动力气象学第五章.hlw
动力气象学问题讲解汇编

“动力气象学”问题讲解汇编徐文金(南京信息工程大学大气科学学院)本讲稿根据南京信息工程大学“动力气象学”学位考试大纲(以下简称为大纲)要求的内容,以问答形式编写,以便学习者能更好地掌握“动力气象学”中的重要问题和答案。
主要参考书为:动力气象学教程,吕美仲、候志明、周毅编著,气象出版社,2004年。
本讲稿的章节与公式编号与此参考书一致(除第五章外)。
第二章(大纲第一章) 描写大气运动的基本方程组问题2.1 大气运动遵守那些定律?并由这些定律推导出那些基本方程?大气运动遵守流体力学定律。
它包含有牛顿力学定律,质量守恒定律,气体实验定律,能量守恒定律,水汽守恒定律等。
由牛顿力学定律推导出运动方程(有三个分量方程)、由质量守恒定律推导出连续方程、由气体实验定律得到状态方程、由能量守恒定律推导出热力学能量方程、由水汽守恒定律推导出水汽方程。
这些方程基本上都是偏微分方程。
问题 2.2何谓个别变化?何谓局地变化?何谓平流变化?及其它们之间的关系? 表达个别物体或系统的变化称为个别变化,其数学符号为dtd ,也称为全导数。
表达某一固定地点某一物理量变化称为局地变化,其数学符号为t∂∂,也称为偏导数。
表达由空气的水平运动(输送)所引起的局地某物理量的变化称为平流变化,它的数学符号为∇⋅-V 。
例如,用dt dT 表示个别空气微团温度的变化,用tT ∂∂表示局地空气微团温度的变化。
可以证明它们之间有如下的关系 zT w T V dt dT t T ∂∂-∇⋅-=∂∂ (2.4) 式中V 为水平风矢量,W 为垂直速度。
(2.4)式等号右边第二项称为温度的平流变化(率),第三项称为温度的对流变化(率)或称为垂直输送项。
问题 2.3何谓绝对坐标系?何谓相对坐标系?何谓绝对加速度?何谓相对加速度?何谓牵连速度?绝对坐标系也称为惯性坐标系,可以想象成是绝对静止的坐标系。
而相对坐标系则是非惯性坐标系,例如,在地球上人们是以跟随地球一起旋转的坐标系来观测大气运动的,这种旋转的坐标系就是相对坐标系。
《动力气象学》课程辅导资料

《动力气象学》课程辅导资料知识点归纳总结第一章绪论1. 研究地球大气运动时的基本假设连续介质假设:研究大气的宏观运动时,不考虑离散分子的结构,把大气视为连续流体。
从而,表征大气运动状态和热力状态的各种物理量,例如大气运动的速度、气压、密度和温度等可认为是空间和时间的连续函数,并且经常假设这些场变量的各阶微商也是空间和事件的连续函数。
是研究大气运动的基本出发点。
理想气体假设:气压、密度、温度之间的关系满足理想气体状态方程。
2. 地球大气的运动学和热力学特性有哪些?大气是重力场中的旋转流体:大气运动一定是准水平的;静力平衡是大气运动的重要性质之一。
科里奥利力的作用:大尺度运动中科里奥利力作用很重要;中纬度大尺度运动中,科里奥利力与水平气压梯度力基本上相平衡——地转平衡;地球旋转角速度随纬度的变化,与每日天气图上的西风带中的波动有关;起稳定性作用——位能、动能的转换——锋面。
大气是层结流体:大气的密度随高度是改变的——层结稳定度;不稳定层结大气中积云对流;稳定层结大气中重力内波。
大气中含有水份:相变潜热——低纬度扰动和台风的发展。
大气的下边界是不均匀的:湍流性;海陆分布和大气环流。
3. 大气运动的多尺度性大气运动无论在时间尺度还是在水平尺度上都具有很宽的尺度谱,不同尺度系统在性质上有很大差异,对天气的影响也不同,不同尺度运动系统之间还存在相互作用。
而根据流体力学和热力学原理建立起来的大气运动方程组,表征了大气运动普遍规律,从物理上讲,它几乎描述了各种尺度运动和它们之间的相互作用,方程组是高度非线性的,难以求解。
因此,在动力气象中,常对各种运动系统进行尺度分类,利用尺度分析法分析各类运动系统的一般性质,建立各类运动系统的物理模型(第三章)。
第二章描写大气运动的基本方程组1. 作用于大气的力,哪些是真实力,哪些是视示力?真实力:气压梯度力、地球引力、摩擦力,既改变气流的运动方向,也改变速度的大小视示力:科里奥利力、惯性离心力,只改变气流的运动方向,不改变速度的大小2. 描述大气运动的基本方程组和各自遵守的物理原理牛顿第二定律——运动方程质量守恒定律——连续方程理想气体实验定律——状态方程能量守恒定律——热力学能量方程水气质量守恒——水汽质量守恒方程3. 分析流体运动的两种基本方法拉格朗日方法:着眼于微团,研究其空间位置及其他物理属性随时间变化的规律,推广到整个流体运动。
动力气象学第五章

由“涡度”概念引出“涡度方程”——用以 考察涡度随时间的变化,以及引起涡度变化 的原因。涡度方程描述了涡旋运动满足的方 程形式。
二、大尺度大气涡旋运动
1.大涡 尺度度大主气要运是动在是垂准直水方平向运上动,,即所:以
(2) “环流”的定义:
任取定一有向物质环线 l ,定义:
C= V dl l
(1)
(速度矢量沿一闭合路径 l 的线积分)
1)“任取定”——L氏观点:任意选取一物质 环线,此环线上的质点是确定的,环线的形状位 置是变化的。 2)物质环线是闭合的,有方向的,规定逆时针 方向为环线的正向。 3)“环流” 表示流体随闭合环线运动的趋势, 描述了涡旋的强度, 是积分量(总体量—宏观量)。 4)C>0时为正环流(也称气旋式环流),表示 空气有沿环线正方向运动的倾向;C<0时为反环 流(也称反气旋式环流),表示空气有沿环线反 方向运动的倾向。
四、位涡方程
1.位涡(Potential vorticity):
综合动力作用和热力作用的物理量,
与
,有,关 。
位涡方程 :
d dt
(1
a
ln )
1
ln
F
1
a
( Q ) C pT
物理量
1
a
ln
称为位涡
2.位涡方程的推导
从
d dt
(
1
a
ln
)
看:
左边包含三项:
d 连续方程
dt
d 位温方程 热力学方程
1、数学推导
动力气象学

参 考 书 目: 1 、叶笃正,李崇银,大气运动中的适应问题, 科学出版社,1965 2 、 Lorenz ,大气环流的性质和理论,科学出版 社,1976。 3 、 Haltiner, G, Numerical Prediction and Dynamical Meteorology, 1980(有中译本) 4、小仓义光,大气动力学原理,科学出版社, 1980 5 、 Holton , 动 力 气 象 学 引 论 , 科 学 出 版 社 , 1980 6、郭晓岚,大气动力学,江苏科技出版社, 1981
大 气 科 学 学 院 王 文
动 力 气 象 学
教材: 吕美仲等,动力象学,南京大学出版社,1996 2.HOLTON J. R. AN INTRODUCTION TO DYNAMIC METEOROLOGY, Academic Press, Fourth Version, 2004 3.刘式适等,大气动力学(第二版),北京大学出 版社,2011
参 考 书 目: 7、Pedlosky,地球物理流体动力学导论,海洋出 版社,1981 8、伍荣生等,动力气象学,上海科技出版社, 1983。 9、杨大升,刘余滨,刘式适,动力气象学,气 象出版社(修订本),1983 10、栗原宜夫,大气动力学入门,气象出版社, 1984 11、李崇银等,动力气象学概论,气象出版社, 1985 12、Pedlosky, J., Geophysical Fluid Dynamics, Springer-Verlag, 2nd ed, 1987
§1.1 基本假设 连续流体介质假设——质点力学的应用。
大气运动的速度、气压、密度和温度等物理量以及这 些场变量都是时间和空间的连续函数;
理想气体(无凝结); 动力过程和热力过程相互作用; 大气为可压缩连续流体
动力气象学

动力气象学总学时:128(其中自学96,面授24,实习8)教材版本:动力气象学教程(吕美仲、彭永清编著)教学目的和要求:动力气象学是在热力学和流体力学的基础上,系统地讲述大气的热力过程和大气运动的基本规律,并指出这些规律的实践意义的一门专业基础课。
具体地说,它是应用物理学定律研究大气运动的动力过程、热力过程以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气动力过程,因而,它是天气学、数值天气预报及大气环流等专业课程的理论基础。
本课程,通过教学,目的在于使学生能深入地理解大气动力学的基本理论,了解近代动力气象学的主要进展,掌握用动力学方法分析和预报天气的基本原理和技术,从而使学生具有一定的理论水平和科学研究的能力。
为将来从事天气预报的业务及研究工作打下基础。
为达到上述目的,在教学中要求:⑴努力贯彻理论联系实际的原则。
在教学内容和取材上,从现今国内外气象业务部门及科研单位所使用的有代表性的方法和理论为主体,讲课中以讲授基本原理为重点,在讲深讲透基本理论的基础上,让学生进行必要的课堂讨论和作练习,使学生既能掌握基本原理,又能利用基本原理去探讨和解决实际问题。
⑵注重理论的系统性。
本课程是一门理论性较强的课程,在努力贯彻理论联系实际的原则下,要突出本课程的特点,在教学中应该注意有系统、有条理地介绍它的内容,强调各部分内容之间的有机联系,以使学生能掌握得深透。
教学的主要内容及学时分配:总学时:128课时,其中面授24课时,课堂练习8学时,自学96课时。
每章自学10学时,5~10章每章讲授4学时,其余4学时供课堂练习和答疑。
第一章大气运动的基本方程组§1.1全导数和局地导数§1.2旋转参考系中运动方程的矢量形式§1.3质量守恒定律--连续方程§1.4状态方程、热力学方程、水汽方程§1.5球坐标系中基本方程组§1.6局地直角坐标系中基本方程组§1.7闭合运动方程组、初始条件和边界条件第二章尺度分析与基本方程组的简化§2.1尺度概念、大气运动的尺度分类§2.2基本方程组的尺度分析§2.3无量纲方程、动力学参数§2.4 平面近似§2.5静力平衡大气、P坐标系第三章自由大气中平衡流畅§3.1自然坐标系§3.2平衡流场的基本形式与性质§3.3地转风随高度的变化、热成风§3.4地转偏差第四章环流定理、涡度方程和散度方程§4.1环流与环流定理§4.2涡度与涡度矢量方程§4.3泰勒——普劳德曼定理§4.4铅直涡度方程§4.5P坐标系中的涡度方程和散度方程§4.6位势涡度方程第五章大气行星边界层§5.1大气运动的湍流特性和平均运动方程组§5.2大气行星边界层及其特征§5.3属性的湍流输送通量及其参数化§5.4湍流运动发展的判据§5.5近地面层风随高度的分布§5.6埃克曼层风随高度的分布§5.7埃克曼抽吸与旋转减弱第六章大气能量学§6.1大气能量的主要形式§6.2大气能量方程§6.3静力平衡条件下大气中的能量转换§6.4有效位能§6.5大气中动能的消耗§6.6实际大气中的能量循环§6.7能量的转换过程第七章大气中的基本波动§7.1波动的基本概念§7.2微扰动法、基本方程组的线性化§7.3声波和LAMB波§7.4重力外波、重力慣性外波§7.5重力内波、性内波、重力慣性内波§7.6 波§7.7噪音与滤波第八章地转适应过程与准地转演变过程§8.1大尺度运动过程的阶段性§8.2正压大气中的地转适应过程§8.3斜压大气中的地转适应过程§8.4准地转运动的分类§8.5准地转运动方程组§8.6准地转位势倾向方程组与方程§8.7Q矢量、非热成风产生的二级环流的诊断第九章大气运动的稳定性理论§9.1流体动力学稳定性概念§9.2慣性不稳定§9.3开尔文——赫姆霍茨不稳定§9.4正压不稳定§9.5斜压不稳定第十章低纬度热带大气动力学§10.1热带运动系统概述§10.2热带大气运动的尺度分析§10.3热带扰动的生成与发展§10.4台风的结构与发展§10.5热带行星尺度波动。
南京信息工程大学《动力气象学》复习重点(上)

南京信息工程大学《动力气象学》复习重点(上)《动力气象学》复习重点Char1 大气运动的基本方程组1、旋转参考系(1)运动方程 p dt V d ++?-?-=21ρ(2)连续方程 0=??+V dtd ρ ▽·V 为速度散度,代表气团体积的相对膨胀率。
体积增大时,(▽·V>0),密度减小;体积减小时,(▽·V<0),密度增大。
0=??+dtd ρρ ▽·(ρV ) 为质量散度,代表单位时间单位体积内流体质量的流入流出量。
流入时▽·(ρV ) <0,密度增大;流出时▽·(ρV ) >0,密度减小。
(3)热力学能量方程 Q dtd p dt d c v =+ 内能变化率+压缩功率=加热率 Q dtd dt d c p =-α α=1/ρ2、局地直角坐标系(z 坐标系)中的基本方程组111()0ln ,,x y z v p du p fv F dt x dv p fu F dt y dw p g F dt z d u v w dt x y z p RT dT d dT dP d c p Q c a Q Q dt dt dt dt dtρρρρρραθ??=-++=--+=--++++=?????=??+=-==?? 运动方程、连续方程、能量方程是预报方程,状态方程是诊断方程。
3、p 坐标系中的基本方程组-=?Φ?=-??+??+??=??+??+??-?Φ?-=+?Φ?-=p RT pc Q S y T v x T u tT py u x u fu y dtdv fv x dtdu p p ωω04、p 坐标系的优缺点优点:p 坐标系中的运动方程组不再出现密度ρ;连续方程形式简单,与不可压缩流体的连续方程形式相当;由于日常工作采用等压面分析法,用p 坐标系方程组可以方便的进行诊断分析。
缺点:地形起伏的地区p 坐标系很难给出正确的边界条件;对于小尺度运动不满足静力平衡,不能用p 坐标系。
动力气象学第五章-2

z
,V
u
g
综合1,2 z ,V Vg
3、上部摩擦层中湍流粘性力随高度的变化
x、y向的湍流粘性力:
K
d 2u dz 2
;K
d 2v dz 2
复湍流粘性力:
K d 2u iK d 2v K d 2W~ K d 2W~
dz 2
dz 2
dz 2
dz 2
d 2W~ dz 2
i
f K
W~
0
K
d 2W~ dz 2
d 2u dz 2
f K
v
0
d 2u dz 2
i
i
f K
v
0
(1)
d
2
v
dz 2
f K
(u
ug
)
0
i
d 2v dz 2
i
f K
(u
ug
)
0
(2)
d 2W~ dz 2
i
z 0,W~
f (W~ K 0
ug
)
0
z ,W~ ug
令: W~ W~ ug W~ W~g 复地转偏差
d 2W~g
1 fKt
g g0e H 2
e折时间尺度
g g0e1
1 fK 1 H 2
H2
fK
H ~ 104 m; K ~ 10m2s1; f ~ 104 s1
~ 4.5105 S 4天
与天气系统实际消亡时间尺度相近。
表明:这种机制是引起天气系统消 亡的最主要机制。
考察“自由大气” 本身的粘性耗散 对大气旋转减弱的作用
d 2W~ 0
d 2W~
dz 2
dz 2 dz 2
动力气象学概要课件

数值模式是大规模数值计算中用来描述和预测大气系统的软解方案、数据输入和输出等模
块。
数值模式广泛应用于天气预报、气候模拟和环境评估等领域。
03
数值模式的误差和不确定性
数值模式的误差主要来源于模式分辨率、物理过 程参数化和初始条件等方面。
不确定性主要表现在模式输入数据的误差、模式 本身的不完善以及计算误差等方面。
为了减小误差和不确定性,需要不断提高数值模 式的精度和可信度。
数值模式的未来发展和挑战
随着计算机技术的不断发展,数值模式的分辨率和计算能力将得到进一步 提高。
未来数值模式将更加注重物理过程参数化的改进和精细化,以更准确地模 拟和预测大气系统的行为。
同时,随着大数据和人工智能技术的发展,如何利用这些技术提高数值模 式的精度和效率也是未来发展的重要方向。
航空气象服务
提供航空气象预报、机场天气预报、航空气象观测和报 告等服务,保障航空安全。
航海气象服务
提供航海气象预报、海洋气象观测和报告等服务,保障 航海安全。
THANK YOU
感谢各位观看
03
大气的运动和变化
大气的热力和动力学过程
总结词
描述大气中热力和动力学过程对大气的运动和变化的影响。
详细描述
大气的热力和动力学过程是大气运动和变化的主要驱动力。这些过程包括温度 差异引起的对流、风速差异引起的湍流等。这些过程通过能量传递和物质迁移 等方式,影响大气的运动和变化。
大气中的波动和涡旋
动力气象学概要课件
目录
• 动力气象学简介 • 大气的基本结构和特性 • 大气的运动和变化 • 动力气象学的数值模拟和预测 • 动力气象学的应用和实践
01
动力气象学简介
动力气象学复习思考题与习题解题汇编

答:位势高度的量纲是 L2T 2 ;位势高度的本质是重力位势,而不是高度。
15.何谓薄层近似?去薄层近似简化球坐标系中运动方程组应注意什么问题?
答.在球坐标的运动方程中,当 r 处于系数地位时用 a 代替,当 r 处于微商地位时用r z 代
科里奥利力垂直于V ,在北半球指向运动的右侧,在赤道处沿半径向外,在极地其垂直于地
轴向外。 5.惯性离心力是怎样产生的?如果没有地球旋转,此力存在不存在?
答:处在旋转坐标系中产生的;若没有地球旋转,此力不存在。
6.曲率项力怎样产生的?如果没有地球自转,此力存在不存在?
答:由于地球的球面性引起的;若没有地球旋转,此力不存在。
答:重力位势:重力位势 表示移动单位质量空气微团从海平面(Z=0)到 Z 高度,克服重
力所做的功。 重力位能:重力位能可简称为位能。重力场中距海平面 z 高度上单位质量空气微团所具有的 位能为
gz 引进重力位势后, g 等重力位势面(等 面)相垂直,方向为高值等重力位势面指向低等重
力位势面,其大小由等重力位势面的疏密程度来确定。所以,重力位势的空间分布完全刻画 除了重力场的特征。
的线元; n :曲线 C 的外法线法线方向上单位矢量。
(2)斯托克斯定理
V
AdV
n
Ad
S k FdS CF t dl
V adV and
式中 k 是平面 S 的法线方向上单位矢量;t 是曲线 C 的切线方向上单位矢量;其他符号意义
同上。
3.各种坐标系中矢量算子
(1)笛卡尔坐标系 (x、y、z)
答:速度散度 3 V3 代表物质体积元的体积在运动中的相对膨胀率。
动力气象学第五章

d
Cp dt
T
Q
1
h
0
由湍流运动引起净位焓输出,
从而导致平均位焓下降。
5、水汽方程:
q
V
q
s
水汽的源
而不同。
——各层上的动力学特征不同
V 0
按“湍流粘性力的重要性”,在垂 直方向上对大气进行分层:
1、贴地层:高度为几个厘米
附着在地表,风速 V 0 ,无湍流。
湍流粘性力=0,分子粘性力最重要。
2、近地面层:高度为80-100m
湍流运动非常剧烈, 主要以湍流粘性力为主。
3、上部摩擦层(Ekman层): 高度为1-1.5km
4、上部摩擦层中,满足“三力平衡”:
1
p
fk V Fk
0
三力平衡示意图: 风穿越等压线指向低压一侧
从能量平衡角度看:
V (eq.)
1
V
(
p
fk
V
Fk
)
0
1、V
Fk
0
摩擦耗散动能;
32、、VV
只有统计量才有规律 如:大数平均量。
“流点” : 宏观充分小; 微观足够大 包含大量分子 稳定的确定的统计值
流点的速度 ——流点内所有分子的平均运动速度 流点的温度 ——体现流点内所有分子运动的平均动能
地面上自动温度仪记录的温度 日变化曲线:
如果作大数平均——每隔 作一次平均
——单位质量的流团受到的湍流粘 性力在X方向的分量
进一步
《新编动力气象学》习题答案

=
2p f
u02
+
v02
cos(
ft
+
tan -1
u0 v0
)
8
15
(1) u = u0 cos ft + v0 sin ft, v = v0 cos ft - u0 sin ft (2) V = u2 + v2 (3) (x - a)2 + ( y - b)2 = u02 + v02
f (4) r = u02 + v02 = 68568(m)
10
(1) u = -2x, v = 2 y , w = 2zt 1+t 1+t
(2) 不是 (3)ìíîzx=y1=1
ìx = e-2t (4)ïí y = (1+ t)2
ïîz = e2t (1+ t)-2
11
3
(1) 不存在势函数,存在流函数y= 1 y2 - y + tx 2
ì ïx ï
ur
ur ur
(2) Ñ ´V a = Ñ ´V + 2W
10 d ( rv ) = 0 dt rd
11
(1) w0 = 0.2(m × s-1) , 爬坡 (2) ¶p = 0.0501(N × m-2 × s-1) = 5.5(hPa / 3hr)
¶t (3) w = -0.731´10-2 (m × s-1),下坡
¶t
+
u
¶v ¶x
+
v
¶v ¶y
=
-
1 r
¶p ¶y
ï ï-(u î
¶w ¶x
+
v
¶w ) ¶y
动力气象学总复习

动力气象学总复习第一章绪论掌握动力气象学的性质,研究对象,研究内容以及基本假定动力气象学(性质)是由流体力学中分离出来(分支),是大气科学中一个独立的分支学科。
动力气象学定义:是应用物理学定律研究大气运动的动力过程、热力过程,以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气运动过程学科。
动力气象学研究对象:发生在旋转地球上并且密度随高度递减的空气流体运动的特殊规律。
动力气象学研究内容:根据地球大气的特点研究地球大气中各种运动的基本原理以及主要热力学和动力学过程。
主要研究内容有大气运动的基本方程、风场、气压坐标、环流与涡度、风与气压场的关系、大气中的波动、大气边界层、大气不稳定等等。
一、基本假设:大气视为“连续流体”,表征大气运动状态和热力状态的各种物理量(U, V, P, T, et al.) 看成是随时间和空间变化的连续函数;大气宏观运动时,可视为“理想气体”,气压、密度和温度之间满足理想其他的状态方程,大气是可“压缩流体”,动力过程和热力过程相互影响和相互制约;二、地球大气的动力学和热力学特性大气是“旋转流体”:90%的大气质量集中在10km以下的对流层;水平U, V远大于w(满足静力平衡);Ω =7.29⨯10-5rad/s,中纬度大尺度满足地转平衡(科氏力与水平气压梯度力相当)。
大气是“层结流体”:大气密度随高度变化,阿基米德净力使不稳定层结大气中积云对流发展;阿基米德净力使稳定层结大气中产生重力内波。
大气中含有水份:水份的相变过程使大气得到(失去)热量。
大气下垫面的不均匀性:海陆分布和大地形的影响。
大气运动的多尺度性:(见尺度分析)第二章大气运动方程组控制大气运动的基本规律有质量守恒、动量守恒、能量守恒等等。
支配其运动状态和热力学状态的基本定律有:牛顿第二定律、质量守恒定律、热力学第一定律和状态方程等等。
本章要点:旋转坐标系;惯性离心力和科氏力;全导数和局地导数;预报和诊断方程;运动方程、连续方程;状态方程、热力学方程及其讨论;局地直角坐标系。
《动力气象学》课程辅导资料

《动⼒⽓象学》课程辅导资料《动⼒⽓象学》课程辅导资料知识点归纳总结第⼀章绪论1. 研究地球⼤⽓运动时的基本假设连续介质假设:研究⼤⽓的宏观运动时,不考虑离散分⼦的结构,把⼤⽓视为连续流体。
从⽽,表征⼤⽓运动状态和热⼒状态的各种物理量,例如⼤⽓运动的速度、⽓压、密度和温度等可认为是空间和时间的连续函数,并且经常假设这些场变量的各阶微商也是空间和事件的连续函数。
是研究⼤⽓运动的基本出发点。
理想⽓体假设:⽓压、密度、温度之间的关系满⾜理想⽓体状态⽅程。
2. 地球⼤⽓的运动学和热⼒学特性有哪些?⼤⽓是重⼒场中的旋转流体:⼤⽓运动⼀定是准⽔平的;静⼒平衡是⼤⽓运动的重要性质之⼀。
科⾥奥利⼒的作⽤:⼤尺度运动中科⾥奥利⼒作⽤很重要;中纬度⼤尺度运动中,科⾥奥利⼒与⽔平⽓压梯度⼒基本上相平衡——地转平衡;地球旋转⾓速度随纬度的变化,与每⽇天⽓图上的西风带中的波动有关;起稳定性作⽤——位能、动能的转换——锋⾯。
⼤⽓是层结流体:⼤⽓的密度随⾼度是改变的——层结稳定度;不稳定层结⼤⽓中积云对流;稳定层结⼤⽓中重⼒内波。
⼤⽓中含有⽔份:相变潜热——低纬度扰动和台风的发展。
⼤⽓的下边界是不均匀的:湍流性;海陆分布和⼤⽓环流。
3. ⼤⽓运动的多尺度性⼤⽓运动⽆论在时间尺度还是在⽔平尺度上都具有很宽的尺度谱,不同尺度系统在性质上有很⼤差异,对天⽓的影响也不同,不同尺度运动系统之间还存在相互作⽤。
⽽根据流体⼒学和热⼒学原理建⽴起来的⼤⽓运动⽅程组,表征了⼤⽓运动普遍规律,从物理上讲,它⼏乎描述了各种尺度运动和它们之间的相互作⽤,⽅程组是⾼度⾮线性的,难以求解。
因此,在动⼒⽓象中,常对各种运动系统进⾏尺度分类,利⽤尺度分析法分析各类运动系统的⼀般性质,建⽴各类运动系统的物理模型(第三章)。
第⼆章描写⼤⽓运动的基本⽅程组1. 作⽤于⼤⽓的⼒,哪些是真实⼒,哪些是视⽰⼒?真实⼒:⽓压梯度⼒、地球引⼒、摩擦⼒,既改变⽓流的运动⽅向,也改变速度的⼤⼩视⽰⼒:科⾥奥利⼒、惯性离⼼⼒,只改变⽓流的运动⽅向,不改变速度的⼤⼩2. 描述⼤⽓运动的基本⽅程组和各⾃遵守的物理原理⽜顿第⼆定律——运动⽅程质量守恒定律——连续⽅程理想⽓体实验定律——状态⽅程能量守恒定律——热⼒学能量⽅程⽔⽓质量守恒——⽔汽质量守恒⽅程3. 分析流体运动的两种基本⽅法拉格朗⽇⽅法:着眼于微团,研究其空间位置及其他物理属性随时间变化的规律,推⼴到整个流体运动。
动力气象学 大气中的波动(5.3)--习题答案

D ≈ 10km
可得
kmax
1.34 ×10−6 m−1 .
此时的波长 L = 2π 4700km kmax
在北纬 45 度处,纬圈长度为 28000km
则沿北纬 45 度附近纬圈约有:
28000km / 4700km 6 个长波
将U * 代入急流正压不稳定的必要条件中
可得:
dζ
* a
= β * + sec hy*(2 sec h2 y*
− 1)
dy*
= 令 f ( y*) sec hy*(2 sec h2 y* −1)
求得 f ( y*) 的极大和极小值
其中
f ( y* )极大 =2
f
(
y*
)极小
=-
2 3
要使得
dζ
* a
L = ND / f0 为 Rossby 变形半径,λ 为切变常数。对典型中纬度大气,可取 D ≈ 10km ,
N ≈ 1.2 ×10−2 s−1 , f0 ≈ 1.0 ×10−4 s−1 , λ ≈ 2.5×10−3 s−1 。
(1) 试依据此估算中纬度大气最大斜压不稳定增长率,以及扰动 e 指数倍增长所需 时间(e 折倍时间尺度)。
北纬 45 度,此处 β0 ≈ 1.61×10−11m−1s−1 。问此带状波扰动是否稳定?
解:由题可知,判断正压不稳定的条件为:
β-
∂2u ∂y 2
|y= yc
=
yc∈( y1 , y2 )
0
其中 y1, y2 之间为急流的宽度,若在 y1, y2 之间存在一点 yc ,使得判断条件
为零,则有可能出现扰动不稳定。
解:设= ∇2ψ B cos k(x −Ut)
动力气象学教材笔记

动力气象学教材笔记第一章引言1.1 研究背景与目的动力气象学,作为气象科学领域的一个重要分支,专注于探索大气运动的基本规律以及这些规律如何与天气和气候变化相互联系。
在全球气候变化日益严峻的背景下,动力气象学的研究不仅具有深远的科学意义,更对实际应用领域,如天气预报和气候预测,具有不可替代的指导价值。
随着全球气候变暖趋势的加剧,极端天气事件频繁发生,给人类社会和经济发展带来了巨大挑战。
这些极端天气事件背后的大气动力过程复杂多变,亟需通过深入的动力气象学研究来揭示其内在机制。
此外,提高天气预报和气候预测的准确性也离不开对动力气象学基本理论的深入理解和应用。
因此,本文旨在系统梳理和总结动力气象学的核心理论,以期为更好地理解和预测大气运动提供坚实的理论基础。
在动力气象学的研究中,大气运动的基本规律是核心内容。
这些规律包括了大气中的能量守恒、动量守恒、质量守恒等基本物理定律,以及由此衍生出的一系列重要理论,如大气动力学方程、大气稳定性理论等。
这些理论和规律为我们理解和解释大气中的各种现象提供了有力的工具。
例如,通过对大气动力学方程的研究,我们可以了解大气中能量的转换和传递过程,从而揭示出风暴、气旋等天气系统的发展演变机制。
动力气象学还关注大气运动与天气、气候变化的内在联系。
天气和气候是大气运动在不同时间和空间尺度上的表现,二者之间存在着密切的相互作用和反馈机制。
动力气象学通过研究这些相互作用和反馈机制,不仅有助于我们更全面地认识大气系统的复杂性,还能为改进天气预报和气候预测模型提供科学依据。
例如,近年来发展起来的基于动力气象学原理的数值天气预报模型,已经在实际应用中取得了显著的成效,大大提高了天气预报的准确性和时效性。
动力气象学的研究还涉及大气与地球其他圈层(如水圈、生物圈、岩石圈)的相互作用。
这些相互作用对全球气候系统的稳定和发展具有重要影响。
例如,海洋与大气之间的热量和水分交换是影响全球气候的重要因素之一;而地表植被的变化则可能通过改变地表的反射率和粗糙度来影响大气的温度和风速等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大气中四类基本波动: 大气长波,声波,重力波,惯性波
(∵没有电磁学方程,∴不能不包含电磁波、光波)
各种波动的形成机制、性质及对天气产生的影响有所不同, 因此,在进行大气波动学分析时,不可能把所有波动类型都考 虑进去。
大气声波波速约330 m/s,所产生的气压扰动的振幅只有约0.1hPa,声波对天气 几乎没有影响;旋转大气中的重力内波主要与中尺度飑线、山地背风波、晴空 湍流等有关,对地转平衡的建立和维持做贡献;大气长波传播速度10 m/s左右, 气压扰动可达20 hPa以上,大气长波(Rossby波)与大范围天气的演变有关。
在数值预报中滤波很重要:
u f (t) 差分 u f (t)
t
t
utt ut f (t) t
即用有限元(t)代替无限元(t 0), u u t t
时间步长t 0时,误差 0,由于计算机资源限制,
t不能取太小
u
u
t
t
∆t
∆t
如果取时间步长为10分钟,对于时间尺度为105s的天 气尺度波动来说,误差较小。而对于像声波等快波 来说,误差就很大(随机的),且是累积的。
大气运动=纬向平均运动+涡旋运动 =大气环流+天气系统
2011年 7月15日 500 hPa北半球位势高度场及其纬向偏 差(单位:10gpm)
水面波
以直观的天气学和物理学图像作为基础,在气 象学中引入“波动”概念,并用数学方式进行理论 探讨和完善→大气波动理论→大气波动学
(感性认识→理论完善)
波动学的优点: 1、可以利用成熟的波动学理论对天气系统形
若质点振动方向与波的传播方向垂直,此种波 动称为横波。
3、波动的数学表示
实际大气扰动不是单纯的简谐波,可以看成是 各种不同波长、不同振幅(强度)的简谐波的叠加。
各简谐波之间位相会有差异,因而出现振幅相抵 消或叠加的现象。
数学上,任一周期函数都可以用傅立叶级数展开来 表达。
某物理量的波在纬圈上展开成傅立叶级数:
i ( k1 k2 x 1 2 t )
i ( k1 k2 x 1 2 t )
i ( k2 k1 x 2 1 t )
Ae 2
2 [e 2
2 e 2
2]
ei ei cos i sin cos i sin
2 cos
令:k
k1
2
k2
,
1
2
2
; k
k2
k1,
2
1
则:S 2 A cos( k x t)ei(kxt)
如何在方程组中就进行滤波? 例如:声波是由于大气可压缩性引起的。 假设大气是不可压的就可以滤去声波,但对天 气波动影响不大。
研究天气波动的机制、性质——理解天气变化的 规律和机理。 研究次要波动的机制和性质——滤波。 所以,只要是基本方程包含的波动,都必须研究。
本章内容
§1 波动的基本概念 §2 波群与群速度 §3 微扰动线性化方法 §4 声波 §5 重力外波和重力惯性外波 §6 重力内波 §7 大气长波 §8 “噪音”与滤波
S(x,t) Sm
m
m=1,2,3…
Sm Bm cos km (x cmt) Dm sin km (x cmt)
Am cos[km (x cmt) m ] 第m个谐波
已知S (x, t),可以得到各Bm、Dm或者Am。
m:纬向波数目,一个纬圈上波的个数(整数)
m=1,2,3…
m——纬向波数目(整数)
Acos[kx (t T ) ] Acos(kx t )
上式成立的条件:T 2
iii)圆频率ω:
T 2
2 T 2 时间内质点完成全振动的次数。
iv)波长L:相邻两个同位相点之间的距离
Acos[k(x L) t ] Acos(kx t )
z
L
L 2
k
x
o
v)波数k:2π距离内包含了多少个波长
波动的机制包括振荡机制和传播机制,二者缺一不可。
①振荡引起的机制(回复机制): 机械学中的观点:回复力。
如
大
气
层
结
稳 不
定 稳
: 定
净 :
浮 净
力 浮
与 力
位 与
移 位
方 移
向 方
相 向
反 相
, 同
可 。
以
产
生
振
荡
;
②传播机制:质点与质点之间的联系。
波动的最大特点:周期性 ——时间上周期变化;空间上周期分布 ——有规律、重复发生 ——可预测
例1 气旋增强: 涡度增加~涡旋动力学; K’增加~能量学; 槽加深~波动学。
例2 系统移动:
槽脊东移~波动学;
如果
气旋前:
t
气旋后:
t
0,即 0,即
气旋东移~涡旋动力学。
目前波动学是主流理论。
波动学目的: 通过大气运动方程组,利用波动学理论
讨论天气系统的形成、发生发展及移动的机理。 存在问题:
S ( x, t ) S i S m
i
可见:四个脊四个槽, 所以,四波最强
如果考虑“线性波动的传播问题”时候, 可以近似把波动考虑为简谐波形式解。
如果是线性波动,波动方程为:
LS (x,t) 0, L为线性算子,则有:
L Sm 0 LSm 0
m
m
LSm 0
取波动形式解为——简谐波解 1某个简谐波最具有代表性 2每个简谐波都满足原方程,都具有相同性质解
波长L=l/m,a地球半径,φ纬 度
纬向波数目 纬向波数
m
l L
2 R
L
2
a cos L
2 2 2 m m
km
L
l/m
l
a cos
实际扰动虽然是许多简谐波组成,但往往只有几个 谐波分量是主要的,其频率、振幅虽然不同,但动 力学性质往往一样。因此如果想得到定性的结果, 分析一个典型的谐波分量就足够了。
2、波动的数学模型、波参数
简谐振动:回复力大小与位移成正比,方向与位移 相反。
设质量为M,回复力大小为-ky,k为比例系数。
根据牛顿第二定律:
M d 2 y ky d 2 y k y
dt 2
dt2 M
令
k M
=
2,则:d 2 dt
y
2
+2 y=0
简谐振动方程
简谐振动方程的解为: y c1 sint c2 cost Acos(t )
和圆频率。即:
k
k1
k2 2
k1
k2,
1
2
2
1
2
载波的波速也接近于各个单波的波速,即:
c 1 2
k k1 k2
振幅:A(x,t) 2 A cos( k x t)
22
称为低频包络,它是载波的包络线,是载波最大振幅 点的连线,又称波包迹。
波包迹随时空是周期变化的,且传播的。
波包迹的传播速度:C g
讨论线性波动的传播问题:
S Acos(kx t)
或S Aei(kxt)
S Re Aei(kxt)
ei cos i sin
简谐波的复数形式(略去实部符号Re)
振幅A为常量,不随时空变化,没有办法讨论波 的强度变化,同样无法讨论频率、波数的时空变化。
对于非线性波动——波-波相互作用的讨论使用别 的方法。
4、二维、三维平面波
一维波动(位相只随x变化),波动在x方向上传播。
S ( x , t ) A e i A e i ( kx t ) kx t k(x ct)
★一维波动
一维运动
一维运动:
u 0, v w 0, 0 y z
一维波动: 0, v / w可 以 不 等 于0
第五章 大气中的基本波动 Atmospheric Oscillations
2000年 ?1?月 5?0?0 hPa
北半球位势高度场 (单位:10gpm)和温
度场 (单位:℃)
天气图上可见:高度场、温度场基本呈波状分布。 因此,似乎可用物理学中研究波动现象的方法来讨论 大气运动。
注意:在高空天气图上看到的是气流的流型,并非是 波动。但西风气流大幅度的弯曲流动折射出大 气长波的存在。
K r t 波矢K ,等位相面的法线方向
波速C的方向
c
s t
, cpx
x t
c cpx
典型波动:
一维波动:渠道波 二维波动:湖里水面波 三维波动:声波、电视塔发射的球面波
单个简谐波解(单波解):
S Aei
kx ly nz t 三维波动 kx ly t 二维波动
声波
弹性振动(大气的可压缩性)
快波
惯性波
惯性振荡(旋转性)+辐合辐散
高频波
重力内波 浮力振荡(层结性)+辐合辐散
高频波
重力外波 辐合辐散
快波
Rossby波 β效应
慢波
重 次
要 要
: :
大 如
气 声
长 波
波 等
谐音: 噪音:
要保留的; 要去 掉的 。
滤
波
滤波的目的:去除次要波动的干扰,讨论主要波动。
成机理、发生发展和移动进行研究。 2、由于槽脊的移动是等位相线的运动,即波
的移动,所以,槽脊的移速=相速=波速。 3、波动学把气旋(低压)、反气旋(高压)
系统联系起来。
波动学与涡旋动力学、大气能量学: ∆ 讨论的对象、内容、目的相同; ∆ 角度和理论不同,可以互相补充。 学习中应该将它们联系起来思考。
k 2
L
vi)位相θ: 波在x轴上各点各时刻的位置,α为初位相;