全等三角形证明题集锦(一)解析
三角形全等的判定证明题-(含答案)
三角形全等的判定一、(SSS)1.如图,AD=AC ,BD=BC ,QA 求证:△ABC≌△ABD .证明:在△ABC 和ABD 中,⎩⎨⎧ AD =ACBD =BCAB =AB ,∴△ABC≌△ABD(SSS )2.如图,AB=AD ,CB=CD ,求证:△ABC≌△AD C .证明:∵在△ABC 和△ADC 中⎩⎨⎧ AB =ADBC =CDAC =AC,∴△ABC≌△ADC(SSS ).3.如图,A 、D 、B 、E 在同一直线上,AC=EF ,AD=BE ,BC=DF ,求证:∠C=∠F.证明:∵AD=BE∴AD+DB=BE+DB,即:AB=DE ,在△ABC 和△DEF 中,⎩⎨⎧ AC =EFAB =DEBC =DF ,∴△ABC≌△DEF(SSS ),∴∠C=∠F.4.如图,已知线段AB 、CD 相交于点O,AD 、CB 的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.解:连结OE 在△EAC 和△EBC 中OA OC EA EC OE OE ⎧⎪⎨⎪⎩===(已知)(已知)(公共边)∴△EAC ≌△EBC (SSS )∴∠A =∠C (全等三角形的对应角相等)二、(SAS )5.已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .6.如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB ,∴∠DCA+∠ACE=∠BCE+∠ACE ,∴∠DCE=∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB (SAS )∴DE=AB .7. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .8. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB(SAS)∴DE=AB.三、(ASA)(AAS)9.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.证明:∵FB=CE,∴BC=EF.∵AB∥ED,∴∠B=∠E∵AC∥EF,∴∠ACB=∠DFE.在△ABC和△DEF中{∠B=∠EBC=EF∠ACB=∠DFE∴△ABC≌△DEF(ASA).∴AC=DF.10. 如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,AE∥DF,AB=CD,求证:CE=BF。
全等三角形判定经典
11.2三角形全等的判定ABC DEF(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。
表示方法:如图所示,在△ABC 和△DEF 中,AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS )。
例1. 如图所示,AB =CD ,AC =DB 。
求证:△ABC ≌△DCB 。
A BCD分析:由已知可得AB =CD ,AC =DB ,又因为BC 是两个三角形的公共边,所以根据SSS 可得出△ABC ≌△DCB 。
证明:在△ABC 和△DCB 中,∵⎩⎨⎧AB =CD AC =DB BC =CB,∴△ABC ≌△DCB (SSS )评析:证明格式:①点明要证明的两个三角形;②列举两个三角形全等的条件(注意写在前面的三角形,条件也放在前面),用大括号括起来;③条件按照“SSS ”顺序排序;④得出结论,并把判断的依据注在后面。
“ASA ”。
表示方法:如图所示,在△ABC 和△DEF 中,B E BC EF C F∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )。
例2. 如图所示,AB ∥CD ,AF ∥DE ,BE =CF ,求证:AB =CD 。
ABEFCD分析:要证明AB =CD ,由于AB 、CD 分别是△ABF 和△DCE 的边,可尝试证明△ABF ≌△DCE ,由已知易证:∠B =∠C ,∠AFB =∠DEC ,下面只需证明有一边对应相等即可。
事实上,由BE =CF 可证得BF =CE ,由ASA 即可证明两三角形全等。
证明:∵AB ∥CD ,∴∠B =∠C (两直线平行,内错角相等) 又∵AF ∥DE ,∴∠AFC =∠DEB (同上) ∴∠AFB =∠CED (等角的补角相等)又∵BE =CF ,∴BE -EF =CF -EF ,即BF =CE 在△ABF 和△DCE 中,()()()B C BF CE AFB CED ∠=∠⎧⎪=⎨⎪∠=∠⎩已证已证已证∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等)角边”或“AAS ”。
全等三角形经典题型50题[含答案解析]
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2ADBC证明:连接BF 和EF 。
因为BC=ED,CF=DF,∠BCF=∠EDF。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF。
又因为 ∠ABC=∠AED。
所以 ∠ABE=∠AEB。
所以 AB=AE 。
在三角形ABF和三角形AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。
所以 三角形ABF 和三角形AEF 全等。
所以∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE ∴⊿ADC≌⊿GDE(AAS)BACDF2 1 E∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB∵AC=AB+BDAC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF所以∠B =∠CFE因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD所以∠DAC=∠FAC又因为AC =AC所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =CDB AAD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
全等三角形证明题及答案15道
证明:∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD,
即:∠EAD=∠BAC,
在△EAD和△BAC中
∠B=∠E AB=AE
∠BAC=∠EAD ,
∴△ABC≌△AED(ASA),
∴BC=ED.
全等三角形的判定与性质.
如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF, AE=CF,BE=DF.求证:△ADE≌△CBF.
∴△BCF≌△CBD(ASA). 全等三角形的判定.
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,BE=CF. 求证:AD是△ABC的角平分线.
证明:∵DE⊥AB,DF⊥AC, ∴Rt△BDE=Rt△DCF=90°. BD=DC BE=CF , ∴Rt△BDE≌Rt△DCF(HL), ∴DE=DF, 又∵DE⊥AB,DF⊥AC, ∴AD是角平分线.
直角三角形全等的判定
如图,△ABC中,∠ABC=∠BAC=45°,点 P在AB上,AD⊥CP,BE⊥CP,垂足分别为D, E,已知DC=2,求BE的长.
∵∠ABC=∠BAC=45° ∴∠ACB=90°,AC=BC ∵∠DAC+∠ACD=90°,∠BCE+∠ACD=90° ∴∠DAC=∠BCE 又∵∠ADC=∠CEB ∴△ACD≌△CEB ∴BE=CD=2.
:∵AC平分∠BAD, ∴∠BAC=∠DAC, 在△ABC和△ADC 中, AB=AD ∠BAC=∠DAC AC=AC , ∴Fra bibliotekABC≌△ADC.
全等三角形的判定.
9.如图,已知点E,C在线段BF上,BE=CF, AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.
全等三角形证明中考题精选[有答案解析]
全等三角形证明中考题精选[有答案解析]七年级数学下---全等三角形证明题1如图,已知人。
是厶ABC勺中线,分别过点B、C作BEL AD于点E,CF丄AD交AD的延长线于点F,求证:BE=CF2•如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中/(1)操作发现:如图2,固定△ ABC使厶DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_____________②设△ BDC的面积为$,△ AEC的面积为S,则(2)猜想论证S与S2的数量关系是 _____________当厶DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S与S2的数量关系仍然成立,并尝试分别作出了△BDC ffiA AEC中BC CE边上的高,请你证明小明的猜想.(3)拓展探究已知/ABC=60,点D是角平分线上一点,BD=CD=, DE// AB交BC于点E (如图4).若在射线BA 上存在点F,使S A DC=S BDE,请直接写出相应的BF的长.3.如图,把一个直角三角形ACB(/ACB=90 )绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F, G分别是BD BE上的点,BF=BG延长CF与DG交于点H. (1)求证:CF=DG (2)求出/ FHG勺度数.全等三角形证明中考题精选[有答案解析]4•如图所示,在△ ABC 中,D E 分别是AB AC 上的点,DE// BQ 如图①,然后将厶ADE 绕A 点顺 时针旋转一定角度,得到图②,然后将 BD CE 分别延长至M N,使DM=BD EN=CE 得到图③, 请解答下列问题:(1)若AB=AC 请探究下列数量关系:① 在图②中,BD 与CE的数量关系是_ _ ;② 在图③中,猜想AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,并证明你的猜想;(2)若AB=I?AC( k > 1),按上述操作方法,得到图④,请继续探究: AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,直接写出你的猜想,不必证明.4. (1)如图,在△ ABC ffiA ADE 中, AB 二AC AD=AE Z BAC K DAE=90 .① 当点D 在AC 上时,如图1,线段BD CE 有怎样的数量关系和位置关系? 直接写出你猜想的结论;② 将图1中的△ ADE 绕点A 顺时针旋转口角(O °VaV 90°),如图2,线段BD CE 有怎样的数量 关系和位置关系?请说明理由.(2)当厶ABC^P ^ADE 满足下面甲、乙、丙中的哪个条件时,使线段 BD CE 在(1)中的位置关系 仍然成立?不必说明理由.甲: AB AC=AD AE=1, / BAC K DA 字90°;乙:AB AC=AD AE M 1,K BAC K DAE=90 ;丙: 6. CD 经过/ BCA 顶点C 的一条直线,CA=CB E, F 分别是直线CD 上两点,且/ BEC K CFA Ka.(1)若直线CD 经过/ BCA 的内部,且E, F 在射线CD 上,请解决下面两个问题:①如图 1,若/ BCA=90 , Ka =90°,则 BE ______________ CF; EF ___________ |BE - AF| (填“〉”, “v”或“=”);②如图2,若0°<Z BCA : 180°,请添加一个关于Ka 与/ BCA 关系的条件—AB: AC=AD AE M 1,/ BAC K DAE^ 90E__________ ,使①中的两个结论仍然成立,并证明两个结论成立.7. 如图,已知 AB=AC (1)若 CE=BD 求证:GE=G ;⑵若CE=mBD (m 为正数),试猜想GE 与 GD 有何关系.(只写结论,不证明)8. (1)已知:如图①,在△ AOBf^A COD 中, OA=OJ 3OC=OD / AOB M COD=60,求证:① AC=BD ②/ APB=6(度;(2)如图②,在△ AOBf^A COD 中,若 OA=OBOC=O , / AOB M COD a ,贝U AC 与 BD 间的等量关系式为 _____________ ; Z APB 的大小为 _____________ ;(3)如图③,在△ AOBf^ACOD 中,若 OA=?OBOC=?OD(k > 1),Z AOB ZCOD a ,贝U AC 与 BD间的等量关系式为 10.已知:EG// AF, AB=AC DE=DF 求证:BE=CF参考答案与试题解析(2)如图3,若直线CD 经过/ BCA 的外部,/ a =Z BCA 请提出EF, BE AF 三条线段数量关系的 合理猜想(不要求证明)•Z APB 的大小为 _____2. 解:(1)①DEC绕点C旋转点D恰好落在AB边上,••• AC=CD:/ BAC=90 -Z B=90°- 30° =60°,二厶ACD是等边三角形,•••/ ACD=60,又TZ CDE Z BAC=60 ,:Z ACD Z CDE 二DE// AC;②T Z B=30°,Z C=90,二CD=AC=AB /• BD=AD=AC2根据等边三角形的性质,△ ACD的边AC AD上的高相等,•••△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S=S2;故答案为:DE// AC S=S;(2)如图,•「△ DEC是由厶ABC绕点C旋转得到,••• BC=CE AC=CD T Z ACN Z BCN=90,Z DCM Z BCN=180 - 90° =90°,•••Z ACN Z DCM T在厶ACNm DCM中,fZACM=ZDCHI ZCND=ZH=90°,[AC=CD•△ACN^A DCM( AAS, • AN=DM•△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S i=S2;3、解(1)证明:•••在厶CBF ft^ DBG K答.fBC=BD答《二,:BF=BG•△CBF^A DBG( SAS , • CF=DQ(2)解:•••△ CBF^A DBG •Z BCF Z BDG又T Z CFB Z DFH •Z DHF Z CBF=60 ,•Z FHG=180 -Z DHF=180 - 60°=120°.4、解答:解:(1)①结论:BD=CE BDL CE②结论:BD=CE BDL CE;理由如下:T Z BAC Z DAE=90• Z BAC-Z DAC Z DAE-Z DAC 即Z BAD Z CAE ft^ ABD与△ ACE中, AB=ACT*4皿ZCAE •△ABD^A ACE(SAS • BD=CEb AD=AE延长BD交AC于F,交CE于H.在厶ABF 与厶HCF 中,T Z ABF=/ HCF Z AFB=/ HFC •Z CHF Z BAF=90••• BDL CE(2)结论:乙.AB AC=AD AE / BAC K DAE=905.6.解答:解:(1)①IK BCA=90,/a =90°,.・.K BCE K CBE=90,/ BCE K ACF=90 , • K CBE K ACF v CA=CB K BEC K CFA •△ BCE^A CAF •- BE=CF EF=|BE- AF|. ②所填的条件是:Ka +K BCA=180 . I AE=AD 卩. 7 •••△ CAE^A BAD( SAS , AC 二 AB • / ACE K ABD v DM=BD EN=CE • BM=CN 在厶 ABM ffiA ACN 中, r 瓏二 CN ••• ZAC14=ZAbr 〔AB 二AC • △ ABMm ACN( SAS , • AM=AN •/ BAM K CAN 即K MAN K BAC (2)AM=?AN 在厶BADfy CAE 中 解答: / CAE=/ BAD K MAN K BAC全等三角形证明中考题精选[有答案解析]证明:在厶 BCE 中,/ CBE# BCE=180 -Z BEC=180 — /a. v/ BCA=180 —/a,•••/ CBE Z BCE Z BCA 又v/ ACF Z BCE Z BCA CBE Z ACF又v BC=CA / BEC Z CFA •△BCE^A CAF( AAS •- BE=CF CE=AF又v EF=C- CE, • EF=|BE- AF|.(2) EF=BE+AF7.解证明:(1)过D作DF// CE交BC于F,答: 贝UZ E=Z GDF v AB=AC •/ ACB Z ABC/ DF/ CE •/ DFB Z ACB•Z DFB Z ACB Z ABC • DF=DB v CE=BD •- DF=CE 在厶GDF^ GEC中, (ZE 二ZGDFI ZDGF=ZEGC ,[DF=EC•△GDF^A GEC(AAS. • GE=GD• / AOB Z BOC Z COD Z BOC 即:/ AOC Z BOD 答:又v OA=OB OC=OD •△ AOC^A BOD • AC=BD②由①得:/ OAC Z OBDv/ AEO Z PEB / APB=180 — (/ BEP+Z OBD, / AOB=180 —(/ OAC Z AEO , • Z APB Z AOB=60 .(2) AC=BD a(3) AC=?BD 180°—a.。
全等三角形证明经典50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP ,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形AD BC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF ,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF ,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF ,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)B ACDF21 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD B CAD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE ∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+2 1<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
八年级上册数学全等三角形证明题
八年级上册数学全等三角形证明题一、全等三角形证明题1 20题及解析。
(一)题目1。
1. 题目。
已知:如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE交AC于F。
求证:AF = EF。
2. 解析。
证明:延长AD到G,使DG = AD,连接BG。
因为AD是BC边上的中线,所以BD = CD。
在△BDG和△CDA中,BD = CD,∠BDG = ∠CDA(对顶角相等),DG = DA。
根据SAS(边角边)全等判定定理,可得△BDG≌△CDA。
所以BG = AC,∠G = ∠CAD。
又因为BE = AC,所以BG = BE。
所以∠G = ∠BEG。
因为∠BEG = ∠AEF(对顶角相等),所以∠AEF = ∠CAD。
所以AF = EF。
(二)题目2。
1. 题目。
如图,在△ABC和△DEF中,AB = DE,BE = CF,∠B = ∠DEF。
求证:AC = DF。
2. 解析。
因为BE = CF,所以BE + EC = CF+EC,即BC = EF。
在△ABC和△DEF中,AB = DE,∠B = ∠DEF,BC = EF。
根据SAS全等判定定理,可得△ABC≌△DEF。
所以AC = DF。
(三)题目3。
1. 题目。
已知:如图,AB = CD,AE = DF,CE = FB。
求证:AF = DE。
2. 解析。
因为CE = FB,所以CE + EF = FB + EF,即CF = BE。
在△AEB和△DFC中,AB = CD,AE = DF,BE = CF。
根据SSS(边边边)全等判定定理,可得△AEB≌△DFC。
所以∠B = ∠C。
在△ABF和△DCE中,AB = CD,∠B = ∠C,BF = CE。
根据SAS全等判定定理,可得△ABF≌△DCE。
所以AF = DE。
(四)题目4。
1. 题目。
如图,在Rt△ABC中,∠ACB = 90°,CA = CB,D是AC上一点,E在BC的延长线上,且AE = BD,BD的延长线与AE交于点F。
全等三角形证明经典40题含答案(供参考)
1.已知:AB=4, AC=2, D是BC中点,AD是整数,求AD的长.解:延长AD到E使AD=DEYD是BC中点ABD=DC^EAACD和厶BDE中AD=DEZBDE=ZADCBD=DCAAACD^ABDEAAC=BE=2•••在△ ABE 中AB-BE<AE<AB+BEVAB=4即4・2V2ADV4+21<AD<3AAD=22.已知:BC=ED, ZB二ZE, ZC=ZD, F 是CD 中点,求证:Z1 = Z2证明:连接BF和EF••• BC=ED.CF=DE ZBCF=ZEDF・•.三角形BCF全等于三角形EDF(边角边)••• BF=EEZCBF=ZDEF连接BE在三角形BEF中,BF=EF••• ZEBF=ZBEFo••• ZABC=ZAEDc••• ZABE=ZAEBo/. AB=AEo在三角形ABF和三角形AEF中AB=AE.BF=EEZABF=ZABE+ZEBF=ZAEB+ZBEF=ZAEF ・•.三角形ABF和三角形AEF全等。
••• ZBAF=ZEAF(Zl=Z2)o3.已知:Z1=Z2, CD=DE, EF//AB,求证:EF=AC过C作CG〃EF交AD的延长线于点GCG/7EF,可得,ZEFD=CGDDE=DCZFDE=ZGDC (对顶角)•••△ EFD^ACGDEF=CGZCGD=ZEFD又,EF〃AB•••, ZEFD=Z1Z1=Z2AZCGD=Z2・•・△ AGC为等腰三角形,AC=CG又EF=CG・・・EF=AC4.已知:AD 平分ZBAC, AC=AB+BD,求证:ZB=2ZC证明:延长AB取点E,使AE=AC,连接DE TAD 平分ZBAC •••ZEAD=ZCADVAE=AC, AD=ADAAAED^AACD (SAS)AZE=ZCVAC=AB+BDAAE = AB+BDVAE = AB+BE•••BD = BEAZBDE=ZEAZABC=2ZEAZABC=2ZC5.已知:AC 平分ZBAD, CE丄AB, ZB+ZD=180° ,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CFICE丄ABAZCEB = ZCEF=90°VEB=EF, CE=CE,AACEB^ACEF(SAS)AZB = ZCFEVZB4-ZD=180° , ZCFE+ZCFA=180°AZD=ZCFAVAC 平分ZBADAZDAC=ZFACVAC=ACAAADC^AAFC (SAS)•••AD = AF•••AE=AF+FE=AD+BE6.如图,四边形ABCD中,AB〃DC, BE、CE分别平分ZABC、ZBCD,且点E在AD 上。
全等三角形证明经典50题(含答案),推荐文档
全等三角形证明经典50题(含答案)1. 已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD2. 已知:D 是AB 中点,/ ACB=90 °,求证:CD - AB2 3. 已知:BC=DE,/ B= / E,/ C= / D, F 是CD 中点,求证:4.5.已知:/ 1 = / 2, CD=DE ,已知:EF//AB,求证:EF=AC,求证:/ B=2 / C AD 平分/ BAC , AC=AB+BD6. 已知:AC 平分/ BAD , CE丄AB,/ B+ / D=180 °,求证:AE=AD+BE12. 如图,四边形ABCD中,AB上。
求证:BC=AB+DC。
13. 已知:AB//ED,/ EAB= / BDE , AF=CD ,14. P是/ BAC平分线AD上一点,AC>AB,求证:15. 已知/ ABC=3 / C,Z 1 = / 2, BE 丄AE,求证:D// DC , BE、CE 分别平分/ ABC、/ BCD,且点E在ADEF=BC,求证:/ F=Z CPC-PB<AC-ABAC-AB=2BE16. 已知,E 是 AB 中点,AF=BD , BD=5 , AC=7,求 DC21. 如图,△ ABC 中,AD 是/ CAB 的平分线,且 AB=AC+CD ,求证:/ C=2/ B22. (6分)如图①,E 、F 分别为线段 AC 上的两个动点,且 DE 丄AC 于E , BF 丄AC 于F , 若AB=CD , AF=CE , BD 交 AC 于点 M .(1) 求证:MB = MD , ME=MF(2) 当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立 请给予证明;若不成立请说明理由.18. 如图,在△ ABC 中,BD=DC ,/ 1 = / 2,求证:AD 丄BC .19. 如图,0M 平分/ POQ , MA 丄 OP,MB 丄 OQ ,求证:/ OAB= / OBA / PAB 的平分线与/ CBA 的平分线相交于 E , CE 的连线交 AP 于 D .求证:AD+BC=AB . N .23. 已知:如图,DC// AB,且DC=AE, E为AB的中点,(1)求证:△ AED◎△ EBC .(2)观看图前,在不添辅助线的情况下,除△E BC夕卜,请再写出两个与△ AED的面积相等的三角形.(直接写出结果,不要求证明):24. (7分)如图,△ ABC中,/ BAC=90度,AB=AC, BD是/ ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.25、如图:DF=CE AD=BC / D=Z G 求证:△ AED^A BFG26、(10 分)如图:AE、BC交于点M F 点在AM±, BE// CF, BE=CF求证:AM>^ ABC的中线。
全等三角形经典题型50题(含答案解析)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF和三ADBC角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DG E ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠E DC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
专题01 全等三角形(解析版)
专题01 全等三角形【考点1全等图形的相关概念】【考点2全等三角形的性质】【考点3全等三角形的判定】【考点4直角三角形全等的判定】【考点5全等三角形的判定与性质】【考点6全等三角形的实际应用】知识点1:全等图形全等形:能够完全重合的两个图形叫做全等形。
(一)全等形的形状相同,大小相等,与图形所在的位置无关。
(二)两个全等形的面积一定相等,但面积相等的两个图形不一定是全等形。
(三)一个图形经过平移、翻折、旋转后,形状、大小都没有改变,只是位置发生了变化,即平移、翻折、旋转前后的图形全等。
知识点2:全等多边形(1)定义:能够完全重合的两个多边形叫做全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.(2)性质:全等多边形的对应边相等,对应角相等.(3)判定:边、角分别对应相等的两个多边形全等.知识点3:全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.知识点4:全等三角形的判定方法(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.知识点5:全等三角形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.考点剖析【考点1全等图形的相关概念】1.(2023秋•太和县期中)下列各组图形,是全等图形的是( )A.B.C.D.【答案】D【解答】解:A、不是全等图形,不符合题意;B、不是全等图形,不符合题意;C、不是全等图形,不符合题意;D、是全等图形,符合题意;故选:D.2.(2023秋•平原县期中)下列说法错误的是( )A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等【答案】C【解答】解:全等三角形的三条边相等,三个角也相等,A正确;判定两个三角形全等的条件中至少有一个是边,B正确;面积相等的两个图形不一定是全等形,C错误;全等三角形的面积和周长都相等,D正确,故选:C.3.(2023•东丽区一模)两个全等图形中可以不同的是( )A.位置B.长度C.角度D.面积【答案】A【解答】解:两个全等图形中对应边的长度,对应角的角度,图形的面积相等,可以不同的是位置.故选:A.4.(2022秋•东莞市期末)下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形【答案】B【解答】解:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选:B.5.(2023秋•淮阳区期中)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A.135°B.125°C.120°D.90°【答案】A【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:A.6.(2022秋•西乡塘区校级期末)下列四个图形中,属于全等图形的是( )A.①和②B.②和③C.①和③D.全部【答案】D【解答】解:根据全等形的定义可知,①,②,③,④都全等.故选:D.7.(2023秋•永泰县期中)如图,四边形ABCD与四边形A'B'C'D'是全等四边形,若∠A'=95°,∠B=75°,∠D'=130°,则∠C= 60° .【答案】60°.【解答】解:∵四边形ABCD与四边形A'B'C'D'是全等四边形,∴∠A=∠A′,∠D=∠D′,∵∠A'=95°,∠D'=130°,∴∠A=95°,∠D=130°,∵∠B=75°,∴∠C=360°﹣(95°+130°+75°)=60°.故答案为:60°.【考点2全等三角形的性质】8.(2023秋•虞城县期中)如图,△ABC≌△CDA,AB=5,BC=8,AC=7,则AD的长是( )A.5B.6C.7D.8【答案】D【解答】解:∵△ABC≌△CDA,BC=8,∴AD=BC=8.故选:D.9.(2023秋•阜平县期中)如图,△ABC≌△ADE,点D在边BC上,下列结论不正确的是( )A.AD=AB B.DE=BD+DC C.∠B=∠E D.∠BAD=∠CAE【答案】C【解答】解:∵△ABC≌△ADE,∴BC=DE,AB=AD,∠BAC=∠DAE,∠C=∠E,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,DE=BD+DC,即∠BAD=∠CAE,∴选项A、选项B、选项D正确,选项C不一定正确,故选:C.10.(2023秋•丹江口市期中)如图,△ABC≌△AED,点D在BC边上.若∠EAD=85°,∠B=30°,则∠ADC的度数是( )A.50°B.55°C.65°D.30°【答案】C【解答】解:∵△ABC≌△AED,∠EAD=85°,∴∠BAC=∠EAD=85°,AC=AD,∵∠B=30°,∴∠ADC=∠C=180°﹣85°﹣30°=65°,故选:C.11.(2023秋•鹤庆县期中)如图,△ABC≌△DEF(点A,B,C的对应点分别为D,E,F),若∠B=25°,∠C=45°,则∠D的度数为( )A.110°B.105°C.100°D.90°【答案】A【解答】解:∵∠B=25°,∠C=45°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣25°﹣45°=110°,∵△ABC≌△DEF(点A,B,C的对应点分别为D,E,F),∴∠D=∠BAC=110°,故选:A.12.(2022秋•长春期末)若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为( )A.30B.27C.35D.40【答案】A【解答】解:∵△ABC≌△DEF,∴BC=EF=30,故选:A.12.(2023秋•文成县期中)如图,△ABC≌△DEF,BC=12,EC=7,则CF的长为( )A.5B.6C.7D.8【答案】A【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=12,∴EF=12,∴EC=7,∴CF=EF﹣EC=12﹣7=5,故选:A.13.(2023秋•天长市期中)如图,△ABD≌△ACE,BE=16,DE=10,则BC的长是( )A.24B.20C.21D.22【答案】D【解答】解:∵△ABD≌△ACE,∴BD=EC=BE﹣DE=6,∴BC=BE+EC=16+6=22,故选:D.14.(2022秋•市中区期末)如图,已知△CAD≌△CBE,若∠A=30°,∠C=80°,则∠CEB =( )A.50°B.60°C.70°D.80°【答案】C【解答】解:∵∠A=30°,∠C=80°,∴∠ADC=180°﹣80°﹣30°=70°,∵△CAD≌△CBE,∴∠CEB=∠CDA=70°;故选:C.15.(2022秋•汶上县校级期末)如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为( )A.2B.3C.4D.5【答案】A【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选:A.16.(2023秋•琼中县期中)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD,BE 交于点F,△ADC≌△BDF,若BD=4,CD=2,则△ABC的面积为( )A.24B.18C.12D.8【答案】C【解答】解:∵△ADC≌△BDF,∴AD=BD,∵BD=4,∴AD=4,∵DC=2,∴BC=BD+DC=4+2=6,∴S===12,△ABC故选:C.【考点3全等三角形的判定】17.(2023秋•社旗县期中)如图所示的四个三角形中,全等的三角形是( )A.①③B.①②C.②④D.①③④【答案】B【解答】解:根据SAS可知①和②中的两个三角形全等.故选:B.18.(2023秋•太和县期中)如图,AB∥DE,BC=EF.补充下列一个条件,不能使△ABC≌△DEF的是( )A.AC=DF B.∠A=∠D C.AB=DE D.AC∥DF【答案】A【解答】解:∵AB∥DE,∴∠B=∠DEF,且BC=EF,A、若AC=DF,不能判定△ABC≌△DEF,符合题意;B、若∠A=∠D,可根据“角角边”判定△ABC≌△DEF,不符合题意;C、若AB=DE,可根据“边角边”判定△ABC≌△DEF,不符合题意;D、若AC∥DF,则∠ACB=∠F,可根据“角边角”判定△ABC≌△DEF,不符合题意;故选:A.19.(2023秋•新和县期中)已知:如图,AB=DC,AE=BF,∠A=∠FBD,求证:△AEC ≌△BFD.【答案】见解析.【解答】证明:∵AB=DC,∴AB+BC=DC+BC,∴AC=BD,在△AEC和△BFD中,,∴△AEC≌△BFD(SAS).20.(2023•咸阳一模)已知,如图,AB=AE,AB∥DE,∠ACB=∠D,求证:△ABC≌△EAD.【答案】证明过程见解答.【解答】证明:∵AB∥DE,∴∠E=∠BAC,在△ABC和△EAD中,,∴△ABC≌△EAD(AAS).21.(2023秋•曹县期中)如图,点F,C在BE上,BF=CE,AB=DE,∠B=∠E.求证:△ABC≌△DEF.【答案】见试题解答内容【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).22.(2022秋•祁阳县期末)已知,如图,∠1=∠2,∠C=∠D,BC=BD,求证:△ABD≌△EBC.【答案】见试题解答内容【解答】证明:∵∠1=∠2,∴∠1+∠EBD=∠2+∠EBD,∴∠ABD=∠EBC,在△ABD和△EBC中,,∴△ABD≌△EBC(ASA).23.(2023秋•建湖县期中)已知,如图,点D、E分别在AB、AC上,AD=AE,BE、CD相交于点O,∠B=∠C,求证:(1)△ABE≌△ACD;(2)△BOD≌△COE.【答案】见试题解答内容【解答】证明:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(AAS);(2)∵△ABE≌△ACD,∴AB=AC,∵AD=AE,∴BD=CE,在△BOD和△COE中,,∴△BOD≌△COE(AAS).24.(2022秋•汉阳区校级期末)如图,AC=AE,∠C=∠E,∠1=∠2.求证:△ABC≌△ADE.【答案】见试题解答内容【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,∴∠BAC=∠DAE,在△ABC和△ADE中∴△ABC≌△ADE(ASA).【考点4直角三角形全等的判定】25.(2023春•渭滨区期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是( )A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′【答案】C【解答】解:∵在Rt△ABC和Rt△A′B′C′中,如果AC=A′C′,AB=A′B′,那么Rt△ABC和Rt△A′B′C′一定全等,故选:C.26.(2023秋•疏勒县期中)已知:如图AD为△ABC的高,E为AC上一点BE交AD于F且有BF=AC,FD=CD.求证:Rt△BFD≌Rt△ACD.【答案】见解析.【解答】证明:∵AD是△ABC的高,∴∠ADB=∠ADC=90°.在Rt△BFD和Rt△ACD中,∴Rt△BFD≌Rt△ACD(HL).27.(2023春•怀化期末)如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.【答案】见试题解答内容【解答】证明:如图,在Rt△ACE和Rt△CBF中,,∴Rt△ACE≌Rt△CBF(HL),∴∠EAC=∠BCF,∵∠EAC+∠ACE=90°,∴∠ACE+∠BCF=90°,∴∠ACB=180°﹣90°=90°.28.(2023春•垦利区期末)如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.【答案】见试题解答内容【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL).29.(2022春•泾阳县期中)已知:如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【答案】见试题解答内容【解答】证明:∵DE=BF,∴DE+EF=BF+EF;∴DF=BE;在Rt△ADF和Rt△CBE中,∴Rt△ADF≌Rt△CBE(HL),∴AF=CE.【考点5全等三角形的判定与性质】30.(2023秋•礼县期中)如图,在△ABC中,AB=AC,点D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=∠B=40°,DE交线段AC于点E.下列结论:①∠DEC=∠BDA;②若AD=DE,则BD=CE;③当DE⊥AC时,则D为BC中点;④当△ADE为等腰三角形时,∠BAD=30°.其中正确的有( )A.1个B.2个C.3个D.4个【答案】C【解答】解:①∵∠ADC=∠B+∠BAD,∠B=∠ADE=40°,∴∠BAD=∠ADC﹣∠ADE,即∠BAD=∠CDE,∵AB=AC,∴∠B=∠C,∵∠DEC=180°﹣∠CDE﹣∠C,∠BDA=180°﹣∠BAD﹣∠B,∴∠DEC=∠BDA,故①正确;②∵AB=AC,∴∠B=∠C=40°,由①可知∠DEC=∠BDA,∵AD=DE,∴△ABD≌△DCE(ASA),∴BD=CE,故②正确;③∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=90°﹣40°=50°,∵∠C=∠B=40°,∴∠DEC=90°,∴DE⊥AC,故③正确;④∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE或AD=DE,当AE=DE时,∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣40°=60°,故④不正确,综上所述正确的有①②③,故选:C.31.(2023秋•临颍县期中)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,B,D,E三点在一条直线上,若∠1=26°,∠3=56°,则∠2的度数为( )A.30°B.56°C.26°D.82°【答案】A【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠1=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠2,∵∠3=∠1+∠ABD,∴∠3=∠1+∠2,∵∠1=26°,∠3=56°,∴∠2=56°﹣26°=30°,故选:A.32.(2023秋•太和县期中)如图,在△ABC中,AB=AC,∠B=∠EDF,若BE=CD=1,BC=3,则CF的长为( )A.1B.2C.3D.4【答案】B【解答】解:∵AB=AC,∴∠B=∠C,∵∠BED=180°﹣∠B﹣∠BDE,∠CDF=180°﹣∠EDF﹣∠BDE,∠B=∠EDF,∴∠BED=∠CDF,∵BE=CD,∴△BED≌△CDF(ASA),∴CF=BD,∵BC=3,CD=1,∴BD=2,∴CF=2,故选:B.33.(2023秋•鹤庆县期中)已知△ABC中AD为中线,且AB=5、AC=7,则AD的取值范围为( )A.2<AD<12B.5<AD<7C.1<AD<6D.2<AD<10【答案】C【解答】解:延长AD至点E,使DE=AD,连接EC,在△ADB和△EDC中∴△ADB≌△EDC(SAS),∴CE=AB,∵AB=5,AC=7,∴CE=5,设AD=x,则AE=2x,∴7﹣5<2x<7+5,∴1<x<6,故选:C.34.(2023秋•辉县市期中)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,BD=6,CD=4,则线段AF的长度为( )A.1B.2C.4D.6【答案】B【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠ABC=45°,∴∠ABD=∠DAB,∴BD=AD=6,∵∠CAD+∠AFE=90°,∠CAD+∠C=90°,∠AFE=∠BFD,∴∠AFE=∠C,∵∠AFE=∠BFD∴∠C=∠BFD在△ADC和△BDF中,,∴△ADC≌△BDF(AAS),∴CD=DF=4,∴AF=AD﹣DF=6﹣4=2.故选:B.35.(2023秋•应城市期中)如图,在△ABC和△CDE中,点B,C,E在同一条直线上,∠B =∠E=∠ACD,AC=CD,若AB=1,BE=4,则DE的长为( )A.1B.2C.3D.4【答案】C【解答】解:∵∠B+∠ACB+∠BAC=180°,∠B=∠E=∠ACD,∴∠ACD+∠ACB+∠BAC=180°,∵∠ACD+∠ACB+∠DCE=180°,∴∠BAC=∠DCE,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴BC=DE,AB=CE,∵AB=1,BE=4,∴DE=BC=BE﹣CE=BE﹣AB=4﹣1=3,故选:C.36.(2022秋•阿荣旗期末)如图,在△ABC中,∠C=90°,D是BC上一点,DE⊥AB于点E,AE=AC,连接AD,若BC=8,则BD+DE等于( )A.6B.7C.8D.9【答案】C【解答】解:∵DE⊥AB,∴∠DEB=90°,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴CD=DE,∴BD+DE=BD+CD=BC,∵BC=8,∴BD+DE=BC=8.故选:C.37.(2022秋•和平区校级期末)如图所示,BC、AE是锐角△ABF的高,相交于点D,若AD =BF,AF=7,CF=2,则BD的长为( )A.2B.3C.4D.5【答案】B【解答】解:∵BC、AE是锐角△ABF的高,∴∠BCF=∠ACD=∠AEF=90°,∴∠F+∠CAD=∠F+∠CBF=90°,∴∠CBF=∠CAD,在△BCF和△ACD中,,∴△BCF≌△ACD(AAS),∴CD=CF=2,BC=AC=AF﹣CF=5,∴BD=BC﹣CD=5﹣2=3.故选:B38.(2023秋•京口区期中)如图,点B,F,C,E在直线l上(点F,C之间不能直接测量),点A,D在l的异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长.【答案】(1)见解析;(2)FC=4cm.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF(ASA).(2)解:∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10cm,BF=3cm,∴FC=10﹣3﹣3=4cm.39.(2023秋•连山区期中)如图,点D在AC边上,∠A=∠B,AE=BE,∠1=∠2.(1)求证:△AEC≌△BED;(2)若∠1=45°,求∠BDE的度数.【答案】(1)见解析;(2)67.5°.【解答】(1)证明:∵∠2+∠BDE=∠ADE=∠1+∠C,∠1=∠2∴∠C=∠BDE,在△AEC和△BED中,,∴△AEC≌△BED(AAS),(2)解:∵△AEC≌△BED,∴EC=ED,∴∠EDC=∠C,∵∠1=45°∴∴∠BDE=67.5°40.(2023秋•科尔沁区期中)如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.【答案】见试题解答内容【解答】(1)解:结论:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AGE=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.∴EC=BF,EC⊥BF.(2)证明:作AP⊥CE于P,AQ⊥BF于Q.∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.41.(2023秋•合江县期中)如图,已知:∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)AD=AB+CD.【答案】见试题解答内容【解答】(1)证明:过点M作ME⊥AD于E,∵∠B=∠C=90°,∴MB⊥AB,MC⊥CD,∵DM平分∠ADC,ME⊥AD,MC⊥CD,∴ME=MC,∵M是BC的中点,∴MC=MB,∴MB=ME,又∴MB⊥AB,ME⊥AD,∴AM平分∠DAB.(2)∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中,,∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.【考点6全等三角形的实际应用】42.(2023秋•镇平县期中)一名工作人员不慎将一块三角形模具打碎成了如图所示的四块,他需要去商店再配一块与原来大小和形状完全相同的模具.现只能拿能两块去配,其中可以配出符合要求的模具的是( )A.①③B.②④C.①④D.②③【答案】B【解答】解:根据题意得:拿①②或②④可以根据“角边角”得到原三角形全等的三角形.故选:B.43.(2023秋•昭阳区期中)如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB=40°,然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是( )A.SAS B.AAA C.SSS D.ASA【答案】D【解答】解:在△MBC,△ABC中,,∴△MBC≌△ABC(ASA).故选:D.44.(2023春•龙岗区校级期末)如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是( )A.ASA B.AAS C.SSS D.HL【答案】C【解答】解:∵AB=AC,点D,E分别是AB,AC的中点,∴AD=AE,在△ADM和△AEM中,.∴△ADM≌△AEM(SSS),故选:C.45.(2023•怀化三模)如图所示,工人赵师傅用10块高度都是1.5m的相同长方体新型建筑材料,垒了两堵与地面垂直的墙ABCD和EFGH,点P在BE上,已知AP=PF,∠APF=90°.(1)求证:△ABP≌△PEF;(2)求BE的长.【答案】(1)证明见解答;(2)15m.【解答】(1)证明:∵∠ABP=∠FEP=90°,∠APF=90°,∴∠APB=∠PFE(同角的余角相等).在△ABP与△PEF中,,∴△ABP≌△PEF(AAS);(2)由题意知,AB=1.5×3=4.5(m),EF=7×1.5=10.5(m).由(1)知,△ABP≌△PEF,∴BP=EF=10.5m,AB=PE=4.5m,∴BE=BP+PE=15m.46.(2023秋•云梦县期中)在测量一个小口圆形容器的壁厚时(容器壁厚度均匀),小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,只需测得AB=a,EF=b,就可以知道圆形容器的壁厚了.(1)请你利用所学习的数学知识说明AB=CD;(2)若a=58.6mm,b=61.2mm,求出圆形容器的壁厚.【答案】(1)见解析;(2)圆形容器的壁厚为1.3mm.【解答】解:(1)在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD;(2)∵EF=b=61.2mm,AB=CD=a=58.6mm,∴圆形容器的壁厚为.47.(2023春•渠县校级期末)生活中的数学:(1)启迪中学计划为现初一学生暑期军训配备如图1所示的折叠凳,这样设计的折叠凳坐着舒适、稳定,这种设计所运用的数学原理是 三角形具有稳定性 .(2)图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD 的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,请说明AD=CB的理由.【答案】(1)三角形具有稳定性;(2)见解答.【解答】(1)解:这种设计所运用的数学原理是三角形具有稳定性,故答案为:三角形具有稳定性;(2)证明:∵O是AB和CD的中点,∴AO=BO,CO=DO,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC.过关检测一.选择题(共10小题)1.(2023秋•巴东县期中)下列汽车标志中,是由多个全等图形组成的有( )个.A.1B.2C.3D.4【答案】C【解答】解:组成第1个图形的各部分不全等,不符合题意;组成第2个图形的两个图形全等,符合题意;组成第3个图形的三个图形全等,符合题意;组成第4个图形是四个圆形全等,符合题意.故选:C.2.(2023秋•沂南县期中)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数为( )A.30°B.31°C.32°D.33°【答案】D【解答】解:由三角形内角和定理得,∠2=180°﹣117°﹣30°=33°,∵两个三角形全等,∴∠1=∠2=33°,3.(2022秋•海淀区校级期末)如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠AED的大小为( )A.34°B.56°C.62°D.68°【答案】C【解答】解:∵△ABC≌△AED,∴∠BAC=∠EAD,AB=AE,∴∠BAE=∠1=56°,∴∠B=∠AEB=(180°﹣56°)=62°,∴∠AED=∠B=62°,故选:C.4.(2023秋•广陵区校级月考)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA【答案】D【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故D选项符合题意;5.(2023秋•张北县期中)如图,要测量池塘A,B两端的距离,作线段AC与BD相交于点O.若AC=BD=8m,AO=DO,△COD的周长为14m,则A,B两点间的距离为( )A.6m B.8m C.10m D.12m【答案】A【解答】解:∵AC=BD,AO=DO,∴AC﹣AO=BD﹣DO,即OC=OB,∵OC=OB,∠COD=∠BOA,OD=OA,∴△COD≌△BOA(SAS),∴AB=CD,∵△COD的周长为14m,∴OC+OD+CD=14m,即AC+CD=14m,∴CD=6m,∴AB=6m,故选:A.6.(2023秋•崆峒区校级期中)装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片( )A.①B.②C.③D.④【答案】A【解答】解:②、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第①块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:A.7.(2023秋•青秀区校级期中)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB'的中点.只要量出A′B′的长度.就可以知道该零件内径AB的长度.依据的数学基本事实是( )A.两角和它们的夹边分别相等的两个三角形全等B.两边和它们的夹角分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.两点之间线段最短【答案】B【解答】解:∵点O为AA'、BB'的中点,∴OA=OA',OB=OB',由对顶角相等得∠AOB=∠A'OB',在△AOB和△A'OB'中,,∴△AOB≌△A'OB'(SAS),∴AB=A'B',即只要量出A'B'的长度,就可以知道该零件内径AB的长度,故选:B.8.(2022秋•正定县期末)如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是( )A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E【答案】B【解答】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,A、加上条件AB=AE可利用SAS定理证明△ABC≌△AED;B、加上BC=ED不能证明△ABC≌△AED;C、加上∠C=∠D可利用ASA证明△ABC≌△AED;D、加上∠B=∠E可利用AAS证明△ABC≌△AED;故选:B.9.(2023秋•丹阳市期中)在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是( )A.3个B.4个C.5个D.6个【答案】B【解答】解:如图,观察图象可知满足条件的三角形有4个.故选:B.10.(2022秋•灵宝市校级期末)现有一块如图所示的四边形草地ABCD,经测量,∠B=∠C,AB=10m,BC=8m,CD=12m,点E是AB边的中点.小狗汪汪从点B出发以2m/s的速度沿BC向点C跑,同时小狗妞妞从点C出发沿CD向点D跑,若能够在某一时刻使△BEP与△CPQ全等,则妞妞的运动速度为( )A.B.C.2m/s或D.2m/s或【答案】D【解答】解:∵AB=10m,E是AB边的中点,∴BE=5m,∵∠B=∠C,且△BEP与△CPQ全等,∴BP=CQ,BE=CP或CP=BP,BE=CQ,当BP=CQ,BE=CP时,∵BE=5m,BC=8m,设运动时间为t,8﹣2t=5,解得,∴,此时妞妞的运动速度为:m/s,当CP=BP,BE=CQ时,,t=2,此时CQ=5,妞妞的运动速度为:,故选:D.二.填空题(共5小题)11.(2023秋•武都区期中)如图,点A,D,C,E在一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为 4 .【答案】4.【解答】解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,,∴△ABC≌△EFD(ASA),∴AC=ED=7,又∵AE=10,∴AC+DE﹣CD=10,∴CD=14﹣10=4;故答案为:4.12.(2023秋•招远市期中)如图,已知BD=CE,∠ADB=∠AEC,若AC=9,AE=2,则线段DC的长为 7 .【答案】7.【解答】解:在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴AD=AE=2,∵AC=9,∴DC=AC﹣AD=7,故答案为:7.13.(2023秋•湖北期中)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别截取OM,ON,使OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C连OC.可知△OMC≌△ONC,OC便是∠AOB 的平分线.则△OMC≌△ONC的理由是 SSS .【答案】SSS.【解答】证明:由题意知;CM=CN,在△OMC和ONC中,,∴△OMC≌ONC(SSS),∴△OMC≌△ONC的理由是SSS.故答案为:SSS.14.(2023秋•宁江区期中)如图,在△ABC中,CD平分∠ACB,过点B作BE⊥CD于点D,交AC于点E.已知∠ABE=∠A,AC=10,BC=6.则BD的长为 2 .【答案】2.【解答】解:∵CD平分∠ACB,∴∠BCD=∠DCE,∵BE⊥CD,∴∠BDC=∠EDC=90°,在△CDB≌△CDE中,,∴△CDB≌△CDE(ASA),∴BD=DE,CE=BC=6,即△BCE为等腰三角形,∴AE=AC﹣CE=4,又∵∠A=∠ABE,∴BE=AE,∴BD=DE=BE=2,故答案为:2.15.(2023春•文登区期中)如图,△ABC中,∠C=90°,AC=10cm,BC=5cm,线段PQ=AB,点P、Q分别在AC和与AC垂直的射线AM上移动,当AP= 5cm或10cm 时,△ABC和△QPA全等.【答案】5cm或10cm.【解答】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm.故答案为:5cm或10cm.三.解答题(共3小题)16.(2023•工业园区校级模拟)如图,点C、D在线段AB上,且AC=BD,AE=BF,AE∥BF,连接CE、DE、CF、DF,求证CF=DE.【答案】证明见解答过程.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,即AD=BC,∵AE∥BF,∴∠A=∠B,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴DE=CF,即CF=DE.17.(2023秋•南川区期中)如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若BD=8,DC=5,求ED的长.【答案】(1)证明见解析;(2)3.【解答】(1)证明:∵∠BAC=∠EAD,∴∠BAC﹣∠EAC=∠EAD﹣∠EAC,即:∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AE=AD;(2)解:∵△ABE≌△ACD,∴BE=CD,∵BD=8,DC=5,∴ED=BD﹣BE=BD﹣CD=8﹣5=3.18.(2023春•周村区期末)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】见试题解答内容【解答】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.。
三角形全等证明题目60题目(有详解)
全等三角形证明题专项练习60 题(有答案)1.已知如图,△ABC≌△ ADE,∠ B=30°,∠ E=20°,∠ BAE=105°,求∠ BAC的度数.∠ BAC= _________.2.已知:如图,四边形ABCD中, AB∥CD, AD∥BC.求证:△ ABD≌△ CDB.3.如图,点 E 在△ ABC外面,点 D 在边 BC上, DE交 AC于 F.若∠ 1=∠ 2=∠ 3, AC=AE,请说明△ ABC≌△ ADE的道理.4.如图,△ ABC的两条高AD, BE订交于 H,且 AD=BD.试说明以下结论成立的原由.(1)∠ DBH=∠ DAC;(2)△ BDH≌△ ADC.5.如图,在△ABC中, D 是 BC边的中点, DE⊥ AB, DF⊥ AC,垂足分别为E、 F,且 DE=DF,则 AB=AC,并说明原由.6.如图, AE是∠ BAC的均分线, AB=AC, D 是 AE反向延长线的一点,则△ABD与△ ACD全等吗?为什么?第1页共28页7.以下列图,A、 D、 F、 B 在同素来线上,A F=BD, AE=BC,且 AE∥BC.求证:△ AEF≌△ BCD.8.如图,已知AB=AC, AD=AE, BE 与 CD订交于 O,△ ABE与△ ACD全等吗?说明你的原由.9.如图,在△ ABC中, AB=AC, D 是 BC的中点,点 E 在 AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.以下列图, CD=CA,∠ 1=∠ 2, EC=BC,求证:△ ABC≌△ DEC.11.已知 AC=FE, BC=DE,点 A、 D、 B、F 在一条直线上,要使△ ABC≌△ FDE,应增加什么条件?并依照你所增加的条件证明:△ ABC≌△ FDE.12.如图,已知AB=AC, BD=CE,请说明△ ABE≌△ ACD.13.如图,△ ABC中,∠ ACB=90°, AC=BC,将△ ABC绕点 C 逆时针旋转角α( 0°<α< 90°)获取△ A1B1C,连接BB1.设 CB1交 AB于 D, A1B1分别交 AB, AC于 E, F,在图中不再增加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ ABC与△ A1B1 C1全等除外)14.如图, AB∥ DE,AC∥ DF,BE=CF.求证:△ ABC≌△ DEF.15.如图, AB=AC, AD=AE, AB,DC订交于点M, AC, BE订交于点N,∠ DAB=∠EAC.求证:△ADM≌△ AEN.16.将两个大小不同样的含 45°角的直角三角板如图 1 所示放置在同一平面内.从图1中抽象出一个几何图形(如图2), B、 C、E 三点在同一条直线上,连接DC.求证:△ ABE≌△ ACD.优秀文档17.如图,已知△ ABC是等边三角形, D、E 分别在边 BC、AC上,且 CD=CE,连接 DE并延长至点 F,使 EF=AE,连接AF、 BE和 CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠ 2,∠ 3=∠ 4, EC=AD.(1)求证:△ ABD≌△ EBC.(2)你能够从中得出哪些结论?请写出两个.19.等边△ ABC边长为 8, D为 AB边上一动点,过点 D 作 DE⊥ BC于点 E,过点 E 作 EF⊥ AC于点 F.(1)若 AD=2,求 AF的长;(2)求当 AD取何值时, DE=EF.20.巳知:如图,AB=AC, D、E 分别是 AB、 AC上的点, AD=AE, BE与 CD订交于 G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的原由(根椐所选三角形说理难易不同样给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC, AC=BD, AC、BD订交于点E,过 E 点作 EF∥ BC,交 CD于 F,(1)依照给出的条件,能够直接证明哪两个三角形全等?并加以证明.(2) EF 均分∠ DEC吗?为什么?22.如图,己知∠1=∠ 2,∠ ABC=∠ DCB,那么△ ABC与△ DCB全等吗?为什么?23.如图, B, F, E, D 在一条直线上,AB=CD,∠ B=∠ D,BF=DE.试证明:(1)△ DFC≌△ BEA;(2)△ AFE≌△ CEF.24.如图, AC=AE,∠ BAF=∠BGD=∠ EAC,图中可否存在与△ABE全等的三角形?并证明.25.如图, D 是△ ABC的边 BC的中点, CE∥ AB,E 在 AD的延长线上.试证明:△ ABD≌△ ECD.26.如图,已知AB=CD,∠ B=∠C, AC和 BD订交于点O,E 是 AD的中点,连接OE.(1)求证:△ AOB≌△ DOC;(2)求∠ AEO的度数.27.如图,已知AB∥ DE, AB=DE, AF=DC.(1)求证:△ ABF≌△ DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ ABC中, BE、CF分别是 AC、AB 两边上的高,在 BE 上截取 BD=AC,在 CF的延长线上截取CG=AB,连接 AD、 AG.(1)求证:△ ABD≌△ GCA;(2)请你确定△ ADG的形状,并证明你的结论.29.如图,点D、 F、 E 分别在△ ABC的三边上,∠ 1=∠ 2=∠ 3, DE=DF,请你说明△ ADE≌△ CFD的原由.30.如图,在△ ABC中,∠ ABC=90°, BE⊥ AC于点 E,点 F 在线段 BE 上,∠ 1=∠ 2,点 D在线段 EC上,给出两个条件:① DF∥BC;② BF=DF.请你从中选择一个作为条件,证明:△AFD≌△ AFB.31.如图,在△ ABC中,点 D在 AB 上,点 E 在 BC上, AB=BC, BD=BE,EA=DC,求证:△ BEA≌△ BDC.32.阅读并填空:如图,在△ ABC中,∠ ACB=90°, AC=BC, BE⊥ CE于点 E,AD⊥ CE于点 D.请说明△ ADC≌△ CEB的原由.解:∵ BE⊥CE于点 E(已知),∴∠ E=90°_________,同理∠ ADC=90°,∴∠ E=∠ ADC(等量代换).在△ ADC中,∵∠ 1+∠ 2+∠ ADC=180°_________,∴∠ 1+∠ 2=90°_________.∵∠ ACB=90°(已知),∴∠ 3+∠ 2=90°,∴_________ .在△ ADC和△ CEB中, .∴△ ADC≌△ CEB ( A. A. S)33.已知:以下列图,AB∥ DE,AB=DE, AF=DC.( 1)写出图中你认为全等的三角形(不再增加辅助线);( 2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点 E 在△ ABC外面,点 D在 BC边上, DE交 AC于点 F,若∠ 1=∠ 2=∠ 3, AC=AE.试说明以下结论正确的原由:(1)∠ C=∠ E;(2)△ ABC≌△ ADE.35.如图,在 Rt△ ABC中,∠ ACB=90°,AC=BC,D 是斜边 AB上的一点, AE⊥ CD于 E,BF⊥ CD交 CD的延长线于F.求证:△ ACE≌△ CBF.36.如图,在△ ABC中, D 是 BC的中点, DE∥ CA交 AB 于 E,点 P 是线段 AC上的一动点,连接PE.研究:当动点P 运动到 AC边上什么地址时,△APE≌△ EDB?请你画出图形并证明△APE≌△ EDB.37.已知:如图,AD∥ BC, AD=BC, E 为 BC上一点,且AE=AB.求证:( 1)∠ DAE=∠B;(2)△ ABC≌△ EAD.38.如图, D 为 AB边上一点,△ ABC和△ ECD都是等腰直角三角形,∠ ACB=∠ DCE=90°, CA=CB, CD=CE,图中有全等三角形吗?指出来并说明原由.39.如图, AB=AC, AD=AE,∠ BAC=∠ DAE.求证:△ ABD≌△ ACE.40.如图,已知D是△ ABC的边 BC的中点,过D 作两条互相垂直的射线,分别交AB于 E,交 AC于 F,求证: BE+CF >EF.41.以下列图,在△MNP中, H是高 MQ与 NE的交点,且QN=QM,猜想 PM与 HN有什么关系?试说明原由.42.如图,在△ ABC中, D 是 BC的中点,过 D 点的直线 GF交 AC于 F,交 AC的平行线 BG于 G点, DE⊥ GF,交 AB于点 E,连接 EG.(1)求证: BG=CF;(2)请你判断 BE+CF与 EF 的大小关系,并证明你的结论.43.如图,在△ ABC中,∠ ACB=90°, AC=BC, BE⊥ CE于 E, AD⊥ CE于 D,,,求 BE 的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD, BC=AD,请说明:∠ A=∠ C 的道理,小明着手测量了一下,发现∠A确实与∠ C相等,但他不能够说明其中的道理,你能帮助他说明这个道理吗?试一试看.45.如图, AD是△ ABC的中线, CE⊥ AD于 E, BF⊥AD,交 AD的延长线于F.求证: CE=BF.46.如图,已知 AB∥ CD,AD∥ BC,F 在 DC的延长线上, AM=CF,FM交 DA的延长线上于E.交 BC于 N,试说明:AE=CN.47.已知:如图,△ABC中,∠ C=90°, CM⊥ AB于 M, AT均分∠ BAC交 CM于 D,交 BC于 T,过 D 作 DE∥ AB交 BC 于 E,求证: CT=BE.48.如图,已知AB=AD, AC=AE,∠ BAE=∠ DAC.∠ B 与∠ D 相等吗?请你说明原由.49. D 是 AB上一点, DF交 AC于点 E, DE=EF, AE=CE,求证: AB∥CF.50.如图, M是△ ABC的边 BC上一点, BE∥ CF,且 BE=CF,求证: AM是△ ABC的中线.优秀文档合用标准文案51.如图,在△ ABC中, AC⊥BC, AC=BC, D 为 AB上一点, AF⊥ CD交于 CD的延长线于点F, BE⊥ CD于点 E,求证:EF=CF﹣ AF.52.如图,在△ ABC中,∠ BAC=90°, AB=AC,若 MN是经过点 A 的直线, BD⊥ MN于 D,EC⊥ MN于 E.(1)求证: BD=AE;(2)若将 MN绕点 A 旋转,使 MN与 BC订交于点 O,其他条件都不变, BD与 AE边相等吗?为什么?(3) BD、 CE与 DE有何关系?53.已知:如图,△ABC中, AB=AC, BD和 CE为△ ABC的高, BD和 CE订交于点O.求证: OB=OC.54.在△ ABC中,∠ ACB=90°, D 是 AB边的中点,点 F 在 AC边上, DE与 CF平行且相等.试说明AE=DF的原由.55.如图,在△ ABC中, D 是边 BC上一点, AD均分∠ BAC,在 AB 上截取 AE=AC,连接 DE,已知 DE=2cm, BD=3cm,求线段 BC的长.优秀文档56.如图:已知∠B=∠ C, AD=AE,则 AB=AC,请说明原由.57.如图△ ABC中,点 D 在 AC上, E 在 AB上,且 AB=AC,BC=CD, AD=DE=BE.( 1)求证△ BCE≌△ DCE;( 2)求∠ EDC的度数.58.已知:∠ A=90°, AB=AC, BD均分∠ ABC, CE⊥ BD,垂足为E.求证: BD=2CE.59.如图,已知:AB=CD, AD=BC,过 BD上一点 O的直线分别交DA、 BC的延长线于E、 F.(1)求证:∠ E=∠ F;(2) OE与 OF相等吗?若相等请证明,若不相等,需增加什么条件就能证得它们相等?请写出并证明你的想法.60.以以下列图, AD是∠ BAC的均分线, DE垂直 AB于点 E, DF垂直 AC于点 F,且 BD=DC.求证: BE=CF.全等三角形证明题专项练习60 题参照答案:1.∵△ ABC≌△ ADE 且∠ B≠∠ E,∴∠ C=∠ E,∠ B=∠ D;∴∠ BAC=180°﹣∠ B﹣∠ C=180°﹣ 30°﹣ 20° =130°.2.∵ AB∥ CD, AD∥ BC,∴∠ ABD=∠ CDB、∠ ADB=∠CBD.又 BD=DB,∴△ ABD≌△ CDB(ASA).3.△ ADF与△ AEF中,∵∠ 2=∠ 3,∠ AFE=∠ CFD,∴∠ E=∠ C.∵∠ 1=∠ 2,∴∠ BAC=∠DAE.∵AC=AE,∴△ ABC≌△ ADE.4.( 1)∵∠ BHD=∠ AHE,∠ BDH=∠ AEH=90°∴∠ DBH+∠BHD=∠ HAE+∠ AHE=90°∴∠ DBH=∠HAE∵∠ HAE=∠DAC∴∠ DBH=∠DAC;(2)∵ AD⊥ BC∴∠ ADB=∠ADC在△ BDH与△ ADC中,∴△ BDH≌△ ADC.5.∵ DE⊥ AB, DF⊥ AC,∴△ DBE与△ DCF是直角三角形,∵BD=CD, DE=DF,∴Rt △ DBE≌ Rt △ DCF( HL),∴∠ B=∠ C,∴AB=AC.6.∵ AE 是∠ BAC的均分线,∴∠ BAE=∠CAE;∴180°﹣∠BAE=180°﹣∠CAE,即∠ DAB=∠DAC;又∵ AB=AC, AD=AD,∴在△ ABD和△ ACD中,∴△ ABD≌△ ACD( SAS)7.∵ AE∥ BC,∴∠ B=∠ C.∵AF=BD, AE=BC,∴△ AEF≌△ BCD( SAS).8.△ ABE与△ ACD全等.原由:∵ AB=AC,∠ A=∠ A(公共角), AE=AD,∴△ ABE≌△ ACD.9.图中的全等三角形有:△ABD≌△ ACD,△ABE≌△ ACE,△BDE≌△ CDE.原由:∵ D是 BC的中点,∴BD=DC, AB=AC, AD=AD∴△ ABD≌△ ACD( SSS);∵AE=AE,∠ BAE=∠ CAE, AB=AC,∴△ ABE≌△ ACE( SAS);∵BE=CE, BD=DC, DE=DE,∴△ BDE≌△ CDE( SSS).10.:∵∠ 1=∠ 2,∴∠ ACB=∠DCE,在△ ABC和△ DEC中,,∴△ ABC≌△ DEC( SAS)11.增加AB=DF.在△ ABC和△ FDE中,∴△ ABC≌△ FDE(SSS).12.∵ AB=AC, BD=CE,∴ AD=AE.又∵∠ A=∠ A,∴△ ABE≌△ ACD(SAS).13.△ CBD≌△ CA1F 证明以下:∵AC=BC,∴∠A=∠ ABC.∵△ ABC绕点 C 逆时针旋转角α( 0°<α< 90°)获取△ A1B1C1,∴∠ A1 =∠ A, A1C=AC,∠ ACA1=∠ BCB1=α.∴∠ A1 =∠ ABC(1 分), A1C=BC.∴△ CBD≌△ CAF( ASA)114.∵ AB∥DE, AC∥DF,∴∠ B=∠ DEF,∠ F=∠ ACB.∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.∴△ ABC≌△ DEF ( ASA).15.∵ AB=AC, AD=AE,∠ DAB=∠ EAC,∴∠ DAC=∠AEB,∴△ ACD≌△ ABE,∴∠ D=∠ E,又 AD=AE,∠ DAB=∠EAC,∴△ ADM≌△ AEN16.∵△ ABC和△ ADE均为等腰直角三角形,∴AB=AC, AD=AE,∠ BAC=∠DAE=90,即∠ BAC+∠CAE=∠DAE+∠ CAE,∴∠ BAE=∠CAD,在△ ABE和△ ACD中,,∴△ ABE≌△ ACD17.答:△ BDE≌△ FEC,△ BCE≌△ FDC,△ ABE≌△ ACF;证明:(以△ BDE≌△ FEC为例)∵△ ABC是等边三角形,∴BC=AC,∠ ACB=60°,∵CD=CE,∴△ EDC是等边三角形,∴∠ EDC=∠DEC=60°,∴∠ BDE=∠FEC=120°,∵CD=CE,∴BC﹣ CD=AC﹣ CE,∴BD=AE,又∵ EF=AE,∴B D=FE,在△ BDE与△ FEC中,∵,∴△ BDE≌△ FEC( SAS).18.( 1)证明以下:∵∠ ABD=∠1+∠ EBC,∠ CBE=∠ 2+∠ EBC,∠ 1=∠2.∴∠ ABD=∠CBE.在△ ABD和△ EBC中∴△ ABD≌△ EBC( AAS);(2)从中还可获取 AB=BC,∠ BAD=∠ BEC19.( 1)∵ AB=8, AD=2∴BD=AB﹣ AD=6在 Rt △ BDE中∠BDE=90°﹣∠B=30°∴ BE= BD=3∴CE=BC﹣ BE=5在 Rt △ CFE中∠CEF=90°﹣∠C=30°∴ CF= CE=∴AF=AC﹣ FC= ;(2)在△ BDE和△ EFC中,∴△ BDE≌△ CFE( AAS)∴BE=CF∴BE=CF= EC∴BE= BC=∴BD=2BE=∴AD=AB﹣ BD=∴AD= 时, DE=EF20.( 1)图中全等的三角形有四对,分别为:①△ DBG≌△ EGC,②△ ADG≌△ AEG,③△ ABG≌△ ACG,④△ABE≌△ ACD;( 4 分)(Ⅱ)∵ AB=AC, AD=AE,∠ A 是公共角,∴△ ABE≌△ ACD( SAS)④;∵AB=AC, AD=AE,∴AB﹣ AD=AC﹣ AE,即 BD=CE;由④得∠ B=∠ C,又∵∠ DGB=∠ EGC(对顶角相等), BD=CE(已证),∴△ DBG≌△ EGC( AAS)①;由①得 BG=CG,由④得∠ B=∠C,又∵ AB=AC,∴△ ABG≌△ ACG( SAS)③;由①得 BG=CG,且 AD=AE, AG为公共边,∴△ ADG≌△ AEG( SSS)②;21.( 1)△ ABC≌△ DCB.证明:∵ AB=CD, AC=BD, BC=CB,∴△ ABC≌△ DCB.( SSS)(2) EF 均分∠ DEC.原由:∵ EF∥ BC,∴∠ DEF=∠EBC,∠ FEC=∠ ECB;由( 1)知:∠ EBC=∠ ECB;∴∠ DEF=∠FEC;∴ FE 均分∠ DEC22.△ ABC≌△ DCB.原由以下:∵∠ABC=∠ DCB,∠ 1=∠ 2,∴∠ DBC=∠ACB.∵BC=CB,∴△ ABC≌△ DCB23.( 1)∵ BF=DE,∴BF+EF=DE+EF.即 BE=DF.在△ DFC和△ BEA中,∵,∴△ DFC≌△ BEA( SAS).(2)∵△ DFC≌△ BEA,∴CF=AE,∠ CFD=∠ AEB.∵在△ AFE与△ CEF中,∵,∴△ AFE≌△ CEF( SAS)24.△ ABF与△ DFG中,∠ BAF=∠ BGD,∠ BFA=∠DFG,∴∠ B=∠ D,∵∠ BAF=∠EAC,∴∠ BAE=∠DAC,∵AC=AE,∠ BAE=∠ DAC,∠B=∠D,∴△ BAE≌△ DAC.答案:有.△ BAE≌△ DAC25.∵ CE∥AB,∴∠ ABD=∠ECD.在△ ABD和△ ECD中,,∴△ ABD≌△ ECD( ASA)26.( 1)证明:在△ AOB和△ COD中∵∴△ AOB≌△ COD( AAS)(2)解:∵△ AOB≌△ COD,∴ AO=DO∵ E 是 AD的中点∴OE⊥ AD∴∠ AEO=90°27. 1)证明:∵ AB∥ DE,∴∠ A=∠ D.∵AB=DE, AF=DC,∴△ ABF≌△ DEC.( 2)解:全等三角形有:△ ABC和△ DEF;△ CBF和△ FEC28.证明:( 1)∵ BE、 CF分别是 AC、 AB两边上的高,∴∠ AFC=∠AEB=90°(垂直定义),∴∠ ACG=∠DBA(同角的余角相等),又∵ BD=CA,AB=GC,∴△ ABD≌△ GCA;(2)连接 DG,则△ ADG是等腰三角形.证明以下:∵△ ABD≌△ GCA,∴AG=AD,∴△ ADG是等腰三角形.29.解:∵∠ 4+∠ 6=180°﹣∠ 3,∠ 5+∠ 6=180°﹣∠ 2,∠ 3=∠2,∴∠ 4+∠ 6=∠ 5+∠ 6,∴∠ 4=∠ 5,∵在△ ADE和△ CFD中,,∴△ ADE≌△ CFD( AAS).30.① DF∥BC.证明:∵ BE⊥ AC,∴∠ BEC=90°,∴∠ C+∠ CBE=90°,∵∠ ABC=90°,∴∠ ABF+∠CBE=90°,∴∠ C=∠ ABF,∵DF∥ BC,∴∠C=∠ ADF,∴∠ABF=∠ADF,在△ AFD和△ AFB中∴△ AFD≌△ AFB( AAS).31.在△ BEA和△ BDC中:,故△ BEA≌△ BDC(SSS).32.如图,在△ ABC中,∠ ACB=90°, AC=BC, BE⊥ CE于点 E, AD⊥CE于点 D.请说明△ ADC≌△ CEB的原由.解:∵ BE⊥CE于点 E(已知),∴∠ E=90°(垂直的意义),同理∠ ADC=90°,∴∠ E=∠ ADC(等量代换).在△ ADC中,∵∠ 1+∠ 2+∠ ADC=180°(三角形的内角和等于180°),∴∠ 1+∠ 2=90°(等式的性质).∵∠ ACB=90°(已知),∴∠ 3+∠ 2=90°,∴∠ 1=∠3(同角的余角相等).在△ ADC和△ CEB中, .∴△ ADC≌△ CEB ( A. A. S)33.( 1)△ ABF≌△ DEC,△ ABC≌△ DEF,△ BCF≌△ EFC;(2 分)(2)△ ABF≌△ DEC,证明:∵ AB∥ DE,∴∠ A=∠ D,( 3 分)在△ ABF和△ DEC中,(4 分)∴△ ABF≌△ DEC.(5 分)34.( 1)△ ADF与△ AEF中,∵∠ 2=∠ 3,∠ AFE=∠ CFD,∴∠ C=∠ E;(2)∵∠ 1=∠ 2,∴∠BAC=∠DAE.∵AC=AE,又∠ C=∠ E,∴△ ABC≌△ ADE.35.∵ AE⊥CD,∴∠ AEC=90°,∴∠ ACE+∠CAE=90°,(直角三角形两个锐角互余)∵∠ ACE+∠BCF=90°,∴∠ CAE=∠BCF,(等角的余角相等)∵AE⊥ CD,BF⊥ CD,∴∠ AEC=∠BFC=90°,在△ ACE与△ CBF中,∠ CAE=∠ BCF,∠ AEC=∠ BFC,AC=BC,∴△ ACE≌△ CBF( AAS).优秀文档36.当动点 P 运动到 AC边上中点地址时,△APE≌△ EDB,∵DE∥ CA,∴△ BED∽△ BAC,∴= ,∵D是BC的中点,∴ = ,∴= ,∴E 是 AB中点,∴DE= AC, BE=AE,∵DE∥ AC,∴∠ A=∠ BED,要使△ APE≌△ EDB,还缺少一个条件DE=AP,又有 DE= AC,∴ P 必定是 AC中点.37.( 1)∵ AE=AB,∴∠ B=∠ AEB,又∵ AD∥ BC,∴∠ AEB=∠DAE,∴∠ DAE=∠B;(2)∵∠ DAE=∠ B,AD=BC,AE=AB,∴△ ABC≌△ EAD.38.△ ACE≌△ BCD.∵△ ABC和△ ECD都是等腰直角三角形,∴∠ ECD=∠ACB=90°,∴∠ ACE=∠BCD(都是∠ ACD的余角),在△ ACE和△ BCD中,∵,∴△ ACE≌△ BCD.39.∵∠ BAC=∠ DAE,∴∠ BAC+∠CAD=∠ DAE+∠ CAD,即∠ BAD=∠EAC,在△ ABD和△ ACE中,∴△ ABD≌△ ACE.40.证明:延长FD到 M使 MD=DF,连接 BM,EM.∵D 为 BC中点,∴BD=DC.∵∠ FDC=∠BDM,∴△ BDM≌△ CDF.∴BM=FC.∵ED⊥ DF,∴EM=EF.∵BE+BM> EM,∴B E+FC> EF.41. PM=HN.原由:∵在△ MNP中, H是高 MQ与 NE的交点,∴∠ MEH=∠NQH=90°,∠ MQP=∠ NQH=90°∵∠ MHE=∠NHQ(对顶角相等),∴∠ EMH=∠QNH(等角的余角相等)在△ MPQ和△ NHQ中,,∴△ MPQ≌△ NHQ( ASA),∴MP=NH.42.( 1)∵ BG∥ AC,∴∠ DBG=∠DCF.∵D为BC的中点,∴ BD=CD又∵∠ BDG=∠ CDF,在△ BGD与△ CFD中,∵∴△ BGD≌△ CFD( ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD, BG=CF.又∵ DE⊥ FG,∴EG=EF(垂直均分线到线段端点的距离相等).∴在△ EBG中, BE+BG> EG,即 BE+CF>EF.43.∵ BE⊥CE于 E,AD⊥ CE于 D∴∠ E=∠ ADC=90°∵∠ BCE+∠ACE=∠ DAC+∠ ACE=90°∴∠ BCE=∠DAC∵AC=BC∴△ ACD≌△ CBE∴CE=AD,﹣ 1.7=0.8 ( cm)44.∵ AB=CD, BC=AD,又∵ BD=DB,在△ ABD和△ CDB中,∴△ ABD≌△ CDB,∴∠ A=∠ C.45.∵ AD是△ ABC中 BC边上的中线,∴BD=CD.∵CE⊥ AD于 E, BF⊥AD,∴∠ BFD=∠CED.在△ BFD和△ CED中,∴△ BFD≌△ CED( AAS).∴CE=BF46.∵ AD∥BC,∴∠ E=∠ ENB,∵∠ ENB=∠CNF,∴∠ E=∠ CNF,∵AB∥ CD,∴∠A=∠B,∵∠ C=∠ B,∴∠ EAB=∠DCB,∵AM=CF,∴△ AME≌△ CFN,优秀文档47.证明:过T 作 TF⊥ AB于 F,∵A T 均分∠ BAC,∠ ACB=90°,∴CT=TF(角均分线上的点到角两边的距离相等),∵∠ ACB=90°, CM⊥AB,∴∠ ADM+∠DAM=90°,∠ ATC+∠ CAT=90°,∵AT 均分∠ BAC,∴∠DAM=∠CAT,∴∠ ADM=∠ATC,∴∠ CDT=∠CTD,∴CD=CT,又∵ CT=TF(已证),∴C D=TF,∵CM⊥ AB,DE∥ AB,∴∠ CDE=90°,∠ B=∠ DEC,在△ CDE和△ TFB 中,,∴△ CDE≌△ TFB( AAS),∴C E=TB,∴CE﹣ TE=TB﹣ TE,即 CT=BE.48.∵∠ BAE=∠ DAC∴∠ BAE+∠CAE=∠ DAC+∠ CAE即∠ BAC=∠DAE又∵ AB=AD, AC=AE,∴△ ABC≌△ ADE( SAS)∴∠ B=∠ D(全等三角形的对应角相等)49.∵ DE=EF, AE=CE,∠ AED=∠ FEC,∴△ AED≌△ FEC.∴∠ ADE=∠CFE.∴AD∥ FC.∵D是AB上一点,∴ AB∥ CF50.∵ BE∥CF,∴∠ CMF=∠BME,∠ FCM=∠ EBM.又∵ BE=CF,即 AM是△ ABC的中线51.∵ AC⊥BC, BE⊥CD,∴∠ ACF+∠FCB=∠ FCB+∠ CBE=90°.∴∠ FCA=∠EBC.∵∠ BEC=∠CFA=90°, AC=BC,∴△ BEC≌△ CFA.∴CE=AF.∴EF=CF﹣ CE=CF﹣ AF52.解:( 1)证明:由题意可知, BD⊥ MN与 D, EC⊥ MN与 E,∠BAC=90°,则△ ABD与△ CEA是直角三角形,∠ DAB=∠ ECA,在△ ABD与△ CEA中,∵,∴△ ABD≌△ CEA,∴B D=AE;(2)若将 MN绕点 A 旋转,与 BC订交于点 O,则 BD, CE与 MN垂直,∴△ABD与△CEA仍是直角三角形,两个三角形仍全等,∴BD与 AE边仍相等;(3)∵△ ABD≌△ CEA,∴B D=AE, AD=EC,∴DE=BD+EC或 DE=CE﹣ BD或 DE=BD﹣ CE.53.∵ AB=AC,∴∠ ABC=∠ACB,∵BD、CE分别为△ABC的高,∴∠ BEC=∠BDC=90°,∴在△ BEC和△ CDB中,∴△ BEC≌△ CDB,∴∠ 1=∠ 2,∴OB=OC∵∠ ACB=90°, D 是 AB 边的中点∴CD=AD,∠ DAC=∠ DCF∵DE与 CF平行且相等∴∠ EDA=∠DAC∴∠ EDA=∠DCF在△ AED和△ CFD中CD=AD,∠ EDA=∠ DCF, DE=CF∴△ AED≌△ CFD∴A E=DF.55.∵ AD均分∠ BAC∴∠ BAD=∠CAD在△ ADE和△ ADC中∵∴△ ADE≌△ ADC( SAS)∴DE=DC∴BC=BD+DC=BD+DE=2+3=5(cm)56.在△ AEB与△ ADC中,.∴△ AEB≌△ ADC( AAS).∴ AB=AC(全等三角形,对应边相等)57.( 1)证明:在△ BCE和△ DCE中∴△ BCE≌△ DCE( SSS).(2)解:∵ AD=DE,∴∠ A=∠ AED;∴∠ EDC=∠A+∠ AED=2∠ A,设∠ A=x,依照题意得,5x=180°,解得x=36°∴∠ EDC=2∠ A=72°证明:延长CE、 BA 交于点 F.∵CE⊥ BD于 E,∠ BAC=90°,∴∠ ABD=∠ACF.又 AB=AC,∠ BAD=∠ CAF=90°,∴△ ABD≌△ ACF,∴B D=CF.∵BD均分∠ ABC,∴∠ CBE=∠FBE.有 BE=BE,∴△ BCE≌△ BFE,∴C E=EF,∴C E= BD,∴B D=2CE.59.( 1)证明:在△ ABD和△ CDB中∵AB=CD,AD=BC,BD=DB,∴△ ABD≌△ CDB( SSS),∴∠ ADB=∠DBC,∴ DE∥ BF.∴∠ E=∠ F.(2)答:当 O是 BD中点时,OE=OF.证明以下:∵ O是 BD中点,∴OB=OD.又∵∠ ADB=∠ DBC,∠ E=∠ F,∴△ ODE≌△ OBF( AAS).∴OE=OF.(当 AE=CF时也可证得60.∵ DE⊥AB, DF⊥AC,∴∠ E=∠ DFC=90°.∵AD均分∠ EAC,∴ DE=DF.在 Rt △ DBE和 Rt △ DCF中,∴Rt △ DBE≌ Rt △ CDF( HL).∴BE=CF.。
全等三角形证明经典50题(含答案)
全等三角形证明经典50题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=22.已知:D是AB中点,∠ACB=90°,求证:12 CD AB延长CD与P,使D为CP中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF和三角形AEF全等。
A DBC∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG∠CGD =∠EFD 又,EF ∥AB∴,∠EFD =∠1 ∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E∵∠ABC =∠E+∠BDE ∴∠ABC =2∠EABA CDF2 1 E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
(完整)全等三角形经典例题(含答案),推荐文档
全等三角形证明题精选一.解答题(共30小题)1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是: ;(2)证明: .20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设: ;结论: .(均填写序号)证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是 和 ,命题的结论是 和 (均填序号);(2)证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.全等三角形证明题精选参考答案与试题解析一.解答题(共30小题)1.(2016•连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.2.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.3.(2016•孝感)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.4.(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.5.(2016•云南)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.6.(2016•宁德)如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理ASA证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(ASA),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.7.(2016•十堰)如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.8.(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.(2016•昆明)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.10.(2016•衡阳)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED≌△BFC是解此题的关键,注意:全等三角形的对应边相等.11.(2016•重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.12.(2016•南充)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.13.(2016•恩施州)如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【分析】通过全等三角形(Rt△CBE≌Rt△BCD)的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2016•重庆)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC 和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.15.(2016•湖北襄阳)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.【分析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4.【点评】本题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.16.(2016•吉安校级一模)如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.【分析】根据全等三角形的性质得到CD=AF,证明∴△DGC≌△AGF,根据全等三角形的性质和角平分线的判定得到∠CBG=∠FBG,根据三角形内角和定理计算即可.【解答】解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.【点评】本题考查的是全等三角形的性质角平分线的判定,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.(2016•武汉校级四模)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【分析】由垂直的定义可得到∠C=∠D,结合条件和公共边,可证得结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA(HL).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.18.(2016•济宁二模)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【分析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.(2016•诏安县校级模拟)已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是: ∠MAB=∠NCD ;(2)证明: 在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA). .【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAB=∠NCD,或BM=DN或∠ABM=∠CDN.【解答】解:(1)你添加的条件是:①∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA),故答案为:∠MAB=∠NCD;在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA).【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(2016•屏东县校级模拟)如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.21.(2016•沛县校级一模)如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中找出全等三角形并证明是解题的关键.22.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.23.(2012•漳州)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设: 可以为①②③ ;结论: ④ .(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS 定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.24.(2009•大连)如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)【分析】因为BE=CF,利用等量加等量和相等,可证出BC=EF,再证明△ABC≌△DEF,从而得出AC=DF.【解答】证明:∵BE=CF,∴BE+EC=CF+EC(等量加等量和相等).即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠1,BC=EF,∴△ABC≌△DEF(SAS).∴AC=DF(全等三角形对应边相等).【点评】解决本题要熟练运用三角形的判定和性质.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.(2006•平凉)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【分析】探究思路:因为△ABO与△DCO有一对对顶角,要证∠1=∠2,只要证明∠A=∠D,把问题转化为证明△ABC≌△DCB,再围绕全等找条件.【解答】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.【点评】本题是全等三角形的判定,性质的综合运用,可以由探究题目的结论出发,找全等三角形,再寻找判定全等的条件.26.(2006•佛山)如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O 点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是 ① 和 ③ ,命题的结论是 ② 和 ④ (均填序号);(2)证明你写出的命题.【分析】本题实际是考查全等三角形的判定,根据条件可看出主要是围绕三角形ABE和ACD全等来求解的.已经有了一个公共角∠A,只要再知道一组对应角和一组对应边相等即可得出三角形全等的结论.可根据这个思路来进行选择和证明.【解答】解:(1)命题的条件是①和③,命题的结论是②和④.(2)已知:D,E分别为△ABC的边AB,AC上的点,且AB=AC,∠ABE=∠ACD.求证:OB=OC,BE=CD.证明如下:∵AB=AC,∠ABE=∠ACD,∠BAC=∠CAB,∴△ABE≌△ACD.∴BE=CD.又∠BCD=∠ACB﹣∠ACD=∠ABC﹣∠ABE=∠CBE,∴△BOC是等腰三角形.∴OB=OC.【点评】本题主要考查了全等三角形的判定,要注意的是AAA和SSA是不能判定三角形全等的.27.(2005•安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.做题时从已知结合全等的判定方法开始思考,做到由易到难,不重不漏.【解答】解:此图中有三对全等三角形.分别是:△ABF≌△DEC、△ABC≌△DEF、△BCF≌△EFC.证明:∵AB∥DE,∴∠A=∠D.又∵AB=DE、AF=DC,∴△ABF≌△DEC.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.(2004•昆明)如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.【分析】利用已知条件易证△AEB≌△DEC,从而得出AE=DE.【解答】证明:∵AD∥BC,∠B=∠C,∴梯形ABCD是等腰梯形,∴AB=DC,在△AEB与△DEC中,,∴△AEB≌△DEC(SAS),∴AE=DE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.29.(2004•淮安)如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.【分析】可以有三个真命题:(1)②③⇒①,可由ASA证得△ADE≌△BCE,所以DE=EC;(2)①③⇒②,可由SAS证得△ADE≌△BCE,所以∠1=∠2;(3)①②⇒⑧,可由ASA证得△ADE≌△BCE,所以AE=BF,∠3=∠4.【解答】解:②③⇒①证明如下:∵∠3=∠4,∴EA=EB.在△ADE和△BCE中,∴△ADE≌△BCE.∴DE=EC.①③⇒②证明如下:∵∠3=∠4,∴EA=EB,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠1=∠2.①②⇒⑧证明如下:在△ADE和△BCE中,∴△ADE≌△BCE.∴AE=BE,∠3=∠4.【点评】本题考查了全等三角形的判定和性质;题目是一道开放型的问题,选择有多种,可以采用多次尝试法,证明时要选择较为简单的进行证明.30.(2011•通州区一模)已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.【分析】根据AE⊥CD,BF⊥CD,求证∠BCF+∠B=90°,可得∠ACF=∠B,再利用(AAS)求证△BCF≌△CAE即可.【解答】证明:∵AE⊥CD,BF⊥CD∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF和△CAE中∴△BCF≌△CAE(AAS)∴CE=BF.【点评】此题主要考查全等三角形的判定与性质这一知识点,解答此题的关键是利用(AAS)求证△BCF≌△CAE,要求学生应熟练掌握.。
全等三角形的证明题及答案(推荐4篇)
全等三角形的证明题及答案(推荐4篇)本站小编为你整理了多篇相关的《全等三角形的证明题及答案(推荐4篇)》,但愿对你工作学习有帮助,当然你在本站还可以找到更多《全等三角形的证明题及答案(推荐4篇)》。
第一篇:证明三角形全等全等三角形问题中常见的辅助线的作法一、倍长中线(线段)造全等例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD 平分∠BAE.A二、截长补短1、如图,∆ABC中,AB=2AC,AD平分∠BAC,且AD=BD,求证:CD⊥ACEFBDC2、如图,AC∥BD,EA,EB分别平分∠CAB,∠DBA,CD求证;AB =AC+BDA3、如图,已知在ςABC内,∠BAC=60,∠C=400,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的角平分线。
CABDECB应用:1、(09崇文二模)以∆ABC的两边AB、AC为腰分别向外作等腰Rt∆ABD和等腰Rt∆ACE,∠BAD=∠CAE=90︒,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及求证:BQ+AQ=AB+BP数量关系.(1)如图① 当∆ABC为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;(2)将图①中的等腰Rt∆ABD绕点A沿逆时针方向旋转θ(0︒C4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180C5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PCA四、借助角平分线造全等1、如图,已知在△ABC中,∠B=60°,△ABC的角平应用:分线AD,CE相交于点O,求证:OE=ODBBC2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.A(1)说明BE=CF的理由;(2)如果AB=a,AC=b,求AE、BE 的长.BGCFD三、平移变换例1 AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC周长记为PA,△EBC周长记为PB.求证PB>PA.应用:1、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。
全等三角形证明经典40题(含答案)
1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD的长.解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=22.已知:BC=ED,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴ AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
ADB C3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD ≌△CGDEF =CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠E∵∠ABC =∠E+∠BDEBACDF21 EA∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF(SAS)∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
(完整版)全等三角形证明经典50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。
八年级全等三角形简单证明题及解答(5道)
汇报人:XX
目 录
• 题目一:基本的全等三角形证明 • 题目二:利用角平分线性质证明 • 题目三:通过边边边条件证明 • 题目四:结合中线性质进行证明 • 题目五:综合应用多种性质证明 • 总结与拓展
01
题目一:基本的全等三角形证明
题目描述
• 已知三角形$ABC$和三角形$DEF$,其中$AB = DE$,$AC = DF$,$\angle BAC = \angle EDF$。求证:$\triangle ABC \cong \triangle DEF$。
由第二步可知,△BDE∽△CFD。
详细解答
4. 第四步,根据相似三角形的性质,对应边成比例,所以BD/CF=DE/DF。
5. 第五步,因为BD=AD(已知),所以AD/CF=DE/DF。又因为AE/EC=DE/EF(已知), 所以AD/CF=AE/EC。
6. 第六步,交叉相乘得AD*EC=AE*CF,即AE/AD=EC/CF。又因为∠A=∠ACF(对顶角相 等),所以△ADE∽△ACF。
第三步,根据相似三 角形的性质,有 AB/AC = BD/DC。
综上,我们证明了 AB/AC = BD/DC。
03
题目三:通过边边边条件证明
题目描述
已知
△ABC和△DEF中,AB = DE,BC = EF,AC = DF。
求证
△ABC ≌ △DEF。
题目描述
【分析】
本题主要考察全等三角形的判定方法——边边边条件。根据已知条件,我们可以 直接应用边边边定理来证明两个三角形全等。
题目描述
01
【解答】
02
证明
03
04
∵ 在△ABC和△DEF中,AB = DE,BC = EF,AC = DF(已
第一章 全等三角形 (含解析)
第一章全等三角形一.选择题(共26小题)1.下列说法不正确的是()A.两个三角形全等,形状一定相同B.两个三角形全等,面积一定相等C.一个图形经过平移、旋转、翻折后,前后两个图形一定全等D.所有的正方形都全等2.下列说法中,正确的个数为()①用一张像底片冲出来的10 张五寸照片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的正六边形是全等形④面积相等的两个直角三角形是全等形.A .1 个B .2 个C .3 个D .4 个3.对于两个图形给出下列结论,其中能得到这两个图形全等的结论有()①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长相等且面积相等;④两个图形的形状相同且面积相等.A.1个B.2个C.3个D.4个4.下列每组中的两个图形,是全等图形的为()A.B.C .D .5.下列判断正确的是( )A . 形状相同的图形叫全等形B . 图形的面积相等的图形叫全等形C . 部分重合的两个图形全等D . 两个能完全重合的图形是全等形 6.下列说法正确的是( ) A .两个周长相等的长方形全等 B .两个周长相等的三角形全等C .两个面积相等的长方形全等D .两个周长相等的圆全等7.如图,在ABC ∆中,50A ∠=︒,点D ,E 分别在边AC ,AB 上,连接BD ,CE ,39ABD ∠=︒,且CBD BCE ∠=∠,若AEC ADB ∆≅∆,点E 和点D 是对应顶点,则CBD ∠的度数是( )A .24︒B .25︒C .26︒D .27︒8.如图,ABC AEF ∆≅∆,AB AE =,B E ∠=∠,则对于结论:其中正确的是( ) ①AC AF =, ②FAB EAB ∠=∠, ③EF BC =, ④EAB FAC ∠=∠,A .①②B .①③④C .①②③④D .①③9.若ABC DEF ∆≅∆,则根据图中提供的信息,可得出x 的值为( )A .30B .27C .35D .4010.下列说法中错误的是( )A .有两个角及它们的夹边对应相等的两个三角形全等B .有两个角及其中一个角的对边对应相等的两个三角形全等C .有两条边及它们的夹角对应相等的两个三角形全等D .有两条边及其中一条边的对角对应相等的两个三角形全等11.如图,已知:在AFD ∆和CEB ∆,点A 、E 、F 、C 在同一直线上,在给出的下列条件中,①AE CF =,②D B ∠=∠,③AD CB =,④//DF BE ,选出三个条件可以证明AFD CEB ∆≅∆的有( )组.A .4B .3C .2D .112.如图,以ABC ∆的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连结AD 、CD .由作法可得:ABC CDA ∆≅∆的根据是( )A .SASB .ASAC .AASD .SSS13.如图,已知14∠=∠,添加以下条件,不能判定ABC CDA ∆≅∆的是( )A .23∠=∠B .B D ∠=∠C .BC DA =D .AB DC =14.如图,//AE FD ,AE DF =,要使EAB FDC ∆≅∆,需要添加的条件可以是( )A .AB BC =B .EB FC =C .A F ∠=∠D .AB CD =15.如图,点B ,E ,C ,F 在同一条直线上,已知AB DE =,AC DF =,添加下列条件还不能判定ABC DEF ∆≅∆的是( )A .ABC DEF ∠=∠B .A D ∠=∠C .BE CF =D .BC EF =16.在ABC ∆与△A B C '''中,已知A A ∠=∠',AB A B ='',增加下列条件,能够判定ABC ∆与△A B C '''全等的是( ) A .BC B C =''B .BC A C =''C .B B ∠=∠'D .B C ∠=∠'17.下列判定直角三角形全等的方法,不正确的是( ) A .两条直角边对应相等 B .两个锐角对应相等C .斜边和一直角边对应相等D .斜边和一锐角对应相等18.如图,BE CF =,AE BC ⊥,DF BC ⊥,要根据“HL ”证明Rt ABE Rt DCF ∆≅∆,则还要添加一个条件是( )A .AB DC =B .A D ∠=∠C .B C ∠=∠D .AE BF =19.如图,AC BC =,AC OA ⊥,CB OB ⊥,则Rt AOC Rt BOC ∆≅∆的理由是( )A .SSSB .ASAC .SASD .HL20.如图,CD AB ⊥,BE AC ⊥,垂足分别为D 、E ,BE 、CD 相交于点O .如果AB AC =,那么图中全等的直角三角形的对数是( )A .1B .2C .3D .421.如图,BE CF =,AE BC ⊥,DF BC ⊥,要根据“HL ”证明Rt ABE Rt DCF ∆≅∆,则还需要添加一个条件是( )A .AE DF =B .A D ∠=∠C .B C ∠=∠D .AB DC =22.如图,若要用“HL ”证明Rt ABC Rt ABD ∆≅∆,则还需补充条件( )A .BAC BAD ∠=∠B .AC AD =或BC BD = C .AC AD =且BC BD =D .以上都不正确23.如图,在ABC ∆中,AB AC =,112A ∠=︒,E ,F ,D 分别是AB ,AC ,BC 上的点,且BE CD =,BD CF =,则EDF ∠的度数为( )A .30︒B .34︒C .40︒D .56︒24.如图,AB CD ⊥,且AB CD =,CE AD ⊥,BF AD ⊥,分别交AD 于E 、F 两点,若BF a =,EF b =,CE c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +- 25.如图,在等腰ABC ∆中,AB AC =,AB BC >,点D 在边BC 上,且14BD BC =,点E 、F 在线段AD 上,满足BED CFD BAC ∠=∠=∠,若20ABC S ∆=,则ABE CDF S S ∆+是多少?( )A .9B .12C .15D .1826.如图,在Rt ABC ∆中,90ACB ∠=︒,5BC cm =,在AC 上取一点E ,使EC BC =,过点E 作EF AC ⊥,连接CF ,使CF AB =,若12EF cm =,则下列结论不正确的是( )A .F BCF ∠=∠B .7AE cm =C .EF 平分ABD .AB CF ⊥二.解答题(共14小题)27.已知:如图,点A 、E 、F 、C 在同一条直线上,//AD CB ,12∠=∠,AE CF =.求证:ADF CBE ∆≅∆.28.已知:点A 、F 、E 、C 在同一条直线上,AF CE =,//BE DF ,BE DF =. (1)如图1,求证:ABE CDF ∆≅∆.(2)如图2,连接AD 、BC 、BF 、DE ,在不添加任何辅助线的情况下,请直接写出图2中所有全等的三角形(除ABE ∆全等于CDF ∆外).29.如图,在ABC ∆中,BD ,CE 分别是AC ,AB 边上的高,在BD 上截取BF AC =,延长CE 至点G 使CG AB =,连接AF ,AG . (1)如图1,求证:AG AF =;(2)如图2,若BD 恰好平分ABC ∠,过点G 作GH AC ⊥交CA 的延长线于点H ,请直接写出图中所有的全等三角形并用全等符号连接.30.如图,AB AC =,BE CD =. (1)求证:B C ∠=∠;(2)连接AO ,若12∠=∠,不添加任何辅助线,直接写出图中所有的全等三角形.31.如图,ABC ∆和DEF ∆的顶点B ,F ,C ,D 在同一条直线上,BF CD =,边AC 与EF 相交于点G ,CG FG =,A E ∠=∠.求证:ABC EDF ∆≅∆.32.已知:如图,点E 、F 在CD 上,且A B ∠=∠,//AC BD ,CF DE =. 求证:AEC BFD ∆≅∆.33.如图,BD ,CE 分别是ABC ∆的高,且BE CD =,求证:Rt BEC Rt CDB ∆≅∆.34.如图(1),AB AD ⊥,ED AD ⊥,AB CD =,AC DE =,试说明BC CE ⊥的理由; 如图(2),若ABC ∆向右平移,使得点C 移到点D ,AB AD ⊥,ED AD ⊥,AB CD =,AD DE =,探索BD CE ⊥的结论是否成立,并说明理由.35.如图所示,在ABC ∆中,AB CB =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =. 求证:Rt ABE Rt CBF ∆≅∆.36.如图,在ABC ∆中,AB AC =,DE 是过点A 的直线,BD DE ⊥于D ,CE DE ⊥于点E ; (1)若B 、C 在DE 的同侧(如图所示)且AD CE =.求证:AB AC ⊥;(2)若B 、C 在DE 的两侧(如图所示),且AD CE =,其他条件不变,AB 与AC 仍垂直吗?若是请给出证明;若不是,请说明理由.37.如图,AB AC =,90BAC ∠=︒,BD AE ⊥于D ,CE AE ⊥于E ,且BD CE >. 求证:BD EC ED =+.38.已知:如图,ABC=,BD与CE交于点F.⊥,BD CE⊥,CE AB∆,BD AC(1)说明AB AC=的理由;(2)联结AF并延长交BC于G,说明AG BC⊥的理由.39.如图,在ABE∆中,C,D是边BE上的两点,有下面四个关系式:(1)AB AE=,(2)∠=∠.请用其中两个作为已知条件,余下两个=,(4)BAC EAD=,(3)AC ADBC DE作为求证的结论,写出你的已知和求证,并证明.已知:求证:证明:40.如图,在四边形ABCD中,//CD=,点F是AC的中点,连接DF,AB CD,17AB=,12并延长交AB于点E.(1)求BE的长;(2)若AE AD=,13∆的形状,并说明理由.BC=,判断ADF第一章全等三角形参考答案与试题解析一.选择题(共26小题)1.下列说法不正确的是()A.两个三角形全等,形状一定相同B.两个三角形全等,面积一定相等C.一个图形经过平移、旋转、翻折后,前后两个图形一定全等D.所有的正方形都全等解:A、两个三角形全等,形状一定相同,正确,故本选项错误;B、两个三角形全等,面积一定相等,正确,故本选项错误;C、一个图形经过平移、旋转、翻折后,前后两个图形一定全等,正确,故本选项错误;D、只有边长相等的正方形才全等,所以所有的正方形都全等错误,故本选项正确.故选:D.2.下列说法中,正确的个数为()①用一张像底片冲出来的10 张五寸照片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的正六边形是全等形④面积相等的两个直角三角形是全等形.A .1 个B .2 个C .3 个D .4 个解:①用一张像底片冲出来的10 张五寸照片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的正六边形是全等形,错误,正六边形的边长不一定相等;④面积相等的两个直角三角形是全等形,错误.综上所述,说法正确的是①②共2 个.故选:B.3.对于两个图形给出下列结论,其中能得到这两个图形全等的结论有()①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长相等且面积相等;④两个图形的形状相同且面积相等.A.1个B.2个C.3个D.4个解:①周长相等的两个图形不一定重合,所以不一定全等;②如果面积相同而形状不同也不全等;③如果周长相同面积相同而形状不同,则不全等,④两个图形的形状相同,大小也相等,则二者一定重合,正确.所以只有1个正确,故选:A.4.下列每组中的两个图形,是全等图形的为()A.B.C.D.解:A选项两图形能够重合,为全等形,正确;B选项的大小不同,不重合,故错误;C选项的大小也不一样,不重合,错误;D选项形状不一样,不重合,错误;故选:A.5.下列判断正确的是()A .形状相同的图形叫全等形B .图形的面积相等的图形叫全等形C .部分重合的两个图形全等D .两个能完全重合的图形是全等形解:A、如果形状相同而面积不同,则不是全等形,错;B、如果面积相等,而形状不同,则不是全等形,错;C、根据全等形概念,强调是完全重合,错.D、正确.故选:D.6.下列说法正确的是()A.两个周长相等的长方形全等B.两个周长相等的三角形全等C.两个面积相等的长方形全等D.两个周长相等的圆全等解:A、长方形周长相等,但面积、长、宽不一定相等,错;B、三角形周长相等,但不一定对应边完全相等,错;C、长方形面积相等,但长、宽不一定相等,错;D、圆的周长相等,就可知道半径相等,两圆可完全重合,正确.故选:D.7.如图,在ABCABD∠=︒,A∠=︒,点D,E分别在边AC,AB上,连接BD,CE,39∆中,50且CBD BCE∠的度数是()∆≅∆,点E和点D是对应顶点,则CBD ∠=∠,若AEC ADBA.24︒B.25︒C.26︒D.27︒解:AEC ADB∆≅∆,∴=,AC ABABC ACB∴∠=∠,∠=︒,A50∴∠=∠=︒,65ABC ACB又39ABD ∠=︒, 653926CBD ∴∠=︒-︒=︒,故选:C .8.如图,ABC AEF ∆≅∆,AB AE =,B E ∠=∠,则对于结论:其中正确的是( ) ①AC AF =, ②FAB EAB ∠=∠, ③EF BC =, ④EAB FAC ∠=∠,A .①②B .①③④C .①②③④D .①③解:ABC AEF ∆≅∆,AC AF ∴=,EF CB =,EAF BAC ∠=∠, EAF BAF BAC BAF ∴∠-∠=∠-∠, EAB FAC ∴∠=∠,正确的是①③④, 故选:B .9.若ABC DEF ∆≅∆,则根据图中提供的信息,可得出x 的值为( )A .30B .27C .35D .40解:ABC DEF ∆≅∆, 30BC EF ∴==,故选:A .10.下列说法中错误的是( )A .有两个角及它们的夹边对应相等的两个三角形全等B .有两个角及其中一个角的对边对应相等的两个三角形全等C .有两条边及它们的夹角对应相等的两个三角形全等D .有两条边及其中一条边的对角对应相等的两个三角形全等解:A 、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA ”,说法正确; B 、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS ”,说法正确; C 、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS ”,说法正确; D 、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;故选:D .11.如图,已知:在AFD ∆和CEB ∆,点A 、E 、F 、C 在同一直线上,在给出的下列条件中,①AE CF =,②D B ∠=∠,③AD CB =,④//DF BE ,选出三个条件可以证明AFD CEB ∆≅∆的有( )组.A .4B .3C .2D .1解:AE CF =,AE EF CF EF ∴+=+, AF CE ∴=, //DF BE , DFA BEC ∴∠=∠,∴若①②③为条件,不能证明AFD CEB ∆≅∆,若①②④为条件,能证明()AFD CEB AAS ∆≅∆, 若①③④为条件,不能证明AFD CEB ∆≅∆, 若②③④为条件,能证明()AFD CEB AAS ∆≅∆, 故选:C .12.如图,以ABC ∆的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连结AD 、CD .由作法可得:ABC CDA ∆≅∆的根据是( )A .SASB .ASAC .AASD .SSS解:由题意可得, AD BC =,AB CD =,在ADC ∆和CBA ∆中, AD CB DC BA AC CA =⎧⎪=⎨⎪=⎩, ()ADC CBA SSS ∴∆≅∆,故选:D .13.如图,已知14∠=∠,添加以下条件,不能判定ABC CDA ∆≅∆的是( )A .23∠=∠B .B D ∠=∠C .BC DA =D .AB DC =解:A 、在ABC ∆和CDA ∆中 1432AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC CDA ASA ∴∆≅∆,故本选项不符合题意;B 、在ABC ∆和CDA ∆中 14BD AC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC CDA AAS ∴∆≅∆,故本选项不符合题意; C 、在ABC ∆和CDA ∆中14BC DA AC CA =⎧⎪∠=∠⎨⎪=⎩, ()ABC CDA SAS ∴∆≅∆,故本选项不符合题意;D 、根据AB AC =,AC AC =和14∠=∠不能推出ABC CDA ∆≅∆,故本选项符合题意;故选:D .14.如图,//AE FD ,AE DF =,要使EAB FDC ∆≅∆,需要添加的条件可以是( )A .AB BC = B .EB FC = C .A F ∠=∠D .AB CD =解://AE DF ,A D ∴∠=∠,A 、根据AB BC =,AE DF =和AD ∠=∠不能推出EAB FDC ∆≅∆,故本选项不符合题意; B 、根据EB FC =,AE DF =和A D ∠=∠不能推出EAB FDC ∆≅∆,故本选项不符合题意; C 、根据AE DF =和A F ∠=∠不能推出EAB FDC ∆≅∆,故本选项不符合题意;D 、在EAB ∆和FDC ∆中 AE DFA D AB DC =⎧⎪∠=∠⎨⎪=⎩, ()EAB FDC SAS ∴∆≅∆,故本选项符合题意;故选:D .15.如图,点B ,E ,C ,F 在同一条直线上,已知AB DE =,AC DF =,添加下列条件还不能判定ABC DEF ∆≅∆的是( )A .ABC DEF ∠=∠B .A D ∠=∠C .BE CF =D .BC EF =解:已知AB DE =,AC DF =,添加的一个条件是ABC DEF ∠=∠,根据条件不可以证明ABC DEF ∆≅∆,故选项A 符合题意;已知AB DE =,AC DF =,添加的一个条件是A D ∠=∠,根据SAS 可以证明ABC DEF ∆≅∆,故选项B 不符合题意;已知AB DE =,AC DF =,添加的一个条件是EB CF =,可得得到BC EF =,根据SSS 可以证明ABC DEF ∆≅∆,故选项C 不符合题意;已知AB DE =,AC DF =,添加的一个条件是BC EF =,根据SSS 可以证明ABC DEF ∆≅∆,故选项D 不符合题意; 故选:A .16.在ABC ∆与△A B C '''中,已知A A ∠=∠',AB A B ='',增加下列条件,能够判定ABC ∆与△A B C '''全等的是( ) A .BC B C =''B .BC A C =''C .B B ∠=∠'D .B C ∠=∠'解:A 、若添加条件BC B C ='',不能判定ABC ∆≅△A B C ''',故此选项不合题意; B 、若添加条件BC A C ='',不能判定ABC ∆≅△A B C ''',故此选项不合题意; C 、若添加条件B B ∠=∠',可利用ASA 判定ABC ∆≅△A B C ''',故此选项题意;D 、若添加条件B C ∠=∠',不能判定ABC ∆≅△A B C ''',故此选项不合题意.故选:C .17.下列判定直角三角形全等的方法,不正确的是( ) A .两条直角边对应相等 B .两个锐角对应相等C .斜边和一直角边对应相等D .斜边和一锐角对应相等解:A 、根据SAS 可以判定三角形全等,本选项不符合题意. B 、AA 不能判定三角形全等,本选项符合题意. C 、根据HL 可以判定三角形全等,本选项不符合题意.D 、根据AAS 可以判定三角形全等,本选项不符合题意.故选:B .18.如图,BE CF =,AE BC ⊥,DF BC ⊥,要根据“HL ”证明Rt ABE Rt DCF ∆≅∆,则还要添加一个条件是( )A .AB DC = B .AD ∠=∠ C .B C ∠=∠ D .AE BF =解:条件是AB CD =, 理由是:AE BC ⊥,DF BC ⊥,90CFD AEB ∴∠=∠=︒,在Rt ABE ∆和Rt DCF ∆中, AB CDBE CF =⎧⎨=⎩, Rt ABE Rt DCF(HL)∴∆≅∆,故选:A .19.如图,AC BC =,AC OA ⊥,CB OB ⊥,则Rt AOC Rt BOC ∆≅∆的理由是( )A .SSSB .ASAC .SASD .HL解:AC OA ⊥,BC OB ⊥,90A B ∴∠=∠=︒,在Rt AOC ∆和Rt BOC ∆中AC BC CO CO =⎧⎨=⎩,Rt AOC Rt BOC(HL)∴∆≅∆,故选:D .20.如图,CD AB ⊥,BE AC ⊥,垂足分别为D 、E ,BE 、CD 相交于点O .如果AB AC =,那么图中全等的直角三角形的对数是( )A .1B .2C .3D .4解:CD AB ⊥,BE AC ⊥, 90ADC AEE ∴∠=∠=︒,在ADC ∆和AEB ∆中,ADC AEB DAC EAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADC AEB AAS ∴∆≅∆;AD AE ∴=,C B ∠=∠, AB AC =, BD CE ∴=,在BOD ∆和COE ∆中,B C BOD COE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOD COE AAS ∴∆≅∆; OB OC ∴=,OD OE =,在Rt ADO ∆和Rt AEO ∆中,OA OAOD OE =⎧⎨=⎩,Rt ADO Rt AEO(HL)∴∆≅∆; ∴共有3对全等三角形,故选:C .21.如图,BE CF =,AE BC ⊥,DF BC ⊥,要根据“HL ”证明Rt ABE Rt DCF ∆≅∆,则还需要添加一个条件是( )A .AE DF =B .A D ∠=∠C .B C ∠=∠D .AB DC =解:条件是AB CD =,理由是:AE BC ⊥,DF BC ⊥, 90CFD AEB ∴∠=∠=︒,在Rt ABE ∆和Rt DCF ∆中,AB CD BE CF =⎧⎨=⎩, Rt ABE Rt DCF(HL)∴∆≅∆,故选:D .22.如图,若要用“HL ”证明Rt ABC Rt ABD ∆≅∆,则还需补充条件( )A .BAC BAD ∠=∠B .AC AD =或BC BD =C .AC AD =且BC BD = D .以上都不正确解:从图中可知AB 为Rt ABC ∆和Rt ABD ∆的斜边,也是公共边.很据“HL ”定理,证明Rt ABC Rt ABD ∆≅∆,还需补充一对直角边相等,即AC AD =或BC BD =,故选:B .23.如图,在ABC ∆中,AB AC =,112A ∠=︒,E ,F ,D 分别是AB ,AC ,BC 上的点,且BE CD =,BD CF =,则EDF ∠的度数为( )A .30︒B .34︒C .40︒D .56︒ 解:AB AC =,112A ∠=︒,34B C ∴∠=∠=︒,在BDE ∆和CFD ∆中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩,()BDE CFD SAS ∴∆≅∆,BED CDF ∴∠=∠,BDE CFD ∠=∠,BED BDE CDF CFD ∴∠+∠=∠+∠,BED B CDE EDF CDF ∠+∠=∠=∠+∠,34B EDF ∴∠=∠=︒,故选:B .24.如图,AB CD ⊥,且AB CD =,CE AD ⊥,BF AD ⊥,分别交AD 于E 、F 两点,若BF a =,EF b =,CE c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +- 解:AB CD ⊥,CE AD ⊥,BF AD ⊥,90AFB CED ∴∠=∠=︒,90A D ∠+∠=︒,90C D ∠+∠=︒,A C ∴∠=∠,AB CD =,A C ∠=∠,90CED AFB ∠=∠=︒()ABF CDE AAS ∴∆≅∆AF CE c ∴==,BF DE a ==,EF b =,()AD AF DF c a b a b c ∴=+=+-=-+,故选:C .25.如图,在等腰ABC ∆中,AB AC =,AB BC >,点D 在边BC 上,且14BD BC =,点E 、F 在线段AD 上,满足BED CFD BAC ∠=∠=∠,若20ABC S ∆=,则ABE CDF S S ∆+是多少?( )A .9B .12C .15D .18 解:BED CFD BAC ∠=∠=∠,BED BAE ABE ∠=∠+∠,BAC BAE CAF ∠=∠+∠,CFD FCA CAF ∠=∠+∠,ABE CAF ∴∠=∠,BAE FCA ∠=∠,在ABE ∆和CAF ∆中,ABE CAF AB ACBAE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE CAF ASA ∴∆≅∆,ABE ACF S S ∆∆∴=,ABE CDF ACD S S S ∆∆∴+=20ABC S ∆=,14BD BC =, 15ACD S ∆∴=, 故选:C .26.如图,在Rt ABC ∆中,90ACB ∠=︒,5BC cm =,在AC 上取一点E ,使EC BC =,过点E 作EF AC ⊥,连接CF ,使CF AB =,若12EF cm =,则下列结论不正确的是( )A.F BCF∠=∠B.7AE cm=C.EF平分AB D.AB CF⊥解:EF AC⊥,90ACB∠=︒,90FEC ACB∴∠=∠=︒,90F FCE FCE BCF∴∠+∠=∠+∠=︒,F BCF∴∠=∠;故A选项正确;在Rt ACB∆与Rt FEC∆中,BC EC AB CF=⎧⎨=⎩,Rt ACB Rt FEC(HL)∴∆≅∆,12AC EF∴==,5CE BC cm==,7AE AC CE cm∴=-=,故B选项正确;Rt ACB Rt FEC∆≅∆,A F∴∠=∠,ADE EDF∠=∠,90FED AEF∴∠=∠=︒,AB CF∴⊥,故D选项正确;AED ACB∠=∠,//DE BC∴,∴75 AD AEDB CE==,AD DB∴≠,EF∴不平分AB,故C选项错误,故选:C.二.解答题(共14小题)27.已知:如图,点A 、E 、F 、C 在同一条直线上,//AD CB ,12∠=∠,AE CF =.求证:ADF CBE ∆≅∆.【解答】证明://AD CB ,A C ∴∠=∠,AE CF =,AE EF CF EF ∴+=+, 即AF CE =,在ADF ∆和CBE ∆中12A C AF CE ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADF CBE ASA ∴∆≅∆.28.已知:点A 、F 、E 、C 在同一条直线上,AF CE =,//BE DF ,BE DF =.(1)如图1,求证:ABE CDF ∆≅∆.(2)如图2,连接AD 、BC 、BF 、DE ,在不添加任何辅助线的情况下,请直接写出图2中所有全等的三角形(除ABE ∆全等于CDF ∆外).【解答】(1)证明:AF CE =,AF EF CE EF ∴+=+,即AE CF =,//BE DF ,AEB CFD ∴∠=∠,在ABE ∆和CDF ∆中BE DFAEB CFD AE CF=⎧⎪∠=∠⎨⎪=⎩,()ABE CDF SAS ∴∆≅∆;(2)图2中的全等三角形有ABC CDA ∆≅∆,AFB CED ∆≅∆,ADE CBF ∆≅∆,ADF CBE ∆≅∆,理由是:ABE CDF ∆≅∆,AB CD ∴=,BAC DCA ∠=∠,在ABCHE CDA ∆∆中AB CDBAC DCA AC CA=⎧⎪∠=∠⎨⎪=⎩,()ABC CDA SAS ∴∆≅∆,AD BC ∴=,DAC BCA ∠=∠,在AFB ∆和CED ∆中AB CDBAF DCE AF CE=⎧⎪∠=∠⎨⎪=⎩,()AFB CED SAS ∴∆≅∆,在ADE ∆和CBF ∆中AD CBDAE BCF AE CF=⎧⎪∠=∠⎨⎪=⎩,()ADE CBF SAS ∴∆≅∆,在ADF ∆和CBE ∆中AD CB DAF BCE AF CE =⎧⎪∠=∠⎨⎪=⎩,()ADF CBE SAS ∴∆≅∆.29.如图,在ABC ∆中,BD ,CE 分别是AC ,AB 边上的高,在BD 上截取BF AC =,延长CE 至点G 使CG AB =,连接AF ,AG .(1)如图1,求证:AG AF =;(2)如图2,若BD 恰好平分ABC ∠,过点G 作GH AC ⊥交CA 的延长线于点H ,请直接写出图中所有的全等三角形并用全等符号连接.【解答】证明:(1)BD 、CE 分别是AC 、AB 两条边上的高, 90AEC ADB ∴∠=∠=︒,90ABD BAD ACE CAE ∴∠+∠=∠+∠=︒,ABD ACG ∴∠=∠,在AGC ∆与FAB ∆中,BF CA ABF GCA AB GC =⎧⎪∠=∠⎨⎪=⎩,()AGC FAB SAS ∴∆≅∆,AG AF ∴=;(2)图中全等三角形有AGC FAB ∆≅∆,由90CG AB H BDA GCH ABD =⎧⎪∠=∠=︒⎨⎪∠=∠⎩得出CGH BAD ∆≅∆,由AF AG GH AD =⎧⎨=⎩得出Rt AGH Rt AFD ∆≅∆. 30.如图,AB AC =,BE CD =.(1)求证:B C ∠=∠;(2)连接AO ,若12∠=∠,不添加任何辅助线,直接写出图中所有的全等三角形.【解答】(1)证明:AB AC =,BE CD =,AB BE AC CD ∴-=-,即AE AD =,在ABD ∆和ACE ∆中,AD AEA A AB AC=⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆,B C ∴∠=∠;(2)解:图中的全等三角形有ABD ACE ∆≅∆,AEO ADO ∆≅∆,BEO CDO ∆≅∆,ABO ACO ∆≅∆, 理由是:在ABO ∆和ACO ∆中,12B CAO AO∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABO ACO AAS ∴∆≅∆;由(1)知:ABD ACE ∆≅∆;在AEO ∆和ADO ∆中,12AE ADAO AO=⎧⎪∠=∠⎨⎪=⎩,()AEO ADO SAS ∴∆≅∆;在BEO ∆和CDO ∆中,EOB DOC B CBE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()BEO CDO AAS ∴∆≅∆.31.如图,ABC ∆和DEF ∆的顶点B ,F ,C ,D 在同一条直线上,BF CD =,边AC 与EF 相交于点G ,CG FG =,A E ∠=∠.求证:ABC EDF ∆≅∆.【解答】证明:FG CG =,ACB DFE ∴∠=∠,BF CD =,FC FC =,BF FC CD FC ∴+=+,即BC DF =,在ABC ∆与EDF ∆中A E ACB DFE BC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC EDF AAS ∴∆≅∆.32.已知:如图,点E 、F 在CD 上,且A B ∠=∠,//AC BD ,CF DE =. 求证:AEC BFD ∆≅∆.【解答】证明://AC BD ,C D ∴∠=∠,CF DE =,CF EF DE EF ∴+=+, 即CE DF =,在AEC ∆和BFD ∆中A B C D CE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AEC BFD AAS ∴∆≅∆.33.如图,BD ,CE 分别是ABC ∆的高,且BE CD =,求证:Rt BEC Rt CDB ∆≅∆.【解答】证明:BD ,CE 分别是ABC ∆的高,90BEC CDB ∴∠=∠=︒,在Rt BEC ∆和Rt CDB ∆中,BC BC BE CD =⎧⎨=⎩, Rt BEC Rt CDB(HL)∴∆≅∆.34.如图(1),AB AD ⊥,ED AD ⊥,AB CD =,AC DE =,试说明BC CE ⊥的理由; 如图(2),若ABC ∆向右平移,使得点C 移到点D ,AB AD ⊥,ED AD ⊥,AB CD =,AD DE =,探索BD CE ⊥的结论是否成立,并说明理由.解:(1)AB AD ⊥,ED AD ⊥,90A D ∴∠=∠=︒.又AB CD =,AC DE =,ABC DCE ∴∆≅∆.B DCE ∴∠=∠.90B ACB ∠+∠=︒,90ACB DCE ∴∠+∠=︒.90BCE ∴∠=︒,即BC CE ⊥;(2)AB AD ⊥,ED AD ⊥,90A CDE ∴∠=∠=︒.又AB CD =,AD DE =,ABD DCE ∴∆≅∆.B DCE ∴∠=∠.90B ADB ∠+∠=︒,90ADB DCE ∴∠+∠=︒.BD CE ⊥.35.如图所示,在ABC ∆中,AB CB =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =.求证:Rt ABE Rt CBF ∆≅∆.【解答】证明:在Rt ABE ∆和Rt CBF ∆中,AE CFAB CB =⎧⎨=⎩, Rt ABE Rt CBF(HL)∴∆≅∆.36.如图,在ABC ∆中,AB AC =,DE 是过点A 的直线,BD DE ⊥于D ,CE DE ⊥于点E ;(1)若B 、C 在DE 的同侧(如图所示)且AD CE =.求证:AB AC ⊥;(2)若B 、C 在DE 的两侧(如图所示),且AD CE =,其他条件不变,AB 与AC 仍垂直吗?若是请给出证明;若不是,请说明理由.【解答】(1)证明:BD DE ⊥,CE DE ⊥,90ADB AEC ∴∠=∠=︒,在Rt ABD ∆和Rt ACE ∆中,AB ACAD CE =⎧⎨=⎩, Rt ABD Rt CAE ∴∆≅∆.DAB ECA ∴∠=∠,DBA EAC ∠=∠.90DAB DBA ∠+∠=︒,90EAC ACE ∠+∠=︒,90BAD CAE ∴∠+∠=︒.180()90BAC BAD CAE ∠=︒-∠+∠=︒.AB AC ∴⊥.(2)AB AC ⊥.理由如下:同(1)一样可证得Rt ABD Rt ACE ∆≅∆.DAB ECA ∴∠=∠,DBA EAC ∠=∠,90CAE ECA ∠+∠=︒,90CAE BAD ∴∠+∠=︒,即90BAC ∠=︒,AB AC ∴⊥.37.如图,AB AC =,90BAC ∠=︒,BD AE ⊥于D ,CE AE ⊥于E ,且BD CE >. 求证:BD EC ED =+.【解答】证明:90BAC ∠=︒,CE AE ⊥,BD AE ⊥,90ABD BAD ∴∠+∠=︒,90BAD DAC ∠+∠=︒,90ADB AEC ∠=∠=︒.ABD DAC ∴∠=∠.在ABD ∆和CAE ∆中ABD EAC BDA EAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆.BD AE ∴=,EC AD =.AE AD DE =+,BD EC ED ∴=+.38.已知:如图,ABC ∆,BD AC ⊥,CE AB ⊥,BD CE =,BD 与CE 交于点F .(1)说明AB AC =的理由;(2)联结AF 并延长交BC 于G ,说明AG BC ⊥的理由.解:(1)BD AC ⊥,CE AB ⊥,90ADB AEC ∴∠=∠=︒,BD CE =,A A ∠=∠,()ABD ACE AAS ∴∆≅∆AB AC ∴=;(2)AB AC =,ABC ACB ∴∠=∠,ABD ACE ∆≅∆,ABD ACE ∴∠=∠,FBC FCB ∴∠=∠,FB FC ∴=,在ABF ∆和ACF ∆中,AB AC FB FC AF AF =⎧⎪=⎨⎪=⎩,()ABF ACF SSS ∴∆≅∆BAF CAF ∴∠=∠,AB AC =,AG BC ∴⊥.39.如图,在ABE ∆中,C ,D 是边BE 上的两点,有下面四个关系式:(1)AB AE =,(2)BC DE =,(3)AC AD =,(4)BAC EAD ∠=∠.请用其中两个作为已知条件,余下两个作为求证的结论,写出你的已知和求证,并证明.已知:求证:证明:解:已知:AB AE=,BC DE=,求证:AC AD∠=∠,=,BAC EAD证明:AB AE=,B E∴∠=∠,∠=∠,BC DE=,B EAB AE=,∴∆≅∆,()ABC AED SAS∠=∠;AC AD∴=,BAC EAD也可以(1)(3)⇒(2)(4)或(2)(3)⇒(1)(4)或(1)(4)⇒(2)(3)或(3)(4)⇒(1)(2).证明方法类似.40.如图,在四边形ABCD中,//CD=,点F是AC的中点,连接DF,AB=,12AB CD,17并延长交AB于点E.(1)求BE的长;(2)若AE AD∆的形状,并说明理由.=,13BC=,判断ADF解:(1)F是AC的中点,∴=,AF CFAB CD,//∠=∠,∴∠=∠,AEF CDFEAF DCFAEF CDF ASA∴∆≅∆,()AE CD∴==,12∴=-=-=;17125BE AB AE(2)AFD∆是等腰直角三角形,理由如下:连接CE,由(1)得AE CD=,//AB CD,∴四边形AECD是平行四边形,=,AE AD∴平行四边形AECD是菱形,CE CD∴==,12222213169BC==,+=+=,22125169CE BE222CE BE BC∴+=,AEC∠=︒,∴∆是直角三角形,90BCE∴菱形AECD是正方形,⊥,∴=,AC DEAC DE∴=,AF DF∴∆是等腰直角三角形.AFD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形全等的判定专题训练题
1、如图(1):AD ⊥BC ,垂足为D ,BD=CD .求证:△ABD ≌△ACD .
2、如图(2):AC ∥EF ,AC=EF ,AE=BD .求证:△ABC ≌△EDF .
3、 如图(3):DF=CE ,AD=BC ,∠D=∠C .求证:△AED ≌△BFC .
4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE .求证:(1)∠B=∠C ,(2)BD=CE
5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE .求证:AC ⊥CE .
(图1)D C
B A
F E D C B A F E (图3)D
C B
A E
(图4)D C
B
A E
D
B
A
6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上. 求证:(1)AF=EG ,(2)BF ∥DG .
7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC . 求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM .
8、如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF .
求证:△ABE ≌△DCF .
9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF .
求证:AM 是△ABC 的中线.
10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE . 求证:AB=AC .
G
F E
(图6)D C
B
A N
M
(图7)C
B
A F E (图8)D C
B
A M
F E
(图9)
C B
A
E (图10)D
C B A
11、如图(11)在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任一点.
求证:PA=PD.
12、如图(12)AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF.求证:EB∥CF.
13、如图(13)△ABC≌△EDC.求证:BE=AD.
14、如图(14)在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE于F,过B作
BD⊥CB交CF的延长线于点D.
(1)求证:AE=CD,(2)若BD=5㎝,求AC的长.
15、如图15△ABC中,AB=2AC,∠BAC=90°,延长BA到D,使AD=1
2
AB,延长AC到E,使CE=AC.求
证:△ABC≌△AED.
P
4
3
2
1
(图11)
D
B
A
F
E
E
(图13)D
C
B
A
F
E
(图14)
D
C B
A
E
16、如图(16)AD ∥BC ,AD=BC ,AE=CF .
求证:(1)DE=DF ,(2)AB ∥CD .
17、如图:在△ABC 中,AD ⊥BC 于D ,AD=BD ,CD=DE ,E 是AD 上一点,连结BE 并延长交AC 于点F . 求证:(1)BE=AC ,(2)BF ⊥AC .
18、如图:在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 上一点,AE ⊥GD 于E ,BF ⊥CD 交CD 的延长线
于F .求证:AE=EF+BF .
19、如图:AB=DC ,BE=DF ,AF=DE .求证:△ABE ≌△DCF .
20、如图;AB=AC ,BF=CF .求证:∠B=∠C . F (图16)
E
D
C
B A F (图17)E D
C
B A
F
(图18)
E
D
C B
A F
(图19)E D
C B
A F
E D C B
A
r
21、如图:AB ∥CD ,∠B=∠D ,求证:AD ∥BC .
22、如图:AB=CD ,AE=DF ,CE=FB .求证:AF=DE .
23、如图:AB=DC ,∠A=∠D .求证:∠B=∠C .
24、如图:AD=BC ,DE ⊥AC 于E ,BF ⊥AC 于F ,DE=BF .求证:(1)AF=CE ,(2)AB ∥CD .
25、如图:CD ⊥AB 于D ,BE ⊥AC 于E ,OD=OE . 求证:AB=AC .
(图21)D C
B
A
F
(图22)E D C
B A (图23)D C
B A
F
(图24)E D C B
A O (图25)
E
D C B
A
26、如图:在△ABC 中,AB=AC ,AD 和BE 都是高,它们相交于点H ,且AH=2BD . 求证:AE=BE .
27、如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截
取CG=AB ,连结AD 、AG . 求证:(1)AD=AG ,(2)AD ⊥AG .
28、如图:AB=AC ,EB=EC ,AE 的延长线交BC 于D .求证:BD=DC .
29、如图:△ABC 和△DBC 的顶点A 和D 在BC 的同旁,AB=DC ,AC=DB ,AC 和DB 相交于O . 求证:
OA=OD .
H
(图26)E
D
C B A G
H
F
(图27)
E D C B A
E
D C B
A
O D
C B A
30、如图:AB=AC ,DB=DC ,F 是AD 的延长线上的一点.求证:BF=CF .
31、如图:AB=AC ,AD=AE ,AB 、DC 相交于点M ,AC 、BE 相交于点N ,∠DAC=∠EAC . 求证:AM=AN .
32、如图:AD=CB ,AE ⊥BD ,CF ⊥BD ,E 、F 是垂足,AE=CF .求证:AB=CD .
33、如图:在△ABC 中,AD 是它的角平分线,且BD=CD ,DE ,DF 分别垂直AB ,AC ,垂足为E ,F .求
证:EB=FC .
34、如图:CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE ,CD 相交于点O . 求证:(1)当∠1=∠2时,OB=OC .
(2)当OB=OC 时,∠1=∠2.
F
D C B
A
N M E
D C
B
A
F
E
D C B A
F
E D
C B A
O
E D A
35、如图:在△ABC 中,∠BAC=90°,∠ABD=1
2
∠ABC ,BC ⊥DF ,垂足为F ,AF 交BD 于E .
求证:AE=EF .
36、如图:在△ABC 中,,O 是∠ABC 与∠ACB 的平分线的交点.
求证:点O 在∠A 的平分线上.
37、如图:在△ABC 中,∠B ,∠C 相邻的外角的平分线交于点D .
求证:点D 在∠A 的平分线上.
38、如图:AD 是△ABC 中∠BAC 的平分线,过AD 的中点E 作EF ⊥AD 交BC 的延长线于F ,连结AF .求
证:∠B=∠CAF .
39、如图:AD 是△ABC 的中线,DE ⊥AC 于E ,DF ⊥AB 于F ,且BF=CE ,点P 是AD 上一点,PM ⊥AC
于M ,PN ⊥AB 于N . 求证:(1)DE=DF ,(2)PM=PN .
F
E
D C B A
O C B
A D C
B A F
E D
C B A
A
40、如图:在△ABC 中,∠A=60°,∠B ,∠C 的平分线BE ,CF 相交于点O . 求证:OE=OF .
41、如图:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足为C ,D . 求证:(1)OC=OD ,(2)DF=CF .
42、如图:在△ABC 中,∠C=90°,AC=BC ,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=1
2
BD ,
DF ⊥AB 于F .求证:CD=DF .
43、如图:AB=FE ,BD=EC ,AB ∥EF .求证:(1)AC=FD ,(2)AC ∥EF ,(3)∠ADC=∠FCD .
F
O
E
C
B A
O
F
E
D
C
B
A
F E
D C
B A
E D C B A
44、如图:AD=AE ,∠DAB=∠EAC ,AM=AN .求证:AB=AC .
45、如图:AB=AC ,BD=CE .求证:OA 平分∠BAC .
46、如图:AD 是△ABC 的BC 边上的中线,BE 是AC 边上的高,OC 平分∠ACB ,OB=OC .
求证:△ABC 是等边三角形.
47、如图△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N .
(1)求证:MN=AM+BN .
(2)若过点C 在△ABC 内作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N ,则AM 、BN 与MN 之间
有什么关系?请说明理由. N
M E
D C B
A
O E
D C
B
A
O E
D C B A
N M
C
B
A N
M
C
B
A。