最新05第五章传热过程基础
化工流体流动与传热
一般为物 理过程
化学反应 工程(反
一般为物 理过程
预热 输送 精制 压缩
应过程+ 设备反应 器)核心 地位
冷却(凝) 蒸发 结晶 吸收 精馏
……
……
共性问题
化工流体流动与传热 共性问题
9
化工生产过程:对原料进行化学加工,最终获得 有价值产品的生产过程。
化学反应
化工生产过程 物理过程
反应工程
化工原理 (单元操作)
化工流体流动与传热
10
0.1.2 化工单元操作
产品、原料多样性、生产过程复杂性—— ,化工生产工艺流程数以万计
可以归纳为: 工艺=化学反应+物理操作(有限个)
(有机组合)
化工流体流动与传热
11
化工生产的核心:化学反应过程+反应器 (化学反应工程)
物理操作过程(单元操作):
为化学反应准备必要条件+将反应物分离提纯 获得最终产品
化工流体流动与传热
12
单元操作分类
①流体动力学过程:流体输送、沉降、过滤。 ②传热过程:加热、冷却、冷凝、蒸发。 ③传质过程:蒸馏、吸收、萃取、吸附、膜分离。 ④热质同时传递过程:气体的增湿减湿、结晶、
干燥。
化工流体流动与传热
13
化工原理(单元操作)的研究内容包括“过 程”和“设备”两个方面。
15
2.数学模型法(半经验半理论方法)
在对实际过程的机理深入分析的基础上, 在抓住过程本质的前提下,作出某种合理简化, 建立物理模型,进行数学描述,得出数学模型。 通过实验确定模型参数。
研究工程问题的方法论是联系各单元操作 的另一条主线。
化工流体流动与传热
16
①单元操作设备的选择能力。 ②工程设计能力。 ③操作和调节生产过程的能力。 ④过程开发或科学研究能力。
食品工程原理-冯骉-第五章传热
保温层厚度增加时,r0增加,R1↑,但R2↓(传热面积
机理: 自然对流——流体密度不同引起流动。
强制对流——由外力推动流体流动。
传热定律: Q=SaDt
或:
Q Dt 1
Sa
热对流的推动力:温度差Dt 热对流的热阻: R=1/Sa
三、热辐射
两个温度不同、互不接触的物体,依靠本身向外发射辐射能和
吸收外界投射到本身上的辐射能来实现热量的传递的过程。
特点:(1)不依靠任何介质;(2)任何温度下的物体均
发射辐射能,但能量大小不同。
黑体热辐射定律: 热辐射的推动力: 热辐射的阻力:
Q=s0(T14-T24)
(T14-T24)
1/s0
四、实际的传热过程
实际的传热问题往往是上述三种传热方式的组合。 以间壁式热交换器为例,参与热交换的冷热流体被一固体 壁隔开。这时,热冷流体之间的热量传递过程是: (1)热流体与所接触的固体壁面之间进行对流传热; (2)高温的固体表面向低温的固体表面的热传导; (3)固体壁面与其接触的冷流体之间的对流传热。
2
解出
t 1072 7.41104 1.49107 x
(二)多层平壁的稳定热传导
b1 b2 b3
设(1)各层均为均匀材料, l为常数;
(2)各层接触良好; (3)各层面积相同; (4)稳态传热。
由(4)Q1=Q2=Q3=Q 且 t1>t2>t3>t4
t t1
即
l1 S
b1
t1
t2
l2 S
b2
[例5-3]有一燃烧炉,炉壁由三层材料组成,最内层是耐火砖, 中间保温砖,最外层为建筑砖,已知:耐火砖b1=150mm,
l1=1.06W/(m.K);保温砖b2=300mm,l 2=0.15W/(m.K); 建筑砖b3=240mm,l3=0.69W/(m.K)。今测得炉膛内壁温度
(最新整理)第05章质量传递
浓度保持不变时,组分A在分子扩散的同时伴有组分 B向相反方向的分子扩散,且组分B扩散的量与组分A 相等,这种传质过程称为等分子反向扩散。
pA1
p1 pB1
pA1 > pA2 A
B pB1 < pB2
pA2
2
p
pB2
1、2两截面上A、B 分压保持不变
组分A在相主体的分压
主体间的对数平均分压
与等分子反向扩散速率方程相比,单向扩散时多了一个因子
第三节 分子传质
讨论
NA
DABclnccA,0 L ccA,i
NA
DABc LcB,m
(cA,i
cA,0)
NARDTABB pLm , p(pA,i pA,0)
(1)组分A的浓度与扩散距离L为指数关系
p
c
(2) p Bm 、c B, m
分子扩散是由浓度差引起的分子微观运动;主 体流动是由气相主体与相界面之间的压差引起的流 体的宏观运动,起因是分子扩散,所以主体流动是 分子扩散的伴生现象。
第三节 分子传质
2、扩散通量 扩散组分的总通量由两部分组成,即流动所造成的 传质通量和叠加于流动之上的分子扩散通量;
由组分A、B 组成的混合气体,如组分A 为溶质,B 为惰 性气体,组分A向液体界面扩散并溶于液体中,则组分A 的传质通量为流动中组分A的传质通量+分子扩散通量。
第五章 质量传递 本章主要内容
第一节 环境工程中的传质过程 第二节 质量传递的基本原理 第三节 分子传质 第四节 对流传质
第一节 环境工程中的传质过程
1、水、气体和固体中污染物的分离过程
分类
非均相混合物
《传热学》资料第五章传热过程与传热器
《传热学》资料第五章传热过程与传热器一、名词解释1.传热过程:热量从高温流体通过壁面传向低温流体的总过程.2.复合传热:对流传热与辐射传热同时存在的传热过程.3.污垢系数:单位面积的污垢热阻.4.肋化系数: 肋侧表面面积与光壁侧表面积之比.5.顺流:两种流体平行流动且方向相同6.逆流: 两种流体平行流动且方向相反7.效能:换热器实际传热的热流量与最大可能传热的热流量之比.8.传热单元数:传热温差为1K时的热流量与热容量小的流体温度变化1K所吸收或放出的热流量之比.它反映了换热器的初投资和运行费用,是一个换热器的综合经济技术指标.9.临界热绝缘直径:对应于最小总热阻(或最大传热量)的保温层外径.二、填空题1.与的综合过程称为复合传热。
(对流传热,辐射传热)2.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为20 W/(m2.K),对流传热系数为40 W/(m2.K),其复合传热系数为。
(60W/(m2.K))3.肋化系数是指与之比。
(加肋后的总换热面积,未加肋时的换热面积)4.一传热过程的热流密度q=1.8kW/m2,冷、热流体间的温差为30℃,则传热系数为,单位面积的总传热热阻为。
(60W/(m2.K),0.017(m2.K)/W)5.一传热过程的温压为20℃,热流量为lkW,则其热阻为。
(0.02K/W)6.已知一厚为30mm的平壁,热流体侧的传热系数为100 W/(m2.K),冷流体侧的传热系数为250W/(m2.K),平壁材料的导热系数为0.2W/(m·K),则该平壁传热过程的传热系数为。
(6.1W/(m2.K))7.在一维稳态传热过程中,每个传热环节的热阻分别是0.01K/W、0.35K/W和0.009lK /W,在热阻为的传热环节上采取强化传热措施效果最好。
(0.35K/W)8.某一厚20mm的平壁传热过程的传热系数为45W/(m2.K),热流体侧的传热系数为70W/(m2K),冷流体侧的传热系数为200W/(m2.K),则该平壁的导热系数为。
第五章传热ppt课件
1
第一节 概述
一、传热在食品工程中的应用
(1)食品生产中一般必要的加热、冷却过程; (2)为延长食品贮藏时间而进行的杀菌或冷藏; (3)以除去食品中水分为目的的蒸发或结晶过程的加热或冷 却; (4)为食品完成一定生物化学变化而进行的蒸煮、焙烤等。
2
第一节 概述
二、传热的基本方式
热的传递是由于系统内或物体内温度不同而引起的,根据 传热机理不同,传热的基本方式有三种:
7
一维温度场:若温度场中温度只沿着一个坐标方向变化。
一维温度场的温度分布表达式为:
t = f (x,τ)
(4-1a)
➢不稳定温度场:温度场内如果各点温度随时间而改变。
➢稳定温度场:若温度不随时间而改变。
➢等温面:温度场中同一时刻相同温度各点组成的面。
等温面的特点: (1)等温面不能相交; (2)沿等温面无热量传递。
24
2 多层圆筒壁的稳定热传导
对稳定导热过程,单位时间内由多层壁所传导的 热量,亦即经过各单层壁所传导的热量。
如图所示:以三层圆筒壁为例。
➢假定各层壁厚分别为b1= r2-
r1,b2=r3- r2,b3=r4- r3;
➢各 层 材 料 的 导 热 系 数 λ1,
λ2,λ3皆视为常数;
➢层与层之间接触良好,相互
3、热辐射
因热的原因而产生的电磁波在空间的传递,称为热辐射。
➢所有物体都能将热以电磁波的形式发射出去,而不需要任何
介质。
➢任何物体只要在绝对零度以上都能发射辐射能,但是只有在
物体温度较高的时候,热辐射才能成为主要的传热形式。
实际上,上述三种传热方式很少单独出现,而往往是相互
伴随着出现的。
化工原理第五章传热过程计算与换热器
5.4 传热效率和传热单元数
• 当传热系数K和比热cpc为常数时,积分上式可得
• 式中NTUc(Number of Transfer Unit)称为对冷流体而言的传热单 元数,Dtm为换热器的对数平均温差。
• 同理,以热流体为基准的传热单元数可表 示
• 在换热器中,传热单元数定义 为
5.4 传热效率和传热单元数
• 2.由选定的换热器型式计算传热系数K;
• 3.由规定的冷、热流体进出口温度计算参数e、CR; • 4.由计算的e、CR值确定NTU。由选定的流动排布型
式查取e—NTU算图。可能需由e—NTU关系反复计算 NTU;
• 5.计算所需的传热面积
。
5.5 换热器计算的设计型和操作型问题
• 例5-2 一列管式换热器中,苯在换热器的管内 流动,流量为1.25 kg/s,由80℃冷却至30℃; 冷却水在管间与苯呈逆流流动,冷却水进口温 度为20℃,出口温度不超过50℃。若已知换热 器的传热系数为470 W/(m2·℃),苯的平均 比热为1900 J/(kg·℃)。若忽略换热器的散 热损失,试分别采用对数平均温差法和传热效 率—传热单元数法计算所需要的传热面积。
• 如图5-4所示,按照冷、热流 体之间的相对流动方向,流体之 间作垂直交叉的流动,称为错流 ;如一流体只沿一个方向流动, 而另一流体反复地折流,使两侧 流体间并流和逆流交替出现,这
种情况称为简单折流。
•图 P2
•55
5.3 传热过程的平均温差计算
•通常采用图算法,分三步: •① 先按逆流计算对数平均温差Dtm逆; •② 求出平均温差校正系数φ;
•查图 φ
•③ 计算平均传热温差: • 平均温差校正系数 φ <1,这是由于在列管式换热器内增设了
动力热力学第05章 热力学第二定律
§ 5-2 可逆循环分析及其热效率
一、卡诺循环(是两个热源的可逆循环)
组成:四个可逆过程—— 1.绝热压缩a—b;
2.定温吸热b—c;
3.绝热膨胀c—d; 4.定温放热d—a。
p
b •
•c a •
T
b• a•
•c
•d △s s
•d v
w net q1 q 2 q2 t 1 q1 q2 q1
1
TL 1 Th
卡诺循环,概括性卡诺 循环,任意工质
作业:5-4。机械 1,4
§5-3 卡诺定理
定理一:在相同温度的高温热源和相同温度的低温热源之间 工作的一切可逆循环,其热效率都相等,与可逆循 环的种类无关,与采用何种工质也无关。 解释: 热机C:理想气体,卡诺循环 T1
Q1 WC C Q2c
循环吸热 q1 Tds
1H2
• b T1 •2 • c T2 s
循环放热 q 2 Tds (大小)
1L2
• L ⊿s
根据中值定理:
q1 Tds T1s
1H2
q 2 Tds T 2 s
1L2
平均吸热温度:
T a • 1• d• H • • b T1 •2 • c T2 s 平均放热温度:
第二类永动机不可能实现(第二定律的又一说法)
第一类永动机:不消耗能量作功。违反第一定律。
第二类永动机:从单一热源吸热并全部转化功,即热效 率为百分之百。违反第二定律。
从第二定律的表述上可以看出:
方向性问题 比 能量守恒问题 更具直观性。 故 历史上先发现方向性问题,后发现能量转换与守恒。
为什么第二定律会有不同的说法? 热现象是各种各样的,它们都有方向性的题。这 个方向性问题,是各种不同热现象的共同本质。人们 可以利用不同的过程揭示热现象的方向性的本质,故 有不同的说法。
传热学(第四版)第五章:对流传热的理论基础
温度边界层和速度边界层数值举例
空气,来流速度0.5 m/s 水,来流速度0.5 m/s
§5-2 对流传热与相似原理
1 问题的提出
能够得到理论解的对流传热问题非常少。试验是不可或缺 的手段,然而,经常遇到如下两个问题: h f (v, , c p , , , l ) (1) 变量太多 A 实验中应测哪些量(是否所有的物理量都测) B 实验数据如何整理(整理成什么样函数关系) (2) 实物试验很困难或太昂贵的情况,如何进行试验?
u
x
v
y
D D x x y y
(5)运动流体的能量守恒方程中引入了流场变量
第五章 对流换热
u和v 。
6
Navier-Stokes方程(1820年~1850年)
无因次化处理
预期解的形式
3 指导实验 • • 同名的已定特征数相等 单值性条件相似:初始条件、边界条件、几何条件、物理条件 实验中只需测量各特征数所包含的物理量,避免了测量的盲 目性——解决了实验中测量哪些物理量的问题 按特征数之间的函数关系整理实验数据,得到实用关联式 ——解决了实验中实验数据如何整理的问题 可以在相似原理的指导下采用模化试验 —— 解决了实物 试验很困难或太昂贵的情况下,如何进行试验的问题
厚度t 范围 — 热边界层 或温度边界层
t — 热边界层厚度
与t 不一定相等
第五章 对流换热 19
根据边界层理论,u v,
u v 0 x y u u u x v x v v u y v y
y x 简化对流传热问题如下:
Nusselt 1910年发表”管内换热理论解” Fourier 1822年发表“热的解析理论”
第五章传热
第五章传热主要内容:热量传递基础;传热过程的计算;传热设备。
重点内容:傅里叶传导定律;牛顿冷却对流传热定律;传热过程基本方程;换热器的计算;管壳式换热器的设计和选用。
难点内容:传热过程基本方程。
课时安排:20第一节概述一、传热过程由热力学第二定律可知,凡有温度差存在的地方,就必然有热量的传递。
化学工业与传热密切相关,化工生产过程中许多单元操作都需要加热和冷却。
化工生产中进行传热操作的目的——1.料液的加热和冷却,为达到反应所需的温度;2.为维持反应温度,需不断输入或输出热量;3.许多单元操作需输入或输出热量;4.化工设备的保温;5.生产过程中热能的综合利用及废热的回收。
化工生产对传热过程的要求:1.强化传热——要求传热速率高,降低设备成本;2.削弱传热——可减少热损失。
二、传热的基本方式(传热机理)传热原因——传热推动力(温度差)传热方向——在无外功输入时,由热力学第二定律,热流方向由高温处向低温处流动。
传热的三种基本方式:1.热传导——物体内部或两个直接接触物体之间的传热方式。
金属导体—自由电子运动不良导体,大部分液体—温度高的分子振动,与相邻分子碰撞,造成的动量传递。
气体—分子无规则运动热传导是静止物体内的一种传递方式,没有物质的宏观位移。
2.对流传热——是指流体由质点发生相对位移而引起的热交换。
对流传热仅发生在流体中,所以与流体的流动方式密切相关。
自然对流——质点位移是由于流体内部密度差引起的,使轻者浮,重者沉;强制对流——质点运动是由外力作用所致。
对流传热同时伴有热传导,事实上无法将其分开——又称给热。
化工中所讨论的给热,都是指流体与固体壁面之间的传热过程——间壁式换热3.热辐射——是一种通过电磁波传递能量的过程任何物体,只要在0K 以上都能发射电磁波,而不依靠任何介质,当被另一物体接收后,又重新变为热能。
热辐射不仅是能量转移,也伴随着能量形式的转移。
三、间壁式换热1. 间壁式换热过程—由对流、导热、对流三过程串联而成(1)热流体以对流方式将热量传递到间壁一侧; (2)热量以导热方式通过间壁; (3)热量以对流方式传至冷流体。
化工原理第五章传热过程计算与换热器
一.恒温差传热
T
t
tm T t
t
二.变温差传热
T
t1 0
T1
t1 浙江大学0本科生课程
过程工程原理
t
并流 t
0
T1 t2
t
A0 T1
T2 t2 t2
t
逆流 t
A0 第五章 传热过程计算与换热器
A T2
A T2 t1
A
13/25
§5.2.4 tm的计算
T1 t1
以冷、热流体均无相变、逆流流动为例:
t
T
11/2t5
1 1 b 1
T
KA 1 A1 Am 2 A2
Tw tw
考虑到实际传热时间壁两侧还有污垢热
阻,则上式变为:
t
1 1
KA 1 A1
Ra1
b
Am
Ra2
1
2 A2
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
12/25
§5.2.4 tm的计算
Q KAtm
T1
T
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
25/25
幻灯片2目录
习题课
浙江大学本科生课程 化工原理
第五章 传热过程计算与换热器
26/14
设 计 型
习题课 操作型 t1
LMTD法:
对数平均温差法
Q Ktm A
(1) T1
T2
Q mhc ph T1 T2 (2)
Q mc c pc t2 t1
浙江大学本科生课程
过程工程原理
第五章 传热过程计算与换热器
14/25
§5.2.4 tm的计算
05第五章 传习题热答案
第五章 传热1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m,实验测得电流表读数为0.5 A ,伏特表读数为100 V,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。
解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 Lt t SQ 21-=λ 式中 W 50W 1005.0=⨯==IV Qm 02.0C 50C 200m 02.0212=︒=︒==L t t S ,,, 将上述数据代入,可得()()()()C m W 333.0C m W 5020002.002.05021︒⋅=︒⋅-⨯⨯=-=t t S QL λ2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 m m厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。
设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为20.30.0003t λ=+,W /(m C)⋅︒。
两式中的t 可分别取为各层材料的平均温度。
解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即Q Q Q ==21(5-32) 或23221211b t t S b t t SQ -=-=λλ (5-32a)式中 115000.80.00060.80.0006 1.250.00032t t t λ+=+=+⨯=+21000.30.00030.30.00030.3150.000152t t t λ+=+=+⨯=+代入λ1、λ2得2.0100)00015.0315.0(4.01500)0003.025.1(-+=-+t t t t解之得C 9772︒==t t())()C m W 543.1C m W 9770003.025.10003.025.11︒⋅=︒⋅⨯+=+=t λ则 ()22111m W 2017m W 4.09771500543.1=-⨯=-=b t t S Q λ3.外径为159 mm的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),设A的内层温度和B 的外层温度分别为170 ℃和40 ℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少?解:()()mW 150m W 100159100502159ln 0.11159502159ln 1.014017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλA 、B两层互换位置后,热损失为()()mW 5.131m W 100159100502159ln 1.01159502159ln 0.114017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλ4.直径为57mm 3.5φ⨯mm 的钢管用40 mm 厚的软木包扎,其外又包扎100 mm 厚的保温灰作为绝热层。
传热学第五章
h Atw t
以后除非特殊声明外,我们所说的对流换热系数皆指平均对流换
热系数,以 h 表示.
h(x)规律说明
Laminar region
x (x) h (x) 导热
Transition region
扰动
h(x)
Turbulent region
湍流部分的热阻很小,热阻主要集中在
粘性底层中.
2.按有无相变分
单相介质传热:对流换热时只有一种流体.
相变换热:传热过程中有相变发生.
物质有三态,固态,液态,气态或称三相.
相变换热有分为:
沸腾换热:(boiling heat transfer)物质由液态变为气态时发生 的换热.
凝结换热:(condensation heat transfer)物质由气态变为 液态时发生的换热. 熔化换热(melting heat transfer) 凝固换热(solidification heat transfer) 升华换热(sublimation heat transfer) 凝华换热(sublimation heat transfer )
由上述分析可见,边界层控制着传热过程,故一些研究人员试图通过
破坏粘性底层来达到强化传热的目的,并取得了一些成果.
二、边界层微分方程组.
牛顿流体(Newtonian fluid),常物性,无内热源,耗散不计,稳态,
二维,略去重力.
完性分析已知:u,t,l 的量级为0(1) , t 的量级为0()
以此五个量为分析基础。
2.动量方程(momentum equation)
u v 0 x y
u
u
u x
v
u y
Fx
p x
第五章 传热
23
3.固体的导热系数
• 导热性能与导电性能密切相关,一般而言,良好 的导电体必然是良好的导热体,反之亦然。在所 有固体中,金属的导热性能最好。大多数金属的 导热系数随着温度的升高而降低,随着纯度的增 加而增大,也即合金比纯金属的导热系数要低。 • 非金属固体的导热系数与其组成、结构的紧密程 度及温度有关。大多数非金属固体的导热系数随 密度增加而增大;在密度一定的前提下,其导热 系数与温度呈线性关系,随温度升高而增大。 • 应予指出,在导热过程中导热体内的温度沿传热 方向发生变化,其导热系数也在变化,但在工程 计算中,为简便起见通常使用平均导热系数。
传热过程可依靠其中的一种或几种方式同时进行。 (一)热传导 热传导又称导热,是借助物质的分子或原子振动以及自由电子的热 运动来传递热量的过程。当物质内部在传热方向上无质点宏观迁移 的前提下,只要存在温度差,就必然发生热传导。可见热传导不仅 发生在固体中,同时也是流体内的一种传热方式。
在静止流体内部以及在作层流运动的流体层中垂直于流动方向上的 传热,是凭借流体分子的振动碰撞来实现的,换言之,这两类传热 过程也应属于导热的范畴。 很显然,导热过程的特点是:在传热过程中传热方向上无质点块的 宏观迁移。
△tm---推动力,冷热流体的平均温差。
应用:设计计算与校核计算;强化传热的途径
15
第二节 热传导
一、傅立叶定律
(一)导热的分类
由热传导引起的传热速率称为导热速率,其与导热体 内部的温度分布情况有关。导热体内部在空间和时间 上的温度分布称为温度场。 若温度场内各点的温度随时间变化,则称为不稳定温 度场。可用数学表达式表示为: t = f (x, y, z, θ)
22
2.液体的导热系数
• 液体可分为金属液体(液态金属)和非金属液体。 液态金属的导热系数比一般液体的高,其中熔融 的纯纳具有较高的导热系数,大多数金属液体的 导热系数随温度的升高而降低。在非金属液体中, 水的导热系数最大。除水和甘油外,大多数非金 属液体的导热系数亦随温度的升高而降低。通常 纯液体的导热系数较其溶液的要大。液体的导热 系数基本上与压强无关。
化工原理课件第五章 传热
温度场的通式
温度场的通式:
t f x, y, z,
式中: t —— 某点的温度,k;
X,y,z —— 这点的空间坐标;
θ —— 时间,s。
若在稳定温度场中, 表示式为:
t f x, y, z
稳定温度场和不稳定温度场
(1)不稳定温度场 —— 温度随时间而改变 的温度场,称为:不稳定温度场 。
称为:传热速率,用Q表示,单位:J/s, 即w(瓦)。
(三)辐射
1、辐射——是一种以电磁波传递能量的现象。 物体可以由不同原因发出辐射能。
2、热辐射——物体因热而发出辐射能的过程, 称为:热辐射radiation。
3、 只要物体的绝对温度大于 0K,便会不停地 将热量以电磁波的形式传递出去,同时也不断 地将其他物体辐射来的能量转为热量。辐射与 吸收能 量的差额转变为低温物体的热量。但 是,只有物体具有较高温度时, 辐射才为主 要形式。
传热面上不同局部面积的热通量可以不同。
3、热流量Q与热通量q的关系
式中:
q dQ dA
Q——热流量,单位为:J/s,即w(瓦) 。
q——热通量(热流密度),单位为:J/(m2·s),即 w/m2。
A——传热面积, m2 。
热流量Q与热通量q的关系
(1)热通量q基于微元面dA,热通量q可以 用于局部地区。
1、热源——电热、饱和水蒸汽、烟道气、高 温载体等。
2、冷源——冷却水、空气、冷却盐水等。 冷却水——河水、海水、井水等。
二、传热的三种基本方式
• 1、热传导(导热) • 2、对流 • 3、辐射
(一)热传导(简称:导热)
1、热传导——热量从物体内部温度较高
的部分传递到温度较低的部分或者传递到与 之接触的另一物体的过程,称为:热传导, 简称:导热conduction。
柴诚敬化工原理课后答案(05)第五章 传热过程基础
第五章 传热过程基础1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。
解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 Lt t SQ 21-=λ 式中 W 50W 1005.0=⨯==IV Qm 02.0C 50C 200m 02.0212=︒=︒==L t t S ,,, 将上述数据代入,可得()()()()C m W 333.0C m W 5020002.002.05021︒⋅=︒⋅-⨯⨯=-=t t S QL λ2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。
设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为20.30.0003t λ=+,W /(m C)⋅︒。
两式中的t 可分别取为各层材料的平均温度。
解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 23221211b t t S b t t SQ -=-=λλ (5-32a ) 式中 115000.80.00060.80.0006 1.250.00032t t t λ+=+=+⨯=+21000.30.00030.30.00030.3150.000152t t t λ+=+=+⨯=+代入λ1、λ2得2.0100)00015.0315.0(4.01500)0003.025.1(-+=-+t t t t解之得C 9772︒==t t())()C m W 543.1C m W 9770003.025.10003.025.11︒⋅=︒⋅⨯+=+=t λ则 ()22111m W 2017m W 4.09771500543.1=-⨯=-=b t t S Q λ3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),设A 的内层温度和B 的外层温度分别为170 ℃和40 ℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少?解:()()mW 150m W 100159100502159ln 0.11159502159ln 1.014017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλA 、B 两层互换位置后,热损失为()()mW 5.131m W 100159100502159ln 1.01159502159ln 0.114017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλ4.直径为57mm 3.5φ⨯mm 的钢管用40 mm 厚的软木包扎,其外又包扎100 mm 厚的保温灰作为绝热层。
传热学5第五章
(0-4)第五章 对流传热分析q = h (t w — t f ) W/m 2 =h (t w — t f ) A W、流动的起因和流动状态、流体的热物理性质本书采用国际单位制,各热物性的单位)如下: 1 •密度 p , k g / m 3; 2 •定压比热容C p , kJ /(k g K); 3.动力黏度Ns / m 2或 kg /( s m)u / y运动黏度=卩/pm 2/s4. 体积膨胀系数 ,1/ K;比体积v ,m 3/kg1v1v TpT P理想气体 =1/T ,对液体或蒸汽,由实验测定,可查附录物性表。
5.热导率入,W /(m K) ; a , m 2/s 。
第一节对流传热概述图5-1几种常见的换热设备示意图、流体的相变四、换热表面几何因素h f u,t w, t f, ,C p, , , ,l (5-1)第二节对流传热微分方程组、对流传热过程微分方程式式中图5-3连续性方程的推导x 方向:M x udyM x M x dx M x x dxxy 方向:M y vdxM y M y dy M ydyy (5-3)、动量微分方程式tq xy w ,xW/m 2(1)q xh x (t wt f )xh x t x⑵th x tt xy w,x(5-2a)t t wh x ---------------------------Xy w,x(5-2b)其中wf x't f t w 01、连续性方程Y 卅严霧如图5-4动量微分方程的推导dxdy DUd(1) 微元体的质量X加速度:Du u u u= u v——d x yDv v v v= u v——d x y(2) 微元体所受的外力:体积力:X dx dyY dx dy表面力:(——-——汪)dx dyx y(—y——y ) dx dyy xu u u x yx x 方向:P ( u v ) = X + ----------------------------x y x yx y yx22z uuu 、p u u P (u v ) =X —+ 2 2 x yxxy22,vv v 、p v v P (uv ):=Y —+22 xyyxy(1)(2) (3)⑷vvvy xyy 方向: P ( u v ) = 丫 + —(5-4a)(4)黏滞x方向导入的净能量三(x+ x dx ) xy方向导入的净能量三2ydx dyx方向热对流传递的净能量三x—(x+ x dx) xdx dy⑴惯性力项,即质量与加速度之积;(2)体积力;⑶压强梯度; 力。
05 第5章 热力学第二定律详解
能量转换方向性的 实质是能质有差异
部分可转换能—热能 T T0 不可转换能—环境介质的热力学能
能量品质降低的过程可自发进行,反之需一定补偿 条件,其总效果是总体能质降低。
T1
Q1
W
Q2
T2
Q1 Q2 Wnet
代价 TH Q2 TL
T1
Q1
W
Q2
T2
TL Q2 TH 代价
Wnet Q1 Q2
对热力学第二定律的建立具有重大意义。
卡诺定理举例
A 热机是否能实现
tC
1 T2 T1
1 300 1000
70%
t
w q1
1200 2000
60%
可能
如果:W=1500 kJ
t
1500 2000
75%
不可能
T1=1000 K
Q1=2000 kJ
A
W=1200 kJ W=1500 kJ
Q2=800 kJ Q2=500 kJ
不可逆
方向性 热力学第二定律描述
热力学第二定律说法等效 不可逆过程共同属性
不可逆属性能否用统一状态参数描述? ——熵
5-4、熵、热力学第二定律的数学表达式
一、状态参数熵的导出 ★ 从卡诺循环看:(Carnot heat engine)
C
1 Q2 Q1
1 T2 T1
Q1 Q2 T1 T2
Q1 Q2 0
所有满足能量转换与守恒定律的过程是否都 能进行?
如果不是,过程的方向性?条件?限度?
5-1 热力学第二定律
一、热力过程的方向性 (热力学第二定律的本质)
1.任何发生的过程必须遵从热力学第一定律,但满足热力学第一 定律的过程未必一定能自动发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
05第五章传热过程基础第五章 传热过程基础1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。
解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 Lt t S Q 21-=λ 式中 W 50W 1005.0=⨯==IV Qm 02.0C 50C 200m 02.0212=︒=︒==L t t S ,,,将上述数据代入,可得()()()()C m W 333.0C m W 5020002.002.05021︒⋅=︒⋅-⨯⨯=-=t t S QL λ 2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。
设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为20.30.0003t λ=+,W /(m C)⋅︒。
两式中的t可分别取为各层材料的平均温度。
解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即Q Q Q ==21 (5-32) 或 23221211b t t S b t t S Q -=-=λλ (5-32a )式中 115000.80.00060.80.0006 1.250.00032t t t λ+=+=+⨯=+ 21000.30.00030.30.00030.3150.000152t t t λ+=+=+⨯=+ 代入λ1、λ2得 2.0100)00015.0315.0(4.01500)0003.025.1(-+=-+t t t t 解之得C 9772︒==t t())()C m W 543.1C m W 9770003.025.10003.025.11︒⋅=︒⋅⨯+=+=t λ 则 ()22111m W 2017m W 4.0977*******.1=-⨯=-=b t t S Q λ 3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),设A 的内层温度和B 的外层温度分别为170 ℃和40 ℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少? 解: ()()m W 150m W 100159100502159ln 0.11159502159ln 1.014017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλA 、B 两层互换位置后,热损失为 ()()m W 5.131m W 100159100502159ln 1.01159502159ln 0.114017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλ4.直径为57mm 3.5φ⨯mm 的钢管用40 mm 厚的软木包扎,其外又包扎100 mm 厚的保温灰作为绝热层。
现测得钢管外壁面温度为120-℃,绝热层外表面温度为10 ℃。
软木和保温灰的导热系数分别为0.043⋅W/(m ℃)和0.07⋅W/(m ℃),试求每米管长的冷损失量。
解:此为两层圆筒壁的热传导问题,则()()mW 53.24m W 04.00285.01.004.00285.0ln 07.010285.004.00285.0ln 043.011012014.32ln 1ln 1π223212121-=+++++--⨯⨯=+-=r r r r t t L Q λλ 5.在某管壳式换热器中用冷水冷却热空气。
换热管为Φ25 mm×2.5 mm 的钢管,其导热系数为45 W/(m·℃)。
冷却水在管程流动,其对流传热系数为2 600 W/(m 2·℃),热空气在壳程流动,其对流传热系数为52 W/(m 2·℃)。
试求基于管外表面积的总传热系数K ,以及各分热阻占总热阻的百分数。
设污垢热阻可忽略。
解:由o o o o m i i 11K d d b d d αλα=++ 查得钢的导热系数 )C m W 452︒⋅=λ2.5b =mm o 25d =mm ()mm 20mm 5.2225i =⨯-=dmm 5.22mm 22025m =+=d ()()C m W 6.50C m W 02.02600025.00225.045025.00025.0521122o ︒⋅=︒⋅⨯+⨯⨯+=K 壳程对流传热热阻占总热阻的百分数为 o o o o 150.6100%100%100%97.3%152K K αα⨯=⨯=⨯= 管程对流传热热阻占总热阻的百分数为 oo o i i i i o50.60.025100%100%100% 2.4%126000.02d K d d d K αα⨯⨯=⨯=⨯=⨯ 管壁热阻占总热阻的百分数为 o o o m m o0.00250.02550.6100%100%100%0.3%1450.0225bd bd K d d K λλ⨯⨯⨯=⨯=⨯=⨯ 6.在一传热面积为40 m 2的平板式换热器中,用水冷却某种溶液,两流体呈逆流流动。
冷却水的流量为30 000kg/h ,其温度由22 ℃升高到36 ℃。
溶液温度由115 ℃降至55 ℃。
若换热器清洗后,在冷、热流体流量和进口温度不变的情况下,冷却水的出口温度升至40 ℃,试估算换热器在清洗前壁面两侧的总污垢热阻。
假设:(1)两种情况下,冷、热流体的物性可视为不变,水的平均比热容为4.174 kJ/(kg·℃);(2)两种情况下,i o αα、分别相同;(3)忽略壁面热阻和热损失。
解:求清洗前总传热系数K()()C 7.52C 225536115ln 225536115m ︒=︒-----=∆t ())()C m W 231C m W 7.52403600223610174.430000223m ︒⋅=︒⋅⨯⨯-⨯⨯⨯=∆=t S Q K 求清洗后传热系数K '由热量衡算h p,h 12c p,c 21()()W C T T W C t t -=-h p,h 12c p,c 21()()W C T T W C t t ''-=- c p,c 2121h p,h ()W C T T t t W C ''=-- ()()C 9.37C 22402236551151151212211︒=︒⎥⎦⎤⎢⎣⎡----=-'---=t t t t T T T ()()C 1.38C 229.3740115ln 229.3740115m ︒=︒-----='∆t ()()()C m W 8.410C m W 1.38403600224010174.430000223︒⋅=︒⋅⨯⨯-⨯⨯⨯=K 清洗前两侧的总传热热阻 W C m 109.1C m 8.4101231111232S ︒⋅⨯=︒⋅⎪⎭⎫ ⎝⎛-='-=-∑K K R 7.在一传热面积为25 m 2的单程管壳式换热器中,用水冷却某种有机溶液。
冷却水的流量为28 000kg/h ,其温度由25 ℃升至38 ℃,平均比热容为4.17 kJ/(kg·℃)。
有机溶液的温度由110 ℃降至65 ℃,平均比热容为1.72 kJ/(kg·℃)。
两流体在换热器中呈逆流流动。
设换热器的热损失可忽略,试核算该换热器的总传热系数并计算该有机溶液的处理量。
解:p,c 4.17C = kJ/(kg·℃)c p,c 21()Q W C t t =-()W 1022.4W 25381017.436002800053⨯=-⨯⨯⨯= 求m t ∆ 有机物 110 → 65水 38 ← 25————————————————t ∆ 72 40 C 4.54C 4072ln 4072m ︒=︒-=∆t ()()C m W 3.310C m W 4.54251022.4225︒⋅=︒⋅⨯⨯=K ()()h kg 10963.1kg 452.5s kg 651101072.11022.443521h h ⨯==-⨯⨯⨯=-=K T T c Q W p 8.在一单程管壳式换热器中,用水冷却某种有机溶剂。
冷却水的流量为10 000 kg/h ,其初始温度为30 ℃,平均比热容为4.174 kJ/(kg·℃)。
有机溶剂的流量为14 000 kg/h ,温度由180 ℃降至120 ℃,平均比热容为1.72 kJ/(kg·℃)。
设换热器的总传热系数为500W/(m 2·℃),试分别计算逆流和并流时换热器所需的传热面积,设换热器的热损失和污垢热阻可以忽略。
解: ()()kW 3.401h kJ 104448.1h kJ 12018072.114000621h =⨯=-⨯⨯=-=T T Wc Q p冷却水的出口温度为C 61.64C 30174.410000104448.161c c 2︒=︒⎪⎪⎭⎫ ⎝⎛+⨯⨯=+=t c W Q t p 逆流时()()C 102.2C 9039.115ln 39.25C 3012061.64180ln3012061.64180m ︒=︒=︒-----=∆t 223m m 854.7m 2.102500103.401=⨯⨯=∆=t K Q S 逆 并流时()()C 97.94C 15039.55ln 61.94C 3018061.64120ln 3018061.64120m ︒=︒=︒-----=∆t 223m m 452.8m 97.94500103.401=⨯⨯=∆=t K Q S 逆 9.在一单程管壳式换热器中,用冷水将常压下的纯苯蒸汽冷凝成饱和液体。
已知苯蒸汽的体积流量为1 600 m 3/h ,常压下苯的沸点为80.1 ℃,气化热为394 kJ/kg 。
冷却水的入口温度为20 ℃,流量为35 000 kg/h ,水的平均比热容为4.17 kJ/(kg·℃)。
总传热系数为450 W/(m 2·℃)。
设换热器的热损失可忽略,试计算所需的传热面积。
解:苯蒸气的密度为 ()33m kg 692.2m kg 1.8027308206.0781=+⨯⨯==RT PM ρ h kg 2.4307h kg 692.21600h =⨯=W W 1071.4h kJ 10697.1h kJ 3942.430756h ⨯=⨯=⨯==γW Qc p,c 21()Q W C t t =- 23535000 4.1710(20) 4.71103600t =⨯⨯-=⨯ 解出 231.6t =℃ 求m t ∆苯 80.1 → 80.1水 31.6 20————————————————t ∆ 48.5 60.1C 1.54C 5.481.60ln 5.481.60m ︒=︒-=∆t 225m m 3.19m 1.544501071.4=⨯⨯=∆=t K Q S10.在一单壳程、双管程的管壳式换热器中,水在壳程内流动,进口温度为30 ℃,出口温度为65 ℃。