电子束的偏转与聚焦(北京科技大学物理实验报告)
大学物理实验电子束的偏转实验报告
大学物理实验电子束的偏转实验报告一、实验目的1、研究电子束在电场和磁场中的偏转规律。
2、了解电子束偏转的控制方法和应用。
3、掌握测量电子束偏转量的实验技术。
二、实验原理1、电子在电场中的偏转当电子在平行板电容器的电场中运动时,受到电场力的作用而发生偏转。
假设电子从阴极发射出来时的初速度为$v_0$,平行板电容器的板间电压为$U$,板间距为$d$,板长为$L$,则电子在电场中的加速度为$a =\frac{eU}{md}$,其中$e$为电子电荷量,$m$为电子质量。
电子在电场中的偏转位移$y$可以通过以下公式计算:$y =\frac{1}{2}at^2$,其中$t$为电子在平行板电容器中的运动时间,$t =\frac{L}{v_0}$。
2、电子在磁场中的偏转当电子在均匀磁场中运动时,受到洛伦兹力的作用而发生偏转。
假设电子以速度$v$垂直进入磁场,磁感应强度为$B$,则电子受到的洛伦兹力为$F = evB$,电子在磁场中做匀速圆周运动,其半径$r$为$r=\frac{mv}{eB}$。
电子在磁场中的偏转位移$y$可以通过几何关系计算得出。
三、实验仪器电子束偏转实验仪、直流稳压电源、示波器、多用表等。
四、实验步骤1、电场偏转实验(1)连接实验仪器,将电子束偏转实验仪的电源接通,调节电压输出,使平行板电容器的板间电压达到设定值。
(2)打开示波器,调整示波器的参数,使其能够清晰地显示电子束的偏转轨迹。
(3)观察电子束在电场中的偏转情况,记录不同电压下电子束的偏转位移。
2、磁场偏转实验(1)将磁场装置接入实验电路,调节磁场强度,使其达到设定值。
(2)观察电子束在磁场中的偏转情况,记录不同磁场强度下电子束的偏转位移。
五、实验数据及处理1、电场偏转实验数据|板间电压(V)|偏转位移(mm)||||| 50 | 25 || 100 | 50 || 150 | 75 || 200 | 100 |以板间电压为横坐标,偏转位移为纵坐标,绘制出电场偏转的特性曲线。
电子束的偏转与聚焦实验报告
电子束的偏转与聚焦实验报告实验目的:本实验旨在通过对电子束的偏转与聚焦进行实验,探究电子束在电场和磁场作用下的行为规律,加深对电子束的物理特性的理解。
实验仪器和材料:1. 电子束偏转器。
2. 电子束聚焦器。
3. 电子束发生器。
4. 电子束检测器。
5. 电源。
6. 磁铁。
7. 导线。
8. 示波器。
9. 实验台。
10. 电子束样品。
实验原理:电子束的偏转与聚焦实验是利用电场和磁场对电子束进行控制,从而观察电子束在不同条件下的行为。
电子束在电场中会受到电场力的作用,而在磁场中会受到洛伦兹力的作用。
通过调节电场和磁场的强度和方向,可以实现对电子束的偏转和聚焦。
实验步骤:1. 将电子束发生器连接到电子束偏转器和聚焦器上,并调节电子束的强度和方向。
2. 将磁铁放置在电子束的路径上,调节磁场的强度和方向。
3. 通过示波器观察电子束在不同电场和磁场条件下的运动轨迹。
4. 调节电子束的聚焦器,观察电子束的聚焦效果。
5. 记录实验数据,并进行数据分析和实验结论的总结。
实验结果:经过一系列实验操作和数据记录,我们观察到在不同电场和磁场条件下,电子束的偏转和聚焦情况发生了明显的变化。
当电场和磁场的方向和强度发生变化时,电子束的运动轨迹也相应发生了变化。
在调节电子束聚焦器时,我们发现可以通过调节聚焦器的参数,实现对电子束的聚焦效果的控制,从而获得清晰的电子束图像。
实验结论:通过本实验,我们深入了解了电子束在电场和磁场作用下的行为规律。
电子束在电场和磁场的双重作用下,呈现出复杂的运动轨迹,但通过调节电场和磁场的参数,可以实现对电子束的精确控制。
此外,通过调节电子束聚焦器,也可以实现对电子束的聚焦效果的控制,为电子束成像提供了重要的理论基础和实验依据。
总结:本实验通过对电子束的偏转与聚焦进行实验,探究了电子束在电场和磁场作用下的行为规律,加深了对电子束的物理特性的理解。
通过实验操作和数据分析,我们获得了丰富的实验结果,并得出了一系列结论,为进一步研究和应用电子束技术提供了重要的实验基础。
电子束的偏转与聚焦测量数据
误差 6.8% 6.74%
点聚测量时螺距 h 应从电子束在示波 结果分析:通过这种方法测量的电子荷质比误差较大。点聚 点聚 管中的第一个聚焦点开始算起,但第一个聚焦点的位置随栅压、第一阳极、第二阳极的电压 而变化。在不同的加速电压下用同一个螺距计算显然有误差。螺距随各电压变化而变化的规 律选做实验。线聚 线聚的螺距应从水平偏转板附近测量。 线聚 一是螺距的测量起点随不 误差分析: 本实验测量荷质比误差较大,误差主要来自与两方面,一是 一是 同的加速电压而变化;二是 二是聚集电流的误差,一方面来源表的精度,重要的是来自聚焦状态 二是 的判断造成的。 其它误差:1、示波管中的真空度影响 µ 0 的准确度。2、把螺线管中的磁场忽略边缘效应,看 成理想的匀强磁场,它与实际磁场有误差。4、地磁场也稍微影响。
950V 1.62A 1.694
1000V 1.68A 1.665
理论值
1.758
误差分析:此仪器给出的螺距比较准确,这是由示波管的结构决定的。但是多数仪器上缺少 铭牌,缺少参数。若统一用少数仪器上的参数,部分仪器测量误差就太大。 2、用电子束实验仪测量 、 点聚: 点聚: h = 230mm, N = 1385, D = 92.5mm, L = 265mm
0.492 0.550
6.7% 10.2%
线聚: 线聚: h = 167 mm, N = 1385, D = 92.5mm, L = 265mm
Ua
1000V 1200V
励磁电流(A) 正 反 正 反 0.664 0.683 0.746 0.696
I正 + I反 2 0.678 I =
0.721
e (×1011 C / kg ) m 1.59
Hale Waihona Puke Ua100V 1200V
实验57__电子束的偏转与聚焦-大学物理实验
实验五十七电子束的偏转与聚焦[实验目的]1、了解电子枪的结构2、研究电子在横向电场及横向磁场中的运动规律3、了解电子束的磁聚集原理4、测定电子的荷质比[实验仪器]WS-JD-DZS型电子束综合实验仪、直流稳压电源、数字万用表,低压电表、直流毫安表,螺线管[实验原理]一、示波管的结构与工作原理电子束综合实验仪的核心部件是一示波管。
示波管为阴极射线管,简写为CRT。
示波管由电子枪、偏转板和荧光屏三部分组成,如图57-1所示。
图57-1电子枪:由加热电极(灯丝)F、阴极K、栅极(调制极)G、加速电极A2’第一阳极A1(聚焦极)和第二阳极A2(辅助聚焦极)组成。
A2’与A2在示波管内部相连。
偏转板:DX 为水平偏转板(X、X’一对),DY为垂直偏转板(Y、Y’一对)。
荧光屏:在示波管玻璃屏内表面涂敷荧光物质膜层构成;外部用玻璃封装,抽真空并加有吸气剂。
阴极K为表面涂有氧化物(钡、锶的氧化物)的金属圆筒,经灯丝加热(电压6.3V)后,温度上升,一部分电子脱离圆筒表面,变成自由电子,自由电子在外电场作用下形成电子流。
栅极G为顶端带孔(Ø.1mm)的圆筒,套装在阴极之外,栅极的电位低于阴极的电位,对阴极发射出的电子起控制作用。
调节栅极电位可以控制射向荧光屏的电子流密度。
电子流密度越大,荧光屏上的光点就越亮。
当栅极电位调到相对阴极足够负时,将没有电子通过栅极,荧光屏上光点消失,此时栅-阴极间的电位差称为截止电压。
8SJ31J型示波管的截止电压为-35~-70V。
调节栅-阴极间电压可控制荧光屏上光点的亮度,这就是亮度调节。
加速电极A2’是一长金属圆筒,其电位比阴极高1000V左右,用于加速电子。
圆筒内有一对同轴中心开孔的金属片,用于截获偏离轴线的电子,使电子束有较细截面。
加速电极后面是第一阳极A1和第二阳极A2(A2与A2’相连接),第一阳极电压一般为几百伏,与A2’、A 2一样也是中心有小孔的圆板。
A2’、A1、A2三极形成的电场除具有对电子加速作用外,还起着会聚作用,使电子束会聚成很细一束,这种作用称为聚焦。
1311电子束的偏转与聚焦
(5)
电子既在轴线方面作直线运动,又在垂直于轴线的平面内作圆周运动。它的轨道是一条螺旋线,其螺距用 表示,则有:
(6)
从(5)、(6)两式可以看出,电子运动的周期和螺距均与 无关。虽然各个点电子的径向速度不同,但由于轴向速度相同,由一点出发的电子束,经过一个周期以后,它们又会在距离出发点相距一个螺距的地方重新相遇,这就是磁聚焦的基本原理,由(6)式可得
(7)
长直螺线管的磁感应强度 ,可以由下式计算:
(8)
将(8)代入(7),可得电子荷质比为:
(9)
为真空中的磁导率 亨利/米
本仪器的其它参数如下:螺线管内的线圈匝数: 螺线管的长度: 螺线管的直径: 螺距( 偏转板至荧光屏距离)
(2)
2.电子的磁偏转原理:
电子束进入长度为 的区域,有一个垂直于纸面向外的均匀磁场 ,由此引起的磁场力的大小为 ,而且它始终垂直于速度,此外,由于这个力所产生的加速度在每一瞬间都垂直于 ,此力的作用只是改变 的方向而不改变它的大小,即粒子以恒定的速率运动。电子在磁场力的影响下作圆周运动的向心加速为 ,半径 。电子离开磁场区域之后,重新沿一条直线运动,最后,电子束打在荧光屏上某一点,这一点相对于没有偏转的电子束的位置移动了一段距离。
电子束的偏转与聚焦
【实验目的】
1.了解带电粒子在电磁场中的运动规律,电子束的电偏转、磁偏转、磁聚焦的原理;
2.学习测量电子荷质比的一种方法。
【实验仪器】
型电子束实验仪
【实验电子枪里射出来的速度是vz,电子在电子枪里的加速电压是V2(阳极电压) (1)
已知偏转电位差和偏转板的尺寸,设距离为 的两个偏转板之间的电位差 ,偏转板的长度为l,偏转板到荧光屏的距离为L,则电子在荧光屏上偏转的位移D为:
电子束的电偏转和电聚焦实验报告
竭诚为您提供优质文档/双击可除电子束的电偏转和电聚焦实验报告篇一:电子束的偏转与聚焦(北京科技大学物理实验报告)北京科技大学实验预习报告实验名称:电子束的偏转与聚焦实验目的:研究带电粒子在电场和磁场中偏转和聚焦的规律;了解电子束线管的构造和工作原理。
实验原理:A,电子束流的产生与控制通过阴极K发射电子。
控制栅极g是一个顶端有小孔的圆筒,套在阴极的外面,其电位比阴极低,因此栅极对阴极发射的电子流密度起到控制作用。
b,电偏转原理通过电场对电子的偏转作用,我们可以得到以下公式:De=udl(1/2+L)/(2uzd)其中,De为偏转长度,l为电场长度,d为电场宽度,L 为电容器到荧光屏的距离,uz为加速电压。
c,磁偏转原理通过磁场场对电子的偏转作用,我们可以得到以下公式:Dm=klI(L+l/2)sqrt(e/2uzm)D,点聚焦原理利用非均匀电场是电子束形成交叉点。
由阴极射出的电子,经栅极与第一阳极之间的不均匀电场的作用会聚与栅极出口前方,形成电子束的叉点。
e,磁聚焦原理电子运动的周期和螺距均与v(垂直)无关。
从同一点出发的各个电子在作螺线运动时,尽管各自的v(垂直)不相同,但经过一个周期的旋转之后,他们又会在距离出发点一个螺距的方向相遇。
实验内容及步骤A,电偏转的观测b,磁偏转的观测c,电聚焦的观测D,磁聚焦的观测篇二:实验14-电子束的偏转与聚焦及电_...实验14电子束偏转、聚焦及电子荷质比的测定带电粒子在电场和磁场作用下的运动是电学组成的基础。
带电粒子通常包括质子、离子、和自由电子等,其中电子具有极大的荷质比和极高的运动速度。
因此,在各种分支学科中得到了极其广泛的应用。
众所周知,快速运动的电子会在阴极射线管的荧光屏上留下运动的痕迹,可以利用观察此光迹的方法来研究电子在电场和磁场中的运动规律。
辅以聚焦、偏转和强度控制等系统,可以使电子束在荧光屏上清晰地成象。
电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。
电子束的偏转与聚焦(北京科技大学物理实验报告)
北京科技大学实验预习报告实验名称:电子束的偏转与聚焦实验目的:研究带电粒子在电场和磁场中偏转和聚焦的规律;了解电子束线管的构造和工作原理。
实验原理:A ,电子束流的产生与控制通过阴极K 发射电子。
控制栅极G 是一个顶端有小孔的圆筒,套在阴极的外面,其电位比阴极低,因此栅极对阴极发射的电子流密度起到控制作用。
B ,电偏转原理通过电场对电子的偏转作用,我们可以得到以下公式:D e =U d l(1/2+L)/(2U z d)其中,D e 为偏转长度,l 为电场长度,d 为电场宽度,L 为电容器到荧光屏的距离,Uz 为加速电压。
C, 磁偏转原理通过磁场场对电子的偏转作用,我们可以得到以下公式:D m =klI(L+l/2)sqrt(e/2U z m)D,点聚焦原理利用非均匀电场是电子束形成交叉点。
由阴极射出的电子,经栅极与第一阳极之间的不均匀电场的作用会聚与栅极出口前方,形成电子束的叉点。
E,磁聚焦原理电子运动的周期和螺距均与v(垂直)无关。
从同一点出发的各个电子在作螺线运动时,尽管各自的v(垂直)不相同,但经过一个周期的旋转之后,他们又会在距离出发点一个螺距的方向相遇。
实验内容及步骤A,电偏转的观测阳极电/V压Uz偏转量DeB, 磁偏转的观测磁片电流I偏转量DeC, 电聚焦的观测阳极电/V压Uz聚焦电压U1D,磁聚焦的观测600V 700V 800V 900V 1000V 阳极电压U/V电流I/ A。
电子束的磁偏转与磁聚焦实验报告
电子束的磁偏转与磁聚焦实验报告一、实验目的1、研究电子束在磁场中的偏转规律,加深对洛伦兹力的理解。
2、掌握电子束磁偏转和磁聚焦的测量方法。
3、测定电子荷质比。
二、实验原理1、电子束的磁偏转当电子以速度 v 垂直进入磁场 B 时,将受到洛伦兹力 F 的作用,其大小为 F = e v B,其中 e 为电子电荷。
洛伦兹力的方向始终垂直于电子的速度方向,使电子在垂直于磁场和速度的平面内做圆周运动。
在磁场中运动的电子会发生偏转,其偏转位移 y 与磁场强度 B、加速电压 V、偏转电压 V_d 等因素有关。
2、电子束的磁聚焦在均匀磁场中,电子束中的电子做螺旋运动。
如果磁场是轴向的,且各电子的速度 v 大小相近、方向略有差异,经过一段距离后,它们会会聚在一点,这就是磁聚焦现象。
磁聚焦的条件是电子旋转一周的时间与在轴向前进的距离正好相等。
三、实验仪器电子束实验仪、直流稳压电源、示波器等。
四、实验步骤1、连接实验仪器,确保线路连接正确。
2、打开电源,预热一段时间,使仪器工作稳定。
3、调节加速电压 V,使其达到一定值,并保持不变。
4、逐渐增加偏转电压 V_d,观察电子束在磁场中的偏转情况,记录偏转位移 y。
5、改变磁场强度B,重复上述步骤,测量不同条件下的偏转位移。
6、进行磁聚焦实验,调节磁场强度和加速电压,观察磁聚焦现象,测量相关数据。
五、实验数据及处理1、磁偏转实验数据加速电压 V =____ V磁场强度 B(T)偏转电压 V_d(V)偏转位移 y(mm)01 5 1201 10 2502 5 0602 10 13根据实验数据,绘制偏转位移 y 与偏转电压 V_d 的关系曲线,分析其线性关系。
2、磁聚焦实验数据加速电压 V =____ V磁场强度 B(T)聚焦长度 L(mm)01 15002 75根据磁聚焦实验数据,计算电子的荷质比 e/m。
六、实验误差分析1、仪器精度的限制,如电源电压的稳定性、磁场强度的测量误差等。
2018年大学电子束实验总结-范文模板 (7页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==大学电子束实验总结篇一:电子束的偏转与聚焦(北京科技大学物理实验报告)北京科技大学实验报告实验名称:电子束的偏转与聚焦实验目的、实验原理(见预习报告)实验数据及数据分析(数据及图见附页)A.电偏转的观测由图1、2、3、5可以清楚得看出,当阳极电压Uz不变时,偏转电压随偏转量的增大线性变化。
第4张图可以看出,我测量的第五组数据是有问题的。
所以,我就放弃了第五组数据,作出了图5。
然后我分析了一下不同阳极电压下偏转电压随偏转量变化快慢。
显然,斜率即电偏转灵敏度,分别为:0.105,0.0915,0.082, 0.0753, 斜率是随着阳极电压的增大而减小的。
为了清晰明了,我把两者的关系用图表示出来上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。
阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。
偏转距离De和偏转电压Ud是成线性变化的。
至于De与阳极电压Uz的关系,根据图1,2,3,5中的公式,可以知道,当偏转电压Ud为10V时,Dz分别为:1.025,0.912,0.785, 0.744,所以根据下图可知:当偏转电压相同时,随着阳极电压的增大,偏转量增减少。
B 磁偏转的观测图6,7,8是磁偏转观测部分的图。
这三张图说明了,偏转电流与偏转量是成一次函数关系变化的。
下图表示的是图6,7,8的斜率即磁偏转灵敏度与阳极电压的关系:显然,三个数据几乎是在一条直线上,所以磁偏灵敏度是和阳极电压成线性的。
并且随着阳极电压的增大磁偏灵敏度减小。
阳极电压增大导致电子速度的增大,电子就越不容易被偏转。
当Uz不变时,Dm随着偏转电流I的增大而增大;当I不变时,Dm随着Uz的变大而减小,如图:(取I为100mA为基点)C 电聚焦的观测由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。
电子束的偏转和聚焦实验报告1
电子束的聚焦和偏转一、实验目的1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和均匀磁场作用下的偏转情况。
3、学会规范使用数字万能表。
4、学会磁聚焦法测量电子荷质比的方法。
二、实验原理1.示波管的结构示波管主要包括三个部分:前端为荧光屏,中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪。
灯丝H用电源供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2.电偏转原理在示波管中,电子从被加热的阴极K逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
令Z 轴沿示波管的管轴方向从灯丝位置指向荧光屏;同时,从荧光屏上看,令X 轴为水平方向向右,Y 轴为垂直方向向上。
则电子经过电势差为U 的空间后,电场力做的功eU 应等于电子获得的动能2m 21v eU =显然,电子沿Z 轴运动的速度v z 与第二阳极A 2的电压U 2的平方根成正比,22v U mez =若在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏转,如图。
若偏转板板长为l 、偏转板末端到屏的距离为L 、偏转电极间距离为d 、轴向加速电压为U 2,横向偏转电压为U d ,则荧光屏上光点的横向偏转量:dlU U L D d 2)2l (2+=可知,当U 2不变时,偏转量 D 随U d 的增加而线性增加。
若 改变加速电压U 2,适当调节U 1到最佳聚焦,可以测定D-U d 直线随U 2改变而使斜率改变的情况。
B3.磁偏转原理电子通过A 2后,若在垂直Z 轴的X 方向外加一个均匀磁场,那么以速度v 飞越子电子在Y 方向上也会发生偏转,如图所示。
由于电子受洛伦兹力F=eBv 作用,F 的大小不变,方向与速度方向垂直,因此电子在F 的作用下做匀速圆周运动,洛伦兹力就是向心力,即有eBv=mv 2/R ,所以eBR zmv =电子离开磁场后将沿圆切线方向飞出,直射到达荧光屏。
电子束的偏转与聚焦实验报告
图2物理实验报告一、实验名称:电子束的偏转与聚焦现象班级: 黄昆班13 实验日期:2015年5月12日 姓名: 杨巧林 学 号: 41340072二、实验目的1、研究带电粒子在电场和磁场中偏转和聚焦的规律;2、了解电子束线管的结构和工作原理。
三、实验原理1】电子束的产生和控制如图,电子示波管的结构示意图:2、电偏转原理在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
电子经过电势差为U 的空间后,电场力做的功eU 应等于电子获得的动能 2m 21v eU =→ 22v U mez =若在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏转,如图2所示。
若偏转板板长为l 、偏转板末端到屏的距离为L 、偏转电极间距离为d 、轴向加速电压(即第二阳极A 2电压)为U 2,横向偏转电压为U d ,则荧光屏上光点的横向偏转量D 由下式给出:dlU U L D d 2)2l (2+= 在单位偏转电压的作用下,电子束在荧光屏上偏离轴向的距离DE/Ud 称为电偏转灵敏度。
图3B3、磁偏转原理电子通过A 2后,若在垂直Z 轴的X 方向外加一个均匀磁场,那么以速度v 飞越子电子在Y 方向上也会发生偏转,如图所示。
由于电子受洛伦兹力F=eBv 作用,F 的大小不变,方向与速度方向垂直,因此电子在F 的作用下做匀速圆周运动,洛伦兹力就是向心力,即有eBv=mv 2/R ,所以R=mv/eB电子离开磁场后将沿圆切线方向飞出,直射到达荧光屏。
在偏转角φ较小的情况下,偏转量:z2)2l (klI mU eL D += 在单位偏转线圈激励电流的作用下,电子束在荧光屏上偏离轴向的距离Dm/I 称为磁偏转灵敏度。
4、电聚焦原理电子聚焦的基本思路在于利用非均匀的电场使电子束加速电场使电子束形成交叉点。
电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
大学物理实验电子束的偏转与聚焦实验报告
大学物理实验电子束的偏转与聚焦实验报告一、实验目的1、研究电子束在电场和磁场中的偏转规律。
2、了解电子束的聚焦原理和方法。
3、掌握测量电子束偏转量和聚焦效果的实验技术。
二、实验原理1、电子束在电场中的偏转当电子束在均匀电场中运动时,受到电场力的作用会发生偏转。
假设电场强度为 E,电子电荷量为 e,电子进入电场时的速度为 v₀,在电场中的运动时间为 t,则电子在电场方向上的加速度为 a = eE / m (m 为电子质量)。
电子在电场方向上的偏转位移 y 可以表示为:y =1/2 at²。
2、电子束在磁场中的偏转电子束在垂直于其运动方向的磁场中运动时,会受到洛伦兹力的作用而发生偏转。
当磁场强度为 B 时,电子受到的洛伦兹力大小为 F =ev₀B,电子在磁场中的偏转半径 R 可以表示为:R = mv₀/(eB)。
3、电子束的聚焦电子束的聚焦通常采用静电聚焦或磁聚焦的方法。
静电聚焦是通过在电子枪和荧光屏之间设置适当的静电场来实现聚焦;磁聚焦则是利用磁场使电子束聚焦。
三、实验仪器电子束实验仪、直流稳压电源、示波器、测量工具等。
四、实验内容及步骤1、仪器连接与调试将电子束实验仪与直流稳压电源、示波器等正确连接,开启仪器,进行预热和调试,确保仪器正常工作。
2、研究电子束在电场中的偏转(1)调节直流稳压电源,提供不同强度的电场。
(2)观察电子束在荧光屏上的偏转情况,记录偏转量与电场强度的关系。
3、研究电子束在磁场中的偏转(1)给磁场线圈通以不同大小的电流,产生不同强度的磁场。
(2)观察并记录电子束在磁场中的偏转情况,分析偏转量与磁场强度的关系。
4、电子束的聚焦实验(1)分别进行静电聚焦和磁聚焦实验。
(2)调整聚焦电压或电流,观察电子束在荧光屏上的聚焦效果,找到最佳聚焦状态。
五、实验数据记录与处理1、电子束在电场中的偏转|电场强度(V/m)|偏转量(mm)|||||_____|_____||_____|_____||_____|_____|以电场强度为横坐标,偏转量为纵坐标,绘制曲线,并分析其线性关系。
电子束的偏转与聚焦实验报告.doc
电子束的偏转与聚焦实验报告.doc
本次实验中,我们采用电子束来实现偏转和聚焦的操作。
主要设备有电子束源、偏转器、探测器、激光系统等。
实验中,先用电子束源制备皮秒的电子束,然后通过圆柱面形状的磁铁使其发生径向偏转,观察偏转后的横截面,最终实现所需要的偏转效果。
接着,我们使用偏转量夹芯式偏转阀在漩管形式的磁场结构中再次偏转电子束,实现电子束的定向,观察电子束的截面情况并记录结果。
最后,我们采用激光系统和探测器对电子束进行了噪声耦合细分,并看到电子束粒子在磁场中运动的痕迹,最终我们实现了对电子束的聚焦操作。
实验结果表明,当加磁场时,电子束能够得到一定程度的偏转,使电子流量可以得到有效的管控。
另外,当改变磁场强度时,也能够改变电子流量,实现聚焦效果。
最终,本次实验成功实现了对电子束的偏转与聚焦操作,验证了加磁场时电子束的偏转模型,以及聚焦时电子束的运动轨迹模型。
电子束的电偏转和电聚焦实验报告
电子束的电偏转和电聚焦实验报告电子束的电偏转和电聚焦实验报告引言:电子束是一种由电子组成的束流,具有很高的能量和速度。
在现代科技中,电子束被广泛应用于电子显微镜、电子加速器等领域。
为了研究电子束的性质和控制电子束的运动,我们进行了电子束的电偏转和电聚焦实验。
本实验旨在通过调节电压和磁场,观察电子束的偏转和聚焦效应。
实验设备:1. 电子枪:产生电子束的装置。
2. 磁感应计:用于测量磁场的强度。
3. 电压源:用于提供电子束所需的电压。
4. 荧光屏:用于观察电子束的偏转和聚焦效果。
实验步骤:1. 将电子枪放置在实验台上,并将磁感应计放置在电子束轨迹的旁边。
2. 打开电压源,调节电压大小,使电子束能够稳定产生。
3. 调节磁感应计的位置和方向,使其能够测量到电子束轨迹上的磁场强度。
4. 通过调节电压源和磁感应计,观察电子束在不同电压和磁场条件下的偏转和聚焦效果。
5. 将荧光屏放置在电子束轨迹的末端,观察电子束在荧光屏上的聚焦效果。
实验结果:通过实验观察和测量,我们得到了以下结果:1. 当电子束通过电磁场时,电子束会受到力的作用而发生偏转。
当电压和磁场的方向相同时,电子束向外偏转;当电压和磁场的方向相反时,电子束向内偏转。
2. 当调节电压的大小时,电子束的偏转角度也会发生变化。
电压越大,电子束的偏转角度越大;电压越小,电子束的偏转角度越小。
3. 通过调节磁场的强度,可以控制电子束的偏转方向和角度。
磁场越强,电子束的偏转角度越大;磁场越弱,电子束的偏转角度越小。
4. 在适当的电压和磁场条件下,电子束能够在荧光屏上形成清晰的聚焦点。
当电子束偏转角度较小且能够聚焦时,聚焦点越明亮、清晰。
讨论:通过本次实验,我们深入了解了电子束的电偏转和电聚焦原理。
电子束的偏转和聚焦效果受到电压和磁场的调节影响。
在实际应用中,我们可以通过改变电压和磁场的大小和方向,来控制电子束的运动轨迹和聚焦效果。
这对于电子显微镜等设备的性能优化和精确控制具有重要意义。
电子束的偏转与聚焦(北京科技大学物理实验报告)
当Uz不变时,Dm随着偏转电流I的增大而增大;当I不变时,Dm随着Uz的变大而减小,如图:(取I为100mA为基点)
C 电聚焦的观测
由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。由图9可以看出,各个数据之间的相关程度R2=0.9812,相关性较低。但它们仍然是线性相关的。随着阳极电压的增大,聚焦电压随之增大。
然后我分析了一下不同阳极电压下偏转电压随偏转量变化快慢。显然,斜率即电偏转灵敏度,分别为:0.105,0.0915,0.082, 0.0753, 斜率是随着阳极电压的增大而减小的。为了清晰明了,我把两者的关系用图表示出来
上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。
阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。
偏转量/cm
0.5
1
1.5
2
2.5
偏转电压/V
6.51
12.61
18.76
24.88
30.87
阳极电压1000V
偏转量/cm
0.5
1
1.5
2
2.5
偏转电压/V
6.74
13.41
20.08
26.66
30.04
B 磁偏转的观测数据
阳极电压800V
偏转量/cm
0.5
1
1.5
2
2.5
磁偏电流I+/mA
17.2
实验的总体构成很简单,我们两个的合作也很顺利。
A 磁偏转的测量数据如下
实验14-电子束的偏转与聚焦及电_...
实验14-电子束的偏转与聚焦及电_...实验目的:1. 了解电子束调制和聚焦对CRT成像的影响。
2. 学习使用偏转电压对电子束进行水平和垂直方向的偏转,并测量电子束的偏转灵活性。
3. 测量电子束在不同偏转电压下的有效面积,并计算出电子束的宽度。
实验原理:CRT采用阴极射线管技术,主要包括电子枪、偏转板、荧光层及高压电源等部分。
在CRT内部的阴极枪中,通过加在阴极上的热电子发射电场及电极片的控制,产生出大量的电子,经过加速后,瞄准进入在荧光层上形成同样的亮点,从而显示出图像。
具体过程如下图所示:在电子枪内,通过控制阳极电压和加在控制极上的电压,来形成聚焦电场,使得出射的集合在一个较小的区域内,最终成为点状的电子束。
然后通过荧光层上的高电压驱动,使得电子束在荧光层上撞击,产生出亮点,从而形成图像。
在偏转板部分,是用来控制电子束的位置的,其中水平方向的偏转由水平偏转板负责,垂直方向的偏转由垂直偏转板负责。
当电压加在偏转板上时,产生的电场会使得电子束的路径产生弯曲,实现扫描屏幕上任意位置的亮度变化,从而形成图像。
实验器材:普通示波器、高压电源、CRT和水平、垂直尺、白纸。
实验步骤:1. 将示波器波形输出端的导线连接到电子枪的阴极,通过改变示波器的正弦波频率、幅度及相位等参数,使得电子束在荧光屏上形成水平、垂直的重叠的亮条纹,并调整示波器产生的水平、垂直正弦波相位差,使得显示出方框状的屏幕。
2. 在调节完聚焦后,用垂直板电压调节电子束发散程度,使屏幕上的点变小尽量均匀。
3. 用水平板和垂直板调整电子束位置和大小,使其在屏幕上呈现出一条水平的亮线。
4. 通过改变水平和垂直偏转电压,使得电子束在屏幕上形成不同的图案,并记录下不同电压时的灵敏度。
5. 测量电子束的宽度,首先在纸上绘制一个正方形,边长为a,则计算出纸上投影宽度为W。
将水平方向的偏转电压加1V,此时电子束走过的距离为ΔX,投影距离变为W1。
利用勾股定理,计算出横向偏转距离为ΔL,然后就可以计算电子束的宽度W0。
大学电子束实验实验报告
一、实验目的1. 了解电子束的偏转与聚焦原理。
2. 熟悉电子束实验仪器的使用方法。
3. 通过实验,掌握电子束在电场和磁场中的运动规律。
4. 学习电子束的聚焦方法,并分析其影响因素。
二、实验原理1. 电子束偏转原理:电子束在电场和磁场中受到洛伦兹力的作用,会发生偏转。
电子束在电场中的偏转规律可以用以下公式表示:\[ \Delta y = \frac{eUL}{2mV_0^2} \]其中,\(\Delta y\) 为电子束在电场中的偏转长度,\(e\) 为电子电荷,\(U\) 为电场电压,\(L\) 为电场长度,\(m\) 为电子质量,\(V_0\) 为加速电压。
2. 电子束聚焦原理:电子束在非均匀电场中会发生聚焦,形成交叉点。
电子束聚焦的原理可以用以下公式表示:\[ R = \frac{mV_0^2}{eU} \]其中,\(R\) 为聚焦距离,\(m\) 为电子质量,\(V_0\) 为加速电压,\(e\)为电子电荷,\(U\) 为非均匀电场电压。
三、实验仪器1. 电子束实验仪2. 直流稳压电源3. 数字多用表4. 荧光屏5. 电压表6. 电流表四、实验步骤1. 打开电子束实验仪,连接电源,调节加速电压。
2. 调节电场电压,观察电子束在电场中的偏转情况,记录偏转长度。
3. 调节磁场电压,观察电子束在磁场中的偏转情况,记录偏转角度。
4. 调节非均匀电场电压,观察电子束的聚焦情况,记录聚焦距离。
5. 改变实验参数,分析电子束偏转与聚焦的影响因素。
五、实验数据及处理1. 电子束在电场中的偏转实验数据:| 电场电压U (V) | 偏转长度\(\Delta y\) (cm) || :--------------: | :-----------------------: || 50 | 1.5 || 100 | 3.0 || 150 | 4.5 |2. 电子束在磁场中的偏转实验数据:| 磁场电压U (V) | 偏转角度\(\theta\) (°) || :--------------: | :---------------------: || 50 | 10 || 100 | 20 || 150 | 30 |3. 电子束聚焦实验数据:| 非均匀电场电压U (V) | 聚焦距离R (cm) || :-------------------: | :--------------: || 50 | 10 || 100 | 20 || 150 | 30 |六、实验结果与分析1. 电子束在电场中的偏转长度与电场电压成正比,符合实验原理。
电子束的偏转实验报告
电子束的偏转实验报告篇一:电子束偏转实验报告篇一:电子束的偏转实验报告实验题目:电子束线的偏转实验目的1. 研究带电粒子在电场和磁场中偏转的规律;2. 了解电子束管的结构和原理。
仪器和用具实验原理1.电子束在电场中的偏转假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿z方向作加速运动,则其最后速度vz可根据功能原理求出来,即eua?移项后得到 vz?212mvz 22eua() me式中ua为加速阳极相对于阴极的电势,为电子的电荷与质量之比(简称比荷,又称荷 m质比).如果在垂直于z轴的y方向上设置一个匀强电场,那么以vz速度飞行的电子将在y方向上发生偏转,如图所示.若偏转电场由一个平行板电容器构成,板间距离为d,极间电势差为u,则电子在电容器中所受到的偏转力为fy?ee?eu() d??根据牛顿定律 fy?m?y??因此 ?yeudeu() md即电子在电容器的y方向上作匀加速运动,而在z方向上作匀速运动,电子横越电容器的时间为 t?l() vz当电子飞出电容器后,由于受到的合外力近似为零,于是电子几乎作匀速直线运动,一直打到荧光屏上,如图里的f点.整理以上各式可得到电子偏离z轴的距离n?keu() uall?l?1 2d?2l?式中ke?是一个与偏转系统的几何尺寸有关的常量.所以电场偏转的特点是:电子束线偏离z轴(即荧光屏中心)的距离与偏转板两端的电压成正比,与加速极的加速电压成反比.2.电子束在磁场中的偏转如果在垂直于z轴的x方向上设置一个由亥姆霍兹线圈所产生的恒定均匀磁场,那么以速度vz飞越的电子在y方向上也将发生偏转,如图所示.假定使电子偏转的磁场在l范围内均匀分布,则电子受到的洛伦兹力大小不变,方向与速度垂直,因而电子作匀速圆周运动,洛伦兹力就是向心力,所以电子旋转的半径r?mvz() eb当电子飞到a点时将沿着切线方向飞出,直射荧光屏,由于磁场由亥姆霍兹线圈产生,因此磁场强度b?ki ()式中k是与线圈半径等有关的常量,i为通过线圈的电流值.将()、()式代人()式,再根据图的几何关系加以整理和化简,可得到电于偏离z轴的距离n?kmi() allk?l?e1? ??2?2l?m式中km?也是一个与偏转系统几何尺寸有关的常量.所以磁场偏转的特点是:电子束的偏转距离与加速电压的平方根成反比,与偏转电流成正比.1 2 3 22电子管内部线路图实验内容1、研究和验证示波管中电场偏转的规律。
电子束的电偏转和电聚焦实验报告
电子束的电偏转和电聚焦实验报告实验名称:电子束的电偏转和电聚焦实验目的:通过实验研究电子束的电偏转和电聚焦现象,掌握电子束的基本性质和原理。
实验器材:电子束实验仪、万用表、直流电源、T型管、荧光屏、螺旋线管、磁场探针等。
实验原理:电子束在电场和磁场中的运动可以用洛伦兹公式和牛顿第二定律来描述。
电子在电场中受到电力作用,会发生偏转;电子在磁场中受到洛伦兹力作用,会发生圆周运动。
实验步骤:1、将电子束实验仪接通电源,调整电压和电流使得电子束稳定。
2、安装T型管,接入电源和万用表,调整电压和电流,观察电子束在电场中的偏转情况。
3、安装螺旋线管和磁场探针,调整电流和磁场强度,观察电子束在磁场中的圆周运动情况。
4、将荧光屏放置在电子束路径上,观察电子束聚焦后的情况。
实验结果和分析:1、在电场中,电子束会受到电力作用,产生偏转现象。
当电压越大,电子束偏转角度越大;当电场方向改变时,电子束的方向也会发生改变。
2、在磁场中,电子束会受到洛伦兹力作用,产生圆周运动。
当磁场强度越大,电子束半径越小;当电子束速度越大,圆周运动的半径也越大。
3、通过调节电子束实验仪中的聚焦电场,可以使电子束在荧光屏上清晰地聚焦成一个点,实现电聚焦现象。
实验结论:1、电子束在电场中偏转角度与电场电压大小成正比,与电子束入射角度和电场方向有关。
2、电子束在磁场中运动半径与磁场强度成正比,与电子束速度成反比。
3、电子束聚焦的理论依据是通过调节聚焦电场,使电子束的散焦程度减小,从而将其聚焦成一个点。
参考文献:1、《电子技术基础实验教程》2、《原子物理、分子物理与光学实验讲义》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京科技大学实验预习报告
实验名称:电子束的偏转与聚焦
实验目的:
研究带电粒子在电场和磁场中偏转和聚焦的规律;了解电子束线管的构造和工作原理。
实验原理:
A ,电子束流的产生与控制
通过阴极K 发射电子。
控制栅极G 是一个顶端有小孔的圆筒,套在阴极的外面,其电位比阴极低,因此栅极对阴极发射的电子流密度起到控制作用。
B ,电偏转原理
通过电场对电子的偏转作用,我们可以得到以下公式:
D e =U d l(1/2+L)/(2U z d)
其中,D e 为偏转长度,l 为电场长度,d 为电场宽度,L 为电容器到荧光屏的距离,Uz 为加速电压。
C, 磁偏转原理
通过磁场场对电子的偏转作用,我们可以得到以下公式:
D m =klI(L+l/2)sqrt(e/2U z m)
D,点聚焦原理
利用非均匀电场是电子束形成交叉点。
由阴极射出的电子,经栅极与第一阳极之间的不均匀电场的作用会聚与栅极出口前方,形成电子束的叉点。
E,磁聚焦原理
电子运动的周期和螺距均与v(垂直)无关。
从同一点出发的各个电子在作螺线运动时,尽管各自的v(垂直)不相同,但经过一个周期的旋转之后,他们又会在距离出发点一个螺距的方向相遇。
实验内容及步骤
A,电偏转的观测
阳极电
/V
压U
z
偏转量
D
e
B, 磁偏转的观测
磁片电
流I
偏转量
D
e
C, 电聚焦的观测
阳极电
/V
压U
z
聚焦电
压U
1
D,磁聚焦的观测
600V 700V 800V 900V 1000V 阳极电压
U/V
电流I/ A。