查平行线分线段成比例,解题的关键是掌握“如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边”.5.(2023·上海浦东新·校考一模)如图,点D 、E 分别在AB 、AC 上,以下能推得DE BC ∥的条件是( )A .::AD AB DE BC =B .::AD DB DE BC = C .::AD DB AE EC =D .::AE AC AD DB =【答案】C 【分析】平行于三角形一边的直线截其他两边或延长线,所得的对应线段成比例.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.【详解】解:设DE BC ∥,那么AD AB AE AC AD DB AE EC DB AB EC AC ===::,::,::,选项A 、B 、D 、不符合平行线分段成比例定理.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.∵AD DB AE EC =::,∴DE BC ∥.故选:C .【点睛】此题主要考查平行线分线段成比例,解答此题的关键的是明确哪些对应线段成比例.学生初学,容易出错.九年级校考期中)在ABC 中,点【答案】B【分析】利用如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边可对各选项进行判断即可.【详解】当AD AE DB EC =或AD AE AB AC =时, DE BC ∥, 当AD AE DB EC =时,可得23AE EC =,当AD AE AB AC =时,可得25AE AC =, 即23AE EC =或25AE AC =.所以B 选项是正确的,故选:B .【点睛】本题考查了平行线分线段成比例定理,熟练掌握和灵活运用相关知识是解题的关键.二、填空题 7.(2022秋·上海嘉定·九年级校考期中)在ABC 中,点D 、E 分别在线段AB 、AC 的延长线上,DE 平行于BC ,1AB =,3BD =,2AC =,那么AE =___________.【答案】8【分析】根据平行线分线段陈比例定理求解即可.【详解】∵DE AB ∥ ∴AB AC AD AE = ∵1AB =,3BD =,2AC =,∴124AE =∴8AE =故答案为:8.【点睛】此题考查了平行线分线段陈比例定理,解题的关键是掌握平行线分线段陈比例定理.8.(2022春·上海普陀·九年级校考期中)如图,ABCD Y 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么:AFE FEDC S S 四边形的值为____.【答案】15/0.2【分析】证明12AF EF AE CF BF BC ===,推出24BCF ABF AEF S S S ==,设AEF S m =,则2ABF S m =,4CBF S m =,求出四边形FEDC 的面积,可得结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,∴AF EF AE CF BF BC ==, ∵ E 是边AD 的中点,∴1122AE DE AD BC ===,∴12AF EF AE CF BF BC ===, ∴24BCF ABF AEF S S S ==,设AEF S m =,则2ABF S m =,4S m , ∴6ACB ADC S S m ==, ∴65FECD S m m m =−=四边形, 1::55AFE FECD S S m m ==四边形; 故答案为:15.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是掌握平行线分线段成比例定理,属于中考常考题型.9.(2022秋·上海黄浦·九年级统考期中)如图,AD 、BC 相交于点O ,点E 、F 分别在BC 、AD 上,AB CD EF ∥∥,如果6CE =,4EO =,5BO =,6AF =,那么AD = ___________.【答案】10【分析】利用平行线分线段成比例定理得到EO FO BO AO =,EO FO CE DF =,求得4893FO AF ==,4DF =即可解决问题.【详解】解:∵AB CD EF ∥∥,EO FO BO AO =,EO FO CE DF =,∵4EO =,5BO =,∴45FO AO =, ∵6AF =,∴4893FO AF ==,∵6CE =,∴8436DF =,∴4DF =,∴6410AD AF DF =+=+=.故答案为:10.【点睛】本题考查平行线分线段成比例定理,解题的关键是灵活运用所学知识解决问题.10.(2022秋·上海奉贤·九年级校联考期中)如图,四边形ABCD 中,AD BC EF ∥∥,如果3810AE AB CD ===,,,则CF 的长是________.【答案】254【分析】根据平行线分线段成比例得出AE DF AB CD =,求出154DF =,即可得出答案. 【详解】∵AD BC EF ∥∥, ∴AE DF AB CD =, ∵3810AE AB CD ===,,, ∴3810DF =, 解得:154DF =, ∴15251044CF CD DF =−=−=, 故答案为:254.【点睛】本题考查平行线分线段成比例,正确得出比例线段是解题的关键. 11.(2022秋·上海宝山·九年级统考期中)在ABC 中,点D 、E 分别在直线AB 、AC 上,如果DE BC ∥,1AB =,2AC =,3AD =,那么CE =________.【答案】4【分析】根据平行线分线段陈比例定理求解即可.【详解】解:作如下图:∵DE BC ∥,∴AB AC AD AE =, ∵1AB =,2AC =,3AD =,∴123AE =,∴6AE =,∴624CE AE AC =−=−=,故答案为:4.【点睛】此题考查了平行线分线段陈比例定理,解题的关键是掌握平行线分线段陈比例定理.。
三角形一边的平行线-知识讲解
三角形一边的平行线-知识讲解在几何学中,三角形是一种简单且常见的图形。
三角形有各种性质和特点,其中之一是它们的边可以被称为平行线。
在本文中,我们将深入探讨三角形的一边的平行线及其相关概念。
一、平行线的定义在几何学中,当两条直线在同一平面上并且永远不相交时,这两条直线被称为平行线。
平行线具有如下性质:1. 任意平面上的直线和平行于该直线的其他直线之间都是平行关系。
2. 平行线之间的距离始终保持相等。
二、三角形的边三角形是由三条线段组成的,我们将这些线段称为三角形的边。
三角形的边可分为三类:1. 底边:三角形底部的水平边被称为底边,通常为最长的一边。
2. 左边:与底边不相交的边被称为左边。
3. 右边:与底边不相交的边被称为右边。
三、三角形一边的平行线我们经常遇到的情况是,三角形的一边与另一直线平行。
在这种情况下,我们可以得到一些重要的结论。
首先,如果三角形的两边分别与一条直线平行,那么这两边之间的边也将平行于该直线。
这个性质被称为平行线穿过三角形。
其次,如果在一个三角形中,一个边与一条直线平行,那么这个三角形的另外两个对边也将平行于该直线。
这些性质使得我们能够利用平行线的关系来推断出三角形内部的一些特征。
四、平行线的应用平行线的应用非常广泛,下面我们将介绍一些常见且实用的应用。
1. 相似三角形:当一个直线与一个三角形的两边平行时,根据平行线的性质,我们可以得出这个三角形与原始三角形相似的结论。
这种关系在解决几何问题和图形比例时非常有用。
2. 三角形判定:在解决三角形问题时,如果我们知道一个三角形的两边平行,我们可以推断出该三角形是等腰三角形或等腰直角三角形。
这可以大大简化问题的解决过程。
3. 垂直角关系:当两条直线互相垂直时,它们与平行线的关系密切相关。
通过利用平行线的性质,我们可以推断出垂直角之间的关系,进而解决垂直角相关的几何问题。
五、总结在几何学中,平行线是一种常见且重要的概念。
三角形的一边平行于直线时,我们可以得到一些实用的结论。
(精品)数学讲义九年级同步第2讲:三角形一边的平行线(一) - 教师版
三角形一边的平行线是九年级数学上学期第一章第二节的内容,本讲主要讲解三角形一边平行线性质定理及推论,重点是掌握该定理及其推论,分清该定理及其推论之间的区别和联系,难点是理解该定理和推论的推导过程中所蕴含的分类讨论思想和转化思想,并认识“A”字型和“X”字形这两个基本图形,为后面学习相似三角形奠定基础.1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.如图,已知ABC∆,直线//l BC,且与AB、AC所在直线交于点D和点E,那么AD AEDB EC=.三角形一边的平行线(一)内容分析知识结构模块一:三角形一边的平行线性质定理知识精讲【例1】如图,在ABC∆中,15AB=,10AC=,//DE BC,6BD=,求CE.【难度】★【答案】4.【解析】BD CEAB AC=,代入可得:=4CE.【总结】考查三角形一边平行线的性质定理.【例2】阳光通过窗口照在教室内,在地面上留下2.7米宽的亮区(如图).已知亮区一边到窗下的墙角距离8.7CE=米,窗口 1.8AB=米,求窗口底边离地面的高BC.【难度】★【答案】5.8m.【解析】射入的光线平行,则有AB DEAC CE=,代入可求得:5.8AC m=,4BC AC AB m=-=.【总结】考查三角形一边平行线性质定理的应用,在路灯、太阳光线中经常用到.【例3】在ABC∆中,点D、E分别在AB、AC的反向延长线上,//DE BC,若:2:3AD AB=,12EC=厘米,则AC=.【难度】★【答案】7.2cm.【解析】由//DE BC,可得23AE ADAC AB==,故53ECAC=,代入求得7.2AC cm=.【总结】考查三角形一边平行线的性质定理和比例合比性的综合应用.例题解析2/ 25【例4】如图在ABC ∆中,CD 平分ACB ∠,//DE BC ,5AC =厘米,3:5ADAB=,求DE 的长.【难度】★ 【答案】2cm . 【解析】//DE BC ,35AE AD AC AB ∴==. 由5AC cm =,代入可求得:32AE cm CE cm ==,. 又//DE BC ,EDC DCB ∴∠=∠.又CD 平分ACB ∠, ECD DCB ∴∠=∠. ECD EDC ∴∠=∠, 2DE CE cm ∴==.【总结】本题中涉及一个基本图形,平行线与角平分线一起会产生等腰三角形,同时应用三角形一边平行线的性质定理.【例5】如图,已知在ABC ∆中,//DE BC ,//EF AB ,2AE CE =,6AB =,9BC =,求四边形BDEF 的周长.【难度】★ 【答案】16. 【解析】2AE CE =,2133AE CE AC AC ∴==,. 又//DE BC ,//EF AB ,2133AD AE EF CE AB AC AB AC ∴====,,四边形BDEF 为平行四边形. 代入可求得:62DE EF ==,, ()2=16BDEF C DE EF ∴=+四边形.【总结】考查三角形一边平行线性质定理的综合应用.【例6】如图,在ABC∆中,10AB=,8AC=,点D在直线AB上,过点D作//DE BC交直线AC与点E.如果4BD=,求AE的长.【难度】★★【答案】245或565.【解析】(1)D在线段AB上时,6AD AB BD=-=,由//DE BC,可得:AD AEAB AC=,代入可得:245AE=;(2)D在线段AB延长线上时,14AD AB BD=+=,由//DE BC,可得:AD AEAB AC=,代入可得:565AE=;(3)D在线段AB反向延长线上的情况不存在.【总结】题目中的点是在直线或者射线上时,要注意仔细看题,考虑多解情况的出现.【例7】如图,在ABC∆中,AB AC>,AD BC⊥于点D,点F是BC中点,过点F作BC 的垂线交AB于点E,:3:2BD DC=,则:BE EA=.【难度】★★【答案】5:1.【解析】由:3:2BD DC=,BF FC=,即得:32BF FDBF FD+=-,可得:51BFFD=.又AD BC⊥,EF BC⊥,EF∴//AD,::5:1BE EA BF FD∴==.【总结】考查三角形一边平行线性质定理的综合应用.4/ 25【例8】如图,已知////AB CD EF ,14OA =,16AC =,8CE =,12BD =,求OB 、DF 的长.【难度】★★ 【答案】212OB =,6DF =. 【解析】由////AB CD EF ,OA OBAC BD ∴=. 代入可得:141221162OB ⨯==. 同时根据比例的合比性,可得:OA AC OB BD AC BD ++=,即OC ODAC BD=, 又根据平行,可得:OC ODCE DF=, AC BDCE DF∴=.代入求得:812616DF ⨯==. 【总结】考查三角形一边平行线定理的变形应用,实际上,任意两条直线被三条平行线所截得的线段对应成比例.【例9】如图,已知ABC ∆是边长为2的等边三角形,//DE BC ,:3:4ECD BCD S S ∆∆=,求EC 的长.【难度】★★【答案】12.【解析】∵ECD 和BCD 为等高三角形,故34ECD BCD S DE BC S ==,由//DE BC ,2BC =,ABC ∆为等边三角形, 可知ADE 也为等边三角形,∴32DE =,∴31222EC AC AE =-=-=. 【总结】平行于等边三角形一边截得的三角形也是等边三角形.【例10】如图,P为ABCD对角线BD上任意一点.求证:PQ PI PR PS=.【难度】★★【答案】略.【解析】证明:四边形ABCD为平行四边形,////AB CD AD BC∴,,////RB DI SD BQ∴,.根据三角形一边平行线的性质定理,则有PI PD PS PR PB PQ==,PQ PI PR PS∴⋅=⋅.【总结】初步认识相似三角形中的“X”字型,一个图形中存在往往不只一个,可用来进行等比例转化.【例11】如图,在平行四边形ABCD中,CD的延长线上有一点E,BE交AC于点F,交AD于点G.求证:2BF FG EF=.【难度】★★【答案】略.【解析】证明:四边形ABCD为平行四边形,////AB CD AD BC∴,,////AB CE AG BC∴,.根据三角形一边平行线的性质定理,则有:EF CF BF BF AF FG==,∴2BF FG EF=.【总结】初步认识相似三角形中的“X”字型,一个图形中存在往往不只一个,可用来进行等比例转化.6/ 25【例12】如图,点C 在线段AB 上,AMC ∆和CBN ∆都是等边三角形.求证:(1)MD AMDC CN =;(2)MD EB ME DC =.【难度】★★ 【答案】略. 【解析】证明:(1)AMC ∆和CBN ∆是等边三角形,60ACM NCB AMC ∴∠=∠=∠=︒.∵点C 在线段AB 上,18060MCN ACM NCB AMC ∴∠=︒-∠-∠=︒=∠.//AM CN ∴,∴MD AMDC CN =. (2)同(1)易证得//CM BN ,则有ME MCEB NB=.AMC ∆和CBN ∆是等边三角形,MC AM NB CN ∴==,,MD MEDC EB∴=, ∴MD EB ME DC =. 【总结】初步认识相似三角形中的“X ”字型,一个图形中存在往往不只一个,可用来进行等比例转化.【例13】如图,ABC ∆的面积是10,点D 、E 、F (与A 、B 、C 是不同的点)分别位于 AB 、BC 、CA 各边上,而且2AD =,3DB =,如果ABE ∆的面积和四边形DBEF 的面积相等,求ABE ∆的面积.【难度】★★★ 【答案】6. 【解析】连结DE ,由ABEDBEF S S =四边形,可得ADFAEFSS=,两三角形同底,可得两三角形等高,故//DE AC ,根据平行于三角形一边的直线性质定理,可得:35BD BE AB BC ==,故35ABE ABC S BE S BC ==,求得3=10=65ABES⨯. 【总结】注意等高(同底)三角形面积比等于底边(高)之比.8 / 25【例14】如图,在ABC ∆中,6BC =,42AC =,45C ∠=︒,在BC 边上有一动点P ,过P 作//PD AB 与AC 相交于于点D ,联结AP ,设BP x =,APD ∆的面积为y .(1)求y 与x 之间的函数关系式,并指出自变量x 的取值范围; (2)P 点是否存在这样的位置,使APD ∆的面积是APB ∆的面积的23?若存在,求出BP 的长;若不存在,请说明理由.【难度】★★★【答案】(1)()212063y x x x =-+<<;(2)存在,2BP =.【解析】(1)过点P 作PE AC ⊥于点E . 由BP x =,可得:6PC x =-, 又45C ∠=︒,故()22622PE CE PC x ===-. 又//PD AB ,故BP ADBC AC=,代入可得223AD x =,故()()2112221620622233y PE AD x x x x x =⋅=⋅-⋅=-+<<. (2)过点A 作AF BC ⊥于点F . 由4542C AC ∠=︒=,可得4AF CF ==, 故122ABPSAF BP x =⋅=, ∵APD ∆的面积是APB ∆面积的23, ∴2122233y x x x =-+=⨯,解得:2x =,即2BP =.【总结】考查三角形中一边平行线性质的综合应用,同时在题目中,注意对于特殊角的利用.FE1、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.如图,点D 、E 分别在ABC ∆的边AB 、AC 上,//DE BC,那么DE AD AEBC AB AC==.2、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍.【例15】如图,D 、E 分别是ABC ∆的边AB 、AC 上的点,且//DE BC . (1)如果2DE =,6BC =,3AD =,求AB 的长; (2)如果2DE =,6BC =,8BD =,求AD 、AB 的长;(3)如果35AD BD =,求DEBC的值. 【难度】★【答案】(1)9;(2)412AD AB ==,;(3)38.【解析】(1)∵//DE BC ,13AD DE AB BC ==,9AB =; (2)∵//DE BC ,∴13AD DE AD BD BC ==+,∴4AD =,∴12AB AD BD =+=;(3)∵//DE BC ,∴33358DE AD BC AB ===+. 【总结】考查三角形一边平行线的性质定理.模块二:三角形一边的平行线性质定理推论知识精讲例题解析10 / 25【例16】如图,BE 、CF 是ABC ∆的中线,交于点G .求证:12GE GF GB GC ==.【难度】★ 【答案】略.【解析】证明:过点F 作//FD BE 交AC 于点D . F 是AB 中点, D ∴是AE 中点,故12DF AD BE AE ==, 又E 是AC 中点,//FD EG ,12GF DE GC CE ∴==,23EG CE FD CD ==,即()2132EG EG BG =+,整理得:12GE GF GB GC ==. 【总结】考查三角形重心性质的证明,通过一个中点作对边的平行线即可.【例17】已知小智的身高是 1.6CD =米,他在路灯下的影长2DE =米,小智与路灯灯杆的底部B 的距离为3DB =米,则路灯灯泡A 距地面的高度AB =米.【难度】★ 【答案】4.【解析】∵//AB CD ,∴22235CD DE AB BE ===+,∴4AB m =. 【总结】考查三角形一边平行线定理的实际应用.【例18】如图,一根直立于水平地面的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针 反向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影子为AC (假 定AC AB >),影子的最大值为m ,最小值为n ,有下列结论:① m AC >;②m=AC ;③n AB =;④影子的长度先增大后减小.其中正确的序号是.【难度】★★ 【答案】①③④.【解析】木杆绕点A 逆时针旋转时,当AB 与BC 光线垂直 时,m 最大,则m AC >,①成立,②不成立;最小值 为AB 与AC 重合,故③成立;由上可知,影子长度先增大后减小,故④成立.【总结】找准临界值,注意进行思维分析.Da Nb Qx c P M xNa Qcb P M cNxQa b P M cN b Qa x PM 【例19】已知:MN // PQ ,a b ≠,c x ≠,则满足关系式bcx a=的图形是( )A .B .C .D .【难度】★★ 【答案】C【解析】交叉相乘,满足ax bc =的是C 选项. 【总结】考查三角形一边平行线性质的简单应用.【例20】如图,ABC ∆中,//DE BC ,3AE =,4DE =,2DF =,5CF =,求EC 的长. 【难度】★★ 【答案】92EC =. 【解析】//DE BC ,25DE DF AE BC CF AC ∴===,即3235EC =+,求得:92EC =.【总结】相似三角形中“A ”字型和“X ”字型的综合应用,可得到相等比例关系式.【例21】如图,在平行四边形ABCD 中,点E 在边DC 上,若:1:2DE EC =,则:BF BE =.【难度】★★ 【答案】3:5.【解析】:1:2DE EC =,可知23CE CE CD AB ==,由//CE AB ,可知32BF AB EF CE ==,故:3:5BF BE =. 【总结】初步认识相似三角形中的“X ”字型.12 / 25【例22】如图,在ABC ∆中,6BC =,G 是ABC ∆的重心,过G 作边BC 的平行线交AC 于点H ,求GH 的长.【难度】★★ 【答案】2.【解析】连结AG 并延长交BC 于点D ,根据重心的定义,可知D 为BC 中点,则132DC BC ==,根据重心的性质,又//GH DC ,可得:23GH AG DC AD ==,求得2GH =.【总结】考查三角形重心的性质.【例23】如图,已知////AB CD EF .AB m =,CD n =,求EF 的长.(用m 、n 的代数式表示).【难度】★★【答案】mnm n+.【解析】由////AB CD EF ,则有EF CF EF BFAB BC CD BC==,,即1EF EF m n +=,得mnEF m n =+.【总结】考查相似三角形中“X ”字型的综合应用,得到比例关系.【例24】如图,E 为平行四边形ABCD 的对角线AC 上一点,13AE EC =,BE 的延长线交CD的延长线于点G ,交AD 于点F ,求:BF FG 的值.【难度】★★ 【答案】1:2.【解析】由//AF BC ,可得13AF AE BC EC ==,即13AF AD =, 故12AF FD =,由//AB DG ,可得:::1:2BF FG AF FD ==.【总结】考查相似三角形中“X ”字型的综合应用,得到比例关系.D【例25】如图,12//l l ,:2:5AF FB =,:4:1BC CD =,求:AE EC 的值. 【难度】★★ 【答案】2:1.【解析】由12//l l ,得:25AG AF BD FB ==,又:4:1BC CD =,可得21AG CD =,故::2:1AE EC AG CD ==.【总结】考查相似三角形中“X ”字型的综合应用,得到比例关系.【例26】如图,在梯形ABCD 中,//AD BC ,对角线AC 、BD 交于点O ,点E 在AB 上,且//EO BC ,已知3AD =,6BC =.求EO 的长.【难度】★★ 【答案】2.【解析】由//AD BC ,可得:3162AO AD CO BC ===,故13AO AC =,由//EO BC ,13EO AO BC AC ==,求得2EO =. 【总结】相似三角形中“A ”字型和“X ”字型的综合应用,可得到相等比例关系式.【例27】如图,在梯形ABCD 中,//AD BC ,3AD =,5BC =,E 、F 是两腰上的点,且//EF AD ,:1:2AE EB =,求EF 的长.【难度】★★ 【答案】113.【解析】过点A 作//AH DC 交BC 于H ,交EF 于G , 则有32CH FG AD BH ====,,又//EG BH ,可得:13EG AE BH AB ==,解得:23EG =,故113EF EG GF =+=. 【总结】两条直线被三条平行线所截得的线段长对应成比例.G H14 / 25MFEDCBA 【例28】如图,在ABC ∆中,D 是BC 边上的一点,:3:1BD DC =,G 为AD 的中点,联结BG 并延长AC 交于E ,求:EG GB 的值.【难度】★★ 【答案】1:7.【解析】过点D 作//DF BE 交AC 于F .此时则有14DF CF DC BE CE BC ===,又G 为AD 中点,根据平行可得:12GE DF =,故18GE BE =,即18EG EG GB =+,可得:1:7EG GB =.【总结】构造平行线,构造比例线段是解决这类问题的根本.【例29】已知点D 是ABC ∆的BC 边上的一点,13CD BC =,E 是AD 的中点,BE 的延长线交AC 于F ,求:AF AC 的值.【难度】★★ 【答案】2:5.【解析】过点D 作//DM BF 交AC 于点M .∵13CD BC =,∴13CM CD CF BC ==,∴12CM MF =. 又E 为AD 中点,//DM BF , ∴F 为AM 中点,即AF FM =,∴:2:5AF FC =.【总结】考查三角形一边平行线的性质定理,通过构造平行线等比例转化即可得出答案.F【例30】如图,路灯A 的高度为7米,在距离路灯正下方B 点20米处有一墙壁CD ,CD BD ⊥, 如果身高为1.6米的学生EF 站立在线段BD 上(EF BD ⊥,垂足为F ,EF CD <),他的影子的总长度为3米,求该学生到路灯正下方B 点的距离FB 的长.【难度】★★★【答案】818m 或18m【解析】(1)影子全部在地面上时, 设点E 在地面的投影为点M , 则有3FM =.由EF BD ⊥,AB BD ⊥,可得//EF AB ,则有EF FMAB BM =, 代入可求得:1058BM m =,则818FB BM FM m =-=. (2)影子部分在地面,部分在墙面上时,如图,根据同一时刻同一地点任何物体影长与其 高度比值相同,设墙上部分影长ND x =,则有3DF x =-,17FB x =+,则有ND GD AB GB =, 即720x GD GD =+,可得207xGD x=-, 又根据//ND EF ,可得ND GD EF GF =,即207201.637xx x x xx-=+--, 整理即得:210110x x +-=, 解得:()12111x x ==-,舍.故18FB m =.【总结】影长问题,注意同一时刻同一地点任何物体影长与其高度比值相同,有障碍物时,障碍物上的影长仍满足这个条件,注意进行分类讨论.EFNG16 / 25GH FEDCBAFE D CBA【例31】如图,平行四边形ABCD 中,点E 、F 分别在AB 、AD 上,EF 交AC 于点G ,若:2:3AE EB =,:1:2AF AD =,求:AG AC 的值.【难度】★★★ 【答案】2:9.【解析】延长FE 交CB 的延长线于点H .∵//AF BH ,∴23AF AE BH EB ==. 又:1:2AF AD =,故可得:227AF AF CH AF BH ==+,∵//AF CH ,∴27AG AF GC CH ==,故:2:9AG AC =. 【总结】构造与所求线段相关的“A ”字型或“X ”字型,比例转化.【例32】如图,在ABC ∆中,设D 、E 是AB 、AC 上的两点,且BD CE =,延长DE 交BC的延长线于点F ,:3:5AB AC =,12cm EF =,求DF 的长.【难度】★★★ 【答案】20cm .【解析】过点D 作//DH AC 交BC 于H ,则有35BD AB DH AC ==,又BD CE =,则有35CE DH =,由//CE DH ,得35EF CE DF DH ==,代入计算得:125320DF cm =⨯÷=. 【总结】作平行线,构造出与所求线段相关的“A ”字型或“X ”字型,比例转化.G FEDCBA G FEDCBA【例33】如图,已知ABC ∆中,点D 、E 分别在边AB 、AC 上,且:3:2AD DB =,:1:2AE EC =,直线ED 和CB 的延长线交于点F ,求:FB FC .【难度】★★★ 【答案】1:3.【解析】过点B 作//BG FE 交AC 于G . 根据三角形一边平行线的性质定理,可得: 32AE AD EG DB ==,又:1:2AE EC =,故13EG EC =,由//BG FE ,可得:::1:3FB FC EG EC ==.【总结】作平行线,构造出与所求线段相关的“A ”字型或“X ”字型,比例转化.【例34】已知:在ABC ∆中,D 、E 是BC 上的两点,且//AD EG ,EG 交AC 于F ,交BA 的延长线于G ,若2EF EG AD +=.求证:AD 是ABC ∆的中线.【难度】★★★ 【答案】略.【解析】证明://AD EG , AD BD EF CEEG BE AD CD ∴==,. BE CEEG AD EF AD BD CD∴=⋅=⋅,.2EF EG AD +=, 2BE CE BD CD∴+=. 则有11BE CEBD CD-=-, BE BD CD CEBD CD --∴=. 即DE DEBD CD=. BD CD ∴=.即AD 是ABC ∆的中线.【总结】考查三角形一边平行线的性质定理,注意根据题目条件灵活进行比例转换,将条件转化到同一个量,得出结论.18 / 25【习题1】如图,在ABC ∆,//DE BC ,DE 与边AB 、AC 分别交于点D 、E . (1)已知6AD =,8BD =,4AE =,求CE 、AC 的长;(2)已知:2:5AE AC =,10AB =,求AD 的长.【难度】★ 【答案】(1)162833AE CE ==,;(2)4. 【解析】(1)∵//DE BC ,∴AE AD CE DB =,∴163CE =; (2)∵//DE BC ,:2:5AE AC =,∴25AD AE AB AC ==,∴4AD =.【总结】考查三角形一边平行线的性质.【习题2】如图,//EF AB ,//DE BC ,下列各式正确的是()(A )AD BF BD CF = (B )AE CEED BC =(C )AE BDEC AD=(D )AD ABED BC=【难度】★ 【答案】A【解析】根据三角形边平行线的性质进行比例线段转化可 知A 选项正确;B 、C 、D 错误.【总结】考查三角形一边平行线的性质的应用.【习题3】如图,菱形ADEF 内接于ABC ∆,16AB =,14BC =,12AC =,求BE 的长. 【难度】★ 【答案】8.【解析】根据三角形一边平行线的性质,DE BE EF CEAC BC AB BC==,, 即有1DE EF AC AB +=,可解得菱形边长487DE AD ==,故647BD AB AD =-=,BE BDBC BA=,∴8BE =. 【总结】考查三角形一边平行线的性质的综合应用.随堂检测GMDCBA【习题4】如图,P 是ABC ∆的中线AD 上一点,//PE AB ,//PF AC .求证:BE CF =.【难度】★★ 【答案】略.【解析】证明://PE AB ,//PF AC ,BE AP CF APBD DA DC DA ∴==,, BE CFBD DC ∴=, 又BD CD =,BE CF ∴=.【总结】考查三角形一边平行线的性质的综合应用,用固定线段的比值作为中间量.【习题5】如图,在ABC ∆中,//DE BC ,且:2:3AD AB =,求:EO EB 的值. 【难度】★★ 【答案】2:5.【解析】由//DE BC ,可得23DE AD BC AB ==,则23EO DE BO BC ==,根据比例的合比性,可得:2:5EO EB =.【总结】找准图形中的“A ”字型和“X ”字型进行比例线段的转化构造.【习题6】在ABC ∆中,AB AC =,如果中线BM 与高AD 相交于点G ,求AGAD. 【难度】★★【答案】23.【解析】AB AC AD BC =⊥,,BD CD ∴=.即D 为BC 中点,M 为AC 中点, G ∴为ABC ∆重心,23AG AD ∴=. 【总结】考查重心的意义和性质,先证明再利用性质.20 / 25NE GH F M D CBA【习题7】如图ABC ∆,点D 、E 分别在BC 、AC 上,BE 平分ABC ∠,//DE BA .如果24CE =,26AE =,45AB =,求DE 和CD 的长.【难度】★★ 【答案】1085DE =,129665CD =. 【解析】根据三角形一边平行线的性质,可得DE CEAB AC=, ∴452410824265AB CE DE AC ⋅⨯===+.由BE 平分ABC ∠,则有ABE DBE ∠=∠,由//DE BA ,可得:DEB ABE ∠=∠,即DEB DBE ∠=∠,故1085BD DE ==,进而可得:CD CE BD AE =,∴129665BD CE CD AE ⋅==. 【总结】考查三角形一边平行线的性质定理的应用,同时考查平行线与角平分线一起出现会产生等腰三角形的基本图形.【习题8】如图,梯形ABCD 中,//////DC EF GH AB ,30AB cm =,10CD cm =,::2:3:4DE EG GA =,求EF 与GH 的长度.【难度】★★★ 【答案】13019099EF cm GH cm ==,.【解析】过点C 作//CP DA 分别交EF 、GH 、AB 于 点M 、点N 、点P ,则易得四边形DAPC 为平行 四边形.则10EM GN AP DC cm ====,20PB cm =.由//FM BP ,可得:29FM CM DE PB CP DA ===,代入可得:409FM cm =,1309EF EM FM cm =+=. 由//NH PB ,可得:59NH CN DG PB CP DA ===,代入可得:1009NH cm =,1909GH GN NH cm =+=. 【总结】夹在平行线间的线段对应成比例.M N P【作业1】已知线段a、m、n,且ax mn=,求作x,作法正确的是()(A)(B)(C)(D)【难度】★【答案】C【解析】考查三角形一边平行线的性质定理,变形即为a nm x=,可知C选项满足题意.【总结】考查三角形一边平行线的性质定理,进行简单的变形应用,可知线段错位相乘满足题意的即为所求选项.【作业2】如图,ABC∆中,AB ACBE EC=,53ABAC=,//DE AC,求:AB BD的值.【难度】★【答案】8:5.【解析】由AB ACBE EC=,53ABAC=,可得53BEEC=,根据比例的合比性质,可得58BEBC=,由//DE AC,可得::8:5AB BD BC BE==.【总结】考查三角形一边平行线性质的综合应用.课后作业22 / 25NEFMDCB A 【作业3】如图,////AB EF CD ,2AB =,8CD =,:1:5AE EC =,求EF 的长度. 【难度】★★ 【答案】3EF =.【解析】过点B 作//BN AC 交EF 于点M ,交CD 于点N . ∵////AB EF CD ,∴四边形AEMB 、ACNB 、ECNM 都为平行四边形,∴2CN EM AB ===,且有FM BMDN BN =. :1:5AE EC =,16BM AE BN AC ∴==. 16FM BM ND BN ∴==/ ∵6ND CD CN =-=, ∴1FM =,3EF EM FM ∴=+=.【总结】三条平行线被两条直线所截,将其中一条直线平移,放到同一个三角形中解答.EGFMDCBA E G FMDCBA 【作业4】平行四边形ABCD ,E 是AB 的中点,在直线AD 上截取2AF FD =,EF 交AC于G ,求AGGC 的值.【难度】★★【答案】25或23.【解析】(1)当点F 在AD 上时,如图. 过点E 作//EM BC 交AC 于点M , 由E 为AB 中点,则M 为AC 中点, 四边形ABCD 为平行四边形,//AD BC AD BC ∴=,.又2AF FD =, 223AF AF AF AD BC EM ∴===. 由//AF EM , 43AG AF GM EM ∴==,42105AG AG GC GM AM ∴===+. (2)当点F 在AD 延长线上时,如图, 过点E 作//EM BC 交AC 于点M , 由E 为AB 中点,则M 为AC 中点, 四边形ABCD 为平行四边形,//AD BC AD BC ∴=,.又2AF FD =, 22AF AF AF AD BC EM ∴===. 由//AF EM , 4AG AF GM EM∴==4263AG AG GC GM AM ∴===+. 【总结】注意题目中的关键词语,在直线上,由此要进行分类讨论,根据三角形一边平行线的性质构造“A ”字型、“X ”字型即可.24 / 25【作业5】如图,////AB EF DC ,已知20AB =,80CD =,求EF 的长. 【难度】★★ 【答案】16【解析】由////AB EF DC ,可得:BF EF BC CD =,CF EFBC AB=,则有1EF EFAB CD+=,代入计算得16EF =. 【总结】考查三角形一边平行线性质的综合应用,利用比例线段之间的关系构造等式求解.【作业6】如图,在ABC ∆中,D 是边BC 上一点,//DF AB ,//DE CA .(1)求证:AE CFEB FA =; (2)如果2CF =,5AC =,6AB =,求AE 、DE 的长. 【难度】★★【答案】(1)略;(2)1235AE DE ==,. 【解析】(1)证明://DE CA ,AE CDEB DB ∴=, 又//DF AB , CD CFDB FA∴=,AE CFEB FA∴=. (2)解:由(1)可得AE CFEB FA=, 根据比例的合比性质,得:AE CFAB AC=, 代入可解得:621255AE ⨯==, 由//DE CA ,//DF AB , 可知四边形AEDF 为平行四边形,即得:3DE AF AC CF ==-=.【总结】考查三角形一边平行线性质的综合应用,进行比例线段转化.【作业7】如图,在平行四边形ABCD 中,E 是AD 上一点,CE 与BD 相交于点O ,CE 与BA 的延长线相交于点G ,已知2DE AE =,10CE =,求GE 和CO 的长.【难度】★★★【答案】56GE CO ==,.【解析】四边形ABCD 是平行四边形, //AD BC AD BC ∴=,.又2DE AE =,13GE AE AE GC BC AD ∴===,23EO DE OC BC ==, 即13GE GE EC =+,23EC CO CO -=,代入即可求得56GE CO ==,.【总结】考查利用三角形一边平行线的性质构造“A ”字型和“X ”字型,进行比例线段的综合应用.【作业8】如图, //DE BC ,3ADE S ∆=,18CBD S ∆=,求ABC S ∆. 【难度】★★★ 【答案】27. 【解析】设BDES a =,则有3AED BEDS AE SBE a==,318ABD CBDS AD a SCD +==,由DE //BC ,可知AE ADBE CD=, 则有3318aa +=,整理得23540a a +-=,解得6a =, 由此361827ABCADEBDEDBCS SSS=++=++=.【总结】考查三角形一边的平行线定理,以及等高三角形面积比等于其底边之比的知识点的灵活运用.。
三角形一边的平行线判定定理及推论 全国优课
三角形一边的平行线判定定理及推论全国优课1.引言三角形一边的平行线判定定理及推论是数学中的重要概念,它在几何学和数学证明中具有广泛的应用。
本文将对这一概念进行全面评估,并结合全国优课的资源,撰写一篇有价值的文章,帮助您更深入地理解这一主题。
2.三角形一边的平行线判定定理让我们来了解三角形一边的平行线判定定理。
根据这一定理,如果在一个三角形中,有一条边上的一条直线与另外两边上的两条直线平行,那么这两条边上的两条直线互相平分。
这个定理的正确理解和应用,对于解题和证明来说都至关重要。
在数学教学中,老师们常常通过具体的例子和图形演示,来帮助学生更好地理解这一定理的含义和应用。
3.三角形一边的平行线判定定理的推论在初步了解了三角形一边的平行线判定定理后,我们再来看一下相关的推论。
根据这个定理,可以推出一系列的相关结论,比如同位角相等、对顶角相等等。
这些推论在实际问题的解决中也具有重要的作用,通过这些推论,我们能够更好地理解角之间的关系,进而解决更加复杂的几何问题。
4.全国优课资源共享全国优课作为一个专注于教育教学资源建设与共享的评台,提供了大量优质的教学资源和课程。
在这个评台上,老师们可以找到与三角形一边的平行线判定定理及推论相关的优秀课件、教学设计和教学视频,这些资源能够帮助教师们更好地准备课堂教学,从而提升学生的学习效果。
5.个人观点和理解在我看来,三角形一边的平行线判定定理及推论是几何学中非常重要的概念之一。
它不仅可以帮助我们解决具体的数学问题,还能够培养我们的逻辑思维和数学推理能力。
通过深入理解这一概念,我们能够在数学学习和应用中更加游刃有余。
6.总结通过本文的阐述,我们对三角形一边的平行线判定定理及推论有了更深入的了解。
在教学中,我们应该注重通过具体案例和真实图形来帮助学生理解这一概念。
在教学资源的选择上,可以利用全国优课评台上的资源,为课堂教学提供更好的支持。
通过本文的全面评估和撰写,我们对三角形一边的平行线判定定理及推论有了更深入的理解,并且也认识到全国优课这个评台在优质教育资源共享方面的重要性。
三角形一边的平行线知识讲解
三角形一边的平行线 知识讲解责编:常春芳【学习目标】1、掌握三角形一边的平行线性质定理及推论;判定定理及推论;以及平行线分线段成比例定理的推导与应用;2、了解三角形的重心的意义和性质并能应用它解题;3、经历运用分类思想针对图形运动的不同位置分别探究的过程,初步领略运用运动观点、化归和分类讨论等思想进行数学思考的策略.【要点梳理】要点一、三角形一边的平行线性质定理及推论1.性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.要点诠释:(1)主要的基本图形:分A 型和X 型;A 型 X 型(2)常用的比例式:,,AD AE AD AE DB EC DB EC AB AC AB AC=== 3.三角形的重心:三角形三条中线的交点叫做三角形的重心.要点诠释:(1)重心的性质:三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.(2)重心的画法:两条中线的交点.要点二、三角形一边的平行线判定定理及推论1.判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.2.推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.要点诠释:判断平行线的条件中,只能是被截的两条直线的对应线段成比例(被判断的平行线本身不能参与作比例).要点三、平行线分线段成比例定理1.性质定理:两条直线被三条平行的直线所截,截得的对应线段成比例.2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.要点诠释:(1)平行线等分线段定理是平行线分线段成比例定理的特例;(2)平行线分线段成比例没有逆定理;(3) 由于平行线分线段成比例定理中,平行线本身没有参与作比例,因此,有关平行线段的计算问题通常转化到“A”、“X”型中.【典型例题】类型一、三角形一边的平行线性质定理1. 如图已知直线截△ABC 三边所在的直线分别于E 、F 、D 三点且AD=BE.求证:EF :FD=CA :CB.【答案与解析】过D 作DK ∥AB 交EC 于K 点.则,, 即 又∵AD=BE ,∴.【总结升华】运用三角形一边的平行线性质定理,即只要有平行线就可推出对应线段成比例. 举一反三【变式】如图,在⊿ABC, DG ∥EC, EG ∥BC,求证:2AE AB AD =⋅【答案】∵DG ∥EC,∴AD AG AE AC =, ∵EG ∥BC,∴AE AG AB AC=, ∴AD AE AE AB =, 即2AE AB AD =⋅.2.已知,△ABC 中,G 是三角形的重心, AG ⊥GC ,AG=3,GC=4,求BG 的长.【答案与解析】延长BG 交AC 于点D,∵G 是三角形的重心,∴点D 是线段AC 的中点,又∵AG ⊥GC ,AG=3,GC=4,∴AC=5,即DG=,∵BG:GD=2:1.∴BG=5.【总结升华】三角形的重心到一个顶点的距离,等于它到这个顶点对边中点的距离的二倍.ABC DEG GBC A类型二、三角形一边的平行线判定定理3. 如图,AM是△ABC的中线,P是AM上任意一点,BP、CP的延长线分别交AC、AB于E、D 两点.求证:DE∥BC.【答案与解析】延长AM到H,使HM=MP,连接BH、CH∵BM=MC∴四边形BPCH是平行四边形∵BH∥CD,CH∥BE在△ABH和△ACH中,有,∴DE∥BC【总结升华】平行线所截得的对应线段成比例,而两条平行线中的线段与所截得的线段不成比例.举一反三【变式】如图,在△ABC(AB>AC)的边AB上取一点D,在边AC上取一点E,使AD=AE,直线DE 和BC的延长线交于点P,求证:BP BD CP CE.【答案】过点C作CF∥AB交DP于点F,∵CF∥AB,∴∠ADE=∠EFC∵AD=AE,∴∠ADE=∠AED=∠FEC ∴∠EFC=∠FEC∴CF=CE∵CF∥AB∴BP BD CP CF=,即BP BD CP CE=.类型三、平行线分线段成比例定理4. 如图,已知点D、F在△ABC的边AB上,点E在边AC上,且DE∥BC,,求证:EF∥DC.【答案与解析】证明:∵DE∥BC,∴=,∵=,∴=,∴=,∴EF∥DC.【总结升华】本题考查了平行线分线段成比例.注意找准对应关系,以防错解.举一反三【变式】如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A.12B. 2C.25D.35【答案】D提示:∵AG=2,GB=1,∴AB=AG+BG=3,∵直线l1∥l2∥l3,∴=,。
第二讲 三角形一边的平行线
HE=
.
16、如图,在△ABC 中,点 D、E 分别在 AB、AC 上,已知 AD=3,AB=5,AE=2,EC= 4 , 3
由此判断 DE 与 BC 的位置关系是
,理由是
.
17、如图,AM∶MB=AN∶NC=1∶3,则 MN∶BC=
.
AP
18、如图, △PMN 中, 点 A、B 分别在 MP 和 NP 的延长线上,
求证:四边形 CFDE 是菱形.
BP 3
MN
则
AM BN 5 BA
19、△ADE 中,点 B 和点 C 分别在 AD、AE 上,且 AB=2BD,AC=2CE,则 BC∶DE=
。
20、如图,四边形 ABCD 中,AC、BD 相交于 O,若 AO DO ,AO=8,CO=12,BC=15,则 AD=
。
CO BO
21、在 ABC 中, D、E 分别在 AB、AC 上,下列条件能判断 DE∥BC 的是(
【课堂练习】
1、如图 ABC 中,DE//BC,DE 分别交 AB、AC 于点 D、E,则 AD
,
BD
AD AB
, DB
。
AB
2、若 B、C 分别是⊿ADE 的边 DE、AD 的延长线上的点,且 AE//BC,
AD
则
,
DC
AD AC
, BD BE
3、在 ABC 中,DE//BC,DE 分别交 AB、AC 于点 D、E,已知 AD=3,BD=2,CE=4,则 AE=
AB CE
ቤተ መጻሕፍቲ ባይዱ
DB FC
23、△ABC 中,直线 DE 交 AB 于 D,交 AC 于点 E,那么能推出 DE∥BC 的条件是………( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲:三角形一边的平行线性质定理
一、知识要点:
1复习、同高(或等高)的两个三角形的面积之比等于对应底边的比,
(2)
(1)
D
C
B
A
D C
B
A
如图(1):
ABD ADC
S
BD
S
DC =
如图(2):若AD ∥BC,则
ADC ABC
S AD
S
BC
=
2、三角形一边的平行线性质定理:平行于三角形一边的直线截其它两边所在的直线,截得的对应线段成比例。
如图(1),若DE ∥BC ,则
AD AE DB EC =或AD AE AB AC =或DB CE
AB AC =
1
==特殊地:EC AE
DB AD ,
如图(2),若DE ∥BC ,则
AB AC AE AD =或AB AC EB DC =或EA DA
EB DC
=
E
D
E
(2)
(1)
C
B
A
D
C B
A
3、三角形一边的平行线性质定理推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例。
如图(1)已知:△ABC 中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,则AD DE AE
AB BC AC ==
; 如图(2)已知:△ABC 中,点D 、E 分别在CA 、BA 的延长线上,且DE ∥BC ,则A B B C A C
A E D E A D
==
. 小试牛刀:
选择题
1、在“平行于三角形一边的直线截其它两边,所得的对应线段成比例”定理证明中,所用的思想方法是( )
A 、先证明特殊情况成立,再证得一般情况成立
B 、利用平行线性质
C 、利用三角形全等
D 、把线段的比转化为面积的比,再把面积比转化成线段的比 一、填空题
1、 如图,△ABC 中,DE ∥BC ,AD=4BD,则AE=_______EC
2、 已知:D 、E 分别是△ABC 的边AB 、AC 上的点,且DE ∥BC ,AE=6,AD=3,AB=5,则
AC=____________
3、 已知:△ABC 中,DE ∥BC ,DE 分别是边AB 、AC 上的点,若AD:AB=2:9,EC-AE=5厘米,
则AC=_______厘米。
4、 如图,已知:AC ∥BD ,AB 与CD 交于点O 。
若AC:BD=2:3,AO=1.2,则AB=___________.
5、 如图,点D 、E 分别在△ABC 边AB 、AC 上,且DE ∥BC ,若AD:BD=3:4,BE 和CD 相交于
点O ,则EO:OB=____________。
第1题
E D C
B
A
第4题
O
D
C
B
A
O
E
D
C
B
A
二、典型例题:
例1、 如图所示,DE ∥AB,EF ∥BC ,AF=5厘米,FB=3厘米,CD=2厘米。
求BD 。
F E
D
C
B
A
例2、 如图所示,E 为平行四边形ABCD 边CD 延长线上的一点,连接BE 交AC 于点O 。
求证:
注意:(1)在证明时,常把等积式转化成比例式证明;(2)当证明的比例式中线段在同一直线上时,常采取用相等的线段、相等的比、相等的等积式来代换相应的量;(3)证明比例式常利用中间比来转化。
O F
E
D
C
B
A
例3、如图,平行四边形ABCD,E是AB的中点,F是BC的三等分点,EF与BD交于O点,求BO:OD的值。
A D
E
O
B F C
例4、如图,平行四边形ABCD,E是AB的中点,F是BC的三等分点,G是AD上的四等分点,EF与BG交于O点,求BO:OG的值
A G D
E
O
B F C
尖峰时刻
例5、如图所示,AB⊥BD于点D,连接AD、BC,它们交于点E,EF⊥BD于点F。
求证:
111
+=
AB CD EF
F
E
D
C
B
A
试一试:上题中,如将条件“AB⊥BD,EF⊥BD,CD⊥BD”改为“AB∥EF∥CD”那么原结论是否成立呢?
三、课堂练习
1、如下左图,AM:MB=AN:NC=1:3,则MN:BC=________
N
M
C
B
A
O
D
C
B
A
2、如上右图,四边形ABCD 中,AC 、BD 相交于点O ,若AO DO
=
CO BO
,AO=8,CO=12,BC=15,则AD=______________。
3、 如图,四边形DECF 为菱形,AC=15,BC=10,则菱形的周长为___________
F E D
C
B
A
F
E
D C
B A
4、如图,已知在△ABC 中,DE ∥BC ,EF ∥CD ,AF =3,FD =2,求AB 的长。
5、如图平行四边形ABCD ,AD=12,P 、Q 是对角线BD 上的三等分点,延长CQ 交AD 于点S ,延长SP 交BC 于点R ,求BR 的值? A S D
Q P
B R C
重心问题 一、知识要点
1、三角形三条中线交于一点,三角形三条中线的交点叫做三角形的重心。
2、三角形的重心到一个顶点的距离,等于它到这个顶点对边中点距离的两倍。
数学表达:
如图,已知:AD 、BE 、CF 分别是△ABC 的中线,AD 、BE 、CF 交于点G,则
2
1
AG BG CG GD GE GF === G
F
E
D
C B
A
牛刀小试:
1、如图,已知:△ABC 的中线AD 、CE 相交于点G ,AD=6cm ,EG=3cm ,则AG=_____,EC=_______.
G
E
D
C
B
A
G
E
D
C
B
A
2、如图,已知:G 是△ABC 的重心,GE ∥AC ,则DE :BD=__________
3、如图,已知:△ABC 中,AB=AC,AD ⊥BC.BE 是AC 上的中线,BE=15cm ,AG=12cm ,则ABC S ∆=————————。
G
E D
C
B
A D
C
B
A
4、如图△ABC 中,D 为重心,且△ABC 的面积为60。
则ABD S ∆=__________
二、典型例题
例1、如图△ABC 中,G 为重心GD ∥AB ,GE ∥AC ,求证:BD=DE=EC 。
A
G
B D E C
第 3 次课后作业
学生姓名:
一、
填空题
1、如图,在△ABC 中,DE ∥BC,下列各式中错误的是( )
A 、
AD AB =AE AC B 、BD EC
=
AD AE C 、AD DE =DB BC D 、AE DE =
AC BC
2、如图,DE ∥BC,BD 和CE 相交于点O ,EO 1
=OC 3
,AE=3,则EB 为( ) A 、6 B 、9 C 、12 D 、15
3、如图,已知在△ABC 中,DE ∥BC,EF ∥CD,那么下列线段的比中与AE
AC
相等的有( )个。
①
AF AD ;②AF AB ;③FD FB
;④AD
AB A 、0 B 、1 C 、2 D 、3
第1题
E D C
B
A
第2题
O
E
D
C
B
A
第3题
F E
D
C
B A
二、填空题
1、 如图,已知AB ∥DE ,AC =4,BC =3,CD =5,那么CE:CD =_______
E
D
C B
A
2、 在△ABC 中,D 、E 分别在AB 、AC 的反向延长线上,DE ∥BC ,若AD:AB =3:4,EC =14厘
米,则AE:EC =______,AC =______,AE =______。
3、如图,已知△ABC中D为BC的中点,过D的一条直线,交AC于点F,交BA的延长线于点E,AGBC,交EF于点G,那么线段EG、ED、GF、FD之间有什么关系?
E
A G
F
B D C
思维拓展:
1、如图,△ABC中,四边形DECF是正方形,AC=5,BC=3,求AE:DF
A
E D
C F B
2、如图△ABC中,∠B的平分线BD交AC于D,过D作DE∥AB,交BC于E,AB=5,BE=3,求EC的值。
A
D
B E C
3、在△ABC中,AD是中线,G是AD上一点,GE∥AB,GF∥AC,E、F都在边BC上
(1)求证:BE=CF
EF
(2)如果G是△ABC的重心,求
BC
A
G
B E D F C
4、如图AD∥BC,DB与AC交于O,过O作OM∥AD,交AB于M点,AD=2,BC=5,求OM的值。
C
D
O
A M B
问题AB的长度发生改此题中OM的长度是否发生改变?。