第6章 边界层流动.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边 界 层 流 动
6.1 边界层基本概念
边界层位移厚度也称边界层排挤厚度。在边界层 内,流速受到壁面的阻滞作用而减小,使通过边界层 内的流量比理想流动时减少,这相当于固体壁面沿其 法线方向朝流场内移动了一个距离d1后理想流动所通 过的流量,这个d1就是边界层位移厚度,如图6-3所 示。根据位移厚度d1的定义,对不可压流动有
微 分 方 程 及 其 精 确 解
6.2ቤተ መጻሕፍቲ ባይዱ二维平面边界层流动
微分方程的精确解 应用边界层微分方程解决粘性流动问题的一个最 简单的例子,是流体绕顺流放置平板的层流边界层流 动,即均匀来流绕过沿平行于流动方向放置的一块薄 平板(其厚度假设为零)并在平板一侧附近所产生的流 动。
微 分 方 程 及 其 精 确 解
微 分 方 程 及 其 精 确 解
边 界 层 各 特 征 厚 度
即
图6-3 边界层位移厚度
6.1 边界层基本概念
边界层动量厚度 与理想流动相比,边界层内流 速降低一方面使通过的流体质量减少,另一方面也使 通过的流体动量减少。这种动量减小也可以看成是相 当于将固体壁面向流场内移动了一个距离d2:
边 界 层 各 特 征 厚 度
即 称d2为动量损失厚度,简称动量厚度。边界层的 位移厚度与动量厚度之比称为边界层形状因子: H = d1/d2。
6.2.1 微分方程及其精确解 微分方程 在直角坐标系,定常、不可压、不计重 力的二维流动N-S方程为
边 界 层 流 动
6.2 二维平面边界层流动
根据小粘度二维平面边界层流动的特点——d << L 以及uy<< ux——对 N-S方程中各变量和参数作数量级估 计,有 量级1的量: 量级e 2的量:
边 界 层 流 动
图6-1 翼型绕流
6.1 边界层基本概念
6.1.1 边界层流态 边界层流动可以是层流或湍流。实际中更一般地是 混合边界层,即边界层前缘为层流,经过一过渡区(称为 转捩区)后转变为湍流;在湍流区,紧挨物面附近还有一 层流底层。图6-2所示为一均匀来流绕过平板一侧所形成 的边界层流动。
边 界 层 流 动
图6-2 平板边界层流动
6.1 边界层基本概念
在湍流区,若平板表面粗糙度D大于层流底层的厚 度dl,则称之为粗糙(表面)平板;否则称为光滑(表面)平 板。当层流区的范围很小时,可近似地把整个边界层看 成为湍流边界层。 为了便于判断边界层的流态,通常假定由层流到湍 流的转捩是在某一截面突变完成的,并称此截面为临界 截面,它离边界层前缘的距离称为临界长度x*,临界截 面边界层的厚度称为临界厚度d*。(图6-2) 边界层流态用临界雷诺数Re*来判断, Re*有两种形 式:Rex* = U∞x*/u和 Red* = U∞d*/u,对于平板绕流,Rex* = 5105 ~ 3106,Red* 2800。
微 分 方 程 及 其 精 确 解
dx, dx2; ux, dux, d2ux; p, dp; r dy2; u
量级e << 1的量:dy; uy, duy, d2uy
依照以上量级对N-S方程进行简化分析,可得
6.2 二维平面边界层流动
以上就是二维平面边界层流动的微分方程,由普 朗特在1904年首次提出。虽然普朗特边界层微分方程 相对N-S方程大为简化,但仍然是非线性的,只能对 特殊情况下的某些层流边界层求得精确解。 求解边界层微分方程时,首先要得到边界层外部 势流的速度,使压强p成为已知量,这样未知量只有 ux和uy,由边界层微分方程x分式和连续方程一起构成 封闭的求解系。 注意:普朗特边界层微分方程不适用于d /x << 1条件 得不到满足的边界层前缘部分,该部分对应的雷诺数 范围一般为Rex ≤ 25。
第 6 章 边界层流动
6.1 边界层基本概念 6.1.1 边界层流态 6.1.2 边界层各特征厚度 6.2 二维平面边界层流动 6.3 二维曲面边界层流动 6.4 二维圆柱滑动轴承润滑 6.5 圆柱和圆球绕流阻力
6.1 边界层基本概念
实际流体绕任何形状物体的大雷诺数流动都会在 物面附近形成边界层。图6-1所示为空气绕某一翼型的 流动,整个流场可分为边界层、边界层脱离翼型物面 以后形成的尾流、以及边界层和尾流以外的势流。
6.1 边界层基本概念
边界层能量厚度即边界层能量损失厚度。与理想流体 的流动相比,边界层内流速的降低还使流体的动能通量减 少。类似于动量厚度,可以定义不可压流动的边界层能量 厚度d3:
边 界 层 各 特 征 厚 度
即
以上定义式表示边界层实际的流量具有的理想流 动动能与实际流动动能之差。容易证明,在边界 层任一截面,恒有:d > d1> d3 > d2。
图6-4 平板层流边界层
6.2 二维平面边界层流动
微分方程的精确解 如图6-4所示,取平板前缘为直角坐标系的原点,则 平板前方未受扰动的均匀来流速度U∞与平板平行。由伯努 利方程知,在绕平板流动的势流部分,U = U∞、dp/dx = 0; 而由边界层微分方程知,在边界层中压强沿y方向是均匀 分布的,即边界层内任一点处的压强都与同x坐标处边界 层外势流的压强相等。
第 6 章 边界层流动
6.1 边界层基本概念 6.2 二维平面边界层流动 6.2.1 微分方程及其精确解 6.2.2 积分方程及其近似解 6.3 二维曲面边界层流动 6.4 二维圆柱滑动轴承润滑 6.5 圆柱和圆球绕流阻力
6.2 二维平面边界层流动
二维平面不可压边界层流动是最简单的一类粘性流 动,即便如此也只有极少数情况能通过边界层微分方程 求得精确解,大多数情况只能通过边界层积分方程求近 似解。
边 界 层 流 态
6.1 边界层基本概念
6.1.2 边界层各特征厚度 边界层厚度 边界层理论将大雷诺数流动的流 场分为粘性区和无粘区两部分,分别称为边界层和 主流区,它们的交界面称为边界层(外)边界,并人 为地规定边界层边界上流速为主流区的99%(或 99.5%), 边界层边界到物面的距离称为边界层厚度d, 用数学式表示即有 边界层未脱离物面的情况下,边界层厚度沿流 程是增加的,即在迎流的前缘点为零,然后沿流动 方向逐渐增加,到送流的后缘点达到最大。