自动控制原理课后习题答案第五章

合集下载

自控原理第五章习题参考答案

自控原理第五章习题参考答案

5-1 5()0.251G s s =+5()0.251G j j ωω=+()A ω=()arctan(0.25)ϕωω=-输入 ()5cos(430)5sin(460) =4r t t t ω=-︒=+︒(4)A ==(4)arctan(0.25*4)45ϕ=-=-︒系统的稳态输出为()(4)*5cos[430(4)]3045)17.68cos(475)17.68sin(415)c t A t t t t ϕ=-︒+=-︒-︒=-︒=+︒ sin cos(90)cos(90)cos(270)αααα=︒-=-︒=+︒或者,()(4)*5sin[460(4)]6045) 17.68sin(415)c t A t t t ϕ=+︒+=+︒-︒=+︒所以,对于cos 信号输入下的稳态输出计算规律与sin 信号作用下计算相同。

5-3(2)1()(1)(12)G s s s =++ 1()(1)(12)G j j j ωωω=++()A ω=()arctan arctan 2ϕωωω=--起点:0ω= (0)1;(0)0A ϕ==︒ 位于正实轴上。

终点:ω→∞ ()0;()180A ϕ∞=∞=-︒+∆ 从第三象限趋于原点因此,,Nyquist 曲线与虚轴有交点,并且满足:()arctan arctan 290ϕωωω=--=-︒ arctan arctan 290ωω+=︒所以有,1/(2)ωω= 21/2ω=()0.473A ω=== 因此,与虚轴的交点为(0,-j0.47)()ω(3)1()(1)(12)G s s s s =++ 1()(1)(12)G j j j j ωωωω=++()A ω=()90arctan arctan 2ϕωωω=-︒--起点:0ω= (0);(0)90A ϕ=∞=︒∆-- 位于负虚轴(左侧)无穷远方向终点:ω→∞ ()0;()270A ϕ∞=∞=-︒+∆ 从第二象限趋于原点因此,,Nyquist 曲线与实轴有交点,并且满足:()90arctan arctan 2180ϕωωω=-︒--=-︒ arctan arctan 290ωω+=︒1/(2)ωω= 21/2ω=2()0.673A ω===与实轴的交点为(-0.67,-j0))ω(4)21()(1)(12)G s s s s =++ 21()()(1)(12)G j j j j ωωωω=++()A ω=()180arctan arctan 2ϕωωω=-︒--起点:0ω= (0);(0)180A ϕ=∞=︒∆-- 位于负实轴(上侧)无穷远方向终点:ω→∞ ()0;()360A ϕ∞=∞=-︒+∆ 从第一象限趋于原点因此,,Nyquist 曲线与虚轴有交点,并且满足:()180arctan arctan 2270ϕωωω=-︒--=-︒ arctan arctan 290ωω+=︒1/(2)ωω= 21/2ω=()0.94A ω===与虚轴的交点为(0,j0.94))ω=5-4(2)10.5ω=,21ω=,1K =,0ν=(3)10.5ω=,21ω=,1K =,1ν=低频段直线(延长线)与0db 线交点的频率为:1/cK νω'=。

自动控制原理 黄坚 第二版 课后答案第五章

自动控制原理 黄坚 第二版 课后答案第五章

5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。

(1))30sin()( +=t t r (2) )452cos(2)( -=t t r(s+1)1解: (s+11)1 )A ω 112+()2 1ω √ =0.905 = 112+1 1√ = 122 1√ =-5.2o φ ( ω ) ω 11 =-tg -1 1 11=-tg -1 c s (t)=0.9sin(t+24.8o) (1)计算的最后结果: (1))83.24sin(905.0)(+=t t c ; (2))3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。

(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G(3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G(7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G绘制各系统的开环幅相频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:n-m=3I 型系统ω=0A()=∞ωφ-90o (ω)=-270o φ(ω)=0)=A(ω(2s+1)(8s+1)(3) G(s)=10解:n-m=20型系统ω=0)=10 A(ω-180φ)=-180o (ω)=0A()=ω0)=0o φ(ω)=s(s-1)(5) G(s)=10解:n-m=2I 型系统ω=0ω=∞)=∞A(ω-270)=-270o φ(ω)=-180φ)=-180o (ω)=0A()=ω10(s+0.2)s 2(s+0.1)(s+15)(7) G(s)=解:n-m=3II 型系统ω=0ω=∞)=∞A(ω-180o φ(ω)=-270oφ(ω)=0A()= ωω绘制各系统的开环对数频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:s(G(s)=1051s+1)s+1)(151ω1=5ω2=15低频段曲线:20lgK=20dBω=0ω=∞-90)=-90o φ(ω)=-270)=-270o φ(ω)=相频特性曲线:(2s+1)(8s+1)(3) G(s)=10解:低频段曲线:20lgK=20dB ω1=0.125ω2=0.5相频特性曲线:ω=0ω=∞0)=0o φ(ω)=-180)=-180o φ(ω)=s(s-1)(5) G(s)=10解:低频段曲线:20lgK=20dB ω1=1ω=0ω=∞-270oφ(ω)=-180)=-180oφ(ω)=相频特性曲线:5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。

《自动控制原理》卢京潮主编课后习题答案 西北工业大学出版社5

《自动控制原理》卢京潮主编课后习题答案 西北工业大学出版社5

第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。

u rR 1u cR 2CCR 2R 1u ru c(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sC R sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c)(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 与稳态误差)(t e s (1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2( -=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应 )0(8.08.11)(94≥+-=--t e e t h tt试求系统频率特性。

自动控制原理及其应用课后习题第五章答案

自动控制原理及其应用课后习题第五章答案
40 20 0 -20 -20dB/dec 10 1 2ωc -40dB/dec -60dB/dec 40 -40dB/dec
ω
20 0 -20
10 ωc
1
2 -20dB/dec
ω
-60dB/dec
10 ≈1 ω2 0.5 c
ω c=4.5
5 ≈1 ω c=7.9 ω 0.01 c3
第五章习题课 (5-17)
-20
低频段曲线: 低频段曲线: 20lgK=20dB φ (ω ) 0 ω1=5 ω2=15 -90 相频特性曲线: 相频特性曲线: -180 -270 φ ( )= -90o ω ω=0 φ ( )= -270o ω ω=∞
-60dB/dec
ω
第五章习题课 (5-2)
10(s+0.2) 1.33(5s+1) (5) G(s)= s2(s+0.1)(s+15)=s2(10s+1)(0.67s+1) 解: 低频段曲线: 低频段曲线: 20lgK=2.5dB
第五章习题课 (5-7)
5-7 已知奈氏曲线,p为不稳定极点个数, 已知奈氏曲线, 为不稳定极点个数 为不稳定极点个数, υ为积分环节个数,试判别系统稳定性。 为积分环节个数,试判别系统稳定性。 Im υ=2 (b) p=0 (a) p=0 Im υ=0
ω=0 Re -1 0 ω=0+ -1 0 ω=0 Re
第五章习题课 (5-1)
5-1(1) 已知单位负反馈系统开环传递函数, 已知单位负反馈系统开环传递函数, 当输入信号r(t)=sin(t+30o),试求系统的稳态 当输入信号 , 输出。 输出。 10 G(s)=(s+1) 10 解: φ(s)= (s+11) 10 = 10 = 10 ω A( )= 2 2 112+1√ 122 =0.905 √ 11 +( ) √ ω φ ( )=-tg-1ω =-tg-1 1 =-5.2o ω 11 11 cs(t)=0.9sin(t+24.8o)

自动控制原理卢京潮主编课后习题答案西北工业大学出版社

自动控制原理卢京潮主编课后习题答案西北工业大学出版社

自动控制原理卢京潮主编课后习题答案西北工业大学出版社SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。

(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sC R sC R R R s U s U r c ττ (b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sC R s U s U r c)(1111)()(2122222212ττ 5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s(1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5-3 若系统单位阶跃响应 试求系统频率特性。

自动控制原理第五章课后习题答案(免费)[1]

自动控制原理第五章课后习题答案(免费)[1]

自动控制原理第五章课后习题答案(免费)5-1设单位反馈系统的开环传递函数为对系统进行串联校正,满足开环增益 及 解:① 首先确定开环增益K,00()12lim v s K SG S k →===② 未校正系统开环传函为:012()(1)G s s s =+M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = 70.5 dB (at 200 rad/sec) , P m = 16.5 deg (at 3.39 rad/sec)Frequency (rad/sec)③ 绘制未校正系统的开环对数频率特性,得到幅穿频率 3.4c ω=,对应相位角'0()164,16c G j ωγ∠=-∴=,采用超前校正装置,最大相角 0(180())4016630m c G j ϕγωγ=-+∠+=-+=④ 11sin ,31m αϕαα--=∴=+ 0()(1)KG s s s =+40γ=︒112K s -=⑤ 在已绘图上找出10lg 10lg3 4.77α-=-=-的频率 4.4m ω=弧度/秒 令c m ωω=⑥0.128/,0.385/m T s T s ωα=⇒==∴=校正装置的传函为:110.385()110.128Ts s G s Ts s α++==++校正后的开环传函为:012(10.39)()()()(1)(10.13)c s G s G s G s s s s +==++ 校正后1801374340γ=-=>,满足指标要求.-100-50050100M a g n i t u d e (d B )101010101010P h a s e (d e g )Bode DiagramGm = 99.2 dB (at 1.82e+003 rad/sec) , P m = 42.4 deg (at 4.53 rad/sec)Frequency (rad/sec)5-2设单位反馈系统的开环传递函数为要求 设计串联迟后校正装置。

《自动控制原理》第五章习题解答

《自动控制原理》第五章习题解答
5-4 典型二阶系统的开环传递函数
2 ωn s( s + 2ζω n )
G( s) =
当取 r (t ) = 2 sin t 时,系统的稳态输出
css (t ) = 2 sin(t − 450 )
试确定系统参数 ω n , ζ 。 解:根据公式(5-16)和公式(5-17) 得到: c ss (t ) = A G B ( jω ) sin(ωt + ϕ + ∠G B ( jω ))
根据题目给定的条件: ω = 1 A = 2 所以: G B ( jω ) =
2 (ω n − ω 2 ) + (2ζω nω ) 2
=
=1
(1)
∠G B ( jω ) = − arctan
2ξω nω 2ξω = − arctan 2 n = −45 0 2 2 ωn − ω ωn −1
(2)
由式(1)得 ω n = (ω n − 1) + ( 2ζω n )
20
ϕ (ω )
− 89 o
− 87.2 o
− 92.1o − 164 o
− 216 o
− 234.5 o
− 246 o
− 254 o
− 258 o
ω
30
50
100
ϕ (ω )
− 262 o
− 265 o
− 267.7 o
作系统开环对数频率特性图,求得 ω c = 1 ,系统的穿越频率 ω r = 18 系统的幅值裕度和相角裕度为 h =
-26
-20
5-12 已知最小相位系统的对数幅频渐进特性曲线如图 5-50 所示, 试确定系统的开环传递函 数。 解: (a) G ( s ) =

自控原理习题解答第五章

自控原理习题解答第五章
4 3 2


dk 3 2 4s 18s 20s 8 0 ds


s 1.5s 0.5 3 2 s 3 s 4.5s 5s 2
2
s 3s
3
2 2 2
1.5s 5s 1.5s 4.5s 0.5s 2 0.5s 1.5 0.5
s 0.5s 3 3 2 s 4 s 4.5s 5s 2
1
4 95.58
6求与虚轴的交点
s 1.1s 1.3s 0.5s k 0
4 3 2
s4 s3 s s
2
1 1.1 0.93 0.465 1.21k 1.1k
1.3 0.5 1.1k 0
k
s1
0
2 0.465 1.21k 0,0 k 0.38;0.93s 1.1k 0



4
j
45; l 1 : 3, 4 3 (135)
4
m i 1 i
a
p z
j1
nm

0.5 0.3 j0.96- 0.3 - j0.96- 0 0.275 4
4分离点 2 ss 0.5s 0.6s 1 k 0
试绘制系统的根轨迹图。
2实轴上的根轨迹: 0,0.5 3n m 4, 渐近线的倾角和渐近线 与实轴的交点 2l 1 , l 0,1,2
nm l 0 : 1, 2
n
k 答5 - 4Gs Hs ss 0.5 s 2 0.6s 1 1n 4, m 0, p1 0, p 2 -0.5, p 3 0.3 j0.96, p 4 0.3 j0.96

自动控制原理_第5章习题解答-

自动控制原理_第5章习题解答-

第5章频率特性法教材习题同步解析一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。

求放大系数K 及时间常数T 。

解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。

(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出537()sin(20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有10()A ω=,()18.43ϕω︒=- 系统的稳态输出10()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下5371()sin( 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为102()cos(263.43)ss c t t ︒=-- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss绘出下列各传递函数对应的幅相频率特性与对数频率特性。

《自动控制原理》第5章习题答案

《自动控制原理》第5章习题答案


期望极点
期望极点
− p3
j
600
j0.58
− p2
-1
− p1
0 -j
-3
-2
σ
-2
19.150 -1
40.880 0.33 0
119.640
校核相角条件: 根据在图中主导极点位置的近似值-0.33 ± j 0.58 和开环极点的位置, 作由各开环极点到期望主导极点的向量,
Φ = -119.640 -40.880 -19.150 = -179.670≈-1800
− p2
-10 -5
− p1
0
σ
②计算期望主导极点位置。
超调量σ% ≤ 20%,调整时间 ts ≤ 0.5s
4
ζω n
= 0.5s , ζω n = 8
σ%=e

ζπ
1−ζ 2
= 0.2 , ζ = 0.45 , θ = 63.2 0
故,期望主导极点位置, s1, 2 = −8 ± j15.8
期望极点
Gc ( s ) =
4,控制系统的结构如图 T5.3 所示,Gc(s)为校正装置传递函数,用根轨迹法设计校正装置,
使校正后的系统满足如下要求,速度误差系数 Kv ≥ 20,闭环主导极点 ω n = 4 ,阻尼系数 保持不变。
R(s)
+ -
Gc(s)
4 s ( s + 2)
Y(s)
图 T5.3
解:①校核原系统。
14
+20
0dB
1
Φ (ω ) 度
900 00
5
ω rad/s
ω rad/s
2,控制系统的结构如图 T5.1 所示,试选择控制器 Gc(s), 使系统对阶跃响应输入的超调量

《自动控制原理》答案 李红星 第五章

《自动控制原理》答案 李红星  第五章
5-1
某系统结构图如题 5-1 图所示,试根据频率特性的物理意义,求下列输入信号作用时,
系统的稳态输出 c s (t ) 和稳态误差 e s (t ) (1) (2)
r (t ) = sin 2t r (t ) = sin(t + 30°) − 2 cos( 2t − 45°)
题 5-1 图
解:
系统闭环传递函数为: Φ ( s ) =
(T1 > 0, T2 > 0, T3 > 0, T4 > 0)
又知它们的奈奎斯特曲线如题 5-7 图(a)(b)(c)所示。 找出各个传递函数分别对应的奈奎斯 特曲线,并判断单位反馈下闭环系统的稳定性
145
题 5-7 图 解:三个传递函数对应的奈奎斯特曲线分别为 b, c, a 对 G1 ( s ) =
要求画出以下 4 种情况下的奈奎斯特曲线,并判断闭环系统的稳定性: a. T2 = 0 ;
141
b. 0 < T2 < T1 ; c. 0 < T2 = T1 ; d. 0 < T1 < T2 。 解: a. 当 T2 = 0 时, Q ( s ) =
K , s (T1 s + 1)
2
其开环幅相曲线如题 5-5 解图 a 所示, P = 0 ,N=2 则 Z=P+N=2,故在 s 平面右半平面有 2 个闭环极点,闭环系统不稳定; b.当 0 < T2 < T1 时, Q( jω ) =
当 τ > T 时,开环幅相曲线始终处于第三象限,如题 5-4 解图 a 所示; 当 T > τ 时,开环幅相曲线始终处于第二象限,如题 5-4 解图 b 所示。
题 5-4 解图 a 开环幅相曲线

自动控制原理课后习题答案第五章

自动控制原理课后习题答案第五章

第 五 章5-2 若系统单位阶跃响应为49()1 1.80.8tth t ee--=-+试确定系统的频率特性。

分析 先求出系统传递函数,用j ω替换s 即可得到频率特性。

解:从()h t 中可求得:(0)0,(0)0h h '==在零初始条件下,系统输出的拉普拉斯变换()H s 与系统输出的拉普拉斯变换()R s 之间的关系为()()()H s s R s =Φ⋅即()()()H s s R s Φ=其中()s Φ为系统的传递函数,又1 1.80.836()[()]49(4)(9)H s L h t s s s s s s ==-+=++++1()[()]R s L r t s ==则()36()()(4)(9)H s s R s s s Φ==++令s j ω=,则系统的频率特性为()36()()(4)(9)H j j R j j j ωωωωωΦ==++5-7 已知系统开环传递函数为)1s T (s )1s T (K )s (G 12++-=;(K、T1、T2>0)当取ω=1时, o180)j (G -=ω∠,|G(jω)|=0.5。

当输入为单位速度信号时,系统的稳态误差为0.1,试写出系统开环频率特性表达式G(jω)。

分析:根据系统幅频和相频特性的表达式,代入已知条件,即可确定相应参数。

解: 由题意知:()G j ω=21()90arctan arctan G j T T ωωω∠=---因为该系统为Ⅰ型系统,且输入为单位速度信号时,系统的稳态误差为0.1,即1()lim ()0.1ss s e E s K→∞===所以:10K =当1ω=时,(1)0.5G j ==21(1)90arctan arctan 180G j T T ∠=---=-由上两式可求得1220,0.05T T ==,因此10(0.051)()(201)j G j j j ωωωω-+=+5-14 已知下列系统开环传递函数(参数K 、T 、T i>0,i=1,2,…,6)(1))1s T )(1s T )(1s T (K)s (G 321+++=(2))1s T )(1s T (s K)s (G 21++=(3))1Ts (s K )s (G 2+=(4))1s T (s )1s T (K )s (G 221++=(5)3s K )s (G =(6)321s)1s T )(1s T (K )s (G ++=(7))1s T )(1s T )(1s T )(1s T (s )1s T )(1s T (K )s (G 432165++++++=(8)1Ts K)s (G -=(9)1Ts K )s (G +--=(10))1Ts (s K)s (G -=其系统开环幅相曲线分别如图5-6(1)~(10)所示,试根据奈氏判据判定各系统的闭环稳定性,若系统闭环不稳定,确定其s 右半平面的闭环极点数。

自动控制原理(孟华)第5章习题解答

自动控制原理(孟华)第5章习题解答

137习 题5-1 某系统的单位阶跃响应为c (t ) = 1-e -t +e -2t- e -4t ,试求系统的频率特性。

解:238s+8G(s)(1)(2)(4)s s s s +=+++,将s =j ω代入,得23()8+8()(1)(2)(4)j j G j j j j ωωωωωω+=+++5-2 设系统传递函数为1)1()()(12++=s T s T K s R s C 当输入信号r (t )=A sin ωt 时,试求系统的稳态输出。

解:系统的稳态输出为21()arc tan -arc tan )ss C t t T T ωωω=+5-3画出下列传递函数的Bode 图。

(1) G (s )=1121++s T s T , ( T 1 > T 2 > 0 ) ; (2) G (s )=1121+-s T s T , ( T 1 > T 2 > 0 )(3) G (s )=1121++-s T s T , ( T 1 > T 2 > 0 )解:答案见胡寿松主编《自动控制原理习题集》Page709,B5-13。

5-4画出下列传递函数对数幅频特性的渐近线和相频特性曲线。

(1) G (s )=)18)(12(2++s s ; (2) G (s )=)16)(1(5022+++s s s s(3) G (s )=)1.0()2.0(102++s s s ; (4) G (s )=)254)(1()1.0(822+++++s s s s s s解:对数幅频特性的渐近线和相频特性曲线如习题5-4(1)~ 5-4(4)答案图所示。

M a g n i t u d e (d B )1010101010P h a s e (d e g )Frequency (rad/sec)M a g n i t u d e (d B )101010101010P h a s e (d e g )Frequency (rad/sec)习题5-4(1)答案图 习题5-4(2)答案图138M a g n i t u d e (d B )10101010P h a s e (d e g )Frequency (rad/sec)M a g n i t u d e (d B )10101010101010P h a s e (d e g )Frequency (rad/sec)习题5-4(3)答案图 习题5-4(4)答案图5-5系统开环传递函数如下。

《自动控制原理》课后习题答案(5章)

《自动控制原理》课后习题答案(5章)

《自动控制原理》课后习题答案(5章)5.1 系统的结构图如图5-68所示。

试依据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出ss c 和稳态误差ss e 。

⑴()t t r 2sin =⑵()()()︒︒--+=452cos 230sin t t t r图5-1解 系统的传递函数:()()()21+==Φs s R s C s ()()()21++==Φs s s R s E s e 幅频特性及相频特性:()()2,2122ωωωωarctgj j -=Φ+=Φ()()2,21222ωωωωωωarctgarctg j e e -=Φ++=Φ(1)()2,2sin ==ωt t r 稳态输出:()()︒︒-=-+=452sin 221452sin 441t t c ss()︒-≈452sin 354.0t稳态误差:⎪⎭⎫ ⎝⎛-+++=2222sin 2221222arctg arctg t e ss()()︒︒+≈+=43.182sin 791.043.182sin 225t t(2)()()()()()︒︒︒︒+-+=--+=452sin 230sin 452cos 230sin t t t t t r⎪⎪⎭⎫ ⎝⎛+∠+++•-⎪⎪⎭⎫ ⎝⎛+∠+++=︒︒221452sin 221212130sin 211222j t j t c ss ()t t 2sin 225.3sin 55-+=︒ ()t t 2sin 708.05.3sin 447.0-+≈︒⎪⎭⎫ ⎝⎛-++++•-⎪⎭⎫ ⎝⎛-++++=︒︒222452sin 2221221130sin 12112222222arctg arctg t arctg arctg t e ss ()()︒︒︒︒︒︒-++•--++=4543.63452sin 410257.264530sin 510t t ()()︒︒+-+≈43.632sin 582.143.48sin 632.0t t ()()︒︒--+=57.1162sin 582.143.48sin 632.0t t5.2 若系统的单位阶跃响应:()t t e e t h 948.08.11--+-=()0≥t 试求系统的频率特性。

自动控制原理参考答案-第5章

自动控制原理参考答案-第5章

第五章题5-1:试绘制下列开环传递函数的幅相频率特性曲线。

(1) 10G(s)H(s)(s 1)(0.2s 1)=++ (2) 25(s 1)G(s)H(s)(s 3)(s 2s 2)+=+++(3) 100G(s)H(s)(s 1)(s 3)(s 4)=+++ 题5-6:试绘制题5-1各开环传递函数的对数幅频特性渐近线和半对数相频特性曲线。

(1) 2221010122()()(1)(0.21)(1)(10.04)j G j H j j j ωωωωωωωω--==++++实频特性:)04.01)(1(210)(222ωωωω++-=P虚频特性:)04.01)(1(12)(22ωωωω++-=Q 相频特性:()arctan arctan 0.2ϕωωω=-- Nyqist 曲线:起点:0ω=(0)10P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=- 与虚轴交点:()0P ω= 2.236ω⇒=() 3.73Q ω⇒=- Nyqist 曲线如下:转折频率1:111T ω==;转折频率2:215T ω==对数幅频特性:()20lg ()20lg10L A ωω==-半对数相频特性:()arctan arctan 0.2ϕωωω=-- Bode 图如下:(2) 25(1)()()(3)(22)j G j H j j j ωωωωωω+=+-+ 222222225(3)(2)202(12)(9)[(2)4]j ωωωωωωωω+-+-+=+-+ 实频特性:]4)2)[(9(20)2)(3(5)(2222222ωωωωωωω+-++-+=P 虚频特性:]4)2)[(9()21(10)(22222ωωωωωω+-++-=Q相频特性:2()arctan arctan arctan 310.5ωωϕωωω=--- Nyqist 曲线:起点:0ω=5(0)6P ⇒=,(0)0Q =,(0)0ϕ=终点:ω=∞()0P ⇒∞=,()0Q ∞=,()180ϕ∞=-与虚轴交点:()0P ω= 2.09ω⇒=()0.66Q ω⇒=- Nyqist 曲线如下:225(1)0.83(1)()()(3)(22)(0.331)[(0.7)1]j j G j H j j j j j j ωωωωωωωωωω++==+-++++ 转折频率1:11 1.414T ω==;转折频率2:213T ω==对数幅频特性:5()20lg ()20lg 6L A ωω==+半对数相频特性:2()arctan arctanarctan310.5ωωϕωωω=---Bode 图如下:(3) 23222100100[128(19)]()()(1)(3)(4)(1)(3)(4)j G j H j j j j ωωωωωωωωωωω-+-==++++++实频特性:)4)(3)(1()812(100)(2222ωωωωω+++-=P虚频特性:)4)(3)(1()19(100)(2223ωωωωωω+++-=Q 相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Nyqist 曲线:起点:0ω=(0)8.33P ⇒=,(0)0Q =,(0)0ϕ= 终点:ω=∞()0P ⇒∞=,()0Q ∞=,()270ϕ∞=- 与虚轴交点:()0P ω= 1.22ω⇒=() 4.77Q ω⇒=- 与实轴交点:()0Q ω= 4.36ω⇒=()0.71P ω⇒=- Nyqist 曲线如下:8.33()()(1)(0.331)(0.251)G j H j j j j ωωωωω=+++转折频率1:111T ω==;转折频率2:213T ω==;转折频率3:314T ω==对数幅频特性:()20lg ()18.4L A ωω==-半对数相频特性:()arctan arctan 0.33arctan 0.25ϕωωωω=--- Bode 图如下:题5-2:已知某一控制系统的单位阶跃响应为4t 9t c(t)1 1.8e 0.8e --=-+试求该系统的开环频率特性。

自动控制原理 黄坚 第二版 课后答案第五章

自动控制原理 黄坚 第二版 课后答案第五章

5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。

(1))30sin()(+=t t r (2) )452cos(2)(-=t t r(s+1)1解: (s+11)1 )A ω 112+( )2 1ω √ =0.905 = 112+1 1√ = 122 1√ =-5.2o φ ( ω ) ω 11 =-tg -1 1 11=-tg -1 c s (t)=0.9sin(t+24.8o) (1)计算的最后结果: (1))83.24sin(905.0)(+=t t c ; (2))3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。

(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G(3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G(7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G绘制各系统的开环幅相频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:n-m=3I 型系统ω=0A()=∞ωφ-90o (ω)=-270o φ(ω)=0)=A(ω(2s+1)(8s+1)(3) G(s)=10解:n-m=20型系统ω=0)=10 A(ω-180φ)=-180o (ω)=0)=A(ω0)=0o φ(ω)=s(s-1)(5) G(s)=10解:n-m=2I 型系统ω=0ω=∞)=∞A(ω-270)=-270o φ(ω)=-180)=-180o φ(ω)=0A()=ωs 2(s+0.1)(s+15)(7) G(s)=10(s+0.2)解:n-m=3II 型系统ω=0ω=∞)=∞A(ω-180o φ(ω)=φ-270o(ω)=0)= A(ωω绘制各系统的开环对数频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:s(G(s)=1051s+1)s+1)(151ω1=5ω2=15低频段曲线:20lgK=20dB ω=0ω=∞-90)=-90o φ(ω)=-270)=-270o φ(ω)=相频特性曲线:(2s+1)(8s+1)(3) G(s)=10解:低频段曲线:20lgK=20dBω1=0.125ω2=0.5相频特性曲线:ω=0ω=∞0)=0o φ(ω)=-180φ)=-180o (ω)=s(s-1)(5) G(s)=10解:低频段曲线:20lgK=20dB ω1=1ω=0ω=∞φ-270o(ω)=-180)=-180o φ(ω)=相频特性曲线:5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。

中文版教材习题五答案

中文版教材习题五答案


z
*

30 199
30
(2)分离点为: d 0.4 ,分离角为: (2k 1)
l
2
起始角: p4 268 , p5 268
与虚轴的交点:
K1*

0 0
K2,3*

1.034 73.04
K4*,5165.553104
K(3s 1)
s(2s 1) K(3s 1)
闭环特征方程: 2s 2 (1 3K)s K 0
闭环特征根: s1,2 (1 3K)
(1 3K)2 8K (1 3K) 9K 2 2K 1

4
4

K=0
时,特征根
s1

0, s2


1 2
(1 3K ) (3K 1)2 8
(1)
G(s)

K s(s 1)2
(2)
G(s)

K(s s(s2 4s
4) 29)
(3) G(s)
K
s(s 2 4s 8)
试概略画出闭环系统根轨迹图。 5-4 参考答案:
(a) G(s)H (s) K s(s 1)2
(4) G(s) K (s 5)(s 4) s(s 1)(s 3)
-4 -3
Im
-1
0
Re 5
44
“自动控制原理”第五章习题参考答案
5-5
已知开环传递函数为 G(s)H (s)
K s(s 4)(s2 4s 20)
,请概略画出闭环系统根轨。
5-5 参考答案:
与虚轴交点:

K
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 五 章
5-2 若系统单位阶跃响应为
49()1 1.80.8t t h t e e --=-+
试确定系统的频率特性。

分析 先求出系统传递函数,用j ω替换s 即可得到频率特性。

解:从()h t 中可求得:(0)0,(0)0h h '==
在零初始条件下,系统输出的拉普拉斯变换()H s 与系统输出的拉普拉斯变换()R s 之间的关系为
()()()H s s R s =Φ⋅
即 ()()()H s s R s Φ= 其中()s Φ为系统的传递函数,又
1 1.80.836()[()]49(4)(9)H s L h t s s s s s s ==-+=++++
1()[()]R s L r t s ==

()36()()(4)(9)H s s R s s s Φ==++ 令s j ω=,则系统的频率特性为 ()36()()(4)(9)H j j R j j j ωωωωωΦ==++
5-7 已知系统开环传递函数为 )1s T (s )1s T (K )s (G 12++-=
;(K、T1、T2>0)
当取ω=1时, o 180)j (G -=ω∠,|G(jω)|=0.5。

当输入为单位速度信号时,系统
的稳态误差为0.1,试写出系统开环频率特性表达式G(jω)。

分析:根据系统幅频和相频特性的表达式,代入已知条件,即可确定相应参数。

解: 由题意知:
2
2211()()1()K T G j T ωωωω+=+ 021()90arctan arctan G j T T ωωω∠=---
因为该系统为Ⅰ型系统,且输入为单位速度信号时,系统的稳态误差为0.1,即 01()lim ()0.1ss s e E s K →∞===
所以:10K = 当1ω=时,2
22
11(1)0.51K T G j T +==+
00
21(1)90arctan arctan 180G j T T ∠=---=-
由上两式可求得1220,0.05T T ==,因此 10(0.051)()(201)j G j j j ωωωω-+=+
5-14 已知下列系统开环传递函数(参数K 、T 、T
i>0,i=1,2,…,6) (1) )1s T )(1s T )(1s T (K )s (G 321+++=
(2))1s T )(1s T (s K )s (G 21++=
(3))1Ts (s K )s (G 2+=
(4))1s T (s )1s T (K )s (G 221++=
(5)
3s K
)s (G =
(6)321s )1s T )(1s T (K )s (G ++=
(7))1s T )(1s T )(1s T )(1s T (s )1s T )(1s T (K )s (G 432165++++++= (8)
1Ts K
)s (G -=
(9)
1Ts K )s (G +--= (10))1Ts (s K )s (G -= 其系统开环幅相曲线分别如图5-6(1)~(10)所示,试根据奈氏判据判定各系统的闭环稳定性,若系统闭环不稳定,确定其s 右半平面的闭环极点数。

图5-6题5-8系统开环幅相曲线
分析:由开环传递函数可知系统在右半平面开环极点个数P,由幅相曲线图可知包围点

1,0j
-)的圈数。

解:(1)
0,1
P N
==-
202(1)2
Z P N
=-=-⨯-=
所以系统在虚轴右边有2个根,系统不稳定。

(2)
0,0
P N
==
20200
Z P N
=-=-⨯=
所以系统在虚轴右边有0个根,系统不稳定。

(3)
0,1
P N
==-
202(1)2
Z P N
=-=-⨯-=
所以系统在虚轴右边有2个根,系统不稳定。

(4)
0,0
P N
==
20200
Z P N
=-=-⨯=
所以系统在虚轴右边有0个根,系统稳定。

(5)
0,1
P N
==-
202(1)2
Z P N
=-=-⨯-=
所以系统在虚轴右边有2个根,系统不稳定。

(6)
0,0
P N
==
20200
Z P N
=-=-⨯=
所以系统在虚轴右边有0个根,系统稳定。

(7)
0,0
P N
==
20200
Z P N
=-=-⨯=
所以系统在虚轴右边有0个根,系统稳定。

(8)
1
1,
2
P N
==
1
2120
2
Z P N
=-=-⨯=
所以系统在虚轴右边有0个根,系统稳定。

(9)
1,0
P N
==
21201
Z P N
=-=-⨯=
所以系统在虚轴右边有1个根,系统不稳定。

(10)
1
1,
2
P N
==-
1
212()2
2
Z P N
=-=-⨯-=
所以系统在虚轴右边有2个根,系统不稳定。

5-21 设单位反馈控制系统的开环传递函数为
2
s
1
as
)s(
G
+
=
试确定相角裕度为45°时参数a的值。

分析:根据相角裕度的定义计算相应的参数值。

解:
(arctan180) ()j a
G jω
ω-
=
开环幅相曲线如图所示
以原点为圆心做单位圆,开环幅相曲线与单位圆交于A 点,在A 点有
()1c A ω== ①
即4221c c a ωω=+
要求相角裕度00
180()45c γϕω=+=,即
0000
()arctan 180********c c a ϕωω=-=-=-
1c a ω= ② 联立 ①、②两式可求解得 1.19,0.84c a ω==。

相关文档
最新文档