整式的乘法知识点总结—

合集下载

整式的乘法知识点精析

整式的乘法知识点精析

整式的乘法知识点精析整式的乘法知识点有哪些?怎么整理这些知识点?下面是小编为大家整理的关于整式的乘法知识点精析,希望对您有所帮助。

欢迎大家阅读参考学习!整式的乘法知识点精析1.同底数幂的乘法同底数幂相乘,底数不变,指数相加,即am·an=am+n(m,n是正整数)当三个或三个以上同底数幂相乘时,仍适用法则,am·an·ap=am+n+p(m,n,p都是正整数).2.幂的乘方幂的乘方,底数不变,指数相乘,即(am)n=anm(m,n都是正整数)(1)不要把幂的乘方性质与同底数幂的乘法性质混淆,幂的乘方运算是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).(2)这个性质可逆用,即anm=(am)n=(an)m3.积的乘方积的乘方,等于把积中的每个因式分别乘方,再把所得的幂相乘,即(ab)n=an·bn(n为正整数).这个性质适用于三个或三个以上因式的积的乘方.(1)这个性质可逆用,即an.bn=(ab)n,即指数相同的幂相乘,可先把底数相乘,再求积的同次幂.(2)进行积的乘方运算时,不要出现漏掉一些因式乘方的错误,如(-2ab2)3≠-2a3b6等.4.单项式乘以单项式系数乘以系数作为积中的系数,所有不同因式都作为积中的因式,相同字母或相同因式的指数由该字母或因式的指数和为它们的指数.(1)对于只在一个单项式中出现的字母,应连同它的指数-起写在积里,应特别注意不能漏掉这部分因式.(2)单项式乘法中若有乘方、乘法等混合运算,应按“先算乘方,再算乘法”的顺序进行.(3)单项式乘以单项式,结果仍是单项式.对于字母因式的幂的底数是多项式形式的,应将其视为一个整体来运算.三个或三个以上的单项式相乘,法则仍适用.5.单项式乘以多项式(1)单项式与多项式的乘法法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.(2)单项式与多项式的积仍是一个多项式,项数与原多项式的项数相同.6.多项式乘以多项式多项式乘以多项式的法则:(a+b)(m+n)=ma+mb+na+nb.这就是说:多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。

整式的乘除知识点归纳

整式的乘除知识点归纳

整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。

一、整式的定义整式由单项式或多项式组成。

单项式是一个数字或变量的乘积,也可以包含指数。

例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。

多项式是多个单项式的和。

例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。

二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。

2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。

3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。

在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。

例如,(2x^2)×(3y)=6x^2y。

三、整式的除法整式的除法是乘法的逆过程。

除法运算中,被除数除以除数得到商。

以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。

例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。

例如,5/0没有意义。

在进行整式的除法运算时,要注意约分和消去的原则。

例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。

四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。

常见的运算顺序规则如下:1.先解决括号内的运算。

2.然后进行乘法和除法的运算。

3.最后进行加法和减法的运算。

五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。

对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。

整式乘法法则知识点总结

整式乘法法则知识点总结

整式乘法法则知识点总结一、整式乘法法则的定义整式乘法法则是指在代数中,两个整式相乘得到的结果仍为整式。

简单来说,整式乘法就是指对两个整式进行乘法运算,得到的结果仍然是整式。

整式乘法的结果可以表示为一个新的整式,它由被乘数和乘数的各项的乘积相加得到。

整式乘法法则的定义包括以下几点:1. 整式乘法的定义:两个整式相乘得到的结果仍为整式。

2. 整式的乘法形式:当两个整式相乘时,可以将它们的各项进行对应的乘法运算,然后将乘积相加得到结果。

3. 乘法的交换律:在整式的乘法中,乘法的交换律成立,即乘数的顺序可以交换,结果不变。

整式乘法法则的定义是整式乘法的基础,理解了这个定义,我们就能够正确地进行整式的乘法。

接下来,我们将介绍整式乘法法则的性质,以及整式乘法的具体运算规则。

二、整式乘法法则的性质整式乘法法则有许多重要的性质,这些性质包括了整式乘法的基本规律和运算法则。

了解整式乘法法则的性质,可以帮助我们更好地理解整式乘法的运算规则。

下面是整式乘法法则的性质:1. 分配律:整式乘法满足分配律,即加法和乘法的结合性。

对于任意的整式a、b、c,有a*(b+c) = a*b + a*c。

2. 乘法的交换律:整式乘法满足交换律,即乘数的顺序可以交换,结果不变。

对于任意的整式a、b,有a*b = b*a。

3. 乘法的结合律:整式乘法满足结合律,即乘法的顺序可以变换,结果不变。

对于任意的整式a、b、c,有(a*b)*c = a*(b*c)。

4. 零乘法则:任何整式与0相乘,结果都为0。

即0*a = 0。

5. 单位元素法则:任何整式与1相乘,结果都为它本身。

即1*a = a。

整式乘法法则的性质是整式乘法的基本规律,它们对于整式乘法的具体运算具有重要的指导作用。

了解了整式乘法法则的性质,我们就能够更好地运用整式乘法进行代数运算。

接下来,我们将介绍整式乘法的具体运算规则,以及整式乘法法则在具体应用中的运用。

三、整式乘法法则的运算规则整式乘法法则的具体运算规则是在整式乘法的基础上,根据乘法法则的性质进行整式的具体运算。

整式乘除知识点

整式乘除知识点

整式乘除知识点整式是由常数和变量按照代数运算的规则经过加、减、乘、除等基本运算得到的式子。

整式乘除是代数学中的重要内容,掌握整式乘除的知识点对于解决代数问题和化简式子非常有帮助。

下面将介绍整式乘法和整式除法的要点和方法。

一、整式乘法整式乘法是指将两个整式相乘得到一个新的整式。

整式乘法的基本思想是利用分配律和合并同类项的原则进行运算。

1. 分配律分配律是整式乘法的基本运算定律,即对于任意的整式a、b、c来说,有:a × (b + c) = a × b + a × c这个定律表示乘法可以分别作用于加减运算中的每一项。

2. 合并同类项在整式乘法中,对于相同的字母次幂,只需要将系数相乘即可。

例如:3x × 4x = 12x²,3a² × 2a² = 6a^4。

二、整式除法整式除法是指将一个整式除以另一个整式,得到商和余数的运算过程。

整式除法的基本思想是通过长除法的方式进行计算。

整式除法的步骤如下:1. 对除数和被除数的次数进行降幂排列,确保被除数和除数的次数次幂之间存在对应关系。

2. 从被除数中选择一个项作为被除数,与除数的首项进行除法运算,得到一个商和余数。

3. 将商乘以除数,并减去这个乘积。

4. 重复步骤2和步骤3,直到被除数的次数次幂小于除数的次数次幂为止。

5. 将所有的商相加,并将余数放在最后。

例如,计算整式 (3x³ - 2x² + 5x - 1) ÷ (x - 2) 的步骤如下:(3x³ - 2x² + 5x - 1) ÷ (x - 2) = 3x² + 4x + 13 + 25/(x - 2)通过以上步骤,我们可以得到商和余数。

三、整式乘除综合运算在实际应用中,整式的乘法和除法常常需要综合运算。

在进行整式乘除综合运算时,需要根据分配律以及合并同类项的原则,进行逐步计算。

整式乘除知识点总结

整式乘除知识点总结

整式乘除知识点总结为了让大家更好的迎接中考,那么,整式的知识点是必不可少的。

下面是小编与大家分享的整式乘除知识点总结,欢迎大家参考借鉴!整式乘除知识点总结(一)1.单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。

这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。

2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。

3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到整式乘除知识点总结(二)单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:a)积的系数等于各因式系数积,先确定符号,再计算绝对值。

整式的乘法知识点总结

整式的乘法知识点总结

八年级14.1整式的乘法知识点总结【知识点一】整式的混合运算例题一、计算:()()()2443][-a a a a -+-••例题二、计算:3222132213⎪⎭⎫ ⎝⎛-•⎪⎭⎫ ⎝⎛-+xy y y x例题三、计算:()()()()y x y x y x y x 4333223+--++【知识点二】利用幂的运算法则解决问题例题一、已知510=a ,610=b ,求b a 3210+的值。

例题二、解方程:486331222=-++x x例题三、已知0352=-+y x ,求y x 324•的值。

【知识点三】整式除法的运用例题一、已知()p n y mx y x y x 72323212--=⎪⎭⎫ ⎝⎛-÷,求n,m,p 的值。

例题二、已知一个多项式与单项式457-y x 的积为()2234775272821y x y y x y x +-,求这个多项式【知识点四】整式化简求值例题一、先化简,再求值:()()()x x x x x x x x -+-----321589622,其中61-=x例题二、先化简,再求值:()()()⎪⎭⎫ ⎝⎛--++--+-y x x y x x y x y x 2563222,其中2,1=-=y x .【知识点五】开放探求题例题一、若多项式()()4322+-++xxnmxx展开后不含有3x项和2x项,试求m,n的值。

例题二、甲乙二人共同计算一道整式乘法:()()bxax++32,由于甲抄错了第一个多项式中a的符号,得到的结果为101162-+xx;由于乙漏抄了第二个多项式中x的系数,得到的结果为10922+-xx。

(1)你能知道式子中b a,的值各是多少吗?(2)请你计算出这道整式乘法的正确结果。

例题三、若x是整数,求证121223+-+--x x xxx是整数。

【知识点六】整式乘除法在实际问题中的应用例题一、某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a-24)m,试用a表示地基的面积,并计算当a=25时地基的面积例题二、大庆市环保局欲将一个长为2×103dm,宽为4×102dm,高为8×10dm的长方体废水池中的满池废水注入正方体贮水池净化,(1)请你考虑一下,这些废水能否刚好装满一个正方体贮水池________.(请填“能”或“不能”)(2)若能,则该正方体贮水池的棱长_________dm;(3)若不能,你能说出理由吗?(不要求作答)π3R,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3)。

整式的乘法(6大知识点15类题型)(知识梳理与题型分类讲解)(人教版)(教师版25学年八年级数学上册

整式的乘法(6大知识点15类题型)(知识梳理与题型分类讲解)(人教版)(教师版25学年八年级数学上册

专题14.3整式的乘法(6大知识点15类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)【要点提示】(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.【知识点2】单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.【要点提示】(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.【知识点3】单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.【要点提示】(1)单项式与多项式相乘的计算方法,实质利用乘法分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算过程中要注意符号问题,多项式中的每一项包括它前面的符号,还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.【知识点4】多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.【要点提示】多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.知识点与题型目录【知识点一】同底数幂的除法【题型1】同底数幂的除法运算及逆运算.........................................3;【知识点二】单项式相乘【题型2】单项式相乘.........................................................4;【题型3】利用单项式相乘求字母或代数式的值...................................5;【知识点三】单项式乘以多项式【题型4】单项式乘以多项式的运算与求值.......................................7;【题型5】单项式乘以多项式的应用.............................................8;【题型6】利用单项式乘以多项式求字母的值....................................10;【知识点四】多项式相乘【题型7】计算多项式乘以多项式..............................................11;【题型8】计算多项式乘以多项式化简求值......................................12;【题型9】(x+p)(x+q)型多项式相乘.........................................14;【题型10】整式乘法中的不含某个字母问题.....................................15;【题型11】多项式相乘中的几何问题...........................................16;【知识点五】多项式除以单项式【题型12】多项式除以单项式.................................................18;【知识点六】多项式除以单项式【题型13】整式乘法混合运算.................................................19;【直通中考与拓展延伸】【题型14】直通中考.........................................................21;【题型15】拓展延伸.........................................................22.第二部分【题型展示与方法点拨】【题型1】同底数的除法运算及逆运算【例1】(23-24八年级上·天津滨海新·期末)计算:()()23432253339xy x x y xy x y ⎡⎤-÷⎢⎥⎦⋅-⋅⎣.【答案】523y y -【分析】本题考查了整式的混合运算的应用,先算乘方,再算乘法,最后算除法即可.解:()()23432253339xyx x y xy x y ⎡⎤-÷⎢⎥⎦⋅-⋅⎣()2832233539279x y x x y x y x y =⋅-⋅÷()5855539279x y x y x y ÷=-523y y =-.【变式1】(22-23七年级下·广东深圳·阶段练习)若4m a =,8n a =,则32m n a -的值为()A .12B .1C .2D .4【答案】B【分析】本题考查了逆用同底数幂除法法则和幂的乘方的运算法则,先逆用同底数幂除法法则、然后再运用幂的乘方的运算法则将32m n a -化成含有m a 和n a 的形式,然后代入即可解答.解:()()32323232481m n m n m n a a a a a -=÷=÷=÷=,故选:B .【变式2】(23-24七年级下·全国·单元测试)已知2320x y --=,则()()231010x y ÷=.【答案】100【分析】本题主要考查了幂的乘方计算,同底数幂除法计算,先根据题意得到232x y -=,再根据幂的乘方计算和同底数幂除法计算法则得到()()2323101010x y x y -÷=,据此求解即可.解:∵2320x y --=,∴232x y -=∴()()231010x y ÷231010x y =÷2310x y -=210=100=,故答案为:100.【题型2】单项式相乘【例2】(22-23八年级上·福建厦门·期中)计算:(1)()2243623a a a a ⋅+-;(2)()()23225x x y -⋅-【答案】(1)0;(2)820x y-【分析】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握公式是解题的关键.(1)根据单项式乘以单项式,幂的乘方,合并同类项解答即可.(2)根据积的乘方,单项式乘以单项式解答即可.解:(1)()2243623a a a a ⋅+-66623a a a =+-0=.(2)()()23225x x y -⋅-()6245x x y=⋅-820x y =-.【变式1】(23-24七年级下·全国·单元测试)计算()222133x y xy ⎛⎫-⋅- ⎪⎝⎭的结果为()A .45x y -B .4513x y C .3213x y -D .4513x y -【答案】D【分析】本题考查整混合运算,熟练掌握幂的乘方和积的乘方法则、单项式乘以单项式法则是解题的关键.先计算乘方,再计算运用单项式乘以单项式法则计算即可.解:()222133x y xy ⎛⎫-⋅- ⎪⎝⎭()224139x y x y =-⋅4513x y =-,故选:D .【变式2】(23-24七年级下·全国·单元测试)计算:()()3222324623418ab a b a b a b -⋅+⋅=.【答案】0【分析】本题主要考查了积的乘方计算,单项式乘以单项式,合并同类项,先计算积的乘方,再计算单项式乘以单项式,最后合并同类项即可.解:()()3222324623418ab a b a b a b -⋅+⋅3642788972a b a b a b =-⋅+78787272a b a b =-+0=,故答案为:0.【题型3】利用单项式相乘求字母或代数式的值【例3】(22-23七年级下·广东梅州·期中)先化简,后求值:2332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭,其中0.4x =,2.5y =-.【答案】7533944x y x y -,16325【分析】此题考查了整式的混合运算,首先根据积的乘方和单项式乘以单项式运算法则化简,然后代入求解即可,解题的关键掌握运算法则.解:2332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭()33423394416x y x y x y +-⋅=7533944x y x y =-当20.45x ==,52.52y =-=-时,原式753349252545252⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-3757592525445252⎛⎫=-⨯⨯-⨯-⨯ ⎪⎝⎭9425=-+16325=.【变式1】(2024·陕西榆林·三模)已知单项式24xy 与313x y -的积为3n mx y ,则m ,n 的值为()A .43m =-,4n =B .12=-m ,2n =-C .43m =-,3n =D .12=-m ,3n =【答案】A【分析】此题考查了单项式的乘法运算,按照单项式乘单项式计算单项24xy 与313x y -的积,再根据单项式24xy 与313x y -的积为3n mx y ,即可求得答案.解:∵234314433xy x y x y ⎛⎫⨯-=- ⎪⎝⎭,单项式24xy 与313x y -的积为3n mx y ,∴43m =-,4n =,故选:A .【变式2】(23-24七年级下·全国·假期作业)若()()1221253m n n n a b a b a b ++-⋅=,则m n +的值为.【答案】143/243【分析】本题主要考查了单项式乘以单项式,根据单项式乘以单项式的计算法则得到1212253m n n n a b a b ++-++=,据此可得25323m n n +=⎧⎨+=⎩,解之即可得到答案.解:∵()()1221253m n n nababa b++-⋅=,∴1212253m n n n a b a b ++-++=,∴25323m n n +=⎧⎨+=⎩,∴13313m n ⎧=⎪⎪⎨⎪=⎪⎩,∴143m n +=,故答案为:143.【题型4】单项式乘以多项式的运算与求值【例4】(23-24八年级上·吉林·阶段练习)先化简,再求值:()()223243234a a a a a -+-+,其中1a =-.【答案】2209a a -+,29-【分析】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.先根据单项式乘以多项式法则展开,再合并同类项,即可化简,然后把1a =-代入化简式计算即可.解:()()223243234a a a a a -+-+,3232612968a a a a a =-+--,2209a a =-+.当1a =-时,原式()()22019129=-⨯-+⨯-=-.【变式1】(2024·陕西咸阳·模拟预测)计算132xy x y ⎛⎫-⋅- ⎪⎝⎭的结果是()A .223x y xy +B .22332x y xy --C .22332x y xy -+D .22132x y xy -+【答案】C【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则计算得出答案.解:132xy x y ⎛⎫-⋅-⎪⎝⎭22332x y xy =-+.故选:C .【变式2】(23-24七年级下·江苏南京·阶段练习)若220240a a +-=,代数式()()220241a a -+的值是.【答案】2024-【分析】此题考查了代数式的值,整体代入是解题的关键.首先根据220240a a +-=,可得22024a a -=-,把22024a a -=-代入()()220241a a -+,然后把22024a a +=代入化简后的算式计算即可.解:∵220240a a +-=,∴22024a a -=-,∴()()220241a a -+()1a a =-+()2a a =-+.∵220240a a +-=,∴22024a a +=,∴原式()2a a =-+2024=-.故答案为:2024-.【题型5】单项式乘以多项式的应用【例5】(23-24七年级下·广东佛山·阶段练习)小红的爸爸将一块长为322455a b ⎛⎫+⎪⎝⎭分米、宽55a 分米的长方形铁皮的四个角都剪去一个边长为412a 分米的小正方形,然后沿虚线折成一个无盖的盒子.(1)用含a ,b 的整式表示盒子的外表面积;(2)若1a =,0.2b =,现往盒子的外表面上喷漆,每平方分米喷漆价格为15元,求喷漆共需要多少元?【答案】(1)8522325a a b +(平方分米);(2)360元【分析】此题考查了整式的混合运算,以及代数式求值,熟练掌握运算法则是解本题的关键.(1)根据题意列出关系式,去括号合并即可得到结果;(2)把a 与b 的值代入计算,再根据每平方分米喷漆价格为15元,求出喷漆的费用即可.解:(1)根据题意得:2325424155452a b a a ⎛⎫⎛⎫+⋅-⨯ ⎪ ⎪⎝⎭⎝⎭85282425a a b a =+-8522325a a b =+(平方分米)∴盒子的外表面积为()8522325a a b +平方分米;(2)当1a =,0.2b =时,85285223252312510.224a a b +=⨯+⨯⨯=(平方分米)则喷漆的费用为1524360⨯=(元).答:喷漆共需要360元.【变式1】(23-24七年级下·山东菏泽·期中)某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是()A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【答案】A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .【变式2】(22-23八年级上·福建泉州·阶段练习)已知:2210x x --=,则352020x x -+=.【答案】2022【分析】本题考查了整式的乘法的应用,熟练掌握求高次式子时的思路:降次是解题的关键.将2210x x --=变形为221x x =+,利用降次的思想求352020x x -+即可.解:∵2210x x --=,∴221x x =+,∴352020x x -+252020x x x =⋅-+()2152020x x x =+-+2252020x x x =+-+()22142020x x =+-+2022=故答案为:2022.【题型6】利用单项式乘以多项式求字母的值【例6】(21-22七年级下·河南驻马店·阶段练习)已知x (x ﹣m )+n (x +m )=2x +5x ﹣6对任意数都成立,求m (n ﹣1)+n (m +1)的值.【答案】-7【分析】把x (x ﹣m )+n (x +m )去括号、合并同类项,然后根据与2x +5x -6对应项的系数相同,即可求得m 、n 的值,然后代入求值即可.解:x (x ﹣m )+n (x +m )=2x ﹣mx +nx +mn =2x +(n ﹣m )x +mn ,∴56n m mn -=⎧⎨=-⎩,则m (n ﹣1)+n (m +1)=n ﹣m +2mn =5﹣12=﹣7.【点拨】此题考查单项式乘多项式和代数式求值,解题关键在于掌握运算法则.【变式1】(23-24七年级下·河南周口·阶段练习)若()24x ax x x +=+,则a 的值为()A .2B .3C .4D .8【答案】C【分析】本题主要考查了单项式乘以多项式,根据单项式乘以多项式的计算法则求出()4x x +的结果即可得到答案.解:∵()24x ax x x +=+,∴224x ax x x +=+,∴4a =,故选:C .【变式2】(23-24七年级下·山东济南·阶段练习)要使()32412x x ax x -+++中不含有x 的四次项,则a =.【答案】2【分析】本题主要考查了多项式的混合运算.先算乘法,再合并,然后根据原多项式中不含有x 的四次项,可得20a -=,即可求解.解:()32412xxax x -+++45432x x a x x --+=-()4352x x a x =-+--,∵()32412xxax x -+++中不含有x 的四次项,∴20a -=,∴2a =.故答案为:2【题型7】计算多项式乘以多项式【例7】(24-25八年级上·全国·单元测试)计算:(1)()()()222323x x x x +---+;(2)22(1)(1)x x x x ++-+;(3)2(1)(2)(2)x x x x +-++【答案】(1)312x -;(2)421x x ++;(3)4244x x x ---.【分析】本题考查了多项式的乘法:(1)根据多项式乘多项式的运算法则计算,再合并同类项即可;(2)根据多项式乘多项式的运算法则计算,再合并同类项即可;(3)根据多项式乘多项式的运算法则计算,再合并同类项即可.解:(1)()()()222323x x x x +---+222436226x x x x x =+---+-312x =-.(2)22(1)(1)x x x x ++-+4323221x x x x x x x x =-++-++-+421x x =++.(3)2(1)(2)(2)x x x x +-++22(2)(2)x x x x =--++43232222224x x x x x x x x =++------4244x x x =---.【变式1】(22-23七年级下·甘肃张掖·期中)下列计算正确的是()A .()()324242ab ab a b ⋅-=B .()()22356m m m m +-=--C .()()245920y y y y +-=+-D .()()21454x x x x ++=++【答案】D【分析】本题主要考查了单项式乘以单项式,多项式乘以多项式,熟知相关计算法则是解题的关键.解:A 、()()324248ab ab a b =-⋅-,原式计算错误,不符合题意;B 、()()22233266m m m m m m m +-=-+-=--,原式计算错误,不符合题意;C 、()()2245452020y y y y y y y +-==-+---,原式计算错误,不符合题意;D 、()()22144454x x x x x x x ++=+++=++,原式计算正确,符合题意;故选:D .【变式2】(22-23七年级下·山东菏泽·期中)如果()()()()32912x x x x ---+-=,那么x 的值是.【答案】1【分析】本题考查了多项式乘以多项式,以及解一元一次方程,熟练掌握多项式乘以多项式的法则是解题的关键.根据多项式乘以多项式的法则进行计算,然后解一元一次方程即可.解:()()()()3291x x x x ---+-22236(99)x x x x x x =--+--+-1315x =-+∴13152x -+=,解得1x =,故答案为:1.【题型8】计算多项式乘以多项式化简求值【例8】(24-25八年级上·河南南阳·阶段练习)先化简,再求值:()()()222112a a a a a a +--+-,其中3a =-.【答案】2-a a ,12【分析】本题主要考查了整式的化简求值,先根据单项式乘以多项式的计算法则,多项式乘以多项式的计算法则去括号,然后合并同类项化简,最后代值计算即可.解:()()()222112a a a a a a +--+-()3232222222a a a a a a a =+--+--3232222222a a a a a a a=+---++2a a =-,当3a =-时,原式()()2339312=---=+=.【变式1】(23-24七年级下·安徽合肥·期中)我们规定a b ad bc cd=-,例如121423234=⨯-⨯=-,已知2523m n nm n m n+=-+-,则代数式2261m n --的值是()A .4B .5C .8D .9【答案】D【分析】本题主要查了整式的混合运算.根据新定义可得()()()2235m n m n n m n +---+=,从而得到235m n -=,再代入,即可求解.解:根据题意得:()()()2235m n m n n m n +---+=,∴22222235m mn mn n mn n n +---+-=,即235m n -=,∴()22232610m n m n -=-=,∴22611019m n --=-=.故选:D【变式2】(2024·湖南长沙·模拟预测)已知235a ab +=,则2()(2)2a b a b b ++-的值为.【答案】5【分析】本题考查整式的化简求值,把要求的式子展开化简后,利用整体思想求值即可.解:∵235a ab +=,∴22222()(2)222235a b a b b a ab ab b b a ab ++-=+++-=+=.故答案为:5.【题型9】(x+p)(x+q)型多项式相乘【例9】(22-23七年级下·辽宁沈阳·期中)先化简,再求值:()()()()()23333442x x x x x +-++---,其中2x =.【答案】1361x -,35-【分析】本题考查了整式的化简求值.熟练掌握平方差公式,完全平方公式,多顶式乘多项式法则,是解题的关键.先根据平方差公式,完全平方公式,多顶式乘多项式法则展开,合并同类项化简,最后将字母的值代入求解即可.解:()()()()()23333442x x x x x +-++---()()2229312444x x x x x =-+----+2229333641616x x x x x =-+---+-1361x =-,当2x =时,原式1326135=⨯-=-.【变式1】(23-24七年级下·辽宁锦州·阶段练习)若()()2315x x n x mx ++=+-,则mn 的值为()A .5-B .5C .10D .10-【答案】C【分析】此题考查了多项式的乘法,根据多项式的乘法法则展开对比得到3,315n m n +==-,求出m 、n 的值,即可得到答案.解:∵()()()2333x x n x n x n ++=+++,()()2315x x n x mx ++=+-,∴3,315n m n +==-,解得2,5m n =-=-∴()()2510mn =-⨯-=,故选:C【变式2】(22-23七年级下·江苏盐城·阶段练习)若()()228x m x x nx +-=+-,则2m n +=.【答案】8【分析】本题考查多项式乘以多项式,利用多项式乘以多项式的法则,将等式左边展开,进而求出,m n 的值,进一步求出代数式的值即可.解:()()()222228x m x x m x m x nx +-=+--=+-,∴2,28m n m -==,∴4,2m n ==,∴24228m n +=+⨯=;故答案为:8.【题型10】整式乘法中的不含某个字母问题【例10】(22-23七年级下·四川达州·期中)已知代数式()22mx x +与()232x nx ++积是一个关于x 的三次多项式,且化简后含2x 项的系数为1,求m 和n 的值.【答案】0m =,16n =【分析】此题考查了多项式乘多项式的计算能力,运用多项式乘多项式的运算法则进行求解即可.解:()()22232mx x x nx +++4323232264mx mnx mx x nx x=+++++()()43232264mx mn x m n x x =+++++,由题意得,0m =,261m n +=,解得0m =,16n =.【变式1】(23-24七年级下·全国·期中)已知多项式x a -与221x x +-的乘积中2x 的项系数与x 的项系数之和为4,则常数a 的值为()A .1-B .1C .2-D .2【答案】A【分析】根据多项式乘以多项式的计算法则得()()()()23221212x a x x x a x a x a -+-=+--++,然后根据“乘积中2x 的项系数与x 的项系数之和为4”,据此得到()()2124a a --+=,解此方程即可求出a .解:()()221x a x x -+-32222x x x ax ax a=+---+()()32212x a x a x a =+--++,乘积中2x 的项系数与x 的项系数之和为4,∴()()2124a a --+=,∴1a =-,故答案为:A .【变式2】(24-25八年级上·吉林长春·阶段练习)若()()23x m x x n +-+的积中不含2x x 、项,则m =,n =.【答案】39【分析】本题主要考查了多项式乘法中的无关型问题,先根据多项式乘以多项式的计算法则求出()()23x m x x n +-+的结果,再根据乘积中不含2x x 、项,即含2x x 、项的系数为0进行求解即可.解:()()23x m x x n +-+32233x x nx mx mx mn =-++-+()()3233x m x n m x mn =+-+-+,∵()()23x m x x n +-+的积中不含2x x 、项,∴3030m n m -=-=,,∴39m n ==,,故答案为:3;9.【题型11】多项式相乘中的几何问题【例11】(22-23八年级上·四川绵阳·期末)学校需要设计一处长方形文化景观,分为中央雕塑区和四周绿化区.中央雕塑区的长边为(33m -)米,短边为2m 米,绿化区外边沿的长边为(42m -)米,短边为(31m -)米.试比较雕塑区和绿化区的面积大小.(m 为正数)【答案】绿化区面积大于雕塑区面积.【分析】本题考查的是多项式的乘法运算与图形面积,先分别列式计算绿化区面积,雕塑区面积,再作差比较大小即可.解:绿化区面积为()()()4231233m m m m ----221246266m m m m m =--+-+2642m m =-+.雕塑区面积为()223366m m m m -=-.因为()()226426622m m m m m -+--=+,由m 为正数,所以得220m +>,即2264266m m m m -+>-,所以,绿化区面积大于雕塑区面积.【变式1】(23-24七年级上·湖南长沙·期末)下面四个整式中,不能..表示图中阴影部分面积的是()A .(4)(3)3x x x ++-B .24(3)x x ++C .24x x +D .(4)12x x ++【答案】C【分析】本题主要考查整式与图形,根据题意,结合图形,分别判断得到答案即可.解:A .图中阴影部分面积用整个长方形的面积-空白部分的面积,即(4)(3)3x x x ++-,故该选项不符合题意;B .图中阴影部分面积用右边阴影部分长方形的面积+左边阴影部分正方形的面积,即24(3)x x ++,故该选项不符合题意;C .24x x +只有左边阴影部分正方形的面积+右边上面阴影部分长方形的面积,缺少右边下面长方形的面积,故该选项符合题意;D .图中阴影部分面积用上面阴影长方形的面积+右边下面长方形的面积,即(4)12x x ++故该选项不符合题意;故选:C .【变式2】(23-24七年级下·全国·单元测试)有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片.如果要拼成一个长为()2a b +,宽为()32a b +的大长方形,那么需要C 类卡片张.【答案】7【分析】本题考查了多项式乘以多项式,计算出长为()2a b +,宽为()32a b +的大长方形的面积以及A 类、B 类卡片和长方形C 类卡片的面积,即可得出答案.解:长为()2a b +,宽为()32a b +的大长方形的面积为()()22222326432672a b a b a ab ab b a ab b ++=+++=++,A 类卡片的面积为:2a ,B 类卡片的面积为:2b ,C 类卡片的面积为:ab ,∴要拼成一个长为()2a b +,宽为()32a b +的大长方形,需要6块A 类卡片,2块B 类卡片,7块C 类卡片,故答案为:7.【题型12】多项式除以单项式【例12】(22-23七年级下·宁夏银川·期末)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,2211322xy x y xy xy ⨯=-+(1)求所捂的多项式;(2)若2132x y ==,,求所捂多项式的值.【答案】(1)621x y -+;(2)4.【分析】本题主要考查了代数式求值,多项式除以单项式:(1)根据乘除法互为逆运算,只需要计算出2211322x y xy xy xy ⎛⎫⎛⎫-+÷ ⎪ ⎪⎝⎭⎝⎭的结果即可得到答案;(2)把2132x y ==,代入(1)所求结果中计算求解即可.解:(1)2211322x y xy xy xy ⎛⎫⎛⎫-+÷ ⎪ ⎪⎝⎭⎝⎭621x y =-+,∴所捂的多项式为621x y -+;(2)当2132x y ==,时,21621621411432x y -+=⨯-⨯=-+=.【变式1】(2024·湖北武汉·模拟预测)若22233241216m x y x y x y ⨯=-,则m =()A .43x y -B .43x y-+C .43x y+D .43x y--【答案】B【分析】本题考查了多项式除以单项式,根据一个因数等于积除以另一个因数,即可解答.解:∵22233241216m x y x y x y ⨯=-,∴()233222121643443m x y x y x y y x x y =-÷=-=-+,故选:B .【变式2】(22-23七年级下·浙江温州·期末)若223615xy A x y xy =- ,则A 代表的整式是.【答案】25x y-【分析】本题考查的是多项式除以单项式,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算.根据多项式除以单项式的运算法则计算即可.解:()226153A x y xy xy-÷=2263153x y xy xy xy=÷-÷25x y =-.故答案为:25x y -.【题型13】整式乘法混合运算【例13】(23-24七年级下·贵州毕节·期末)先化简,再求值:(1)()()()()22224x y x y x y x x y -+-+--,其中1x =-,2y =.(2)已知2210x x +-=,求代数式()()()()21433x x x x x ++++-+的值.【答案】(1)2243x y +;16;(2)5-.【分析】本题主要考查了整式化简求值,解题的关键是熟练掌握整式混合运算法则,准确计算.(1)先根据整式混合运算法则进行化简,然后再代入数据进行计算即可;(2)先根据整式混合运算法则进行化简,然后再整体代入进行计算即可.解:(1)()()()()22224x y x y x y x x y-+-+--222224444x xy y x y x xy =-++--+2243x y =+,当1x =-,2y =时,原式()224132=⨯-+⨯412=+16=.(2)()()()()21433x x x x x ++++-+2222149x x x x x =+++++-2368x x =+-,∵2210x x +-=,∴221x x +=,∴原式()2328x x =+-318=⨯-38=-=5-.【变式1】(21-22六年级下·全国·单元测试)等式()()324322xyz x y z y ⎡⎤÷-⋅=⎣⎦中的括号内应填入()A .6538x y z B .228x y zC .222x y zD .222x y z±【答案】C【分析】运用整式的乘法运算法则、乘除法互为逆运算及幂的运算法则求解.解:由原式,得()()32432224366322322428(2)y xyz x y z y x y z x y z x y z x y z ⎡⎤=⋅-⋅=⋅⋅==⎣⎦∴括号中式子应为222x y z .故选C .【点拨】本题主要考查整式的乘法运算、乘除法互为逆运算、幂的运算法则等知识;能够运算乘、除法互为逆运算的性质,对原等式进行变形是解题关键.【变式2】(2024·福建厦门·二模)已知11x x-=-,则()()22131x x x +-+的值为.【答案】2【分析】本题考查整式的混合运算、代数式求值,熟练掌握运算法则,利用整体代入思想求解是解答的关键.先根据11x x -=-得出21x x +=,然后利用完全平方公式、单项式乘多项式化简原式,再整体代值求解即可.解:∵11x x-=-,∴21x x +=,()()22131x x x +-+2244133x x x x=++--21x x =++11=+2=.第三部分【中考链接与拓展延伸】【题型14】直通中考【例1】(2024·山东青岛·中考真题)下列计算正确的是()A .223a a a +=B .523a a a ÷=C .235()a a a -⋅=-D .()23622a a =【答案】B【分析】本题考查了整式的运算,根据合并同类项法则、同底数幂的乘除法、积的乘方逐项运算即可判断求解,掌握整式的运算法则是解题的关键.解:A 、23a a a +=,该选项错误,不合题意;B 、523a a a ÷=,该选项正确,符合题意;C 、235()a a a -⋅=,该选项错误,不合题意;D 、()23624a a =,该选项错误,不合题意;故选:B .【例2】(2023·黑龙江大庆·中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,7()a b +展开的多项式中各项系数之和为.【答案】128【分析】仿照阅读材料中的方法将原式展开,即可得出结果.解:根据题意得:()5a b +展开后系数为:1,5,10,10,5,1,系数和:515101051322+++++==,()6a b +展开后系数为:1,6,15,20,15,6,1,系数和:61615201561642++++++==,()7a b +展开后系数为:1,7,21,35,35,21,7,1,系数和:71721353521711282+++++++==,故答案为:128.【点拨】此题考查了多项式的乘法运算,以及规律型:数字的变化类,解题的关键是弄清系数中的规律.【题型15】拓展延伸【例1】(23-24八年级上·四川眉山·期中)观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…根据规律计算:202220212020201943222222222-+-+⋯⋯+-+-的值是()A .2023223-B .202321-C .20232-【答案】A 【分析】根据题中规律每一个式子的结果等于两项的差,被减数的指数比第二个因式中第一项大1,减数都为1,即可得到规律为()()12321111n n n n x x x x x x x x --+-+++++++=- ,利用规律,当2x =-,2022n =时,代入其中即可求解.本题考查了平方差公式、及数字类的规律题,解题的关键是认真阅读,总结规律,并利用规律解决问题.解:由2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…观察发现:()()12321111n n n n x x x x x x x x --+-+++++++=- ,当2x =-,2022n =时,得202220212020201943220232122222222121()()()---+-+-+-+=-- ,∴2023202320232022202120202019432212121222222221333()----+-+-+-+-+===-- ,∴202320232022202120202019432212222222222133+--+-+-+-=-= .故选:A .【例2】(2024七年级上·全国·专题练习)按如图所示的程序进行计算,如果第一次输入x 的值是3-,则第2024次计算后输出的结果为.【答案】8-【分析】本题考查了规律型:数字的变化类,代数式求值,仔细计算,观察出即从第2次开始,以5-、8-、3-为一个循环组循环出现,是解题的关键.总结规律后结合202436742÷=⋅⋅⋅,即可得到答案.解:第1次输出的结果为:()33191522⨯----==-;第2次输出的结果为:()351151822⨯----==-;第3次输出的结果为:8232-+=-;第4次输出的结果为:()33191522⨯----==-;第5次输出的结果为:()351151822⨯----==-;第6次输出的结果为:8232-+=-…,则从第1次输出开始,以5-、8-、3-为一个循环组循环出现,∵202436742÷=⋅⋅⋅,∴第2024次输出的结果为8-.故答案为:8-.。

整式乘除知识点总结归纳

整式乘除知识点总结归纳

整式乘除知识点总结归纳一、整式的基本定义1. 整式的定义:整式是由多项式相加(减)得到的式子。

多项式是一个或多个单项式的和。

整式可以包含有限个数的变量,并且变量的次数为非负整数。

2. 整式的分类:整式可以根据变量的次数和系数的种类进行分类,分为一元整式和多元整式;再细分为单项式、多项式和混合式。

二、整式的乘法整式的乘法是代数学中的基本运算之一,它涉及到多项式之间的相乘。

在进行整式的乘法时,主要需要掌握以下几个要点:1. 单项式相乘:同底数的单项式相乘,指数相加;不同底数的单项式相乘,底数相乘,指数相加。

2. 多项式相乘:多项式相乘时,需要用分配律(乘法分配律)进行展开,然后对每一对单项式进行乘法运算。

3. 多项式的乘法规则:多项式相乘的规则与单项式相乘的规则一致,同底数指数相加,底数相乘。

需要注意的是,展开乘法时,需要对每一对单项式进行乘法运算,并将得到的结果进行合并。

例题:(1)计算:(3x+4y)*(2x-5y)解:按照乘法分配律,展开得到:6x^2-15xy+8xy-20y^2合并同类项,得到最终结果:6x^2-7xy-20y^2三、整式的除法整式的除法是代数学中的难点之一,它涉及到多项式之间的相除。

在进行整式的除法时,主要需要掌握以下几个要点:1. 用辅助线将被除式和除数进行排列,然后进行长除法计算。

2. 长除法计算过程:(1)确定被除式中的最高次项,选择一个除数,使得除数的最高次项与被除式中的最高次项相同。

(2)将除数乘以一个常数倍数,使得乘积的最高次项与被除式中最高次项的系数相同。

(3)将得到的乘积与被除式相减,得到一个新的多项式。

(4)重复以上步骤,直至新的多项式的次数小于除数的次数。

(5)最终得到商式和余数。

例题:(2x^2+7xy-3y^2)÷(x-2y)解:按照长除法步骤,得到商式和余数为:2x+11y-5 和 -21y+12所以,商式为2x+11y-5,余式为-21y+12。

八年级数学整式的乘法与因式分解常考必考知识点总结

八年级数学整式的乘法与因式分解常考必考知识点总结

一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。

2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。

b.公式法:利用已知的一些公式对整式进行因式分解。

c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。

d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。

3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。

整式的乘除知识点总结

整式的乘除知识点总结

整式的乘除知识点总结一、幂的运算1. 同底数幂的乘法- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n = a^m + n (m,n都是正整数)。

- 例如:2^3×2^4=2^3 + 4=2^7。

2. 幂的乘方- 法则:幂的乘方,底数不变,指数相乘。

即(a^m)^n=a^mn(m,n都是正整数)。

- 例如:(3^2)^3 = 3^2×3=3^6。

3. 积的乘方- 法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

即(ab)^n=a^nb^n(n是正整数)。

- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。

4. 同底数幂的除法- 法则:同底数幂相除,底数不变,指数相减。

即a^mdiv a^n=a^m - n(a≠0,m,n都是正整数,m > n)。

- 例如:5^5div5^3 = 5^5 - 3=5^2。

- 规定:a^0 = 1(a≠0);a^-p=(1)/(a^p)(a≠0,p是正整数)。

二、整式的乘法1. 单项式与单项式相乘- 法则:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

- 例如:3x^2y·(-2xy^3)=[3×(-2)](x^2· x)(y· y^3)= - 6x^3y^4。

2. 单项式与多项式相乘- 法则:就是用单项式去乘多项式的每一项,再把所得的积相加。

即m(a + b + c)=ma+mb+mc。

- 例如:2x(3x^2 - 4x + 5)=2x×3x^2-2x×4x + 2x×5 = 6x^3-8x^2 + 10x。

3. 多项式与多项式相乘- 法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

即(a + b)(m + n)=am+an+bm+bn。

整式的乘法知识点归纳总结

整式的乘法知识点归纳总结

整式的乘法知识点归纳总结一、单项式乘以单项式。

1. 法则。

- 单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

- 例如:2a^2b×3ab^2=(2×3)×(a^2× a)×(b× b^2)=6a^2 + 1b^1+2=6a^3b^3。

2. 系数相乘。

- 计算时先确定积的系数,系数为各单项式系数的乘积。

如-3x^2y×5xy^2,系数-3与5相乘得-15。

3. 同底数幂相乘。

- 根据同底数幂的乘法法则a^m× a^n=a^m + n。

在单项式乘法中,对于相同底数的幂要分别相乘。

如4x^3×2x^2=(4×2)×(x^3× x^2)=8x^3+2=8x^5。

4. 单独字母的处理。

- 只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

例如3x^2y×4z = 12x^2yz。

二、单项式乘以多项式。

1. 法则。

- 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

- 例如:a(b + c)=ab+ac,若2x(x^2 - 3x + 1)=2x× x^2-2x×3x + 2x×1=2x^3-6x^2 + 2x。

2. 注意事项。

- 不漏乘:在计算时要确保单项式与多项式的每一项都相乘。

- 符号问题:注意单项式和多项式各项的符号,按照有理数乘法的符号法则确定积的符号。

三、多项式乘以多项式。

1. 法则。

- 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

- 例如(a + b)(c + d)=a(c + d)+b(c + d)=ac+ad+bc+bd。

- 若(x + 2)(x - 3)=x× x-x×3+2× x - 2×3=x^2-3x+2x - 6=x^2 - x - 6。

整式的乘法与因式分解所有知识点总结

整式的乘法与因式分解所有知识点总结

整式的乘法与因式分解所有知识点总结一、整式的乘法1.乘法法则:(1)两个整系数多项式相乘,按照分配律逐项相乘再相加即可。

(2)对于整式的乘幂,将底数相乘,指数相加。

(3)进行乘法时,可以将同类项合并。

2.乘法的性质:(1)乘法交换律:a*b=b*a(2)乘法结合律:(a*b)*c=a*(b*c)(3)乘法的分配律:a*(b+c)=a*b+a*c3.乘法公式:(1) 平方公式:(a + b)^2 = a^2 + 2ab + b^2(2)平方差公式:(a+b)(a-b)=a^2-b^2(3) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.乘法的运用:(1)计算多项式的立方和高次幂。

(2)将多项式与常数相乘。

(3)将多项式乘以一个多项式。

二、因式分解1.因式分解的定义:因式分解是指将一个多项式表示为几个乘积的形式,其中每个乘积称为因式。

2.因式分解的方法:(1)公因式提取法:将多项式的所有项提取出一个最高公因式,然后将剩余部分因式分解。

(2)公式法:利用数学公式,如平方公式、立方公式等进行因式分解。

(3)分组分解法:将多项式分成若干组,每组提取公因式后进行因式分解。

3.公式法的常见因式分解:(1)平方差公式:a^2-b^2=(a+b)(a-b)(2) 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2(3) 差平方公式:a^2 - 2ab + b^2 = (a - b)^2(4) 立方和公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2)(5) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.分组分解法的常见因式分解:(1)将多项式分成两组,每组提取公因式后进行因式分解。

(2)将多项式分成三组,每组提取公因式后进行因式分解。

初中数学整式的乘除与因式分解知识点归纳

初中数学整式的乘除与因式分解知识点归纳

初中数学整式的乘除与因式分解知识点归纳一、整式的乘法:1.普通整式相乘:将每一项的系数相乘,同时将每一项的指数相加。

2.平方整式相乘:先将每一项平方,再将每一项相乘得到结果。

3.完全平方的平方差公式:(a-b)(a+b)=a²-b²。

4. 公式展开:通过公式展开可求两个或多个整式的乘积,例如(a+b)²=a²+2ab+b²。

二、整式的除法:1.整式相除的概念:整式A除以整式B,若存在整式C,使得B×C=A,那么C称为A除以B的商式。

2.用辗转相除法进行整式的除法计算。

三、因式分解:1.抽象公因式法:将多项式中的每一项提取出公因式,然后将剩下的部分合并。

2.公式法:运用一些常用的公式,如平方差公式、完全平方公式等进行因式分解。

3.分组法:将多项式中的项进行分组,使每一组都有一个公因式,然后进行合并。

4. 二次三项式的因式分解:对于二次三项式a²+2ab+b²或a²-2ab+b²,可以因式分解为(a±b)²。

5.因式定理和余式定理:若(x-a)是多项式P(x)的因式,则P(a)=0。

根据这一定理可以找到多项式的因式。

四、常见整式的因式分解:1.平方差公式:a²-b²=(a+b)(a-b)。

2. 完全平方公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。

3. 符号"相反"公式:a²-2ab+b²=(b-a)²。

4. 三项平方公式:a³+b³=(a+b)(a²-ab+b²),a³-b³=(a-b)(a²+ab+b²)。

5. 公因式公式:a²+ab=a(a+b)。

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总1.一元整式的乘法:一元整式是只含有一个变量的整式,例如3x^2+2x+1、一元整式的乘法就是将两个一元整式相乘,可以使用分配律和合并同类项的方法。

例如:(3x+2)(2x-5)=3x*2x+3x*(-5)+2*2x+2*(-5)=6x^2-15x+4x-10=6x^2-11x-102.多项式的乘法:多项式是含有多个项的整式,例如(3x+2)(2x-5)。

多项式的乘法可以通过将每个项相乘,并使用分配律和合并同类项的方法进行简化。

例如:(3x+2)(2x-5)=3x*2x+3x*(-5)+2*2x+2*(-5)=6x^2-15x+4x-10=6x^2-11x-103.完全平方公式:完全平方公式是一种特殊的乘法形式,将一个一元二次多项式乘积进行简化。

完全平方公式为(a + b)^2 = a^2 + 2ab + b^2例如:(x+3)(x+3)=x^2+2*x*3+3^2=x^2+6x+9因式分解知识点汇总:1.因式分解的基本思想:因式分解是将一个多项式表示为若干个乘积的形式,其中每个乘积称为一个因式。

通过因式分解,可以简化计算和解决问题。

2.因式分解的基本方法:2.1提取公因式:将多项式中的公因式提取出来,得到一个公因式和一个因式为公因式的多项式。

例如:2x^2+4x=2x(x+2)2.2公式法:使用已知的公式,例如完全平方公式、差平方公式等,将多项式进行因式分解。

例如:x^2-9=(x+3)(x-3)2.3分组分解法:将多项式中的各项进行分组,并找出可以进行因式分解的共同因式。

例如:ax + bx + ay + by = (a + b)(x + y)2.4平方差公式:将一个二次多项式表示为两个平方的差。

例如:x^2-4=(x+2)(x-2)2.5公因式平方差公式:将一个二次多项式表示为公因式的平方减去另一个平方。

例如:x^2-y^2=(x+y)(x-y)2.6公式的逆运算:将一个多项式进行展开,得到可以进行因式分解的形式。

八年级数学上人教版《整式的乘法》课堂笔记

八年级数学上人教版《整式的乘法》课堂笔记

《整式的乘法》课堂笔记一、知识点梳理1.单项式与单项式相乘:把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

2.单项式与多项式相乘:把单项式写在多项式的前面,和多项式的每一项相乘,再把所得的积相加。

3.多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

4.平方差公式:两数和乘两数差,等于两数平方差。

积二倍角公式:一角二边和乘积,凑成二倍角不变。

5.完全平方公式:首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。

二、方法总结1.运用分配律进行计算,简化运算过程。

2.观察运算结果中各项的系数和指数,运用交换律和结合律进行变形,使运算更加简便。

3.掌握一些常见的运算技巧,如“头平方,尾平方,头尾相乘再平方”,“头大尾小两边排,尾平方来头平方,两数和(差)放中间”等,这些技巧能够简化运算过程,提高运算速度和准确度。

三、注意事项1.运算过程中要注意符号问题,尤其是当幂的底数为负数时,需要运用分配律进行变形,以得到正确的结果。

2.要注意运算的顺序,先进行乘方运算,再进行乘除运算,最后进行加减运算。

同时要遵循先括号内后括号外的原则。

3.对于一些特殊的运算结果,如0的任何次幂都等于0等,要注意直接引用结论以提高计算速度。

4.要注意养成验算的习惯,以检查计算结果是否正确。

验算可以采用重新计算一遍或者检查运算过程中的错误等方式进行。

5.要注意培养自己的观察能力和运算能力。

在面对复杂的运算问题时,要学会观察问题特征,寻找简便的解决方法。

同时要加强练习,熟悉各种运算技巧和解题思路。

整式的乘除与因式分解知识点归纳

整式的乘除与因式分解知识点归纳

整式的乘除与因式分解知识点归纳整式是由常数、变量及它们的积和和差经过有限次加、减、乘运算得到的式子。

整式有不同的运算法则,包括乘法、除法和因式分解。

以下是整式的乘除与因式分解的知识点归纳:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。

在整式相乘时,需注意以下几点:-两个或多个常数相乘,结果仍是常数;-两个或多个同类项相乘,结果是它们的系数相乘,指数相加的同类项;-不同类项相乘时,按照乘法交换律和乘法结合律可以调整次序、合并同类项;-乘法运算中可以运用分配率,将一个整式乘以一个括号内的整式,再将结果分别与括号内的各项相乘,最后合并同类项得出结果。

2.整式的除法:整式的除法是指将一个整式除以另一个整式的运算。

在整式相除时,需要注意以下几点:-除法的定义:对于两个整式f(x)和g(x),若存在整式q(x)和r(x),使得f(x)=q(x)·g(x)+r(x),且r(x)是0或次数低于g(x)的整式,则称g(x)是f(x)的除式,q(x)是商式,r(x)是余式;-除法的步骤:进行长除法运算,从被除式中选择一个最高次项与除式的最高次项相除,得到商式的最高次项;-对除式乘以商式后减去得到的结果,继续进行除法计算,重复以上步骤;-最后得到的商式即为整式的商,最后得到的余式即为整式的余式。

3.整式的因式分解:因式分解是指将一个整式拆分成多个整式的乘积。

在进行因式分解时,需要注意以下几点:-提取公因式:当一个整式的各个项都有相同的因子时,可以提取出该因子作为公因式;-分解差的平方:对于形如a^2-b^2的差的平方,可以分解成(a+b)(a-b)的乘积;-分解一些特殊形式的整式,如完全平方差、完全立方和差、完全立方和等;-假设原式可分解成两个较简单的整式,然后根据求解思路进行分解。

整式的乘除运算和因式分解是数学中重要的操作,有广泛的应用。

在代数方程求解、多项式计算、消元法等多个数学领域中,都需要运用到整式的乘除与因式分解的知识。

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面一、整式的乘法与除法知识点:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。

乘法的结果称为“积”。

-乘法的交换律:a×b=b×a-乘法的结合律:(a×b)×c=a×(b×c)-乘法的分配律:a×(b+c)=a×b+a×c2.整式的除法:整式的除法是指一个整式被另一个整式除的运算。

除法的结果称为“商”和“余数”。

-除法的除数不能为0,即被除式不能为0。

-除法的商和余数满足等式:被除式=除数×商+余数3.次数与次项:整式中的变量的幂次称为整式的次数。

次数为0的项称为常数项,次数最高的项称为最高次项。

4.整式的乘除法规则:-乘法规则:乘法运算时,将整式中的每一项依次相乘,然后将结果相加即可。

-除法规则:除法运算时,可以通过因式分解的方法进行计算。

5.乘法口诀:乘法口诀是指两个整数相乘时的计算规则。

-两个正整数相乘,结果为正数。

-两个负整数相乘,结果为正数。

-一个正整数与一个负整数相乘,结果为负数。

二、因式分解知识点:1.因式分解:因式分解是将一个整式表示为几个乘积的形式的运算。

可以通过提取公因式、配方法等方式进行因式分解。

2.提取公因式:提取公因式是指将整式中公共的因子提取出来,分解成公因式和余因式的乘积的过程。

3.配方法:配方法是指将整式中的一些项配对相加或相乘,通过变换形式,使得整个式子能够因式分解的过程。

4.差的平方公式:差的平方公式是指一个完全平方的差能够分解成两个因子相加的形式。

例如:a^2-b^2=(a+b)(a-b)。

5. 完全平方公式:完全平方公式是指一个完全平方的和可以分解成一个因子的平方的和的形式。

例如:a^2 + 2ab + b^2 = (a + b)^26.公式法:根据特定的公式,将整式进行因式分解。

7.分组法:将整式中的项分为两组,分别提取公因式,然后进行配方法或其他操作,将整式进行因式分解。

整式的乘法知识点汇总

整式的乘法知识点汇总

整式的乘法知识点汇总&练习1. 同底数幂相乘,底数不变,指数相加。

a n.a m =a m+n (m,n 是正整数).底数可以是数字或字母,可以是单项式,也可以是多项式,若是多项式,应该把多项式看做一个整体。

幂之间是乘法关系,指数之间是相加关系。

2. 幂的乘方,底数不变,指数相乘。

(a n )m =a mn (m,n 是正整数)。

注意负数的奇数次幂为负,负数的偶数次幂为正。

3. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

(ab)n =a n b n (n 是正整数)。

底数必须是积的形式,当底数中有多个因式时,切勿漏掉系数因式的乘方。

当底数中有“-”时,应将视为-1,作为系数因式进行乘方。

4. 单项式与单项式相乘,把它们的系数、同底数幂分别相乘。

积的系数等于各单项式系数的积,应先确定积的符号,在计算积的绝对值。

相同字母的指数相加。

有乘方的先算乘方,再算乘法。

5. 单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。

a (m+n )=am+an 。

单项式乘以多项式的每一项,注意符号变化,能合并同类项的要合并同类项。

6. 多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。

(a+b )(m+n )=am+an+bm+bn 。

7. 平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。

(a+b )(a -b )=a 2-b 2有一组符号相同,有一组符号相反,用相同数的平方减去相反数的平方。

每一组数的绝对值都相同。

8. 完全平方公式,即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍。

(a+b )2=a 2+2ab+b 2,(a -b )2=a 2-2ab+b 2首平方,尾平方,积的两倍在中央。

9. 公式的灵活变形:(a+b )2+(a -b )2=2a 2+2b 2,(a+b )2-(a -b )2=4ab ,a 2+b 2=(a+b )2-2ab ,a 2+b 2=(a -b )2+2ab ,(a+b )2=(a -b )2+4ab,(a -b )2=(a+b )2-4ab=====-=-=+-+-=--+-=+•=-•=++=+=-+=++=÷===••-+n m n m n m a a a a a a x y y x x y y x b a a bc a ab x x y x b a b a a a b b b a a a a a ,,8,2)()2())(())((2)2(3)4)(5()3()2)(2()2)(32()2()(85222584233253求已知)(因式分解知识点&练习1.把一个多项式表示成若干个多项式的乘积的形式,称为把这个多项式因式分解。

整式的乘法与因式分解知识点总结

整式的乘法与因式分解知识点总结

整式的乘法与因式分解知识点总结整式是由整数、变量和运算符号相结合,通过加、减、乘、除等运算符号连接而成的代数式。

整式的乘法是指对两个或多个整式进行相乘的操作。

一、整式的乘法1.乘法运算的简便性:相同指数的变量相乘,可以将指数相加。

例如,a^2*a^3=a^(2+3)=a^52.简单常数的乘法:整数与整式相乘,只需将整数与整式中的每一项依次相乘。

3.分配律的运用:对于多项式的乘法,可以采用分配律以简化计算过程。

例如:(x+2)(x+3)=x*x+x*3+2*x+2*3=x^2+3x+2x+6=x^2+5x+64.合并同类项:在整式的乘法中,应合并同类项,即将指数相同的项进行合并。

例如,2x*3x=6x^25.乘法的交换律:整式在乘法中满足交换律。

例如,a*b=b*a。

二、因式分解因式分解是将一个整式拆分成多个因式的乘积的过程。

因式分解的目的是将复杂的整式转化为简单的乘法形式,方便计算与研究。

1.提公因式法:通过提取公因式的方法进行因式分解。

提公因式法的步骤如下:(1)将各项中的公因式提取出来;(2)原式中的每一项除以公因式,得到一个新的因式分解。

例如:6x^2+12x=6x(x+2)2.公式法:根据一些特定的公式进行因式分解。

例如:a^2-b^2=(a-b)(a+b)x^2 + 2xy + y^2 = (x+y)(x+y) = (x+y)^23.分组分解法:根据整式中存在的属于同一类别的项的相似性,将其进行分组并提取公因式。

例如:ab + ac + bd + bc = a(b+c) + b(d+c) = (b+c)(a+d)4.公因式分解法:在整式中找出各项的公因式,并将其提取出来,得到一个新的因式分解。

例如:2a^2b^2 + 4ab^3 = 2ab^2(a + 2b)5.平方差公式:根据平方差公式进行因式分解。

例如:a^2-b^2=(a-b)(a+b)6.根据特定条件进行因式分解:对于特定形式的整式,可以根据一些特定的条件进行因式分解。

整式乘法及因式分解知识点总结

整式乘法及因式分解知识点总结

整式的乘除与因式分解一、整式的乘除1、整式的乘法:同底数幂的乘法:同底数幂相乘,底数不变,指数相加。

),(都是正整数n m a a a n m n m +=•幂的乘方:幂的乘方,底数不变,指数相乘。

),(都是正整数)(n m a a m n n m =积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

)()(都是正整数n b a ab n n n =单项式乘以单项式:把它们的系数、同底数幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

平方差公式:22))((b a b a b a -=-+完全平方公式:2222)(b ab a b a ++=+2222)(b ab a b a +-=-2、整式的除法:同底数幂的除法:同底数幂相除,底数不变,指数相减。

)0,,(≠=÷-a n m a a a n m n m 都是正整数单项式相除:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的上相加。

注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a a a a a pp ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级14.1整式的乘法知识点总结
【知识点一】整式的混合运算
例题一、计算:()()()2443][-a a a a -+-∙∙
例题二、计算:3
222132213⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛-+xy y y x
例题三、计算:()()()()y x y x y x y x 4333223+--++
【知识点二】利用幂的运算法则解决问题
例题一、已知510=a ,610=b ,求b a 3210+的值。

例题二、解方程:486331222=-++x x
例题三、已知0352=-+y x ,求y x 324∙的值。

【知识点三】整式除法的运用
例题一、已知()p n y mx y x y x 72323212--=⎪⎭
⎫ ⎝⎛-÷,求n,m,p 的值。

例题二、已知一个多项式与单项式457-y x 的积为()2
234775272821y x y y x y x +-,求这个多项式
【知识点四】整式化简求值
例题一、先化简,再求值:
()()
()x x x x x x x x -+-----321589622,其中61-=x
例题二、先化简,再求值:
()()()⎪⎭
⎫ ⎝⎛--++--+-y x x y x x y x y x 2563222,其中2,1=-=y x .
【知识点五】开放探求题
例题一、若多项式()()4
3
2
2+
-
+
+x
x
n
mx
x展开后不含有3x项和2x项,试求m,n的值。

例题二、甲乙二人共同计算一道整式乘法:()()b
x
a
x+
+3
2,由于甲抄错了第一个多项式中a的符号,得到的结果为10
11
62-
+x
x;由于乙漏抄了第二个多项式中x的系数,得到的结果为10
9
22+
-x
x。

(1)你能知道式子中b a,的值各是多少吗?
(2)请你计算出这道整式乘法的正确结果。

例题三、若x是整数,求证
1
21
22
3
+
-+
--
x x x
x
x是整数。

【知识点六】整式乘除法在实际问题中的应用
例题一、某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a-24)m,试用a表示地基的面积,并计算当a=25时地基的面积
例题二、大庆市环保局欲将一个长为2×103dm,宽为4×102dm,高为8×10dm的长方体废水池中的满池废水注入正方体贮水池净化,
(1)请你考虑一下,这些废水能否刚好装满一个正方体贮水池________.(请填“能”或“不能”)
(2)若能,则该正方体贮水池的棱长_________dm;
(3)若不能,你能说出理由吗?(不要求作答)
例题三、太阳可以近似的看作是球体,如果用V 、R 分别代表球的体积和半径,那么3
4 V π3R ,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3)。

相关文档
最新文档