徐州市八年级上学期期末学业水平调研数学卷(含答案)

合集下载

徐州市八年级上学期期末学情检测数学试题(含答案)

徐州市八年级上学期期末学情检测数学试题(含答案)

徐州市八年级上学期期末学情检测数学试题(含答案)一、选择题1.若一个数的平方等于4,则这个数等于( )A .2±B .2C .16±D .16 2.下列运算正确的是( )A .=2B .|﹣3|=﹣3C .=±2D .=3 3.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .104.在平面直角坐标系中,点(1,2)P 到原点的距离是( )A .1B 3C .2D 55.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案:方案(一):第一次提价%p ,第二次提价%q ;方案(二):第一次提价%q ,第二次提价%p ;方案(三):第一、二次提价均为2%p q +; 其中p ,q 是不相等的正数.有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价;③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价.其中正确的有( )A .②③B .①③C .①④D .②④ 6.点(3,2)A -关于y 轴对称的点的坐标为( ) A .(3,2) B .(3,2)- C .(3,2)-- D .(2,3)- 7.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 8.2的算术平方根是() A .4B .±4C .2D .2± 9.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A .﹣2B .﹣1C .0D .2 10.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( ) A . B . C .D .二、填空题11.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.12.49的平方根为_______ 13.写出一个比4大且比5小的无理数:__________.14.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.15.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.16.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.17.用四舍五入法将2.0259精确到0.01的近似值为_____.18.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.19.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.20.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题21.如图是88⨯的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为()2,3-,点B 坐标为()41-,.(1)试在图中画出这个直角坐标系; (2)标出点()1,1C ,连接AB 、AC ,画出ABC ∆关于y 轴对称的111A B C ∆.22.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”,例如分式31x +与31x x+互为“3阶分式”. (1)分式1032x x +与 互为“5阶分式”; (2)设正数,x y 互为倒数,求证:分式22x x y +与22y y x +互为“2阶分式”; (3)若分式24a a b +与222b a b+互为“1阶分式”(其中,a b 为正数),求ab 的值. 23.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由.(2)求四边形ABCD 的面积.24.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等. (1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?25.证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.四、压轴题26.在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、E 处,请问:(1)如图1,在爬行过程中,CD 和BE 始终相等吗,请证明?(2)如果将原题中的“由A 向B 和由C 向A 爬行”,改为“沿着AB 和CA 的延长线爬行”,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中∠CQE 的大小保持不变,请利用图2说明:∠CQE =60°;(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,如图3,则爬行过程中,证明:DF =EF27.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE . (1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.28.如图,在平面直角坐标系中,直线334y x =-+分别交,x y 轴于A B ,两点,C 为线段AB 的中点,(,0)D t 是线段OA 上一动点(不与A 点重合),射线//BF x 轴,延长DC交BF 于点E . (1)求证:AD BE =;(2)连接BD ,记BDE 的面积为S ,求S 关于t 的函数关系式;(3)是否存在t 的值,使得BDE 是以BD 为腰的等腰三角形?若存在,求出所有符合条件的t 的值;若不存在,请说明理由.29.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.30.如图,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥AD ,且AB =AD +BC ,E 是DC 的中点,连结BE 并延长交AD 的延长线于G .(1)求证:DG =BC ;(2)F 是AB 边上的动点,当F 点在什么位置时,FD ∥BG ;说明理由.(3)在(2)的条件下,连结AE 交FD 于H ,FH 与HD 长度关系如何?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】平方为4的数有两个分别为±4,由此可得出答案.【详解】±4=±2.所以这个数是:±2.故选:A.【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.2.A解析:A【解析】【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论.【详解】A.=2,此选项计算正确;B.|﹣3|=3,此选项计算错误;C.=2,此选项计算错误;D.不能进一步计算,此选项错误.故选A.【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.3.A解析:A【解析】【分析】由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.【详解】解:由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,所以△BCF 的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A .【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.4.D解析:D【解析】【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P =故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.5.B解析:B【解析】【分析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解.【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++方案(二):(1%)(1%)1%%%%q p q p q p ++=+++∴方案(一)、方案(二)提价一样∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知: 21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多∴③对,④错故选:B.【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.6.A解析:A【解析】【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,A 关于y轴对称的点为(3,2).∴点(3,2)故选:A【点睛】本题考查了坐标系中的轴对称,掌握坐标系中的轴对称的特点是解题的关键.在平面直角坐标系中,关于x轴对称的点,横坐标相同,纵坐标互为相反数,关于y轴对称的点,纵坐标相同,横坐标互为相反数.7.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 8.C解析:C【解析】【分析】根据算术平方根的定义求解即可.解:2故选C.【点睛】本题主要考查了算术平方根的定义,熟练掌握概念是解题的关键.9.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.10.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题11.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.【解析】【分析】利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±.【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根解析:2 3【解析】【分析】利用平方根立方根定义计算即可.【详解】∵224=39⎛⎫±⎪⎝⎭,∴49的平方根是±23,故答案为±2 3 .【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.13.答案不唯一,如:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25,∴到之间的无理数都符合条件,如:.故答案为答案不唯一,如:.【点睛】本题考查了无理数的解析:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25.故答案为.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.14.【解析】【分析】不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴5∵C(0,-1),∴OC=1,∴BC=3+1=4,∴1122ABCS BC AO AB CD==,即1144=522CD⨯⨯⨯⨯,解得,165 CD=.故答案为:16 5.【点睛】此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD的长.16.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.17.03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似解析:03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.18.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.19.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.20.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题21.(1)详见解析;(2)详见解析.【解析】【分析】(1)由点A的坐标可建立平面直角坐标系;(2)先作出点C,再分别作出点A、B、C关于y轴的对称点,顺次连接即可得.【详解】如图所示;(2)如图所示.【点睛】本题考查了作图﹣轴对称变换,熟知轴对称变换的性质是解答此题的关键.22.(1)1532x;(2)详见解析;(3)12【解析】【分析】(1)根据分式的加法,设所求分式为A ,然后进行通分求解即可;(2)根据题意首先利用倒数关系,将x ,y 进行消元,然后通过分式的加法化简即可得解;(3)根据1阶分式的要求对两者相加进行分式加法化简,通过通分化简即可得解.【详解】(1)依题意,所求分式为A ,即:10+532x A x =+, ∴1015101015532323232x x x A x x x x+=-=-=++++; (2)∵正数,x y 互为倒数∴1xy =,即1x y= ∴33223332212222222(1)211111x y y y y y x y y x y y y y y y y++=+=+==+++++++ ∴分式22x x y +与22y y x +互为“2阶分式”; (3)由题意得222142a b a b a b +=++,等式两边同乘22(4)(2)a b a b ++ 化简得: 2222(2)2(4)(2)(4)a a b b a b a b a b +++=++即:32232848ab b a b b +=+∴22420a b ab -=,即2(21)0ab ab -= ∴12ab =或0 ∵,a b 为正数 ∴12ab =. 【点睛】 本题主要考查了分式的加减,熟练掌握分式的通分约分运算知识是解决此类问题的关键.23.(1)∠D 是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC ,先根据勾股定理求得AC 的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD 和△ACB 的面积之和等于四边形ABCD 的面积,进行计算即可.【详解】(1)∠D 是直角.理由如下:连接AC .∵AB =20,BC =15,∠B =90°,∴由勾股定理得AC 2=202+152=625.又∵CD =7,AD =24,∴CD 2+AD 2=625,∴AC 2=CD 2+AD 2,∴∠D =90°.(2)四边形ABCD 的面积=12AD •DC +12AB •BC =12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.24.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【解析】【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得: 312042009x x=-, 解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a +35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.25.见解析【解析】【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,AH DKAB DE=⎧⎨=⎩,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,AB DEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS)【点睛】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.四、压轴题26.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.27.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.28.(1)详见解析;(2)36(04)2BDE t t S-+≤<=;(3)存在,当78t =或43时,使得BDE 是以BD 为腰的等腰三角形.【解析】【分析】 (1)先判断出EBC DAC ∠=∠,CEB CDA ∠=∠,再判断出BC AC =,进而判断出△BCE ≌△ACD ,即可得出结论;(2)先确定出点A ,B 坐标,再表示出AD ,即可得出结论;(3)分两种情况:当BD BE =时,利用勾股定理建立方程2223(4)t t +=-,即可得出结论;当BD DE =时,先判断出Rt △OBD ≌Rt △MED ,得出DM OD t ==,再用OM BE =建立方程求解即可得出结论.【详解】解:(1)证明:射线//BF x 轴, EBC DAC ∴∠=∠,CEB CDA ∠=∠, 又C 为线段AB 的中点,BC AC ∴=,在△BCE 和△ACD 中,CEB CDA EBC DAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD (AAS ),BE AD ∴=;(2)解:在直线334y x =-+中, 令0x =,则3y =,令0y =,则4x =,A ∴点坐标为(4,0),B 点坐标为(0,3),D 点坐标为(,0)t ,4AD t BE ∴=-=,113(4)36(04)222BDE ABD B S S AD y t t t ∴==⋅=-⨯=-+<;(3)当BD BE =时,在Rt OBD ∆中,90BOD ∠=︒,由勾股定理得:222OB OD DB +=,即2223(4)t t +=-解得:78t =; 当BD DE =时,过点E 作EM x ⊥轴于M ,90BOD EMD ∴∠=∠=︒,//BF OA ,OB ME ∴=在Rt △OBD 和Rt △MED 中,==BD DE OB ME ⎧⎨⎩, ∴Rt △OBD ≌Rt △MED (HL ),OD DM t ∴==,由OM BE =得:24t t =- 解得:43t =, 综上所述,当78t =或43时,使得△BDE 是以BD 为腰的等腰三角形.【点睛】本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.29.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC +=,BF BP BC∴+=,BC BD=,BF BP BD∴+=;(3)如图③,BF BD BP=+,理由:90ACB∠=︒,30A∠=︒,60CBA∴∠=︒,12BC AB=,点D是AB的中点,BC BD∴=,DBC∴∆是等边三角形,60CDB∴∠=︒,DC DB=,线段DP绕点D逆时针旋转60︒,得到线段DF,60PDF∴∠=︒,DP DF=,CDB PDB PDF PDB∴∠+∠=∠+∠,CDP BDF∴∠=∠,在DCP∆和DBF∆中,DC DBCDP BDFDP DF=⎧⎪∠=∠⎨⎪=⎩,DCP DBF∴∆≅∆,CP BF∴=,CP BC BP=+,BF BC BP∴=+,BC BD=,BF BD BP∴=+.【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF∆≅∆,是一道中等难度的中考常考题.30.(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【解析】【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC;(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG,故答案为:F运动到AF=AD时,FD∥BG;(3)解:结论:FH=HD.理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD,故答案为:FH=HD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.。

江苏省徐州市八年级上学期期末学情检测数学试题(含答案)

江苏省徐州市八年级上学期期末学情检测数学试题(含答案)

江苏省徐州市八年级上学期期末学情检测数学试题(含答案)一、选择题1.估计11的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.下列四个图形中,不是轴对称图案的是()A.B.C.D.3.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是()A.B.C.D.4.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.5.以下关于多边形内角和与外角和的表述,错误的是()A.四边形的内角和与外角和相等B.如果一个四边形的一组对角互补,那么另一组对角也互补C.六边形的内角和是外角和是2倍D.如果一个多边形的每个内角是120 ,那么它是十边形.6.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A .x >2B .x <2C .x >﹣1D .x <﹣17.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠=D .ACB ACD ∠=∠ 8.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52 D .y =12x +129.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查10.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.12.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.13.计算:52x x ⋅=__________.14.点()2,3A 关于y 轴对称点的坐标是______.15.在实数22,4π,227-,3.14,16中,无理数有______个. 16.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.17.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.18.一次函数y =2x -4的图像与x 轴的交点坐标为_______.19.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,OA =6,OC =3.∠DOE =45°,OD ,OE 分别交BC ,AB 于点D ,E ,且CD =2,则点E 坐标为_____.20.若分式2223x x -+的值为零,则x 的值等于___.三、解答题 21.已知BC =5,AB =1,AB ⊥BC ,射线CM ⊥BC ,动点P 在线段BC 上(不与点B ,C 重合),过点P 作DP ⊥AP 交射线CM 于点D ,连接AD .(1)如图1,若BP =4,判断△ADP 的形状,并加以证明.(2)如图2,若BP =1,作点C 关于直线DP 的对称点C ′,连接AC ′.①依题意补全图2;②请直接写出线段AC ′的长度.22.解分式方程(1)11322x x x-=--- (2)2121x x x =++- 23.如图,在平面直角坐标系中,长方形OABC 的顶点,A B 的坐标分别为()6,0A ,()6,4B ,D 是BC 的中点,动点P 从O 点出发,以每秒1个单位长度的速度,沿着O A B D →→→运动,设点P 运动的时间为t 秒(013t <<).(1)点D 的坐标是______;(2)当点P 在AB 上运动时,点P 的坐标是______(用t 表示);(3)求POD 的面积S 与t 之间的函数表达式,并写出对应自变量t 的取值范围.24.已知:如图点A 、B 、C 、D 在一条直线上,EA ∥FB ,EC ∥FD ,AB=CD ,求证:EA=FB .25.小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y (km )与出发时间t (h )之间的函数关系如图1中线段AB 所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s (km )与出发时间t (h )之间的函数关系式如图2中折线段CD ﹣DE ﹣EF 所示.(1)小明骑自行车的速度为 km/h 、妈妈骑电动车的速度为 km/h ;(2)解释图中点E 的实际意义,并求出点E 的坐标;(3)求当t 为多少时,两车之间的距离为18km .四、压轴题26.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?27.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.28.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE .(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.29.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.30.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =.∠=∠;(1)如图1,当D在AB上,E在CB延长线上时,求证:EDB ACD(2)如图2,当ABC为等边三角形时,D是BA的延长线上一点,E在BC上时,作EF AC,求证:BE AD//=;∠的平分线BF交CD于点F,连AF,过A点作(3)在(2)的条件下,ABC∠=︒,6EDCAH CD⊥于点H,当30CF=时,求DH的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用32=9,42=1611的取值范围.【详解】∵32=9,42=16,11在3和4之间.故选:B.【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.2.A解析:A【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A不是轴对称图形,B、C、D都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.3.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D ;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.4.D解析:D【解析】试题分析:A .是轴对称图形,故本选项错误;B .是轴对称图形,故本选项错误;C .是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项正确.故选D .考点:轴对称图形.5.D解析:D【解析】【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解.【详解】A.四边形的内角和为360°,外角和也为360°,A 选项正确;B.根据四边形的内角和为360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为62180720()-⨯︒=︒,外角和为360°,C 选项正确;D.假设是n 边形,(2)180120n n-⨯︒=︒解得610n =≠,D 选项错误. 故选:D.【点睛】 本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键. 6.D解析:D【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.7.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL 进行分析即可.【详解】解:A 、AB=AD ,BC=DC ,再加上公共边AC=AC 可利用SSS 判定△ABC ≌△ADC ,故此选项不符合题意;B 、AB=AD ,∠BAC=∠DAC 再加上公共边AC=AC 可利用SAS 判定△ABC ≌△ADC ,故此选项不合题意;C 、AB=AD ,∠B=∠D=90°再加上公共边AC=AC 可利用HL 判定△ABC ≌△ADC ,故此选项不合题意;D 、AB=AD ,∠ACB=∠ACD 再加上公共边AC=AC 不能判定△ABC ≌△ADC ,故此选项合题意;故选:D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y =12x ﹣1向右平移3个单位,所得直线的表达式是y=12(x﹣3)﹣1,即y=12x﹣52.故选:C.【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.9.C解析:C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.6+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2解析:+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在ABC ∆中,90C =∠,ADC 60∠=所以30DAC ∠=o所以AD=2CD=4所以==因为AD 平分CAB ∠,所以CAB ∠=2o DAC 60∠=所以o B BAD 30∠=∠=所以所以ABC ∆周长=AC+BC+AB=故答案为:【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.12.【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.13.【解析】【分析】根据同底数幂相乘底数不变指数相加的法则即可得解.【详解】,故答案为:.【点睛】本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键.解析:7x【解析】【分析】根据同底数幂相乘底数不变指数相加的法则即可得解.【详解】52527x x x x +⋅==,故答案为:7x .【点睛】本题主要考查了同底数幂的乘法运算,熟练掌握相关运算公式是解决本题的关键. 14.(−2,3)【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对解析:(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,关于x轴对称的点,横坐标相同,纵坐标互为相反数.15.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义2,4属于无理数,所以无理数有2个.故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键.16.17【解析】【分析】根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案.【详解】解:是的垂直平分线,,,的周长为11,,的周长,故答案为:17.【点睛】本题考解析:17【解析】【分析】根据线段垂直平分线的性质得到PA PC =,26AC AH ==,根据三角形的周长公式计算,得到答案.【详解】解:PH 是AC 的垂直平分线,PA PC ∴=,26AC AH ==,ABP ∆的周长为11, 11AB BP PA AB BP BC AB BC ∴++=++=+=,ABC ∆∴的周长17AB BC AC =++=,故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+bmx+n 的解集.【详解】∵当x2时,一次函数y=kx+b 的解析:2x ≥【解析】【分析】观察函数图象得到,当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b ≥mx+n 的解集.【详解】∵当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,∴不等式kx+b≥mx+n的解集为x≥2.故答案是:x≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.19.(,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,解析:(65,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,通过证明△ODC∽△FDH,可得HF HDOC CD=,即可求解.【详解】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,∵∠EOF=45°,EF⊥EO,∴∠EOF=∠EFO=45°,∴OE=EF,∵∠AOE+∠AEO=90°,∠AEO+∠GEF=90°,∴∠GEF=∠AOE,且∠OAE=∠G=90°,OE=EF,∴△AEO≌△GEF(AAS)∴AE=GF,EG=AO=6,∴BG=EG﹣BE=6﹣(3﹣AE)=3+AE,∵FH⊥BC,∠G=∠CBG=90°,∴四边形BGFH是矩形,∴BH=GF=AE,BG=HF=3+AE,HF∥BG∥OC,∴HD=BD﹣BH=4﹣AE,∵HF∥OC,∴△ODC∽△FDH,∴HF HD OC CD=,∴3432AE AE +-=∴AE=65,∴点E(65,6)故答案为:(65,6)【点睛】此题主要考查利用全等三角形和相似三角形的判定与性质判定矩形在平面直角坐标系中的坐标,解题关键是利用其性质构建方程.20.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】 解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】 本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.三、解答题21.(1)△ADP 是等腰直角三角形.证明见解析;(2)①补图见解析;【解析】【分析】(1)先判断出PC =AB ,再用同角的余角相等判断出∠APB =∠PDC ,得出△ABP ≌△PCD (AAS ),即可得出结论;(2)①利用对称的性质画出图形;②过点C '作C 'Q ⊥BA 交BA 的延长线于Q ,先求出CP =4,AB =AP ,∠CPD =45°,进而得出C 'P =CP =4,∠C 'PD =∠CPD =45°,再判断出四边形BQC 'P 是矩形,进而求出AQ =BQ ﹣AB =3,最后用勾股定理即可得出结论.【详解】(1)△ADP 是等腰直角三角形.证明如下:∵BC =5,BP =4,∴PC =1.∵AB =1,∴PC =AB .∵AB ⊥BC ,CM ⊥BC ,DP ⊥AP ,∴∠B =∠C =90°,∠APB +∠DPC =90°,∠PDC+∠DPC=90°,∴∠APB=∠PDC.在△ABP和△PCD中,∵B CAPB PDCAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD(AAS),∴AP=PD.∵∠APD=90°,∴△ADP是等腰直角三角形.(2)①依题意补全图2;②过点C'作C'Q⊥BA交BA的延长线于Q.∵BP=1,AB=1,BC=5,∴CP=4,AB=AP.∵∠ABP=90°,∴∠APB=45°.∵∠APD=90°,∴∠CPD=45°,连接C'P.∵点C与C'关于DP对称,∴C'P=CP=4,∠C'PD=∠CPD=45°,∴∠CPC'=90°,∴∠BPC'=90°,∴∠Q=∠ABP=∠BPC'=90°,∴四边形BQC'P是矩形,∴C'Q=BP=1,BQ=C'P=4,∴AQ=BQ﹣AB=3.在Rt△AC'Q中,AC′10=.【点睛】本题考查了矩形的判定与性质以及全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,构造出直角三角形是解答本题的关键.22.(1) 无解 (2) x=1-2【解析】【分析】(1) 利用分式方程的解法,解出即可;(2) 利用分式方程的解法,解出即可.【详解】(1)11322xx x-=---1=x-1-3(x-2)1=-2x+52x=4x=2检验:当x=2时,x-2=0 x=2为曾根所以原方程无解(2)2121xx x=++-x(x-1)=2(x+2)+(x+2)(x-1)x2-x=2x+4+x2+x-24x=-2x=1-2检验:当x=1-2时,x+2≠0 x-1≠0,所以x=1-2是解.【点睛】此题主要考查了解分式方程,关键点是要进行验证是否是方程的解.23.(1)(3,4);(2)(6,t-6)(3)()()()20632161022621013t tS t tt t⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩【解析】【分析】(1)根据长方形的性质和A、B的坐标,即可求出OA=BC=6,OC=AB=4,再根据中点的定义即可求出点D的坐标;(2)画出图形,易知:点P的横坐标为6,然后根据路程=速度×时间,即可求出点P的运动路程,从而求出AP的长,即可得出点P的坐标;(3)分别求出点P到达A、B、D三点所需时间,然后根据点P运动到OA、AB、BD分类讨论,并写出t对应的取值范围,然后画出图形,利用面积公式即可求出各种情况下S 与t之间的函数表达式.【详解】解:(1)∵长方形OABC的顶点,A B的坐标分别为()6,0A,()6,4B,∴OA=BC=6,OC=AB=4,BA⊥x轴,BC⊥y轴∵D是BC的中点,∴CD=BD=12BC=3∴点D的坐标为(3,4)故答案为:(3,4);(2)当点P在AB上运动时,如下图所示易知:点P 的横坐标为6,∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t ∴点P 运动的路程OA +AP=t∴AP=t -6∴点P 的坐标为(6,t -6) 故答案为:(6,t -6);(3)根据点P 的速度可知:点P 到达A 点所需时间为OA ÷1=6s 点P 到达B 点所需时间为(OA+AB )÷1=10s点P 到达D 点所需时间为(OA+AB+BD )÷1=13s①当点P 在OA 上运动时,此时06t <≤,过点D 作DE ⊥x 轴于E∴DE=4∵动点P 从O 点出发,以每秒1个单位长度的速度,∴OP=t∴122S OP DE t =•=; ②当点P 在AB 上运动时,此时610t <≤,由(2)知AP=t -6∴BP=AB -AP=10-t∴OCD OAP BDP OABC S S S S S =---△△△长方形=111222OA AB OC CD OA AP BD BP •-•-•-• =()()111644366310222t t ⨯-⨯⨯-⨯⨯--⨯⨯- =3212t -+; ③当点P 在BD 上运动时,此时1013t <<,∵动点P 从O 点出发,以每秒1个单位长度的速度,时间为t∴点P 运动的路程OA +AB +BP=t∴BP=t -OA -AB=t -10∴DP=BD -BP=13-t12S OC DP =• =()14132t ⨯- =262t - 综上所述:()()()20632161022621013t t S t t t t ⎧<≤⎪⎪=-+<≤⎨⎪-<<⎪⎩【点睛】此题考查的是平面直角坐标系与长方形中的动点问题,掌握行程问题公式:路程=速度×时间、数形结合的数学思想和分类讨论的数学思想是解决此题的关键.24.用ASA 证明△EAC ≌△FBD 即可.【解析】【分析】首先利用平行线的性质得出,∠A=∠FBD ,∠D=∠ECA ,根据AB=CD 即可得出AC=BD ,进而得出△EAC ≌△FBD .【详解】证明:∵EA ∥FB ,∴∠A =∠FBD ,∵EC ∥FD ,∴∠D =∠ECA ,∵AB =CD ,∴AC =BD ,在△EAC 和△FBD 中,ECA D A FBD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EAC≌△FBD(AAS),∴EA=FB.【点睛】考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定方法是解题的关键.25.(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(95,1445);(3)12或3 2【解析】【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度=362.25=16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:369 205,点E的纵坐标为:95×16=1445∴点E(95,1445);(3)根据题意得,(16+20)t=(36﹣18)或(16+20)t=36+18,解得:t=12或t=32,答:当t为12或32时,两车之间的距离为18km.【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.四、压轴题26.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中, PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇.由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.27.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【解析】【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦,化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠,PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠,FEP OPE ∴∠=∠,CEP CEF FEP ∠=∠+∠,CEP CEF OPE ∴∠=∠+∠,CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.28.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE , ∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF , ∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC >30°,而没办法判断∠OBC 大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC 至P ,使DP=DB ,∵∠BDC=60°,∴△BDP 是等边三角形,∴BD=BP ,∠DBP=60°,∵∠BAC=60°=∠DBP ,∴∠ABD=∠CBP ,∵AB=CB ,∴△ABD ≌△CBP (SAS ),∴∠BCP=∠A ,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.29.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,。

2022-2023学年江苏省徐州市八年级(上)期末数学试卷+答案解析(附后)

2022-2023学年江苏省徐州市八年级(上)期末数学试卷+答案解析(附后)

2022-2023学年江苏省徐州市八年级(上)期末数学试卷1. “嫦娥”奔月、“祝融”探火、“羲和”逐日、“天和”遨游星辰…在浩瀚的宇宙中谱写着中华民族飞天梦想的乐章.下列航天图标不考虑字符与颜色为轴对称图形的是( )A. B. C. D.2. 下列实数0,,,,其中,无理数共有( )A. 1个B. 2个C. 3个D. 4个3. 某地城市轨道交通6号线全长22912m,该长度用科学记数法精确到可表示为( )A. B. C. D.4. 下列为勾股数的是( )A. ,,B. 5,8,10C. 9,12,15D. 2,2,45. 在平面直角坐标系中,将点向左平移2个单位长度,所得点的坐标是( )A. B. C. D.6. 已知点与点都在直线上,则m、n的大小关系是( )A. B. C. D. 无法判断7. 根据下列条件,能确定存在且唯一的是( )A. ,,B. ,,C. ,,D. ,,8. 下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的行驶路程y与行驶时间x;②用长度一定的绳子围成一个矩形,矩形的面积y与一条边长x;③将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的有( )A. 0个B. 1个C. 2个D. 3个9. 计算:25的平方根是__________.10. 若等腰三角形的一个内角为,则它的顶角为______ .11. 将一次函数的图象沿y轴向上平移3个单位长度,所得直线对应的函数表达式为______ .12. 已知点在一次函数的图象上,则a的值是______ .13. 如图,数轴上点A表示的实数是______ .14. 如图,在中,AD平分,,,,面积为______ .15. 如图,中,AB的垂直平分线交AC于点若,则______.16. 如图,在中,已知点,点A、B分别在第一、四象限,且轴.若,,则点B的坐标是______ .17. 计算:;求x的值:18. 已知:如图,点C、A、D在同一直线上,,,求证:19. 已知:如图,的高BD、CE相交于点O,求证:20. 如图,方格纸中小正方形的边长均为1个单位长度,A、B均为格点.建立适当的平面直角坐标系,使A、B两点的坐标分别为、;在的坐标系中,若存在点C,使为等腰直角三角形,且,则点C 的坐标为______ .21. 《九章算术》卷九中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索绳索头与地面接触退行,在距木柱根部8尺处时绳索用尽,问绳索长是多少?22. 已知一次函数的图象经过点求k的值;请在图中画出该函数的图象;已知,P为图象上的动点,连接AP,则AP的最小值为______ .23. 已知:如图,在四边形ABCD中,,点E是AC的中点,连接BE、BD、求证:是等腰三角形;当______ 时,是等边三角形.24. 已知学生公寓、阅览室、超市依次在同一直线上,阅览室离学生公寓,超市离学生公寓小明从学生公寓出发,匀速步行了到阅览室;在阅览室停留后,匀速步行了到超市;在超市停留后,匀速骑行了返回学生公寓.给出的图象反映了这个过程中小明离学生公寓的距离y km与离开学生公寓的时间之间的对应关系.请根据相关信息,解答下列问题:填表:离开学生公寓的时间585087112离学生公寓的距离__________________2回公寓的路上,小明何时距公寓?25. 如图①,已知,OC平分将直角三角板如图放置,使直角顶点D在OC上,角的顶点E在OB上,斜边与OA交于点与O不重合,连接如图②,若,求证:为等边三角形.如图③,求证:答案和解析1.【答案】D【解析】解:选项A、B、C的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项D的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】【分析】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像…,等有这样无限不循环小数.根据无理数的定义解答即可.【解答】解:在实数0,,,中,无理数有,共2个.故选3.【答案】B【解析】解:22912m用科学记数法精确到可表示为故选:科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数.此题考查了科学记数法.解题的关键是掌握科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:A、,,不是整数,故,,不是勾股数,故不符合题意;B、,故5,8,10不是勾股数,故不符合题意;C、,故9,12,15是勾股数,故符合题意;D、,故2,2,4不是勾股数,故不符合题意.故选:欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.此题考查勾股定理的逆定理,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知的三边满足,则是直角三角形.5.【答案】D【解析】解:将点向左平移2个单位长度,所得点的纵坐标不变,横坐标,所以所得到的点坐标为,故选:根据平移坐标变化的规律进行解答即可.本题考查平移坐标变化,掌握平移坐标变化规律是正确解答的前提.6.【答案】B【解析】解:直线中,,此函数y随着x的增大而增大,,故选:先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.7.【答案】C【解析】解:A、,,,,不能组成三角形,故不符合题意;B、,,,的形状和大小不能确定,故不符合题意;C、,,,则利用“SAS”可判断是唯一的,故符合题意;D、,,,的大小不能确定,故不符合题意.故选:根据全等三角形的判定方法,若各选项的条件满足三角形全等的条件,则可确定三角形的形状和大小,否则三角形的形状和大小不能确定.本题考查了全等三角形的判定:熟练掌握全等三角形的判定方法.选用哪一种方法,取决于题目中的已知条件.8.【答案】B【解析】解:汽车从A地匀速行驶到B地,根据汽车行驶的路程y随行驶时间x的增加而增加,故①不符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形面积是长x的二次函数,故②不符合题意;将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y随放水时间x的增大而减小,故③符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是③,共1个.故选:①根据汽车行驶的路程y随行驶时间x的增加而增加判断即可;②根据矩形的面积公式判断即可;③根据水箱中的剩余水量y随放水时间x的增大而减小判断即可.本题考查了利用函数的图象解决实际问题,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.9.【答案】【解析】【分析】本题考查了平方根的知识,属于基础题,解答本题的关键是掌握平方根的定义,注意一个正数的平方根有两个且互为相反数.根据平方根的定义,结合即可得出答案.【解答】解:的平方根为故答案为:10.【答案】【解析】解:①当这个角是顶角时,则顶角为;②当这个角是底角时,另一个底角为,因为,不符合三角形内角和定理,所以舍去.故答案为:题中没有指明已知的角是顶角还是底角,故应该分情况进行分析,从而求解.此题主要考查等腰三角形的性质及三角形内角和定理的综合运用,关键是分情况进行分析.11.【答案】【解析】解:将一次函数的图象沿y轴向上平移3个单位长度,平移后的直线表达式为,平移后的直线对应的函数表达式为,故答案为:根据一次函数图象的平移规律“上加下减”求解即可.本题考查了一次函数图象与几何变换,熟练掌握一次函数图象的平移规律是解题的关键.12.【答案】2【解析】解:点在一次函数的图象上,,解得故答案为:直接把点代入一次函数,求出a的值即可.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.【答案】【解析】解:如图,在中,由题意得,,,,根据勾股定理得:,由图可知,点A表示的实数为故答案为:根据勾股定理求出BC的长度,即可求得点A表示的实数.本题考查了实数与数轴,勾股定理,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.14.【答案】5【解析】解:过点D作,交AC的延长线于点F,平分,,,,,,面积,故答案为:过点D作,交AC的延长线于点F,先利用角平分线的性质可得,然后利用三角形的面积公式,进行计算即可解答.本题考查了角平分线的性质,三角形的面积,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.15.【答案】【解析】解:,,,是线段AB的垂直平分线,,,故答案为:先根据,求出的度数,再由线段垂直平分线的性质得出即可求出的度数.本题考查的是线段垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.16.【答案】【解析】解:设AB 与x 轴交于点C ,,,,,由勾股定理得:,点A 的坐标为,故答案为:根据等腰三角形的性质求出BC ,根据勾股定理求出OC ,根据坐标与图形性质写出点B 的坐标.本题考查的是勾股定理,等腰三角形的性质、坐标与图形性质,掌握等腰三角形的三线合一是解题的关键.17.【答案】解:原式;,则,解得:或 【解析】直接利用零指数幂的性质、二次根式的性质、立方根的性质分别化简,进而得出答案;直接利用平方根的定义计算得出答案.此题主要考查了实数的运算,正确化简各数是解题关键.18.【答案】证明:,,在和中,,≌,【解析】首先由,根据平行线的性质可得,再有条件,可证出和全等,再根据全等三角形对应边相等证出此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.【答案】证明:,CE是高,,在和中,,≌,,,,,【解析】欲证明,只要证明本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.【答案】或【解析】解:如图所示:如图所示,点C的坐标为或,故答案为:或根据点A、B的坐标可得坐标系位置;结合网格特点,依据等腰直角三角形的概念求解即可.本题主要考查坐标与图形的性质,解题的关键是掌握点的坐标及等腰直角三角形的概念.21.【答案】解:设绳索长为x尺,根据题意得:,解得:,答:绳索长为尺.【解析】设绳索长为x尺,根据勾股定理列出方程解答即可.本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】4【解析】解:一次函数的图象经过点,;由函数可知直线与y轴的交点为,作于P,此时AP是最小值,,,,,,,,的最小值是4,故答案为:根据待定系数法求得即可;利用两点画出函数的图象;线段OP的最小值,就是原点到已知直线的距离,可以根据所构建的三角形面积一样来求OP;本题考查一次函数的图象,一次函数图象上点的坐标特征,熟练运用两点之间的距离公式以及面积法是解决本题的关键.23.【答案】30【解析】解:在中,,点E是AC的中点已知,直角三角形斜边上的中线等于斜边的一半同理,,等量代换,是等腰三角形等腰三角形的定义;,,,,,,,是等边三角形,,故答案为:根据直角三角形斜边上中线等于斜边的一半,进而得出答案;利用等边对等角以及三角形外角的性质得出,即可得出答案.此题主要考查了等腰三角形的性质和判定以及三角形外角的性质等知识,根据题意得出是解题关键.24.【答案】【解析】解:根据题意得:小明从学生公寓出发,匀速步行了到达离学生公寓的阅览室,小明离开学生公寓的时间为,离学生公寓的距离是,由图象可知:离开学生公寓的时间为,离学生公寓的距离是,离开学生公寓的时间为时离开阅览室到到达超市,离开学生公寓的时间为时离学生公寓的距离是,故答案为:,,;小明在回公寓时的速度为,小明走所需要的时间为,,回公寓的路上,小明在离开公寓距公寓观察函数图象即可得答案;先求出小明返回公寓时的速度,再求出距离公寓的时间.本题考查一次函数的应用,解题的关键是读懂题意,能正确识图.25.【答案】证明:,,,,,,又平分,垂直平分EF,,是等腰三角形,又,是等边三角形;如图,在线段OD上截取,连接EH,,OC平分,,,是等边三角形,,,,,≌,,【解析】先证DO垂直平分EF,可得,即可求解;由“ASA”可证≌,可得,即可求解.本题考查了全等三角形的判定和性质,等边三角形的判定和性质,线段垂直平分线的性质,添加恰当辅助线构造全等三角形是解题的关键.。

徐州市2021-2022学年第一学期初二数学期末调研试卷及解析

徐州市2021-2022学年第一学期初二数学期末调研试卷及解析

徐州市2021-2022学年第一学期初二数学期末调研试卷一、选择题(本大题共8小题,每小题3分,共24分。

在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.16的算术平方根是()A.±4 B.±8 C.4 D.﹣42.下列图形中是轴对称图形的是()A.B.C.D.3.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.AC=BD,∠A=∠D D.BO=CO,∠A=∠D4.下列四组线段中,不能作为直角三角形三条边的是()A.2,5,6 B.1,1,C.3,4,5 D.5,12,135.估计﹣1的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间6.点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为()A.(﹣6,2)B.(﹣2,﹣6)C.(﹣2,6)D.(2,﹣6)7.一次函数y=x+1的图象如图所示,下列说法正确的是()A.y的值随着x的增大而减小B.函数图象经过第二、三、四象限C.函数图象与y轴的交点坐标为(1,0)D.y=x+1的图象可由y=x的图象向上平移1个单位长度得到8.如图,在四边形ABCD中,BC∥AD,∠ADC=90°,点E沿着A→B→C的路径以2cm/s的速度匀速运动,到达点C停止运动,EF始终与直线AB保持垂直,与AD或DC交于点F,记线段EF的长度为ycm,y与时间t(s)的关系图如图所示,则图中a的值为()A.7.5 B.7.8 C.8 D.8.5二、填空题(本大题共8小题,每小题3分,共24分。

不需写出解答过程,请将答案直接填写在答题卡相应位置上)9.月球沿着一定的轨道围绕地球运动,它在近地点时与地球的距离约为363300千米,把这个近似数保留三个有效数字,则可表示为千米.10.点P(﹣2,3)关于y轴对称的点的坐标是.11.如图,A、E、C三点在一条直线上,△ABE≌△CED,∠A=∠C=90°,AB=3cm,CD=7cm,则AC=cm.12.如图,在△ABC中,边AB的垂直平分线DE交AC于E,△ABC和△BEC的周长分别是30cm和20cm,则AB=cm.13.如图,要测量水池的宽度AB,可从点A出发在地面上画一条线段AC,使AC⊥AB,再从点C观测,在BA的延长线上测得一点D,使∠ACD=∠ACB,这时量得AD=160m,则水池宽AB的长度是m.14.如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,1),“炮”位于点(﹣1,2),则“马”位于点.15.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为米.16.已知一次函数y=mx+n,若y与x的部分对应值如表:x…﹣2﹣1012…y…108642…则关于x的方程mx+n=0的解是.三、解答题(本大题共9小题,共72分。

江苏省徐州市2024~2025 学年度第一学期期末抽测八年级数学试题

江苏省徐州市2024~2025 学年度第一学期期末抽测八年级数学试题

2024~2025学年度第一学期期末抽测八年级数学试题注意事项考生在答题前请认真阅读本注意事项1.本试卷共4页,满分为140分,考试时间为90分钟.考试结束后,请将本试卷和草稿纸一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷指定的位置.3.答案必须按要求填涂、书写在本试卷上,在其他位置、草稿纸上答题一律无效.第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.下列四个图案中,不是轴对称图案的是…………………………………()2.等腰三角形的一个角是80°,则它顶角的度数是…………………………………()A .80°B .80°或20°C .80°或50°D .20°3.在下列数3.1415926,1.010010001…,﹣20,π,中,无理数的有()A .1个B .2个C .3个D .4个4.一个数的算术平方根是0.01,则这个数是()A .0.1B .0.01C .0.001D .0.00015.下列计算正确的是()A .=±3B .=﹣3C .=﹣2D .+=6.下列一组数:﹣8,2.6,0,﹣π,﹣,0.202002…(每两个2中逐次增加一个0)中,无理数有()A .0个B .1个C .2个D .3个7.下列实数中,最大的是()A .﹣1B .﹣2C .﹣0.5D .﹣A. B. C. D.8.下列说法正确的是()A.(﹣3)2的平方根是3B.=±4C.1的平方根是1D.4的算术平方根是29.在平面直角坐标系中,点(-1,-3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.点A(2,-1)关于x轴对称的点B的坐标为()A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)第Ⅱ卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)的平方根是_______.12.1的相反数是_______,绝对值是_______.13.如果一个三角形是轴对称图形,且有一个角等于60°,那么这个三角形是. 14.如图所示,阴影部分正方形的面积是________.三、解答题(本大题共6小题,共80分.请在本试卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.求值:(1)|﹣2|﹣+(﹣1)×(﹣3)(2)(﹣1)2024+|1﹣|﹣16.求下列各式中x 的值:①(x +2)2=4;②3+(x ﹣1)3=﹣5.17.已知:AD =AE ,AB =AC ,∠1=∠2,求证:△ABD ≌△ACE18.如图,四边形ABCD 中,AB=AD ,BC=DC 。

江苏省徐州市2023-2024学年八年级上学期期末数学试题(含答案)

江苏省徐州市2023-2024学年八年级上学期期末数学试题(含答案)

2023~2024学年度第一学期期末抽测八年级数学试题(本卷共6页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上)一、选择题(本大题有8小题,每小题3分,共24分)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.下列各数中,无理数是( )ABC .3.14D .3.下列四组数中,勾股数是()A .5,12,13B .1,2,3C .0.3,0.4,0.5D 4.若,,,则的大小为( )A .B .C .D .5.在平面直角坐标系中,点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知点,在一次函数的图象上,则与的大小关系是( )A .B .C .D .无法确定7.将函数的图象向上平移2个单位长度,所得直线对应的函数表达式为( )A .B .C .D .8.如图,方格纸中有3个小方格被涂成黑色,若从其余13个白色小方格中选出一个涂成黑色,使所有的黑色方格构成轴对称图形,则不同的涂色方案共有()(第8题)A .1个B .2个C .3个D .4个二、填空题(本大题有8小题,每小题4分,共32分)27ABC DEF ≌△△36A ∠=︒40E ∠=︒C ∠104︒76︒40︒36︒(3,4)-(1,)A m -(3,)B n 21y x =+m n m n>m n=m n<23y x =+21y x =+22y x =+24y x =+25y x =+9.用四舍五入法取近似值,将数0.0518精确到0.001的结果是______.10.点关于轴对称的点的坐标是______.11.若等腰三角形的两边长分别是和,则这个等腰三角形的周长是______.12.如图,已知,要使(SSS ),只需补充一个条件______.(第12题)13.如图,将长、宽的长方形剪拼成一个正方形,则正方形边长为______.(第13题)14.如图,平分,,的延长线交于点,若,则的度数为______.(第14题)15.如图,在中,平分,.若,,则______.(第15题)16.若一次函数的图象如图所示,则关于的不等式的解集是______.(2,3)P x 3cm 5cm AB AD =ABC ADC ≌△△3cm 1cm cm AC DCB ∠CB CD =DA BC E 49EAC ∠=︒BAE ∠ABC △AD BAC ∠DE AB ⊥2AC =1DE =ACD S =△y kx b =+x 0kx b -<(第16题)三、解答题(本大题有9小题,共84分)17.(本题10分)(1)计算:(2)求的值:.18.(本题8分)已知:如图,在中,,,于点,.求证:.(第18题)19.(本题8分)已知:如图,在中,,,点在的延长线上,.求证:.(第19题)20.(本题8分)如图,方格纸中小正方形的边长为1个单位长度,为格点三角形.(1)建立平面直角坐标系,使点的坐标为,点的坐标为.此时,点的坐标为(2)判断的形状,并说明理由.1120242-⎛⎫-++ ⎪⎝⎭x 3432x =Rt ABC △90B ∠=︒BC CD ⊥DE AC ⊥E AB CE =ABC CED ≌△△ABC △AB AC =AD BC ⊥E CA //EF AD AE AF =ABC △A (5,4)-B (2,0)-C ABC △(第20题)21.(本题9分)已知函数与.(1)画这两个函数的图象;(2)求这两个函数的图象交点的坐标;(3)当时,对于的每一个值,函数的值大于函数的值且小于1,则的值为______.(直接写结果)(第21题)22.(本题9分)如图,将长方形纸片沿折叠,使、两点重合.点落在点处.已知,.(1)求证:是等腰三角形;(2)求线段的长.23y x =-142y x =-+2x <x 43y x m =+23y x =-m ABCD EF C A D G 2AB =4BC =AEF △FD(第22题)23.(本题12分)甲、乙两人参加全程7.5千米的“徐马欢乐跑”,已知他们参赛时各自的路程(千米)与时间(分钟)之间的函数关系分别如图所示.下面是甲、乙两人的对话:甲:我前面跑得有点快了,在距离起点 ① 千米的补给站休息了 ② 分钟,我的成绩是 ③ 分钟.乙:我在补给站见到你了,我的成绩是 ④ 分钟.根据以上信息,解决下列问题:(1)填空:①______,②______,③______,④______;(2)已知甲、乙两人于上午7:50起跑,则两人何时在补给站相遇?(3)当乙抵达终点时,甲距离终点还有多少千米?(第23题)24.(本题8分)(1)如图①,已知线段,分别以、为圆心,大于的长为半径画弧,两弧交于点、,过、两点作直线.在上取点,作射线,连接.判断与的大小关系,并说明理由.(2)如图②,点、在直线的同侧,请用无刻度的直尺和圆规,在直线上作点,使得.(保留作图痕迹,不写作法)y x AB A B 12AB C D C D l l P AP BP 1∠2∠A B MN MN P APM BPN ∠=∠(第24题)25.(本题12分)如图,直线与、轴分别交于点、.为轴上的动点,连接,将线段绕点按顺时针方向旋转,得到线段,连接.(第25题)(1)求直线对应的函数表达式;(2)当点坐标为时,在轴上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由;(3)连接.则的最小值为(直接写结果)2023~2024学年度第一学期期末抽测八年级数学参考答案题号12345678选项C BAAB CD D9.0.05210.11.或12.13AB x y (6,0)A (0,6)B P x BP PPB P 90︒PC BC AB P (2,0)y D BDC BPC S S =△△D OC BC OC +(2,3)-11cm 13cmBC DC=14.8215.116.17.(1)原式(4分).(2),(7分).18.,,,....在和中,.19.,,.,,...20.(1)如图.;(2)是直角三角形.理由如下:小正方形的边长为1,.,.在中,,,.是直角三角形.(第20题)(注:利用全等证明,酌情给分)2x >-1423=-++2=38x =x =2x =90B ︒∠= BC CD ⊥DE AC ⊥90B BCD DEC ∴∠=∠=∠=︒180B BCD ∴∠+∠=︒//AB CD ∴A ECD ∴∠=∠ABC △CED △,,,A ECD AB CE B DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩ABC CED ∴≌△△AB AC = AD BC ⊥BAD CAD ∴∠=∠//EF AD EFA BAD ∴∠=∠E CAD ∠=∠EFA E ∴∠=∠AE AF ∴=(1,2)C -ABC △ 2223425AB ∴=+=2222420AC =+=222215BC =+=⊥ABC △2220525AC BC +=+= 225AB =222AC BC AB ∴+=ABC ∴△(第20题)21.(1)如图.(2)由解得,两函数图象交点的坐标为.(3).(第21题)22.(1)证明:由折叠性质可知.,..是等腰三角形.(2)设,由折叠可知.,.在中,由勾股定理得,.解得.由(1)得,.23.(1)5,15,70,60.(2)设,将代入该式,得,.将代入,得.已知甲和乙于7:50起跑,故两人于8:30在补给站相遇.23,14.2y x y x =-⎧⎪⎨=-+⎪⎩14,5135x y ⎧=⎪⎪⎨⎪=⎪⎩∴1413,55⎛⎫⎪⎝⎭53-AEF CEF ∠=∠//AD BC AFE CEF ∴∠=∠AFE AEF ∴∠=∠AEF ∴△CE x =AE CE x ==4BC = 4BE x ∴=-Rt ABE △222AB BE AE +=2222(4)x x ∴+-=52x =52AF AE ==53422FD AD AF ∴=-=-=1OD y k x =(60,7.5)D 118k =18OD y x ∴=5y =18OD y x =40x =(3)设,将,分别代入该式,得解得,.将代入该式,得..当乙抵达终点时,甲距离终点还有1千米.24.(1).理由如下:,,直线是线段的垂直平分线.,,.,.(2)如图.25.(1)设直线的函数表达式为,将,代入该式,得解得直线对应的函数表达式为.(2)过点作轴的垂线,垂足为.、,,.,.,..2BC y k x b =+(45,5)B (70,7.5)C 22545,7.570.k b k b =+⎧⎨=+⎩211012k b ⎧=⎪⎪⎨⎪=⎪⎩11102BC y x ∴=+60x =1160 6.5102BC y =⨯+=7.5 6.51-=∴12∠=∠AC BC= AD BD =∴l AB PAPB ∴=l AB ⊥2APD ∴∠=∠1APD ∠=∠ 12∴∠=∠AB y kx b =+(6,0)A (0,6)B 6,60.b k b =⎧⎨+=⎩1,6.k b =-⎧⎨=⎩∴AB 6y x =-+C x H (0,6)B (2,0)P 6OB ∴=2OP =BP ∴===112022BPC S PB PC ∴=⋅==△90BPC PHC ∠︒∠== 90BPO CPH CPH PCH ∴∠+∠=∠+∠=︒BPO PCH ∴∠=∠在与中,.,,设,..若要,只需,即,或.存在满足题意的点,其坐标为或.(3.Rt BOP △Rt PHC △,,,BPO PCH BOP PHC BP PC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()Rt Rt BOP AAS ≌△△6PH BO ∴==2CH OP ==(8,2)C ∴(0,)D a |6|B D BD y y a ∴=-=-11|6|84|6|22BDC c S BD x a a ∴=⋅=⋅-⋅=⋅-△BDC BPC S S =△△4|6|20a ⋅-=|6|5a -=1a ∴=11a =∴D (0,1)(0,11)。

徐州市2022-2023学年第一学期初二数学期末调研试卷及解析

徐州市2022-2023学年第一学期初二数学期末调研试卷及解析

徐州市2022-2023学年第一学期初二数学期末调研试卷一、选择题(本大题共8小题,每小题2分,共16分。

在每小题所给出的四个选项中,只有一项是正确的)1.下列图形是轴对称图形的是()A.B.C.D.2.若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3)C.(3,﹣2)D.(﹣3,2)3.下列各数是无理数的是()A.0 B.πC.D.4.如图,AB=AD,AC=AE,则能判定△ABC≌△ADE的条件是()A.∠B=∠D B.∠C=∠B C.∠D=∠E D.BC=DE5.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=b,∠C=45°C.∠A:∠B:∠C=1:2:3 D.a=9,b=40,c=416.某一次函数的图象经过点(1,5),且函数值y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+3 B.y=3x﹣8 C.y=﹣3x+8 D.y=﹣2x+57.如图,在△ABC中,AD是∠BAC的平分线,延长AD至E,使AD=DE,连接BE,若AB=4AC,△BDE的面积为12,则△ABC的面积是()A.6 B.9 C.12 D.158.如图,函数y=kx+b的图象与y轴、x轴分别相交于点A(0,2)和点B(4,0),则关于x的不等式kx+b≥2的解集为()A.x≤0B.x≤4C.x≥0D.x≥4二、填空题(本大题共8小题,每小题2分,共16分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.﹣的立方根是.10.用四舍五入法,对0.12964精确到千分位得到的近似数为.11.已知点P在第三象限,且P点的横坐标与纵坐标的积是4,试写出一个符合条件的点:.12.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则方程组的解是.13.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使△ABC≌△EDF,只需添加一个条件,这个条件可以是.14.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面高度是尺.15.如图,小明将长方形纸片ABCD对折后展开,折痕为EF,再将点C翻折到EF上的点G处,折痕为BH,则∠GBH=°.16.如图,在等腰直角三角形ABC中,∠A=90°,P是△ABC内一点,P A=1,PB=3,PC=,那么∠CP A=度.三、解答题(本大题共9小题,共88分。

苏科版徐州市八年级上学期期末学情检测数学试题(含答案)

苏科版徐州市八年级上学期期末学情检测数学试题(含答案)

苏科版徐州市八年级上学期期末学情检测数学试题(含答案)一、选择题1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-22.下列调查中适合采用普查的是( )A .了解“中国达人秀第六季”节目的收视率B .调查某学校某班学生喜欢上数学课的情况C .调查我市市民知晓“礼让行人”交通新规的情况D .调查我国目前“垃圾分类”推广情况3.如图,△ABC ≌△ADE ,∠B=20°,∠E=110°,则∠EAD 的度数为( )A .80°B .70°C .50°D .130°4.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )A .3B .7C .4D .115.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是( )A .AB DC = B .BE CE = C .AC DB =D .A D ∠=∠6.把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( )A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的127.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .68.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( )A .()3,2B .()2,3-C .()3,2-D .()3,2--10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0 11.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .12.下列计算正确的是( )A .5151+22=5B .512﹣512=2C .515122+-⨯=1 D .515122--⨯=3﹣25 13.下列各式成立的是( ) A .93=± B .235+= C .()233-=± D .()233-=14.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 15.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( )A .(﹣2,﹣3)B .(2,﹣3)C .(﹣4,3)D .(3,﹣4) 二、填空题16.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 17.如图,在△PAB 中,PA=PB ,D 、E 、F 分别是边PA ,PB ,AB 上的点,且AD=BF ,BE=AF ,若∠DFE=40°,则∠P=____°.18.若关于x 的方程233x m x +=-的解不小于1,则m 的取值范围是_______. 19.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.20.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.21.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -.把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.22.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.23.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.24.如图,在坐标系中,一次函数21y x =-+与一次函数y x k =+的图像交于点(2,5)A -,则关于x 的不等式21x k x +>-+的解集是__________.25.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题26.如图,在Rt ABC ∆中,90ACB ︒∠=,60B ︒∠=,CD 是AB 边上的中线,那么BC 与AB 有怎样的数量关系?试证明你的结论.27.小丽骑车从甲地到乙地,小明骑车从乙地到甲地,小丽的速度小于小明的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离(km)y 与小丽的行驶时间(h)x 之间的函数关系.请你根据图像进行探究:(1)小丽的速度是______km/h ,小明的速度是_________km/h ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若两人相距20km ,试求小丽的行驶时间?28.如图,在ABC ∆中,AD BC ⊥,15AB =,12AD =,13AC =.求BC 的长.29.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.30.计算:(1)2a b aa b b a ++--;(2)221(1)11xx x-÷+-.31.在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC=(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA 的延长线于点H.若AB=5,CB=12,求AH的长【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.C解析:C【解析】【分析】根据全等的性质知∠D=∠B=20°,再根据三角形的内角和即可求出∠EAD.【详解】∵△ABC≌△ADE,∠B=20°,∠E=110°,∴∠D=∠B=20°,∴∠EAD=180°-20°-110°=50°,故选C.【点睛】本题是对三角形全等知识的考查,熟练掌握全等知识及三角形的内角和是解决本题的关键. 4.C解析:C【解析】【分析】首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB=DC12=CB,AD⊥BC,再利用勾股定理求出AD 的长.【详解】∵AB =AC ,AD 是边BC 上的中线,∴DB =DC 12=CB =3,AD ⊥BC , 在Rt △ABD 中,∵AD 2+BD 2=AB 2,∴AD ==4.故选:C .【点睛】本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB 是直角三角形.5.C解析:C【解析】【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,根据定理逐个判断即可.【详解】A .AB =DC ,∠ABC =∠DCB ,BC =BC ,符合SAS ,即能推出△ABC ≌△DCB ,故本选项错误; B .∵BE =CE ,∴∠DBC =∠ACB .∵∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,符合ASA ,即能推出△ABC ≌△DCB ,故本选项错误;C .∠ABC =∠DCB ,AC =BD ,BC =BC ,不符合全等三角形的判定定理,即不能推出△ABC ≌△DCB ,故本选项正确;D .∠A =∠D ,∠ABC =∠DCB ,BC =BC ,符合AAS ,即能推出△ABC ≌△DCB ,故本选项错误.故选:C .【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS ,ASA ,AAS ,SSS .6.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xyx y x y x y⋅==---,由此可得分式的值不变,故选A.7.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB=,∠BAC=45°,此时△ABE为等腰直角三角形,∴BE=2,即BE取最小值为2,∴BM+MN的最小值是2.故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.8.B解析:B【解析】【分析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B .9.D解析:D【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--.故选:D .【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.10.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.11.A解析:A【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方.解:∵一次函数y=kx+b ,y 随着x 的增大而减小,∴k <0,∴一次函数y=kx+b 的图象经过第二、四象限;∵kb <0,∴b >0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限.故选A .考点:一次函数的图象.12.C解析:C【解析】【分析】利用二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;利用完全平方公式对D 进行判断.【详解】解:A ==A 选项错误;B 212==,所以B 选项错误; C 1515114--==,所以C 选项正确;D 、151-=,所以D 选项错误. 故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.13.D解析:D【解析】【分析】根据算术平方根的定义对A 进行判断;根据二次根式的加减法对B 进行判断;根据二次根式的性质对C 、D 进行判断.【详解】解:A 3=,所以A 选项错误;B B 选项错误;C 3=,所以C 选项错误;D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.14.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.15.B解析:B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;故选:B.【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.二、填空题16..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.17.100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解析:100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,∴∠A=∠B,在△ADF和△BFE中,AD BFA B AF BE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=40°,∴∠P=180°-∠A-∠B=100°;故答案为:100.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.18.m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出. 【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+解析:m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程233x mx+=-的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程233x mx+=-得x=m+9因为x的方程233x mx+=-的解不小于1,且x≠3所以m+9≥1 且m+9≠3解得m≥-8 且m≠-6 .故答案为:m≥-8 且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.19.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+ PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾解析:(1912,0)【解析】【分析】画图,设点P的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点P的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得1912x = 所以点P 的坐标是(1912,0) 故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.20.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.21.【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵,,,∴AB=2,BC=3,CD解析:()1,1【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵()1,1A ,()1,1B -,()1,2C --,()1,2D -∴AB=2,BC=3,CD=2,DA=3∴细线绕一圈所需:AB+BC+CD+DA=10个单位长度2020÷10=202(圈),即细线正好绕了202圈故细线另一端所在位置正好为点A ,它的坐标为()1,1故答案为:()1,1.【点睛】此题考查的是探索点的坐标规律题,掌握把坐标转化为线段的长是解决此题的关键.22.(2,).【解析】【分析】据轴对称判断出点C 变换后在y 轴的右侧,根据平移的距离求出点C 变换后的纵坐标,最后写出即可.【详解】∵△ABC 是等边三角形,AB=3﹣1=2,∴点C 到y 轴的距离为解析:(22019).【解析】【分析】据轴对称判断出点C 变换后在y 轴的右侧,根据平移的距离求出点C 变换后的纵坐标,最后写出即可.【详解】∵△ABC 是等边三角形,AB =3﹣1=2,∴点C 到y 轴的距离为1+2×12=2,点C 到AB , ∴C (2,把等边△ABC 先沿y 轴翻折,得C’(-2,再向下平移1个单位得C’’( -2 故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y 轴右侧,点C 的横坐标为2,+1﹣﹣2019,所以,点C 的对应点C '的坐标是(22019).故答案为:(22019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y 轴右侧是解题的关键. 23.27【解析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.24.【解析】【分析】根据图像解答即可.【详解】由图像可知,关于的不等式的解集是.故答案为:.本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细解析:2x >-【解析】【分析】根据图像解答即可.【详解】由图像可知,关于x 的不等式21x k x +>-+的解集是2x >-.故答案为:2x >-.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y 1>y 2时x 的范围是函数y 1的图象在y 2的图象上边时对应的未知数的范围,反之亦然.25.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD 平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=12∠BAC , ∵∠BAC=120°,∴∠BAD=12×120°=60°,故答案为:60°.【点睛】本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质.三、解答题26.2AB BC =,证明见解析.【解析】【分析】根据直角三角形斜边上的中线得到CD BD AD ==,再根据60B ∠=︒得到DBC ∆为等边三角形,故可求解.【详解】2AB BC =因为90ACB ∠=,CD 是AB 边上的中线,所以CD BD AD ==.因为60B ∠=︒,所以DBC ∆为等边三角形,所以BC BD =.所以CB BD AD ==,即2AB BC =.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.27.(1)10;20;(2)3030y x =-(1 1.5)x ≤≤;(3)13小时或2小时 【解析】【分析】(1)根据题意和函数图象中的数据可以分别求得小丽和小明的速度;(2)根据(1)中的结果和图象中的数据可以求得点C 的坐标,从而可以解答本题 (3)根据题意分情况讨论即可求解.【详解】(1)从AB 可以看出:两人从相距30千米的两地相遇用了1个小时时间,则30V V +=小丽小明千米/时,小丽用了3个小时走完了30千米的全程,∴10V =小丽千米/时,∴20V =小明千米/时;故答案为:10;20;(2)C 点的意义是小明骑车从乙地到甲地用了3020 1.5÷=小时,此时小丽和小明的距离是()1.513015-⨯=∴C 点坐标是(1.5,15).设BC 对应的函数表达式为y kx b =+,则将点()10B ,,()1.5,15C 分别代入表达式得01.515k b k b +=⎧⎨+=⎩, 解得:3030k b =⎧⎨=-⎩, ∴BC 解析式为3030y x =-,(1 1.5)x ≤≤(3)①当两人相遇前:1(3020)(2010)3-÷+=(小时); ②当两人相遇后:1.55102+÷=(小时). 答:小丽出发13小时或2小时时,两人相距20公里. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.BC=14.【解析】【分析】根据垂直的性质和勾股定理,先求出线段BD 的长度,再求出线段CD 的长度,最后求和即可.【详解】解:AD BC ⊥,90ADB ADC ∴∠=∠=︒∴在Rt ABD ∆中,9BD ===∴在Rt ACD ∆中,5CD ∴==9514BC BD CD =+=+=∴【点睛】本题考查了垂直的性质,勾股定理,解决本题的关键是正确理解垂直的性质,熟练掌握勾股定理中三边之间的关系.29.BF 的长为【解析】【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.30.(1)1-;(2)1x x -. 【解析】【分析】(1)根据异分母分式的加减法法则计算即可;(2)先把括号里的通分,再根据分式的除法法则计算即可.【详解】 解:(1)原式=2a b a a b a b+---=2a b a a b +-- =b a a b-- a b a b-=-- =1-; (2)原式=211(1)(1)1x x x x x +-+-⋅+ =1x x-. 【点睛】本题考查了分式的混合运算,在运算过程中,分子、分母能进行因式分解的先因式分解,熟练掌握分式的加减乘除运算是解题的关键.31.(1)40;9;(2)见详解;(3)3.5【解析】【分析】(1)根据线段垂直平分线的性质得到AM =BM ,NA =NC ,根据等腰三角形的性质得到BAM =∠B ,∠NAC =∠C ,结合图形计算即可;(2)连接AM 、AN ,仿照(1)的作法得到∠MAN =90°,根据勾股定理证明结论;(3)连接AP 、CP ,过点P 作PE ⊥BC 于点E ,根据线段垂直平分线的性质得到AP =CP ,根据角平分线的性质得到PH =PE ,证明Rt △APH ≌Rt △CPE 得到AH =CE ,证明△BPH ≌△BPE ,得到BH =BE ,结合图形计算即可.【详解】解:(1)∵∠BAC =110°,∴∠B+∠C =180°﹣110°=70°,∵AB 边的垂直平分线交BC 边于点M ,∴AM =BM ,∴∠BAM =∠B ,同理:NA =NC ,∴∠NAC =∠C ,∴∠MAN =110°﹣(∠BAM+∠NAC )=40°,∵△AMN 的周长为9,∴MA+MN+NA =9,∴BC =MB+MN+NC =MA+MN+NA =9,故答案为:40;9;(2)如图②,连接AM 、AN ,∵∠BAC =135°,∴∠B+∠C =45°,∵点M 在AB 的垂直平分线上,∴AM =BM ,∴∠BAM =∠B ,同理AN =CN ,∠CAN =∠C ,∴∠BAM+∠CAN =45°,∴∠MAN =∠BAC ﹣(∠BAM+∠CAN )=90°,∴AM 2+AN 2=MN 2,∴BM 2+CN 2=MN 2;(3)如图③,连接AP 、CP ,过点P 作PE ⊥BC 于点E ,∵BP 平分∠ABC ,PH ⊥BA ,PE ⊥BC ,∴PH =PE ,∵点P 在AC 的垂直平分线上,∴AP =CP ,在Rt △APH 和Rt △CPE 中,PA PC PH PE =⎧⎨=⎩, ∴Rt △APH ≌Rt △CPE (HL ),∴AH =CE ,在△BPH 和△BPE 中,BHP BEP PBH PBE BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPH ≌△BPE (AAS )∴BH =BE ,∴BC =BE+CE =BH+CE =AB+2AH ,∴AH =(BC ﹣AB )÷2=3.5.【点睛】本题考查的是全等三角形的判定和性质、勾股定理、线段垂直平分线的性质、角平分线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.。

江苏省徐州市部分2022-2023学年数学八年级第一学期期末学业质量监测模拟试题含解析

江苏省徐州市部分2022-2023学年数学八年级第一学期期末学业质量监测模拟试题含解析

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =ACB .BD =CDC .∠B =∠CD .∠BDA =∠CDA 2.下列各因式分解中,结论正确的是( )A .256(1)(6)x x x x ++=-+B .26(2)(3)x x x x -+=+-C .2221(1)(1)a ab b a b a b -+-=+++-D .2()223(3)(1)a b a b a b a b +++-=+++-3.以下列各组线段为边,能组成三角形的是( )A .2cm ,4cm ,6cmB .8cm ,6cm ,4cmC .14cm ,6cm ,7cmD .2cm ,3cm ,6cm4.若一个多边形的内角和为720°,则该多边形为( )边形.A .四B .五C .六D .七5.对于任意三角形的高,下列说法不正确的是( )A .锐角三角形的三条高交于一点B .直角三角形只有一条高C .三角形三条高的交点不一定在三角形内D .钝角三角形有两条高在三角形的外部6.计算:()()223311a a a ---的结果是( ) A .()21a x - B .31a -. C .11a - D .31a + 7.一次函数y =ax +b 与y =abx 在同一个平面直角坐标系中的图象不可能是( ) A . B .C .D .8.下列命题属于真命题的是( )A .同旁内角相等,两直线平行B .相等的角是对顶角C .平行于同一条直线的两条直线平行D .同位角相等9.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-310.如果m ﹥n ,那么下列结论错误的是( )A .m +2﹥n +2B .m -2﹥n -2C .2m ﹥2nD .-2m ﹥-2n二、填空题(每小题3分,共24分)11.已知反比例函数12k y x-=,当0x >时,y 的值随着x 增大而减小,则实数k 的取值范围__________.12.人体血液中的血小板直径约为0.000002,数字0.000002用科学记数法表示为_____.13.如图,一次函数y 1=x+b 与一次函数y 2=kx+4的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是_____.14.使分式2341x x -+的值是负数x 的取值范围是______. 15.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P= .16.如图,在Rt △ABC 中,已知∠C=90°,∠CAB 与∠CBA 的平分线交于点G ,分别与CB 、CA 边交于点D 、E ,GF ⊥AB ,垂足为点F ,若AC=6,CD=2,则GF=______17.据印刷工业杂志社报道,纳米绿色印刷技术突破了传统印刷技术精度和材料种类的局限,可以在硅片上印刷出10纳米(即为0.000 000 01米)量级的超高精度导电线路,将0.000 000 01用科学记数法表示应为___________.18.若x 表示29的整数部分,y 表示29的小数部分,则()29x y +的值为______. 三、解答题(共66分)19.(10分)探究与发现:如图1所示的图形,像我们常见的学习用品—圆规.我们不妨把这样图形叫做“规形图”.(1)观察“规形图”,试探究BDC ∠与A ∠、B 、C ∠之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在ABC ∆上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,40A ∠=︒,则ABX ACX ∠+∠=________________;②如图3,DC 平分ADB ∠,EC 平分AEB ∠,若40DAE ∠=︒,130DBE ∠=︒,求DCE ∠的度数;③如图4,ABD ∠,ACD ∠的8等分线相交于点1G ,2G ,3G ,7G ,若130BDC ∠=︒,160BG C ∠=︒,求A ∠的度数.20.(6分)在如图所示的平面直角坐标系中,描出点A(3,2)和点B (-1,4).(1)求点A (3,2)关于x 轴的对称点C 的坐标;(2)计算线段BC 的长度.21.(6分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?22.(8分)如图①,在△ABC 中,AB=AC ,过AB 上一点D 作DE∥AC 交BC 于点E ,以E 为顶点,ED 为一边,作∠DEF=∠A,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,判断▱ADEF 的形状;(3)延长图①中的DE 到点G ,使EG=DE ,连接AE ,AG ,FG ,得到图②,若AD=AG ,判断四边形AEGF 的形状,并说明理由.23.(8分)如图,矩形ABCD 中,AB=8,BC=6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE=OD .(1)求证:OP=OF ;(2)求AP 的长.24.(8分)计算(1)(x ﹣3)(x +3)﹣6(x ﹣1)2(2)a 5•a 4•a ﹣1•b 8+(﹣a 2b 2)4﹣(﹣2a 4)2(b 2)425.(10分)已知322x =-,求代数式2623x x x -+-的值. 26.(10分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y 与x 的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.解:A 、∵∠1=∠2,AD 为公共边,若AB=AC ,则△ABD ≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C ,则△ABD ≌△ACD (AAS );故C 不符合题意;D 、∵∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则△ABD ≌△ACD (ASA );故D 不符合题意.故选B .考点:全等三角形的判定.2、D【分析】根据因式分解的定义逐项判断即可.【详解】解:A. 256(1)(6)x x x x ++=-+,变形错误,不是因式分解,不合题意;B. 26(2)(3)x x x x -+=+-,变形错误,不是因式分解,不合题意;C. 2221(1)(1)a ab b a b a b -+-=+++-,变形错误,不是因式分解,不合题意;D. 2()223(3)(1)a b a b a b a b +++-=+++-,变形正确,是因式分解,符合题意. 故选:D【点睛】本题考查了因式分解的定义,“将一个多项式变形为几个整式的积的形式叫因式分解”,注意因式分解是一种变形,故等号左右两边要相等.3、B【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:A. 2cm ,4cm ,6cm 可得,2+4=6,故不能组成三角形;B. 8cm ,6cm ,4cm 可得,6+4>8,故能组成三角形;C. 14cm ,6cm ,7cm 可得,6+7<14,故不能组成三角形;D. 2cm ,3cm ,6cm 可得,2+3<6,故不能组成三角形;故选B .【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.4、C【分析】设多边形为n 边形,由多边形的内角和定理列出方程求解即可.【详解】解:设多边形为n 边形.由题意得:(n-2) ·180°=720°,解得:n=6.故选C .【点睛】本题考查多边形的内角和定理,n 边形的内角和为:(n-2) ·180°.5、B【分析】根据三角形的高的概念,通过具体作高,发现:任意一个三角形都有三条高,其中锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部,据此解答即可.【详解】解:A 、锐角三角形的三条高交于一点,说法正确,故本选项不符合题意; B 、直角三角形有三条高,说法错误,故本选项符合题意;C 、三角形三条高的交点不一定在三角形内,说法正确,故本选项不符合题意;D 、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意; 故选:B .【点睛】本题考查了三角形的高:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,注意不同形状的三角形的高的位置.6、B【解析】根据分式的运算法则即可求出答案.【详解】解:原式=()23-31a a -=()23-11a a -() =31a - 故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型. 7、D【分析】根据a 、b 的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【详解】当ab >0,a ,b 同号,y=abx 经过一、三象限,同正时,y=ax+b 过一、三、二象限;同负时过二、四、三象限,当ab<0时,a,b异号,y=abx经过二、四象限a<0,b>0时,y=ax+b过一、二、四象限;a>0,b<0时,y=ax+b过一、三、四象限.故选D.【点睛】此题考查一次函数的图象性质,解题关键在于要掌握它的性质才能灵活解题.8、C【解析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】A、同旁内角互补,两直线平行,是假命题;B、相等的角不一定是对顶角,是假命题;C、平行于同一条直线的两条直线平行,是真命题;D、两直线平行,同位角相等,是假命题;故选C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.9、A【解析】>-3 ,≥-1,大大取大,所以选A10、D【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 两边都加2,不等号的方向不变,故A正确;B. 两边都减2,不等号的方向不变,故B正确;C. 两边都乘以2,不等号的方向不变,故C正确;D. 两边都乘以-2,不等号的方向改变,故D错误;故选D.【点睛】此题考查不等式的性质,解题关键在于掌握运算法则二、填空题(每小题3分,共24分)11、12k < 【分析】先根据反比例函数的性质得出1-2k >0,再解不等式求出k 的取值范围. 【详解】反比例函数的图象在其每个象限内,y 随着x 的增大而减小, 120k ∴->,12k ∴<. 故答案为:12k <. 【点睛】本题考查了反比例函数的图象和性质:①、当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②、当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.12、2×10﹣1.【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000002=2×10﹣1.故答案为:2×10﹣1.【点睛】本题考查科学记数法的表示,关键在于熟练掌握表示方法.13、x >1.【解析】试题解析:∵一次函数1y x b =+与24y kx =+交于点(1,3)P ,∴当4x b kx +>+时,由图可得:1x >.故答案为1x >.14、x >34【分析】根据平方的非负性可得210x ,然后根据异号相除得负,即可列出不等式,解不等式即可得出结论.【详解】解:∵20x ≥∴210x ∵分式2341x x -+的值是负数∴340x -< 解得:34x > 故答案为:34x >. 【点睛】此题考查的是分式的值为负的条件,掌握平方的非负性和异号相除得负是解决此题的关键.15、90°.【解析】试题解析:∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°-∠PBC-∠BCP=30°,∴∠A+∠P=90°.考点:1.三角形内角和定理;2.三角形的角平分线、中线和高;3.三角形的外角性质.16、32【分析】过G 作GM ⊥AC 于M ,GN ⊥BC 于N ,连接CG ,根据角平分线的性质得到GM=GM=GF ,根据三角形的面积公式列方程即可得到结论.【详解】解:过G 作GM ⊥AC 于M ,GN ⊥BC 于N ,连接CG ,∵GF ⊥AB ,∠CAB 与∠CBA 的平分线交于点G ,∴GM=GM=GF ,在Rt △ABC 中,∠C=90°,∴S △ACD =12AC•CD=12AC•GM+12CD•GN , ∴6×2=6•GM+2×GN ,∴GM=32, ∴GF=32,故答案为32【点睛】本题考查了角平分线的性质,三角形的面积,正确的作出辅助线是解题的关键. 17、8110-⨯【分析】科学计数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以1a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到1的后面,所以n =-1.【详解】0.000 000 01=8110-⨯故答案为8110-⨯.【点睛】本题考查的知识点是用科学计数法表示绝对值较大的数,关键是在理解科学计数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.18、1 29的取值范围,继而确定出x 、y 的值,然后再代入所求式子进行计算即可.【详解】∵29<6,x 29的整数部分,y 29的小数部分, ∴x=5,29, ∴)29x y =())295295⨯ =29-25=1,故答案为:1.【点睛】本题考查了无理数的估算,二次根式的混合运算,正确确定出x 、y 的值是解题的关键.三、解答题(共66分)19、(1)∠BDC =∠A +∠B +∠C ;详见解析(2)①50°②85°③50°【分析】(1)首先连接AD 并延长,然后根据外角的性质,即可判断出∠BDC=∠A+∠B+∠C .(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC ,然后根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX 的值.②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB ,再根据∠DAE=40°,∠DBE=130°,求出∠ADB+∠AEB 的值;然后根据∠DCE=12(∠ADB+∠AEB )+∠DAE ,即可求出∠DCE 的度数.③设1ABG x ∠=,1ACG y ∠=结合已知可得8ABD x ∠=,8ABD y ∠=,再根据(1)可得60A x y ∠++=,88130A x y ∠++=,即可判断出∠A 的度数.【详解】解:(1)∠BDC=∠A+∠B+∠C ,理由如下:如图(1),连接AD 并延长.图1根据外角的性质,可得∠BDF=∠BAD+∠B ,∠CDF=∠C+∠CAD ,又∵∠BDC=∠BDF+∠CDF ,∠BAC=∠BAD+∠CAD ,∴∠BDC=∠A+∠B+∠C ;(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC ,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°-40°=50°,故答案为50°;②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB ,∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,∴12(∠ADB+∠AEB )=90°÷2=45°, ∴∠DCE=12(∠ADB+∠AEB )+∠DAE=45°+40°=85°;③设1ABG x ∠=,1ACG y ∠=.则8ABD x ∠=,8ABD y ∠=,则60A x y ∠++=,88130A x y ∠++=解得10x y +=所以601050A ∠=-=即A ∠的度数为50°.【点睛】此题还考查了三角形的外角的性质,要熟练掌握,解答此题的关键是要明确:三角形的外角等于和它不相邻的两个内角的和.20、点A 和点B 的位置如图,见解析;(1)点A 关于x 轴的对称点C 的坐标为(3,-2);(2)BC=213.【分析】先根据已知描出点A 和点B 的位置;(1)根据平面内两个关于x 轴对称的点,横坐标不变,纵坐标互为相反数即可确定C 的坐标;(2)直接用两点距离公式即可求解.【详解】解:点A 和点B 的位置如图:(1)点A 关于x 轴的对称点C 的坐标为(3,-2);(2)()()22243152213⎡⎤--+--==⎣⎦. 【点睛】本题考查的主要是平面直角坐标系内点的计算,掌握点的对称规律以及两点距离公式是解题的关键.21、今年1—5月份每辆车的销售价格是4万元.【解析】设今年1—5月份每辆车的销售价格是x万元,根据销售量相同列出方程,求解并检验即可.【详解】解:设今年1—5月份每辆车的销售价格是x万元,依题意得5000(120%)50001x x-=+.解得4x=.经检验,4x=是原方程的解,并且符合题意.答: 今年1—5月份每辆车的销售价格是4万元.【点睛】本题考查分式方程的应用,理解题意并找到合适的等量关系是解题关键.22、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.【解析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=12AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【详解】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:□ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=12 AB,∵DE∥AC,点D为AB中点,∴DE=12 AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,(3)四边形AEGF 是矩形,理由如下:由(1)得,四边形ADEF 为平行四边形,∴AF ∥DE ,AF=DE ,∵EG=DE ,∴AF ∥DE ,AF=GE ,∴四边形AEGF 是平行四边形,∵AD=AG ,EG=DE ,∴AE ⊥EG ,∴四边形AEGF 是矩形.故答案为:(1)证明见解析;(2)菱形;(3)矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.23、(1)证明见解析;(2)4.1.【分析】(1)由折叠的性质得出∠E=∠A=90°,从而得到∠D=∠E=90°,然后可证明△ODP ≌△OEF ,从而得到OP=OF ;(2)由△ODP ≌△OEF ,得出OP=OF ,PD=FE ,从而得到DF=PE ,设AP=EP=DF=x ,则PD=EF=6-x ,DF=x ,求出CF 、BF ,根据勾股定理得出方程,解方程即可.【详解】(1)∵四边形ABCD 是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1.由翻折的性质可知:EP=AP ,∠E=∠A=90°,BE=AB=1,在△ODP 和△OEF 中,D E OD OEDOP EOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODP ≌△OEF (ASA ).∴OP=OF .(2)∵△ODP ≌△OEF (ASA ),∴OP=OF ,PD=EF .∴DF=EP .设AP=EP=DF=x ,则PD=EF=6-x ,CF=1-x ,BF=1-(6-x )=2+x ,在Rt △FCB 根据勾股定理得:BC 2+CF 2=BF 2,即62+(1-x )2=(x+2)2, 解得:x=4.1,∴AP=4.1.24、(1)﹣5x 2+12x ﹣15;(2)﹣2a 1b 1【分析】(1)直接利用乘法公式计算进而合并同类项得出答案;(2)直接利用积的乘方运算法则以及合并同类项法则进而计算得出答案.【详解】解:(1)原式=x 2﹣9﹣6(x 2﹣2x +1)=x 2﹣9﹣6x 2+12x ﹣6=﹣5x 2+12x ﹣15;(2)原式=a 1b 1+a 1b 1﹣4a 1b 1=﹣2a 1b 1.【点睛】本题考查了平方差公式和完全平方公式,积的运算法则,解决本题的关键是熟练掌握乘法公式。

徐州市八年级上学期期末调研监测数学试题

徐州市八年级上学期期末调研监测数学试题

徐州市八年级上学期期末调研监测数学试题一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( )A .80°B .90°C .100°D .110° 2.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2) 3.若点P 在y 轴负半轴上,则点P 的坐标有可能是( ) A .()1,0-B .()0,2-C .()3,0D .()0,4 4.若分式12x x -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .25.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)6.下列标志中属于轴对称图形的是( )A .B .C .D .7.+1x x 的取值范围是( ).A .x >﹣1B .x ≥0C .x ≥﹣1D .任意实数8.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:39.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .310.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8二、填空题11.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.12.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.13.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.14.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.15.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.16.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.17.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 18.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.19.小明体重约为62.36千克,如果精确到0.1千克,其结果为____千克.20.2______3三、解答题21.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司62辆A ,B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息: 型号载客量 租金单价 A30人/辆 380元/辆 B 20人/辆 280元/辆注:载客量指的是每辆客车最多可载该校师生的人数. (1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数表达式,并写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?22.某天早上爸爸骑车从家送小明去上学.途中小明发现忘带作业本,于是他立即下车,下车后的小明匀速步行继续赶往学校,同时爸爸加快骑车速度,按原路匀速返回家中取作业本(拿作业本的时间忽略不计),紧接着以返回时的速度追赶小明.最后两人同时达到学校. 如图是小明离家的距离()y m 与所用时间()min x 的函数图像.请结合图像回答下列问题:(1)小明家与学校距离为______m ,小明步行的速度为______/min m ;(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)在同一坐标系中画出爸爸离家的距离()ym 与所用时间()min x 的关系的图像.(标注..相关数据....) 23.先化简,再求值:()3212m m m ⎛⎫++÷+ ⎪-⎝⎭,其中22m -≤≤且m 为整数.请你从中选取一个喜欢的数代入求值.24.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题:(1)甲、乙两地相距 km ,轿车比货车晚出发 h ;(2)求线段CD 所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?25.(阅读·领会)材料一:一般地,形如(0)a a ≥的式子叫做二次根式,其中a 叫做被开方数.其中,被开方数相同的二次根式叫做同类二次根式.像同类项一样,同类二次根式也可以合并,合并方法类似合并同类项,是把几个同类二次根式前的系数相加,作为结果的系数,即()(0).m x n x m n x x +=+≥利用这个式子可以化简一些含根式的代数式. 材料二:二次根式可以进行乘法运算,公式是.(0,0)a b ab a b ⨯=≥≥我们可以利用以下方法证明这个公式:一般地,当0,0a b ≥≥时,根据积的乘方运算法则,可得222()()()a b a b ab ⨯=⨯=,∵2()(0)a a a =≥,∴2()ab ab =.于是a b ⨯、ab 都是ab 的算术平方根, ∴.(0,0)a b ab a b ⨯=≥≥利用这个式子,可以进行一些二次根式的乘法运算.将其反过来,得.(0,0)ab a b a b =⨯≥≥它可以用来化简一些二次根式. 材料三:一般地,化简二次根式就是使二次根式:(I )被开方数中不含能开得尽方的因数或因式;(II )被开方数中不含分母;(III )分母中不含有根号.这样化简完后的二次根式叫做最简二次根式.(积累·运用)(1)仿照材料二中证明二次根式乘法公式那样,试推导二次根式的除法公式.(2)化简:2325(2)(0,0,0)a b c a b c -≥≥≥=______.(3)当0a b <<时,化简2232232,a b b ab a a b a b a b +-+-+并求当7,9a b =⎧⎨=⎩时它的值. 四、压轴题26.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.27.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.28.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.29.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.30.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A (3,2),B (4,0),请在x 轴上找一个C ,使得△OAB 与△OAC 是偏差三角形.你找到的C 点的坐标是______,直接写出∠OBA 和∠OCA 的数量关系______.(2)如图2,在四边形ABCD 中,AC 平分∠BAD ,∠D+∠B=180°,问△ABC 与△ACD 是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD 中,AB=DC ,AC 与BD 交于点P ,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC <90°,且点C 到直线BD 的距离是3,求△ABC 与△BCD 的面积之和.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【详解】如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.3.B解析:B【解析】【分析】根据y轴上的点的坐标特点,横坐标为0,然后根据题意求解.【详解】解:∵y轴上的点的横坐标为0,又因为点P在y轴负半轴上,∴(0,-2)符合题意【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键.4.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长将Rt ABC度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.6.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.7.C解析:C【解析】【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.8.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.9.D解析:D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.10.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.二、填空题11..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.12.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.13.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.14.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD的长.15.【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.--解析:(1,1)【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B(-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.16.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.17.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 18.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m ≤32 【解析】【分析】根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m =, ∴03x m=, 当03x =时,33m=,1m =, 当02x =时,32m =,32m =, m 的取值范围为:1≤m ≤32故答案为:1≤m≤3 2【点睛】本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x轴的交点横坐标的范围求得m的取值范围是解题的关键.19.4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.【点睛】本题考查了近似数和有效数字:近似数与精确数的解析:4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.20.>【解析】, .解析:>【解析】23<,>三、解答题21.(1)y与x的函数表达式为y=100x+17360(21≤x≤62且x为整数);(2)共有25种租车方案;租用A型号客车21辆,B型号客车41辆时最省钱.【解析】【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x 的取值范围,利用函数的性质即可解决问题;【详解】解:(1)由题意:y=380x+280(62-x )=100x+17360.∵30x+20(62-x )≥1441,∴x ≥20.1,又∵x 为整数,∴x 的取值范围为21≤x ≤62的整数.即y 与x 的函数表达式为y=100x+17360(21≤x ≤62且x 为整数).(2)由题意100x+17360≤21940,∴x ≤45.8,∴21≤x ≤45,∴共有25种租车方案,又100>0,∴y 随x 的增大而增大,∴x=21时,y 有最小值.即租用A 型号客车21辆,B 型号客车41辆时最省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.22.(1)2500,100;(2)100500y x =+;(3)见解析【解析】【分析】(1)看图得到小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分,从而求出小明的步行速度;(2)用待定系数法求函数解析式;(3)由题意分析,爸爸在点(5,1000)处返回家中,再至爸爸到达学校共用时15分,行驶2500+1000=3500米,所以可以求出此时爸爸的速度为3500700153=米/分,然后求出爸爸返回家中时间为70030100037÷=分,所以爸爸于开始出发后的3065577+=分到达家中,从而画出爸爸离家的距离()ym 与所用时间()min x 的关系的图像.【详解】 解:(1)有图可知:小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分 ∴小明的步行速度为25001000100205-=-米/分 故答案为:2500;100 (2)设AB 的表达式为y kx b =+,将A 、B 分别代入AB 的表达式得到51000202500k b k b +=⎧⎨+=⎩,解得100500k b =⎧⎨=⎩.∴表达式100500y x =+.(3)由题意,爸爸在点(5,1000)处返回家中,∵最后两人同时达到学校所以爸爸从开始返回家中至到达学校共用时15分,行驶2500+1000=3500米,所以此时爸爸的速度为3500700153=米/分,爸爸返回家中时间为70030100037÷=分, 所以爸爸于开始出发后的3065577+=分到达家中 即函数图像过点(657,0)(20,2500) 如图:【点睛】本题考查一次函数的实际应用,理清图中每个关键点的实际含义,利用数形结合思想解题是本题的解题关键. 23.12m m --;当0m =时,原式12= 【解析】 【分析】 根据分式的加法和除法可以化简题目中的式子,然后从22m -≤≤且m 为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:3212m m m 223121m m m m243211m m m 11112m m m m21m m , ∵22m -≤≤且m 为整数,∴当m=0时,原式011022【点睛】 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1)300;1.2 (2)y =110x ﹣195 (3)3.9;234千米【解析】【分析】(1)由图象可求解;(2)利用待定系数法求解析式;(3)求出OA 解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km ,轿车比货车晚出发1.2小时;故答案为:300;1.2;(2)设线段CD 所在直线的函数表达式为:y =kx +b ,由题意可得:300=4.580 2.5k b k b +⎧⎨=+⎩解得:110195k b =⎧⎨=-⎩∴线段CD 所在直线的函数表达式为:y =110x ﹣195;(3)设OA 解析式为:y =mx ,由题意可得:300=5m ,∴m =60,∴OA 解析式为:y =60x ,∴60110195y x y x =⎧⎨=-⎩∴ 3.9234x y =⎧⎨=⎩答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.25.(1)见解析;(2)2abc ;(3)ab-,463- 【解析】【分析】(1)仿照材料二中证明二次根式乘法公式的方法,推导二次根式的除法公式(2)根据二次根式乘法公式进行计算即可(3)先根据二次根式除法公式进行化简,再把a 和b 的值代入即可【详解】解:(10,0)a b =≥> 证明如下:一般地,当0,0a b ≥>时,根据商的乘方运算法则,可得22a b ==∵2(0)a a =≥,∴2a b =a b 的算术平方根,∴0,0)a b =≥>利用这个式子,可以进行一些二次根式的除法运算.0,0)a b =≥>它可以用来化简一些二次根式.(20,0,0)2a b c abc ≥≥≥==故答案为:2abc (3)当0a b <<时,1a b b a a b ab a +-===-+当79a b =⎧⎨=⎩时,原式=463=- 【点睛】本题考查二次根式的乘法和除法法则,,解题的关键是熟练运用公式以及二次根式的性质,本题属于中等题型.四、压轴题26.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.27.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.【解析】【分析】(1)可设∠BAD =∠CAD =α,∠AEC =∠ACE =β,在△ACE 中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC 的度数;(2)在EC 上截取EG =CF ,连接AG ,证明△AEG ≌△ACF ,然后再证明△AFG 为等边三角形,从而可得出EF =EG +GF =AF +FC ;(3)在AF 上截取AG =EF ,连接BG ,BF ,证明方法类似(2),先证明△ABG ≌△EBF ,再证明△BFG 为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC ,AD 为BC 边上的中线,∴可设∠BAD =∠CAD =α,又△ABE 为等边三角形,∴AE=AB=AC ,∠EAB=60°,∴可设∠AEC =∠ACE =β,在△ACE 中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC ,证明如下:∵AB=AC ,AD 为BC 边上的中线,∴AD ⊥BC ,∴∠FDC=90°,∵∠CFD =60°,则∠DCF=30°,∴CF =2DF ,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.28.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.29.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(8-,0).【解析】【分析】(1)根据A ,(0,B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A ,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.30.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC 与△ACD 是偏差三角形,理由见解析;(3)272【解析】【分析】(1)根据偏差三角形的定义,即可得到C 的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;(2)在AD 上取一点H ,使得AH=AB ,易证△CAH ≌△CAB ,进而可得∠D=∠CHD ,根据偏差三角形的定义,即可得到结论;(3)延长CA 至点E ,使AE=BD ,连接BE ,由SAS 可证∆BDC ≅∆EAB ,得EA=BD ,点B 到直线EA 的距离是3,根据三角形的面积公式,即可求解.。

徐州市八年级上学期期末调研监测数学试题

徐州市八年级上学期期末调研监测数学试题

徐州市八年级上学期期末调研监测数学试题一、选择题1.下列图书馆的馆徽不是..轴对称图形的是( ) A . B . C . D .2.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( ) A .12y y < B .12y y = C .12y y > D .不能确定 3.若等腰三角形的一个内角为92°,则它的顶角的度数为( ) A .92° B .88°C .44°D .88°或44°4.下列运算正确的是( )A .236a a a ⋅=B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=-5.已知a >0,b <0,那么点P(a ,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.下列实数中,无理数是( ) A .227B .3πC .4-D .3277.下列各式中,属于分式的是( ) A .x ﹣1B .2mC .3b D .34(x+y ) 8.下列分式中,x 取任意实数总有意义的是( )A .21x x+B .221(2)x x -+C .211xx -+ D .2x x + 9.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .26510.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.一次函数y =2x +b 的图象沿y 轴平移3个单位后得到一次函数y =2x +1的图象,则b 值为_____.12.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________. 13.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.14.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.15.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.16.4的平方根是 .17.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.18.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______. 19.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.三、解答题21.甲、乙两车同时从A 地出发前往B 地,其中甲车选择有高架的路线,全程共50km ,乙车选择没有高架的路线,全程共44km .甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B 地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?22.(1)计算:203(12)125(39)(45)(45);π--+---+⨯- (2)求x 的值:23(3)27.x +=23.如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B 的坐标为______; (2)△ABC 的面积为______; (3)判断△ABC 的形状,并说明理由.24.如图,正方形网格中每个小正方形的边长为1,格点△ABC 的顶点A (2,3)、B (﹣1,2),将△ABC 平移得到△A ′B ′C ′,使得点A 的对应点A ′,请解答下列问题:(1)根据题意,在网格中建立平面直角坐标系; (2)画出△A ′B ′C ′,并写出点C ′的坐标为 .25.如图,AD ∥BC ,∠A =90°,E 是AB 上的一点,且AD =BE ,∠1=∠2.(1)求证:△ADE ≌△BEC ;(2)若AD =3,AB =9,求△ECD 的面积.四、压轴题26.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积; (2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数; (3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .27.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DBBC的值.28.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.29.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:,CD ,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴. 【详解】解:A 、是轴对称图形,不符合题意; B 、是轴对称图形,不符合题意; C 、是轴对称图形,不符合题意;D 、因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不是轴对称图形,符合题意; 故选:D . 【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C解析:C 【解析】 【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可. 【详解】解:∵一次函数1y =+的系数k <0,y 随x 增大而减小, 又∵两点的横坐标2<3, ∴12y y > 故选C. 【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.3.A解析:A【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.4.C解析:C【解析】【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【详解】A. a2 a3=a5,故A错误;B. (−a2)3=−a6,故B错误;C. a10÷a9=a(a≠0),故C正确;D. (−bc)4÷(−bc)2=b2c2,故D错误;故答案选C.【点睛】本题考查了同底数幂的相关知识点,解题的关键是熟练的掌握同底数幂的乘法与除法的运算.5.D解析:D【解析】试题分析:根据a>0,b<0和第四象限内的坐标符号特点可确定p在第四象限.∵a>0,b<0,∴点P(a,b)在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.7.B解析:B【解析】【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】解:2m是分式,故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.8.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.【详解】A.x=0时,x2=0,A选项不符合题意;B.x=﹣2时,分母为0,B选项不符合题意;C.x取任意实数总有意义,C选项符号题意;D.x=﹣2时,分母为0.D选项不符合题意.故选:C.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.9.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE22CH E H'+222425⎛⎫+⎪⎝⎭=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系. 10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A2323,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1解析:﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1.∴b±3=1,解得:b=﹣2或4.故答案为:﹣2或4.【点睛】本题考查了直线的平移,属于基本题型,熟练掌握直线的平移规律是解答的关键.12.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m,y=n代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.13.-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴=(-3+2)2019=(-1)2019=解析:-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可. 【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1.故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.14.(,)【解析】【分析】根据题意,△ABO为等腰直角三角形,由点C坐标为(6,4),可知点B为(6,0),点A为(6,6),则直线OA为,作点D关于OA的对称点E,点E 恰好落在y轴上,连接CE,解析:(185,185)【解析】【分析】根据题意,△ABO为等腰直角三角形,由点C坐标为(6,4),可知点B为(6,0),点A为(6,6),则直线OA为y x=,作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,则点E坐标为(0,3),然后求出直线CE的解析式,联合y x=,即可求出点P的坐标.【详解】解:在Rt△ABO中,∠OBA=90°,AB=OB,∴△ABO是等腰直角三角形,∵点C在边AB上,且C(6,4),∴点B为(6,0),∴OB=6=AB,∴点A坐标为:(6,6),∴直线OA的解析式为:y x=;作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,∴∠APC=∠OPE=∠DPO,OD=OE,∵点D是OB的中点,∴点D的坐标为(3,0),∴点E的坐标为:(0,3);设直线CE的解析式为:y kx b=+,把点C、E代入,得:643k bb+=⎧⎨=⎩,解得:163 kb⎧=⎪⎨⎪=⎩,∴直线CE的解析式为:136y x=+;∴136y xy x⎧=+⎪⎨⎪=⎩,解得:185185xy⎧=⎪⎪⎨⎪=⎪⎩,∴点P的坐标为:(185,185);故答案为:(185,185).【点睛】本题考查了一次函数的图像和性质,等腰直角三角形的性质,以及线段动点问题,正确的找到P点的位置是解题的关键.15.3-【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC的长度即为AF的长度. 【详解】解析:3-3【解析】【分析】作AH⊥BC于H.证明四边形AFCH是矩形,得出AF=CH,在Rt△ABH中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC的长度即为AF的长度.【详解】解:如下图,作AH⊥BC于H.则∠AHC=90°,∵四边形形ABCD为长方形,∴∠B=∠C=∠EAB=90°,∵AF⊥CD,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2, ∴112AH AB ==,根据勾股定理BH ==∵BC=3,∴3AF HC BC BH ==-=-故填:3【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.16.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.17.2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根 解析:2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根据等角对等边可得到DF=DB ,EF=EC ,再由ED=DF+EF 结合已知即可求得答案.【详解】∵BF 、CF 分别是∠ABC 和∠ACB 的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.18.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.19.3;【解析】【分析】过D 作DE⊥AB 于E ,DF⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D作DE⊥AB于E,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.20.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE ⊥AD,从而可得CD 的长,进而求得点P 从开始到停止运动的总路程,本题得以解决.【详解】解:作CE ⊥AD 于点E,如下图所示,由图象可知,点P 从A 到B 运动的路程是3,当点P 与点B 重合时,△PAD 的面积是212,由B 到C 运动的路程为3, ∴321222AD AB AD ⨯⨯== 解得,AD=7, 又∵BC//AD,∠A=90°,CE ⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE 是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222 345,CD CE DE =+=+=∴点P 从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.三、解答题21.甲车行驶的平均速度为75/km h ,乙车行驶的平均速度为55/km h .【解析】【分析】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据“乙车到达B 地花费的时间是甲车的1.2倍”列方程求解即可.【详解】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据题意,得:50441.220x x⨯=+解得:x =55.经检验,x =55是所列方程的解.当x =55时,x +20=75.答:甲车行驶的平均速度为75km/h ,乙车行驶的平均速度为55km/h .【点睛】本题考查了分式方程的应用.找出相等关系是解答本题的关键.22.(1)422--;(2)120,6x x ==-【解析】【分析】(1)根据二次根式混合的运算、立方根、以及零指数幂的法则计算即可(2)利用直接开平方法解方程即可【详解】解:(1)原式=32251165422-+--+=--;(2)23(3)27.x +=2(3)9.x +=3 3.x +=±120,6x x ==-【点睛】本题考查了二次根式的混合运算和解一元二次方程,熟练掌握法则是解题的关键23.(1)(-2,-1);(2)5;(3)△ABC 是直角三角形,∠ACB=90°.【解析】【分析】(1)首先根据A 和C 的坐标确定坐标轴的位置,然后确定B 的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断.【详解】解:(1)则B 的坐标是(-2,-1).故答案是(-2,-1);(2)S△ABC=4×4-12×4×2-12×3×4-12×1×2=5,故答案是:5;(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.【点睛】本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.24.(1)见解析;(2)(﹣3,﹣4)【解析】【分析】(1)根据点A和点B的坐标可建立平面直角坐标系;(2)利用平移变换的定义和性质可得答案.【详解】解:(1)如图所示,(2)如图所示,△A′B′C′即为所求,其中点C′的坐标为(﹣3,﹣4),故答案为:(﹣3,﹣4).【点睛】本题考查的知识点是作图-平移变换,找出三角形点A的平移规律是解此题的关键.25.(1)见解析;(2)45 2【解析】【分析】(1)根据已知可得到∠A=∠B=90°,DE=CE,AD=BE从而利用HL判定两三角形全等;(2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC=90°,由已知我们可求得BE、AE的长,再利用勾股定理求得ED的长,利用三角形面积公式解答即可.【详解】(1)∵AD∥BC,∠A=90°,∠1=∠2,∴∠A=∠B=90°,DE=CE.∵AD =BE , 在Rt △ADE 与Rt △BEC 中AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.又∵AD =3,AB =9,∴BE =AD =3,AE =9﹣3=6.∵∠1=∠2,∴ED =EC =22AE AD +=2263+=35,∴△CDE 的面积=145353522⨯⨯=. 【点睛】 此题主要考查全等三角形的判定与性质的运用,熟练掌握,即可解题.四、压轴题26.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD ⊥ x 轴于D,BE ⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH ∥x 轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD ⊥x 轴于D,BE ⊥x 轴于E,如图1,∵A (﹣2,2)、B (4,4),∴AD =OD =2,BE =OE =4,DE =6,∴S △ABC =S 梯形ABED ﹣S △AOD ﹣S △AOE =12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x 轴,如图2,∵D (0,﹣4),M (4,﹣4),∴DM // x 轴,∴CH // OG // DM,∴∠AOG =∠ACH,∠DEC =∠HCE,∴∠DEC+∠AOG =∠ACB =90°,∴∠DEC =90°﹣55°=35°,∴∠CEF =180°﹣∠DEC =145°;(3)证明:由(2)得∠AOG+∠HEC =∠ACB =90°,而∠HEC+∠CEF =180°,∠NEC+∠CEF =180°,∴∠NEC =∠HEC,∴∠NEF =180°﹣∠NEH =180°﹣2∠HEC,∵∠HEC =90°﹣∠AOG,∴∠NEF =180°﹣2(90°﹣∠AOG )=2∠AOG .【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.27.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题; 【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠,DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.28.(1)y=43x+2;(2)(103,10);(3)存在, P 坐标为(6,6)或(6,7+2)或(6,7).【解析】【分析】(1)设直线DP 解析式为y=kx+b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)当点B 的对应点B′恰好落在AC 边上时,根据勾股定理列方程即可求出此时P 坐标; (3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】解:(1)∵C (6,10),D (0,2),设此时直线DP 解析式为y=kx+b ,把D (0,2),C (6,10)分别代入,得2610b k b =⎧⎨+=⎩, 解得432k b ⎧=⎪⎨⎪=⎩则此时直线DP解析式为y=43x+2;(2)设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′=22OB OA'-=8,∴B′C=10-8=2,∵PC=6-m,∴m2=22+(6-m)2,解得m=10 3则此时点P的坐标是(103,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB-OD=10-2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1228627-=∴AP17P1(6,7);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3228627-∴AP3=AE+EP37,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,7+2)或(6,7).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.29.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC ,∴DB EC AB AC=, ∵AB=AC ,∴DB=EC ,故答案为:=,(2)成立. 理由:由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形,∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM为△ADE中DE边上的高,∴AM=EM=MD,∴AM+BD=CM;故答案为:90°,AM+BD=CM;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE的面积始终保持不变,△ADE与△ADC面积的和达到最大,∴△ADC面积最大,∵在旋转的过程中,AC始终保持不变,∴要△ADC面积最大,∴点D到AC的距离最大,∴DA⊥AC,∴△ADE与△ADC面积的和达到的最大为2+12×AC×AD=5+2=7,故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.30.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90° ∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

徐州市八年级上学期期末学业水平调研数学卷(含答案) 一、选择题1.下列四个图形中,不是轴对称图案的是( )A .B .C .D .2.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .53.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒4.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A .甲的速度保持不变B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人不相遇D .在起跑后第50秒时,乙在甲的前面 5.在3π-3127-7,227-,中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个6.已知一次函数()1y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x >时,有12y y <,那么m 的取值范围是( ) A .0m >B .0m <C .1m >D .1m < 7.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限B .第二象限C .第三象限D .第四象限 8.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.下列二次根式中属于最简二次根式的是( )A .32B .24x yC .y xD .24+x y10.下列各数:4,﹣3.14,227,2π,3无理数有( ) A .1个 B .2个 C .3个 D .4个二、填空题11.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 12.点P (﹣5,12)到原点的距离是_____. 13.如图,直线483y x =-+与x 轴,y 轴分别交于点A 和B ,M 是OB 上的一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式为_____.14.Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,点D 在边AB 上,连接CD .有以下4种说法:①当DC DB =时,BCD ∆一定为等边三角形②当AD CD =时,BCD ∆一定为等边三角形③当ACD ∆是等腰三角形时,BCD ∆一定为等边三角形④当BCD ∆是等腰三角形时,ACD ∆一定为等腰三角形其中错误的是__________.(填写序号即可)15.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.16.化简 2(0,0)3b a b a>≥结果是_______ . 17.3的平方根是_________.18.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.19.如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =4,AB =16,则△ABD 的面积等于_____.20.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.三、解答题21.已知函数y=(2m +1)x+m ﹣3.(1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m 的取值范围. 22.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.23.(131232)36+(2)因式分解:3312x x -(3)计算:2(1)(2)(3)x x x x -+-+(4)计算:2(21)2(1)(1)x x x +-+-24.如图,平面直角坐标系中,直线AB :y =kx +3(k ≠0)交x 轴于点A (4,0),交y 轴正半轴于点B ,过点C (0,2)作y 轴的垂线CD 交AB 于点E ,点P 从E 出发,沿着射线ED 向右运动,设PE =n .(1)求直线AB 的表达式;(2)当△ABP 为等腰三角形时,求n 的值;(3)若以点P 为直角顶点,PB 为直角边在直线CD 的上方作等腰Rt △BPM ,试问随着点P 的运动,点M 是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.25.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于x 轴对称的图形△A 1B 1C 1;②将△A 1B 1C 1向右平移7个单位得到△A 2B 2C 2.(2)△A 2B 2C 2中顶点B 2坐标为 .四、压轴题26.直角三角形ABC 中,∠ACB =90°,直线l 过点C .(1)当AC =BC 时,如图①,分别过点A 、B 作AD ⊥l 于点D ,BE ⊥l 于点E .求证:△ACD ≌△CBE .(2)当AC =8,BC =6时,如图②,点B 与点F 关于直线l 对称,连接BF ,CF ,动点M 从点A 出发,以每秒1个单位长度的速度沿AC 边向终点C 运动,同时动点N 从点F 出发,以每秒3个单位的速度沿F →C →B →C →F 向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒.①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示)②直接写出当△MDC与△CEN全等时t的值.27.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?29.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.30.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为5,记△ABC得面积为5.求证:12S ACS AB;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A 不是轴对称图形,B 、C 、D 都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.2.C解析:C【解析】试题分析:A1,故错误;B<﹣1,故错误;C .﹣1<2,故正确;2,故错误;故选C .【考点】估算无理数的大小.3.A解析:A【解析】【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A .【点睛】 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.4.B解析:B【解析】【分析】A 、由于线段OA 表示甲所跑的路程S (米)与所用时间t (秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B 、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C 、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D 、根据图象知道起跑后50秒时OB 在OA 的上面,由此可以确定乙是否在甲的前面.【详解】解:A 、∵线段OA 表示甲所跑的路程S (米)与所用时间t (秒)之间的函数图象,∴甲的速度是没有变化的,故不选A ;B 、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选B ;C 、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故不选C ;D 、∵起跑后50秒时OB 在OA 的上面,∴乙是在甲的前面,故不选D .故选:B .【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.5.B解析:B【解析】【分析】根据无理数的定义判断即可.【详解】解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.6.D解析:D【解析】【分析】先根据12x x >时,有12y y <判断y 随x 的增大而减小,所以x 的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当12x x >时,有12y y <∴ y 随x 的增大而减小∴m-1<0∴ m <1故选 D.【点睛】此题主要考查了一次函数的图像性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.7.C解析:C【解析】试题分析:根据一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像 8.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P 所在的象限.解答:解:∵点P 的横坐标为正,纵坐标为负,∴点P (2,-3)所在象限为第四象限.故选D .9.D解析:D【解析】【分析】最简二次根式即被开方数不含分母且不含能开得尽方的因数或因式,由此判断即可.【详解】解:AB2CD故选:D.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的概念是解题的关键.10.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题11.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12且>≠a a【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析12.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P (-5,12),∴点P 到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P (-5,12),∴点P 到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13.【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得与的长,BM=,然后设MO=x ,由在Rt△中,,即可得方程,继而求得M 的坐标,然后利用待定系数法 解析:132y x =-+ 【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得'AB 与'OB 的长,BM='B M ,然后设MO=x ,由在Rt △'OMB 中,222OM OB B M ''+=,即可得方程,继而求得M 的坐标,然后利用待定系数法即可求得答案.【详解】令y=0得:x=6,令x=0得y=8,∴点A 的坐标为:(6,0),点B 坐标为:(0,8),∵∠AOB=90°,∴10=,由折叠的性质,得:AB='AB =10,∴OB '=AB '-OA=10-6=4,设MO=x ,则MB=MB '=8-x ,在Rt △OMB '中,222OM OB B M '+=,即2224(8)x x +=-,解得:x=3,∴M(0,3),设直线AM 的解析式为y=km+b ,代入A(6,0),M(0,3)得: 603k b b +=⎧⎨=⎩ 解得:123k b ⎧=-⎪⎨⎪=⎩∴直线AM 的解析式为:132y x =-+ 【点睛】本题考查了折叠的性质,待定系数法,勾股定理,解决本题的关键正确理解题意,熟练掌握折叠的性质,能够由折叠得到相等的角和边,能够利用勾股定理求出直角三角形中未知的边. 14.③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵,,∴,∵,∴为等边三角形∴①正确;②∵,,∴,∵,∴,,∴,∴为等边三角形∴②正确;解析:③【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵DC DB =,∴BCD ∆为等边三角形 ∴①正确;②∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵AD CD =,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形∴②正确;③当DA DC =时∵90ACB ∠=︒,30A ∠=︒,ACD ∆是等腰三角形,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形;当AC AD =时,易得BCD ∆不为等边三角形∴③错误;④∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵BCD ∆是等腰三角形,∴BCD ∆是等边三角形,60DCB ∠=︒∴30ACD ∠=︒,∴ACD ∆为等腰三角形;∴④正确;故答案为:③.【点睛】本题主要考查了等边三角形,等腰三角形的判定及性质,熟练掌握等边三角形、等腰三角形的判定及性质的证明方法是解决本题的关键.15.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=. 【点睛】 本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.17.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:试题解析:∵(2=3,∴3的平方根是故答案为18.6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.19.【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,解析:【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=12×16×4=32.故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键.20.m>2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y随x的增大而减小,再根据2﹣m<0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m>2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y随x的增大而减小,再根据2﹣m<0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:1212x xy y>⎧⎨<⎩﹣﹣或1212x xy y<⎧⎨>⎩﹣﹣,也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.三、解答题21.(1)m=3;(2)m <-12;(3)m≥3 【解析】试题分析:(1)根据待定系数法,只需把原点代入即可求解;(2)直线y=kx+b 中,y 随x 的增大而减小说明k <0;(3)根据图象不经过第四象限,说明图象经过第一、三象限或第一、二、三象限要分情况讨论.(1)把(0,0)代入,得m-3=0,m=3;(2)根据y 随x 的增大而减小说明k <0,即2m+1<0,m <-; (3)若图象经过第一、三象限,得m=3.若图象经过第一、二、三象限,则2m+1>0,m-3>0,解得m >3,综上所述:m≥3.考点:本题考查的是待定系数法求一次函数解析式,一次函数的性质点评:能够熟练运用待定系数法确定待定系数的值,还要熟悉在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.能够根据k ,b 的符号正确判断直线所经过的象限.22.(1)详见解析;(2)2.【解析】【分析】(1)在三角形ABE 与三角形ABC 中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证;(2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即可.【详解】(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,∵AEB ABC ∠=∠,BAE BAC ∠=∠,∴ABE C ∠=∠;(2)解:∵FD BC ,∴ADF C =∠∠,又ABE C ∠=∠,∴ABE ADF ∠=∠,∵AF 平分BAE ∠,∴BAF DAF ∠=∠,在ABE ∆和ADF ∆中,ABE ADF AF AFBAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,∴1082DC AC AD =-=-=.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.(1)6;(2)()()322x x x +-;(3)236x x --;(4)2243x x ++【解析】【分析】(1)根据二次根式乘法法则运算;(2)先提公因式,再套用公式;(3)根据整式乘法法则运算;(4)运用乘法公式运算.【详解】解:(1+=+=6-=6(2)()()()3231234322x x x x x x x -=-=+- (3)2(1)(2)(3)x x x x -+-+=22226x x x x -++-=236x x --(4)2(21)2(1)(1)x x x +-+-=224412(1)x x x ++--=2244122x x x ++-+=2243x x ++【点睛】考核知识点:因式分解,整式乘法.掌握相应法则是关键.24.(1)y =﹣34x +3;(2)n =56或8343;(3)在直线上,理由见解析 【解析】【分析】(1)将点A的坐标代入直线AB:y=kx+3并解得:k=﹣34,即可求解;(2)分AP=BP、AP=AB、AB=BP三种情况,分别求解即可;(3)证明△MHP≌△PCB(AAS),求出点M(n+73,n+103),即可求解.【详解】(1)将点A的坐标代入直线AB:y=kx+3并解得:k=﹣34,故AB的表达式为:y=﹣34x+3;(2)当y=2时,x=43,故点E(43,2),则点P(n+43,2),而点A、B坐标分别为:(4,0)、(0,3),则AP2=(43+n﹣4)2+4;BP2=(n+43)2+1,AB2=25,当AP=BP时,(43+n﹣4)2+4=(n+43)2+1,解得:n=56;当AP=AB时,同理可得:n=8213(不合题意值已舍去);当AB=BP时,同理可得:n=﹣43+26;故n=56或83+21或﹣43+26;(3)在直线上,理由:如图,过点M作MD⊥CD于点H,∵∠BPC+∠PBC=90°,∠BPC+∠MPH=90°,∴∠CPB=∠MPH,BP=PM,∠MHP=∠PCB=90°∴△MHP≌△PCB(AAS),则CP=MH=n+43,BC=1=PH,故点M(n+73,n+103),n+73+1= n+103,故点M在直线y=x+1上.【点睛】此题主要考查了平面直角坐标系中一次函数与全等三角形、等腰三角形的综合应用,熟练掌握,即可解题.25.(1)①详见解析;②详见解析;(2)(1,﹣1).【解析】【分析】(1)①分别作出点A、B、C关于x轴的对称点,再首尾顺次连接即可;②分别作出△A1B1C1的3个顶点向右平移7个单位所得对应点,再首尾顺次连接即可得;(2)由所作图形可得.【详解】(1)①如图所示,△A1B1C1即为所求;②如图所示,△A2B2C2即为所求;(2)由图知,△A2B2C2中顶点B2坐标为(1,﹣1),故答案为:(1,﹣1).【点睛】本题主要考查作图-平移变换和轴对称变换,解题的关键是掌握平移变换和轴对称变换的定义和性质,并据此得出变换后的对应点.四、压轴题26.(1)证明见解析;(2)①CM=8t-,CN=63t-;②t=3.5或5或6.5.【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB,利用AAS定理证明△ACD≌△CBE;(2)①由折叠的性质可得出答案;②动点N沿F→C路径运动,点N沿C→B路径运动,点N沿B→C路径运动,点N沿C→F路径运动四种情况,根据全等三角形的判定定理列式计算.【详解】(1)∵AD ⊥直线l ,BE ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE (AAS );(2)①由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ;故答案为:8-t ;6-3t ;②由折叠的性质可知,∠BCE=∠FCE ,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD ,∴当CM=CN 时,△MDC 与△CEN 全等,当点N 沿F→C 路径运动时,8-t=6-3t ,解得,t=-1(不合题意),当点N 沿C→B 路径运动时,CN=3t-6,则8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC 与△CEN 全等.【点睛】本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.27.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD ⊥ x 轴于D,BE ⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.28.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中, PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇.由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.29.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE , ∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF , ∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC >30°,而没办法判断∠OBC 大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.30.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)过点N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S112=AC•NE,S212=AB•CD,∴12S ACS AB=;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。

相关文档
最新文档