数字图像处理 第4章 图像增强
数字图像处理要点简述详述
第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。
(2) 重现性能好。
(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。
4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。
)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。
F(u, v)即为f (x, y)的频谱。
频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。
第四章 图像增强
数字图像处理
例如,某像素5×5邻域的灰度分布如图,经 计算9个掩模区的均值和方差为:
3 6 7 4 2 3 4 3 1ͣ 1 2 2 2 4 5 1 1 4 3 3 6
均值 对应的 方差
4
4
3
2
3
4
2
3
3
4 8 4 4
54 7 17 17 28 31 23 26 0
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
4.1 图像的对比度增强
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
图像的直方图修正
定义:数字图像中各灰度级与其出现的频数间的 统计关系,可表示为:
直方图反映了图像的清晰程度,当直方图均匀分布 时,图像最清晰。由此,我们可以利用直方图来达 到使图像清晰的目的。 直方图均衡化:通过原始图像的灰度非线性变换, 使其直方图变成均匀分布,以增加图像灰度值的动 态范围,从而达到增强图像整体对比度,使图像变 清晰的效果。
梅小明
图像平滑
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
中值滤波法的举例及与平均滤波法 的对比
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
中值滤波法
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
中值滤波法
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
中值滤波法
数字图像处理
中南大学信息物理工程学院测绘所
第四章 图像增强
概述 图像的对比度增强 图像的直方图修正 图像平滑 图形锐化 图像的同态滤波 图像的彩色增强
数字图像处理(第二版)章 (4)
线斜率大于1时,该灰度区间的动态范围增加,即对比度增强
了,而另外两个区间的动态范围被压缩了。当a=b,c=0,d=L-
1时,式(4-4)就变成一个阈值函数,变换后将会产生一个二值 图像。图4-3(c)是经由图4-3 (b)所示的分段线性变换对图43(a)的变换结果,它保持低灰度像素不变,增强了中间灰度的 对比度,并压缩了高灰度的动态范围。
2r 2 0 r 1
pr (r) 0
其他值
用式(4-11)求其变换函数,即其累积分布函数为
s T(r)
像素数之比p)r。(r对k ) 数 n字nk 图像,直k方图0,1可,2表,示, L为1
(4-8)
式中: n是一幅图像的像素总数; L是灰度级的总数目; rk表示第k个灰度级; nk为第k级灰度的像素数; pr(rk)表示 该灰度级出现的频率,是对其出现概率的估计。
第4章 图像增强
在直角坐标系中做出rk与pr(rk)的关系图形,称为该图像
设r为变换前的归一化灰度级,0≤r≤1,T(r)为变换函数, s=T(r)为变换后的归一化灰度级,0≤s≤1。变换函数T(r)应
满足下列条件:
(1) 在0≤r≤1区间内,T(r)单值单调递增; (2) 对于0≤r≤1,有0≤T(r)≤1。
第4章 图像增强
第一个条件保证了变换后图像的灰度级从黑到白的次序不 变。第二个条件保证了变换前后图像灰度范围一致。反变换
第4章 图像增强 灰度变换就是把原图像的像素灰度经过某个变换函数变换
成新的图像灰度。常见的灰度变换方法有直接灰度变换法和直 方图修正法。直接灰度变换法可以分为线性、分段线性以及非 线性变换。直方图修正法可以分为直方图均衡化和直方图规定 化。
数字图像处理第四章作业
第四章图像增强1.简述直方图均衡化处理的原理和目的。
拍摄一幅较暗的图像,用直方图均衡化方法处理,分析结果。
原理:直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
也就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
把给定图像的直方图分布改变成“均匀”分布直方图分布目的:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
它通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过直方图均衡化,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
Matlab程序如下:clc;RGB=imread('wxf.jpg'); %输入彩色图像,得到三维数组R=RGB(:,:,1); %分别取三维数组的一维,得到红绿蓝三个分量G=RGB(:,:,2); %为R G B。
B=RGB(:,:,3);figure(1)imshow(RGB); %绘制各分量的图像及其直方图title('原始真彩色图像');figure(2)subplot(3,2,1),imshow(R);title('真彩色图像的红色分量');subplot(3,2,2), imhist(R);title('真彩色图像的红色分量直方图');subplot(3,2,3),imshow(G);title('真彩色图像的绿色分量');subplot(3,2,4), imhist(G);title(' 的绿色分量直方图');subplot(3,2,5),imshow(B);title('真彩色图像的蓝色分量');subplot(3,2,6), imhist(B);title('真彩色图像的蓝色分量直方图');r=histeq(R); %对个分量直方图均衡化,得到个分量均衡化图像g=histeq(G);b=histeq(B);figure(3),subplot(3,2,1),imshow(r);title('红色分量均衡化后图像');subplot(3,2,2), imhist(r);title('红色分量均衡化后图像直方图');subplot(3,2,3),imshow(g);title('绿色分量均衡化后图像');subplot(3,2,4), imhist(g);title('绿色分量均衡化后图像直方图');subplot(3,2,5), imshow(b);title('蓝色分量均衡化后图像');subplot(3,2,6), imhist(b);title('蓝色分量均衡化后图像直方图');figure(4), %通过均衡化后的图像还原输出原图像newimg = cat(3,r,g,b); %imshow(newimg,[]);title('均衡化后分量图像还原输出原图');程序运行结果:原始真彩色图像均衡化后分量图像还原输出原图图1.1 原始图像与均衡化后还原输出图像对比通过matlab仿真,由图1.1比较均衡化后的还原图像与输入原始真彩色图像,输出图像轮廓更清晰,亮度明显增强。
数字图像处理_胡学龙等_第04章_图像增强
直方图均衡化
通过对原图像进行某种变换,使得图像的直 方图变为均匀分布的直方图 。
灰度级连续的灰度图像:当变换函数是原图 像直方图累积分布函数时,能达到直方图均 衡化的目的。 对于离散的图像,用频率来代替概率 。 【例4.2】假定有一幅总像素为n=64×64的图 像,灰度级数为8,各灰度级分布列于表4.1 中。试对其进行直方图均衡化。
• 4.3.2増晰原理 • 同态増晰采用合适的滤波特性函数,可以即使图 像灰度动态范围压缩,又能让感兴趣的物体图像 灰度扩展,从而是图像清晰。 • 图像是物体对照明光的反射,自然景物图像是由 两个分量乘积组成的,即照明函数和反射函数的 乘积。 • 图像的灰度由照明分量和反射分量合成,反射分 量反映了图像的实际内容(细节,纹理,边缘 等),随图像细节不同在空间上做快速变化,其 频谱落在空间高频区域。 • 而照明分量在空间上均具有缓慢变化的性质,其 频谱落在空间低频区域。 • 因此可通过傅里叶变换将两者分开,进行同态滤 波。
a’=0,b’=255。
实现的程序:
• • • • • A=imread('pout.tif'); %读入图像 imshow(A); %显示图像 figure,imhist(A); %显示图像的直方图 J1=imadjust(A,[0.3 0.7],[]); %函数将图像在0.3*255~0.7*255灰度之间 的值通过线性变换映射到0~255之间 • figure,imshow(J1); %输出图像效果图 • figure,imhist(J1) %输出图像的直方图
• 基本思想:按照高通滤波器设计,压缩低 频分量,提升高频分量。 • 照明函数频率变化缓慢,幅度变化大,数 字化占用位数多,所以要压缩; • 反射函数频率变化快,灰度变化很小,层 次不清,细节不明,应该扩展。
(完整版)数字图像处理每章课后题参考答案
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
数字图像处理实验报告——图像增强实验
实验报告课程名称数字图像处理导论专业班级_______________姓名_______________学号_______________电气与信息学院和谐勤奋求是创新2.编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 14.采用不同的梯度算子对b lurry_moon.tif进行锐化滤波,并比较其效果。
[I,m ap]=im read('trees.tif');I=double(I);subplo t(2,3,1)imshow(I,m ap);title(' Original Im age');[Gx,Gy]=gradie nt(I); % gradie n t calcul ationG=sqrt(Gx.*Gx+Gy.*Gy); % matrixJ1=G; % gradie nt1subplo t(2,3,2)imshow(J1,m ap);title(' Operator1 Im age');J2=I; % gradie nt2 K=find(G>=7);J2(K)=G(K);subplo t(2,3,3)im show(J2,m ap);title(' Operator2 Im age');J3=I; % gradie n t3 K=find(G>=7);J3(K)=255;subplo t(2,3,4)im show(J3,m ap);title(' Operator3 Im age');J4=I; % gradie n t4 K=find(G<=7);J4(K)=255;subplo t(2,3,5)im show(J4,m ap);title(' Operator4 Im age');J5=I; % gradie nt5 K=find(G<=7);J5(K)=0;Q=find(G>=7);J5(Q)=255;subplo t(2,3,6)im show(J5,m ap);title(' Operator5 Im age');5.自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;附录:可能用到的函数和参考结果**************报告里不能用参考结果中的图像1)采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]滤波I=im read('moon.tif');T=double(I);subplo t(1,2,1),im show(T,[]);title('Origin al Im age');w =[1,1,1;1,-8,1;1,1,1];K=conv2(T,w,'sam e');subplo t(1,2,2)im show(K);title('Laplacian Transf orm ation');图2.9 初始图像与拉普拉斯算子锐化图像2)编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子:w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]functi on w = genlap lacia n(5)%Com put es the Laplac ian operat orw = ones(n);x = ceil(n/2);w(x, x) = -1 * (n * n - 1);3)分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_mo on.tif进行锐化滤波,并利用式完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。
数字图像处理知识点总结
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
胡学龙《数字图像处理(第二版)》课后习题解答
2
1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘 莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 P扫描仪、数码相机等图像输入设备采集的图 像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能 可以很方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对 图像进行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色 模式的转换、改变图像的尺寸和分辨率、制作网页图像等。
1.5 常见的数字图像处理开发工具有哪些?各有什么特点? 答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。两种开发工具各有所长且有相互 间的软件接口。 Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发 出来的 Win 32 程序有着运行速度快、可移植能力强等优点。VC++所提供的 Microsoft 基础 类库 MFC 对大部分与用户设计有关的 Win 32 应用程序接口 API 进行了封装,提高了代码 的可重用性,大大缩短了应用程序开发周期,降低了开发成本。由于图像格式多且复杂,为 了减轻程序员将主要精力放在特定问题的图像处理算法上,VC++ 6.0 提供的动态链接库 ImageLoad.dll 支持 BMP、JPG、TIF 等常用 6 种格式的读写功能。 MATLAB 的图像处理工具箱 MATLAB 是由 MathWorks 公司推出的用于数值计算的有 力工具,是一种第四代计算机语言,它具有相当强大的矩阵运算和操作功能,力求使人们摆 脱繁杂的程序代码。MATLAB 图像处理工具箱提供了丰富的图像处理函数,灵活运用这些 函数可以完成大部分图像处理工作,从而大大节省编写低层算法代码的时间,避免程序设计 中的重复劳动。MATLAB 图像处理工具箱涵盖了在工程实践中经常遇到的图像处理手段和 算法,如图形句柄、图像的表示、图像变换、二维滤波器、图像增强、四叉树分解域边缘检 测、二值图像处理、小波分析、分形几何、图形用户界面等。但是,MATLAB 也存在不足 之处限制了其在图像处理软件中实际应用。首先,强大的功能只能在安装有 MATLAB 系统 的机器上使用图像处理工具箱中的函数或自编的 m 文件来实现。其次,MATLAB 使用行解 释方式执行代码,执行速度很慢。第三,MATLAB 擅长矩阵运算,但对于循环处理和图形 界面的处理不及 C++等语言。为此,通应用程序接口 API 和编译器与其他高级语言(如 C、 C++、Java 等)混合编程将会发挥各种程序设计语言之长协同完成图像处理任务。API 支持 MATLAB 与外部数据与程序的交互。编译器产生独立于 MATLAB 环境的程序,从而使其他 语言的应用程序使用 MATLAB。
数字图像处理之频率域图像增强
图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS
数字图像处理教案
数字图像处理教案.(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--本册教案目录常州大学教案第 1 次课 2 学时授课时间教案完成时间第 1 页常州大学教案第 2 次课 2 学时授课时间教案完成时间第 2 页常州大学教案第 3 次课 2 学时授课时间教案完成时间第 3 页常州大学教案第 4 次课 2 学时授课时间教案完成时间第 5 次课 2 学时授课时间教案完成时间第 6 次课 2 学时授课时间教案完成时间第 7 次课 2 学时授课时间教案完成时间第 8 次课 2 学时授课时间教案完成时间第 9 次课 2 学时授课时间教案完成时间第 9 页常州大学教案第 10 次课 2 学时授课时间教案完成时间第 10 页常州大学教案第 11 次课 2 学时授课时间教案完成时间第 11 页常州大学教案第 12 次课 2 学时授课时间教案完成时间第 12 页常州大学教案第 13 次课 2 学时授课时间教案完成时间第 13 页常州大学教案第 14 次课 2 学时授课时间教案完成时间第 14 页常州大学教案第 15 次课 2 学时授课时间教案完成时间第 15 页常州大学教案第 16 次课 2 学时授课时间教案完成时间第 16 页常州大学教案第 17 次课 2 学时授课时间教案完成时间第 17 页常州大学教案第 18 次课 2 学时授课时间教案完成时间第 18 页常州大学教案第 19 次课 2 学时授课时间教案完成时间第 19 页学生反馈。
(完整版)天津理工大学《数字图像处理》数字图像处理复习题2
第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2.像增强等;二是从图像到非图像的一种表示,如图像测量等。
5. 数字图像处理包含很多方面的研究内容。
其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
如傅利叶变换等。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
5. 简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。
比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
比如傅里叶变换、小波变换等。
第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。
2. 采样频率是指一秒钟内的采样次数。
3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。
3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。
遥感数字图像处理-第四章_遥感数字图像增强处理(一)[研究材料]
计算方法:
Pi
mi M
M表示整幅图像的像元个数
M表示整幅图像的像元个数
Pi表示第i灰度级的像元比例频率
X和
调研学习
13
直方图的性质
(1)直方图反映了图像中的灰度分布规律,描述每个灰度 级具有的像元个数,但不包含这些像元在图像中的位置;
(2)任何图像有唯一的直方图,不同的图像可能有相同的 直方图;
六、图像运算 Image Calcu.
七、多光谱增强 M调u研l学ti习-spectral Enhancement
1
一、图像增强概述
➢ 什么是图像增强?
Image enhancement is the process of making an image more interpretable for a particular application ( Faust, 1989).
空间域增强:空间域是指图像平面所在的二维平面。 直接处理图像上的像素,主要对灰度进行操作;
1)点处理:每次对单个像元进行灰度增强的处理 2)邻域处理或模板处理:对一个像元及其周围的小区域子
图像进行处理
频率域增强:对图像经傅立叶变换后的频谱成分进 行操作,然后经傅立叶逆变换获得所需结果
调研学习
6
➢图像增强的分类
调研学习
2
➢ 图像增强的目的
主要目的:(1)采用一系列技术改善图像的视觉效 果,提高图像的清晰度;(2)将图像转换成一种 更适合于人或机器进行解译和分析处理的形式。
改变图像的灰度等级,提高图像的对比度; 消除边缘和噪声,平滑图像; 突出边缘和线状地物,锐化图像; 合成彩色图像; 压缩图像数据量,突出主要信息等。
数字图像处理习题参考答案
《数字图像处理》习题参考答案第1 章概述连续图像和数字图像如何相互转换答:数字图像将图像看成是许多大小相同、形状一致的像素组成。
这样,数字图像可以用二维矩阵表示。
将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。
图像的数字化包括离散和量化两个主要步骤。
在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。
采用数字图像处理有何优点答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。
(1)处理精度高。
(2)重现性能好。
(3)灵活性高。
2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。
3.数字图像处理技术适用面宽。
4.数字图像处理技术综合性强。
数字图像处理主要包括哪些研究内容答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。
讨论数字图像处理系统的组成。
列举你熟悉的图像处理系统并分析它们的组成和功能。
答:如图,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。
图像处理系统包括图像处理硬件和图像处理软件。
图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。
软件系统包括操作系统、控制软件及应用软件等。
图数字图像处理系统结构图1常见的数字图像处理开发工具有哪些各有什么特点答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。
两种开发工具各有所长且有相互间的软件接口。
Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来的 Win 32 程序有着运行速度快、可移植能力强等优点。
精品文档-数字图像处理系统导论(郭宝龙)-第4章
2 f (x, y) f (x 1, y) f (x-1, y) f (x, y 1) f (x, y-1)-4 f (x, y)
下面以一幅3×2像素的简单图片(见图4-5)为例,来说明 灰度直方图均衡化的算法。
图 4-4 直方图变化
图 4-5 原图像灰度值分布
求出每个色阶的百分比之后,再乘255,就可以求出与其 对应的灰度值来。表4-1所示为对应灰度值转换。
表4-1 对应灰度值转换
根据每个色阶的百分比的对应关系组成一个灰度映射表, 然后根据映射表来修改原来图像每个像素的灰度值。对于图45,用128替换50,用212替换100,用255替换200。这样,灰 度直方图的均衡化就完成了,如图4-6所示。
2. 图像中的均匀与不均匀反映了频率高低不同,抑制低频 (增强高频)对应于锐化滤波器,而抑制高频(增强低频)对应 于平滑滤波器。以下讨论考虑对F(u,v)的实部、虚部影响完 全相同的滤波转移函数——零相移滤波器。 1) 理想低通滤波器 理想低通滤波器的传递函数为
1 H (u, v) 0
D(u, v) D0 D(u, v) D0
图 4-10 原始图像及其傅里叶频谱图
1. 假定原图像为f(x,y),经傅里叶变换为F(u,v)。频率 域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分 进行处理G(u,v)=H(u,v)F(u,v),然后经逆傅里叶变换得 到增强的图像g(x,y)=F-1({G(u,v)} 假设f(x,y)和h(x,y)的大小分别为A×B和C×D。如果 直接进行傅里叶变换和乘积,会产生折叠误差(卷绕)。为解决 这一问题,需通过对f和h补零,构造两个大小均为P×Q的函 数,使其满足
数字图像处理知识点与考点(经典)
Laplacian 增强算子通过扩大边缘两边像素的灰度差(或对比度)来增强图像的边缘,改善视觉效果。它对应的模板为 -1 -1 5 -1 -1
例题:(1) 存储一幅1024×768,256 (8 bit 量化)个灰度级的图像需要多少位? (2) 一幅512×512 的32 bit 真彩图像的容量为多少位? 解: (1)一幅1024×768,256 =28 (8 bit 量化)个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit (2)一幅512×512 的32 位真彩图像的容量为:b=512×512×32 =8388608 bit
5.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 6.灰度直方图:灰度直方图是灰度级的函数。灰度级为横坐标,纵坐标为灰度级的频率,是频率同灰度级 的关系图。可以反映了图像的对比度、灰度范围(分布)、灰度值对应概率等情况。 7.灰度直方图的性质:(1)只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像 素的位置信息。(2)一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图。 (3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。 L −1 8.图像信息量H(熵)的计算公式:反映图像信息的丰富程度。 H = − Pi log2 Pi
傅立叶变换
f ( x, y) F ( u , v)
滤波器
H (u , v) G ( u , v)
傅立叶反变换
g ( x , y)
(1) 将图像 f(x,y)从图像空间转换到频域空间,得到 F(u,v); (2) 在频域空间中通过不同的滤波函数 H(u,v)对图像进行不同的增强,得到 G(u,v) (3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。 说明: (也可演变为简述频域图像锐化(或平滑)的步骤,需要指明滤波器的类型:高通或低通滤波器) 9.频率域平滑: 由于噪声主要集中在高频部分, 为去除噪声改善图像质量, 滤波器采用低通滤波器H(u,v) 来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。 10.常用的频率域低滤波器H(u,v)有四种: (1)理想低通滤波器: 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会 导致边缘信息损失而使图像边模糊。 (2)Butterworth低通滤波器:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连 续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 (说明:振铃效应越不明显效果越好) (3)指数低通滤波器: 采用该滤波器滤波在抑制噪声的同时, 图像边缘的模糊程度较用Butterworth滤波 产生的大些,无明显的振铃效应。 (4)梯形低通滤波器:它的性能介于理想低通滤波器和指数滤波器之间, 滤波的图像有一定的模糊和振铃 效应。 13.频率域锐化:图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的 。 频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱, 再经逆傅立叶变换得到边缘锐化的图像。 14.常用的高通滤波器有四种: (1)理想高通滤波器 (2)巴特沃斯高通滤波器 (3)指数高通滤波器 (4)梯形高通滤波器 说明:(1)四种滤波函数的选用类似于低通。 (2)理想高通有明显振铃现象,即图像的边缘有抖动现象。 (3)巴特沃斯高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的, 振铃现象不明显。 (4)指数高通效果比Butterworth差些,振铃现象不明显. (5)梯形高通会产生微振铃效果,但计算简单,较常用。 (6)一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也 使噪声增强。因此不能随意地使用。 (7)高斯低通滤波器无振铃效应是因为函数没有极大值、极小值,经过傅里叶变换后还是本身 , 故没有振铃效应。 15.同态滤波:在频域中同时将亮度范围进行压缩(减少亮度动态范围)和对比度增强的频域方法。 现象:(1)线性变换无效(2)扩展灰度级能提高反差,但会使动态范围变大(3)压缩灰度级,可以减 小灰度级,但物体的灰度层次会更不清晰 改进措施:加一个常数到变换函数上,如:H(u,v)+A(A取0→1)这种方法称为:高度强调(增强)。 为了解决变暗的趋势,在变换结果图像上再进行一次直方图均衡化,这种方法称为:后滤波处理。
数字图像处理 第四章图像增强
Pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06
0.03
0.02
计算每个sk对应的像素数目 计算均衡化后的直方图
Tr
Sk并
sk
nsk Ps(sk)
0.19
1/7
0.44
3/7
S0=1/7 S1=3/7 S2=5/7
790 0.19 1023 0.25 850 0.21
0.65
✓ 校正后的原始图像 f (i, j) C g(i, j) gc(i, j)
9
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。
降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r)
Ps(s)
直方图均衡化 T(r)
r
s
26
直方图均衡化理论基础
-1 由概率论可知,若Pr(r)和变换函数s=T(r)已知,r=T (s)是单 调增长函数,则变换后的概率密度函数Ps(s)可由Pr(r)得到:
分 布 函 数 Fs(s)sp( s s) ds=rp( r r) dr
✓ 计算均衡后的直方图
s k 计
T( rk)
k
=
i 0
P(r
r
)
i
k i 0
ni n
s k并
round( sk计 * (L L 1
1))
j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新图的灰度直方图
0 1 2 3 4 5 6 7 8 9
4.2.1 图像灰度增强
7.直方图规定化—概念 指定希望处理的图像所具有的直方图形状,用 于产生处理后有特殊直方图的图像的方法称为直方 图匹配或直方图规定化处理
目的:实现对输入图像进行有目的地增强
4.2.1 图像灰度增强
注:这里为了描述方便起见,设 灰度级的分布范围为[0,9]。
4.2.1 图像灰度增强
6.直方图均衡化—均衡化实例
(1)实例图像灰度级分布概率,像素总数为25
h [3, 2, 4, 4,1,1, 4,1, 2,3]
hs=h/25
hs [3/ 25,2 / 25,4 / 25,4 / 25,1/ 25,1/ 25,4 / 25,1/ 25,2 / 25,3/ 25]
4.2.1 图像灰度增强
若图像中大部分像素的灰度级集中分布在区 间 [a,b] 内,则为了改善图像增强的效果, 可以令
(d c)( f ( x, y ) a ) c a f ( x, y ) b ba g ( x, y ) c 0 f ( x, y ) a d b f ( x, y ) 255
4.2.1 图像灰度增强
1.灰度n倍增强: 当图像的灰度值集中在灰度区域低端时,可 以把图像像素的灰度值都扩大n倍。即 g(x,y)=n*f(x,y) 在原始图像位置(x,y)处的像素灰度值f(x,y) 乘以n后,图像位置(x,y)处的像素灰度值就 变为g(x,y)。当结果大于255时,按255计 算。
=[0.12, 0.08, 0.16, 0.16, 0.04, 0.04, 0.16, 0.04, 0.08, 0.12]
4.2.1 图像灰度增强
6.直方图均衡化—均衡化实例
(2)计算灰度累计分布
hs=[0.12, 0.08, 0.16, 0.16, 0.04, 0.04, 0.16, 0.04, 0.08, 0.12]
4.2.1 图像灰度增强
图像反转效果
原图
反转图
4.2.1 图像灰度增强
3.线性变换 假定原图像f(x,y)的灰度范围为[a,b],变换 后的图像 g(x,y) 的灰度范围线性的扩展至 [c,d],要求g(x,y)和f(x,y)均在[0,255]间 变化,但是g的表现效果要优于f。
d c g ( x, y ) [ f ( x, y ) a] c ba
4.1 图像增强技术概述
图像增强包涵了非常广泛的内容,凡是 改变原始图像的结构关系以取得更好的判断 和应用效果的所有处理手段,都可以归结为 图像增强处理。图像增强处理并不能增加原 始图像的信息,而只能增强对某种信息的辨 识能力,并且这种处理有可能损失一些其他 信息。
4.1 图像增强技术概述
图像增强处理方法根据增强处理过程所在的 空间不同,可以分为两类,一类是空域处理 方法,一类是频域处理方法。空域增强方法 是直接对图像中的像素进行处理,是以图像 的灰度映射变换为基础的。频域增强方法是 将图像空间中的图像以某种形式转换到其他 空间中(频率域空间),然后利用该空间的 特有性质进行图像处理,最后再转换到原来 的图像空间中,从而得到处理后的图像。
6.直方图均衡化
直方图均衡化方法把原图像的直方图通过灰 度变换函数修正为灰度均匀分布的直方图,然后按 均衡直方图修正原图像。当图像的直方图为一均匀 分布时,图像包含的信息量最大,图像看起来就显
得清晰。该方法以累计分布函数为基础,其变换函
数取决十图像灰度直方图的累积分布函数。它对整 幅图像进行同一个变换,也称为全局直方图均衡化
(d c)( f ( x, y ) a ) c ba c g ( x, y ) f ( x, y ) a 255 d 255 b ( f ( x, y ) b) d
a f ( x, y ) b 0 f ( x, y ) a b f ( x, y ) 255
4.2.1 图像灰度增强
6.直方图均衡化—实现步骤
i
(3)计算原灰度图像的累计直方图。
hp (i) hs ( f ) , i=0,1,...,L-1。
f 0
(4)以累计直方图函数为均衡化增强变换函数,确定均衡化 后新图像与原图像之间的映射关系fg。
( L 1)hp ( f ) g ( x, y) 0
7.直方图规定化—方法
假设 Pr (r ) 和 Pz ( z ) 分别为原始图像和希望得到的 图像的概率密度函数(r和z分别代表原始图像和 希望得到图像的灰度级) 首先对原始图像进行直方图均衡化,即求变换函 r (1) 数 S T (r ) 0 Pr (r )dr 假定已得到了所希望的图像,对它进行直方图均 x (2) 衡化处理,即 V G(Z ) 0 pz ( z)dz 它的逆变换为 Z G1 (V ) (3)
4.2.1 图像灰度增强
7.直方图规定化—方法
由于都是进行均衡化处理,处理后的原图像概率密 度函数Ps(S)及理想图像概率密度函数Pv(V)是相 等的。于是,我们可以用变换后的原始图像灰度级 S代替(2)式中的V。即 Z G (S )
1
(4)
这时的灰度级Z 便是所希望的图像的灰度级。
此外,利用(1)与(3)式还可得到组合变换函数
4.2.1 图像灰度增强
灰度n倍增强效果
原始图像
n=3
n=4.5
n=5
4.2.1 图像灰度增强
2.图像反转 灰度级在[0,L]范围内的图像反转变换公式: g(x,y)=L-f(x,y) 用这种方式倒转图像的强度产生图像反转 的对等图像。这种处理尤其适用于增强嵌入 与图像暗色区域的白色或灰色细节,特别是 当黑色面积占主导地位时。
4.2.1 图像灰度增强
6.直方图均衡化--直方图定义
在数字图像中,若统计出每一灰度值的像素 数,并以灰度值作为横坐标,像素数作为纵坐标绘 制出的图形称为该图像的灰度直方图,简称直方图
横坐标:像素灰度级 纵坐标:图像中具有 该灰度级的像素个数
4.2.1 图像灰度增强
6.直方图均衡化--直方图实例
hp=[0.12, 0.20, 0.36, 0.52, 0.56, 0.60, 0.76, 0.80, 0.88, 1.00]
4.2.1 图像灰度增强
6.直方图均衡化—均衡化实例
(3)计算原、新图灰度值的影射关系
hp=[0.12, 0.20, 0.36, 0.52, 0.56, 0.60, 0.76, 0.80, 0.88, 1.00]
4.2.1 图像灰度增强
7.直方图规定化—方法
vk G( zk ) Pz ( zi ) sk
i 0
k
k 0,1,2 L 1
(7 )
式(4)到(7)是数字图像直方图规定化的基本公式。 式(6) 是可由原始图像的像素计算得到 式(7)可从给定的直方图 Pz ( z ) 计算变换函数G 式(4)或(5)亦可直接实现,但需作如下说明
9*hp=[ 0, 1.80, 3.24, 4.68, 5.04, 5.40, 6.84, 7.20, 7.92, 9.00 ]
影射关系:
新图 [ 0, 2, 3, 5, 5, 5, 7, 7, 8, 9 ] 原图 [ 0, 1, 2, 3, 4 , 5 , 6, 7, 8, 9 ]
4.2.1 图像灰度增强
4.2.1 图像灰度增强
对于分段线性变换图像增强,常用的是三段 线性变换方法,变换时对 [a,b] 进行了线性 拉伸,而[0, a]和[b, 255]则被压缩,这两 部分对应的细节信息会损失。
g(x,y) 255 d
c a b 255
f(x,y)
4.2.1 图像灰度增强
三段线性变换的一般表达式如下
1 2 3 6 2 3 1 6 8 9 9 3 0 2 2 9 7 6 0 6 8 3 4 5 0 h(f) 4 3 2 1 0123456789 f
4.2.1 图像灰度增强
6.直方图均衡化
--直方图实例 从上到下 四副不同亮度和 对比度的同一图
暗
亮
对比度低 对比度高
像极其对应直方
图。
4.2.1 图像灰4.2.1 图像灰度增强
7.直方图规定化—方法 k 式(1)的离散公式为 S k T (rk ) Pr (rj )
j 0
j 0
k
nj n
k 0,1,, L 1
(6)
n j 为灰度级为 r j 的像素 其中n为图像中像素总和, 数量,L为离散灰度级的数量。 类似的式(2)的离散表达式由给定的直方图 Pz ( zi )(i 0,1,2, L 1) 得到,且有形式
4.2.1 图像灰度增强
3.线性变换 假定原图像f(x,y)的灰度范围为[a,b],变换 后的图像 g(x,y) 的灰度范围线性的扩展至 [c,d],要求g(x,y)和f(x,y)均在[0,255]间 变化,但是g的表现效果要优于f。
d c g ( x, y ) [ f ( x, y ) a] c ba
f ( x, y) 0 f ( x, y) 0
其中hp(f)为f(x,y)(f(x,y)≠0)的累计概率分布。
4.2.1 图像灰度增强
6.直方图均衡化—均衡化实例
1 2 3 6 2 3 1 6 8 9 9 3 0 2 2 9 7 6 0 6 8 3 4 5 0
h [3, 2, 4, 4,1,1, 4,1, 2,3]
4.2.1 图像灰度增强
线性变换效果
原图
线性变换结果
4.2.1 图像灰度增强
4.对数变换
对数函数变换的一般表达式: g(x,y)=c*log(f(x,y)+1) 其中c为一常数。此种变换使一窄带低灰度输入 图像值映射为一宽带输出值。可以利用这种变换