异佛尔酮合成工艺的研究进展_李浩

异佛尔酮合成工艺的研究进展_李浩
异佛尔酮合成工艺的研究进展_李浩

雷诺嗪合成工艺

雷诺嗪合成工艺

雷诺嗪合成工艺 工艺路线: 中间体Ⅰ的合成 NH 2CH 3 CH 3ClCH 2COCl NHCOCH 2Cl CH 3 CH 3 NH CH 3 CH 3N NH O + HN NH 中间体Ⅱ的合成 OH OCH 3 O ClH 2C O OCH 3 H 2C O + 雷诺嗪的合成 NH CH 3 CH 3N N O OCH 3 O + O OCH 3 H 2C O NH CH 3 CH 3N NH O 1.1 N-(2,6-二甲基苯基)-2-氯-乙酰胺(2)的合成 在3L 圆底烧瓶中,投入2,6.二甲基苯胺(182g ,),甲苯(35 mL),三乙胺(186g ,),二氯甲烷(1.9L),冰浴冷至0℃以下后搅拌15min ,缓慢滴加氯乙酰氯(167g ,),控温℃,滴毕,室温反应反应2 h ,用2N 的HCl200mL ×2洗涤,分出有机层,无水硫酸镁干燥,浓缩至干,残余物用环己烷精制

的250g类白色固体,mp146-148℃。 1.2 N-(2,6-二甲基苯基)-1-哌嗪乙酰胺(3)的合成 在1000 mL圆底烧瓶中加入哌嗪二盐酸盐(52.5 g,0.33 too1),哌嗪(25.8 g,0.30 too1),无水乙醇(500 mL),回流温度下反应约1 h,将化合物(2)(49.3 g,0.25 too1)分批加入,反应3—4 h,TLC检测反应进程.反应完全后,冷却,滤出白色固体(哌嗪二盐酸盐,回收利用).母液浓缩后加少量水溶解,冰浴下用氢氧化钠水溶液调节溶液pH值,使pH>10.用二氯甲烷(200 mL×4次)萃取,萃取液用少量水洗.有机层用无水硫酸镁干燥过滤,过滤除去干燥剂,浓缩,用乙醚重结晶,得化合物(3),白色(略黄)粉末状固体(53.6 g,收率87%,mp:99.5—101.5 oC;1.2.3 2.1 (2-甲氧基苯氧基)-1,2-环氧丙烷(4)的合成 在2L三口圆底烧瓶中,加入邻甲氧基苯酚

格列苯脲发展史

格列苯脲发展史 格列苯脲中文名称:格列苯脲中文别名:优降糖;达安疗 ;达安宁;乙磺己脲;优格鲁康;氯磺环己脲; 英文名称:Glibenclamide 英文别名:glybenclamide glyburide usp Glibenclamide Glyburide CAS号:10238-21-8发现史 1942年,法国蒙彼利埃大学医院感染科医生Janbon在应用磺胺药物治疗斑疹伤寒时,偶然发现某些患者可出现严重的低血糖反应,从而开启人们对磺胺药物可能存在降低血糖的化学结构的认识。随后,第一个SUs,即VK 57 或2254 RP由人工合成,随之进行的动物实验证实SUs具有降低血糖的作用。 1955年,德国Franke 及Fuchs发现了具有降低血糖作用的氨磺丁脲(Carbutamide,BZ55),但是因副作用太大而未能获得广泛临床应用。 1956年他们成功合成了成功用于临床2型糖尿病的治疗的第一代SUs,甲苯磺丁脲(Tolbutamide, D860),从此开始了SUs治疗糖尿病的新时代。 1966年以格列本脲为代表的第二代SUs被成功合成,之后格列吡嗪、格列齐特、格列喹酮等被陆续合成,并先后应用于临床治疗2型糖尿病至今。至上世纪90年代,格列美脲的成功研发标志着新一代SUs的诞生,现已广泛地用于2型糖尿病的临床治疗。磺脲类降糖药的发展随着磺脲类药物降糖药作用的发现,糖尿病治疗进入了口服给药方式控制血糖的时代,经过半个多世纪的发展,磺脲类降糖药已经发展成为种类众多,应用最为广泛的降糖药物之一。磺脲类降糖药亦经历副作用多、用药安全性差的第一代,到种类众多、应用广泛的第二代,目前,以格列美脲为代表的第三代口服降糖药亦已普遍使用,其用药安全性、作用方式均发生了巨大改进。第一代磺脲类降糖药磺胺类抗生素的降糖作用被发现后不久,氨磺丁脲、甲苯磺丁脲等第一代磺脲类降糖药便相继问世,作为非胰岛素注射控制血糖的新治疗模式,第一代磺脲类药物曾经被广泛使用。然而,多年的临床应用表明,由于其与磺脲类受体亲和力低,脂溶性差,细胞膜通

第七章 费托合成

第七章 F-T合成试题 一、填空题 1、F T合成是和在1925年首先研究成功的。 2、20世纪50年代初期,中国建成了一个F-T合成工厂即。 3、F-T合成可能得到的产品包括和,以及、。 4、F-T合成催化剂分为和。 5、复合催化剂采用制成。 6、沉淀铁系催化剖根据助剂和载体的不同,主要分为、和。 7、液态油通过蒸馏分离可得到和。 8、SASOL一厂工艺经净化后的煤制合成气分两路进入 和。 9、在F-T合成中,反应器类型有多种,在SASOL厂生产中使用了和两种装置。 10、催化剂组成为9.0~Fe;0. 9%K/硅沸石-2,硅沸石-2具有,具有较小的, 有利于。 11、熔铁型催化剂主要应用的装置是。 12、铁催化剂是活性很好的催化剂,用在固定床反麻器的中压合成时,反应温度为。 13、柴油的十六烷值约为,汽油的辛烷值为。 14、F-T合成原料气中新鲜气占,循环气占。 15、SASOL二厂工艺流程中净化后的合成气经反应后,合成产物首先.将反应生成 的和冷凝下来。水经氧化得和,液态油经、 可得汽油。 16、在SMFT合成模试工艺流程中一段反应器为,采用;二段反应器为,采用, 对一段产物进行改质以提高油品质量和收率,简化后处理工序。 17、F-T合成采用沉淀铁催化剂的固定床反应器,空速为;采用熔铁催化剂的气流床 反应器,空速为。 二、名词解释 1、F-T合成法 2、MFT合成

3、SMFT合成 4、担载型催化剂 5、熔铁型催化剂的制备原理 6、积炭反应 三、判断正误 1、单一催化剂主要有钌、镍、铁和钴.其中只有钌被用于工业生产。() 2、SASOL一厂的合成产物中的蜡经减压蒸馏可生产中蜡(370~500℃)和硬蜡(>500℃), 可分别加氢精制。() 3、SASOL一厂工艺的气流床反应器主要产物为柴油。() 4、F-T合成反应温度不宜过高,一般不超过400℃,否则易使催化剂烧结,过早失去 活性。() 5、当合成气富含氢气时,有利于形成烷烃。() 6、用含碱的铁催化剂生成含氧化合物的趋势较大,采用低的V(H2)/V(CO)比,高压和大空 速条件进行反应,有利于醇类生成,一般主要产物为甲醇。() 7、积炭反应为放热反应。() 8、从动力学角度考虑,温度升高,反应速度加快,同时副反应速度也随之加快。() 9、SASOL一厂流程中将冷凝后的余气先脱除C02.二厂流程中将余气直接分离,然后进 行深冷分离成富甲烷、富氢、C2和C3~C4馏分,可以获得高产值的乙烯和乙烷组分。 () 10、浆态床反应器结构复杂,投资费用高。() 11、气流床反应器由反应器和催化剂沉降室组成。() 12、原料气中的(CO+H2)含量高,反应速度快,转化率高,但反应放出的热量少,易使 催化剂床层温度降低。() 四、回答问题 1、简述F-T合成的反应原理。 2、F-T合成应中铁系催化剂包括哪些类型? 3、简述复合催化剂的作用。 4、简述F-T合成反应需在等温条件下进行的原因。

费托合成工艺学习分析报告本科

关于煤间接液化技术“费-托合成”的学习报告报告说明 F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。 一、F-T合成的基本原理 主反应 生成烷烃: (1) (2) 生成烯烃: (3) (4) 副反应 生成含氧有机物: (5) (6) (7) 生成甲烷: (8) 积碳反应: (9) 歧化反应:

(10) F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1和3是生产过程中主要反应。其合成的烃类基本为直链型、烯烃基本为1-烯烃。5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。 二、高温工艺与低温工艺 反应温度不同,F-T合成液体产物C数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。低温工艺约在200-240摄氏度下反应,即可使用Fe催化剂也可用Co系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。高温工艺约在350摄氏度情况下反应,一般使用熔铁催化剂,产品主要是小分子烯烃和汽油。 由于温度不同,高低温工艺采用的反应器也有所不同,低温工艺主要采用固定床反应器、浆态床反应器;高温工艺主要用循环流化床、固定流化床反应器。 下面关于首先报告我对反应基本流程的认识 首先无论何种反应器都需要先将合成气和循环气加热到一定温度后输入反应器,再经过均布装置将合成气均匀散开,之后进入反应段。由于炉内反应基本为强放热反应,对于低温工艺需要设置通水的管道利用水汽蒸发转移热量提高效率,而高温工艺由于强烈的对流换热所以并不要求特殊的冷却系统。 反应段过后主要是催化剂回收和产品分离的问题,这一点主要是利用旋分器、重力沉降(反应中催化剂结团结块)等方式。图1为反应器的基本结构示意图 图错误!未指定顺序。反应器基本结构示意图 这里再简要报告我对以上提到的四类反应器认识 固定床反应器(Arge反应器) 由于催化剂到冷却界面的传热距离限制,固定床式反应器要想法设法增大表面积。早期由于管式反应器直径过大而采取了层炉式反应器,然而由于散热和催化剂利用效率的问题而不被广泛使用。随后的发展趋势就是反应器内“管”越来越多、越来越细;1955年Sasol公司开发了内含2052根直径50毫米“管”的固定床反应器;1990年Shell公司开发了内含26150根直径26毫米“管”的反应器。而“管越多、越细”,反应器的效率和生产能力也越高(这点后面要提到)。 这种反应器优点易于操作运行,产品易于分离,适用于蜡生产;但是缺点也很明显,由于此类反应器温度分布不均,其温度需要控制在较低水平,影响反应速率和产率,以及因此带来的对于催化剂细度的要求,使得催化剂利用效率低,用量大;同时反应器由于承受压降厚度较大,铁催化剂定期更换要求复杂的网络结构,加大了设备成本。 浆态床反应器

费托合成

费-托合成(煤间接液化介绍,包括催化技术、反应器以及国内正在进行项目介绍) 间接液化概念 间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。 间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。 在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。 煤间接液化技术的发展 煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T 命名的,简称F-T合成或费托合成。依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。 自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费托合成技术就伴随着世界原油价格的波动以及政治因

素而盛衰不定。费托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。在同一时期,日本、法国、中国也有6套装置建成。 二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费托合成技术工业化的国家。1992和1993年,又有两座基于天然气的费托合成工厂建成,分别是南非Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自

喹烯酮预混剂使用说明书

兽用 喹烯酮使用说明书 【兽 药 名 称】 通 用 名:喹烯酮 商 品 名: 英 文 名:Quinocetone Premix 汉语拼音:Kuixitong Y uhunji 本品主要成分及化学名称:喹烯酮,3-甲基-2-肉桂酰基-喹噁啉-1,4-二氧化物 结构式: 分子式:C 18H 14N 2O 3 分子量:306.32 【性 状】本品为浅黄色粉末。 【药 理 作 用】 药 效 学:“喹烯酮”为我国最新研制的畜用抗菌、促生长饲料添加剂。 颗促进生长并提高饲料转化率,对多种肠道致病菌有抑制作用,可明显降低畜禽腹泻发生率,具有防病和增重及节约饲料消耗的三重作用。该药效果确实,增重率可达10%以上,提高饲料转化率8-12%,降低临床腹泻发生率50-70%,用药动物精神、健壮、背光毛顺、皮肤红润、膘份及肉质好。 毒 理 学:该药毒性极低,小白鼠口服LD50为8179mg/kg 体重,毒性极 低,近于无毒。蓄积毒性、亚急性毒性及慢性毒性试验均证明该药对机体无毒副作用,安全性好;三代繁殖试验表明饲料添加该药后能提高大白鼠和小白鼠的产仔数、成活率、哺育成活率及窝重;特殊毒性试验表明该药无致畸、致突变、致癌作用。 药代动力学:静脉注射给药符合二室开放模型:猪:T 1/2α=0.1899h ,T 1/2β =4.5528h ,kel=0.8654h -1,AUC=0.00925mg.h -1.l -1 口服给药符合一级吸收一室开放模型: 猪:T 1/2k α=0.4678h ,T 1/2k β=3.7445h ,Tp=1.3367h ,Cmax=0.000713 μg.ml -1,AUC=0.00303 mg.h -1.ml -1 鸡:T 1/2k α=0.5142h ,T 1/2k β=4.6637h ,Tp=1.8459h ,Cmax=0.000897 μg.ml -1,AUC=0.00773 mg.h -1.ml -1 该药口服后,猪停药24小时在血中检测不到“喹烯酮”及其代谢产物。口符合机体内吸收很少,且吸收较快,消除也较快,大部分从消化道以原形排除(80%以上)。生物利用度较低。试验表明该药在体内不蓄积、无残留。 研究表明:该药药效好,毒性小,排泄快,不残留,不蓄积,无三致作用, 安全可靠。 【作用与用途】抗菌药。用于猪促生长。 【注意事项】1、禁用于禽 2、体重超过35kg 的猪禁用 【不良反应】无 【用法与用量】混饲 每1000kg 饲料 猪50g (以喹烯酮计) 【休 药 期】14日(暂定) 【规 格】100g :5g 【包 装】100g 或500g 或1kg 或25kg/袋 【贮 藏】遮光,密封,在干燥处保存。 【有 效 期】二年 【批准文号】 【生产企业】 N N CH 3 O O O

从临床批件到生产批件(2011年 实践意义较大)

从临床批件到生产批件-制药企业如何进行新药临床研究(2011-11-08 14:14:04) 转载 ▼ 标签:杂谈 正文开始 王廷春:从临床批件到生产批件-制药企业如何进行新药临床研究 主持人:下面请广州搏济新药临床研究中心总经理王廷春总经理,他演讲的题目是:从临床批件到生产批件--制药企业如何进行新药临床研究。谢谢王总给我们报告。 王延春:非常感谢受组委会邀请,就新药临床研究给大家做一个交流,我演讲的题目是:从临床批件到生产批件——制药企业如何进行新药临床研究。大家都知道我们企业搞新药,最终的目的是要拿到质量证书和生产批文,然后上市销售,只有到这个时候,才可以产生利润,在以前所有的都是投入。 作为企业如何进行新药研发和临床研究?大致分几个问题跟大家交流:第一个怎么样选临床批件?第二个我拿到这张批件以后用什么样方式进行临床研究?第三个我们如何选择CRO公司,第四个和CRO 公司合作当中应该注意哪些问题? 新药开发是一个时间很长的过程,我们以前都说美国开发一个新药需要十几年的时间。在几年以前,我们都觉得那是很长的时间,我都觉得是一个不可接受的时间。但是现在不知道大家有没有感受,在中国如果你想搞一个创新药物的话,没有十年时间也是不可能出来的。所以根据这样的情况,对于有一定实力的企业,尤其对于一些营销企业

来说,怎么样走一个捷径比较快的取得生产批文,利用别人已经有的研究结果这是比较好的选择。一个项目到立项到拿到临床批件大概需要四五年时间,如果拿到临床批件以后选择这个项目开始进行后续的研究,实际上是为企业赢得了五年的时间。 我们在选择临床批件的时候应该注意的一些问题,第一个临床研究批件是国家发的,有一段时间曾经是两年,但是后来药品注射办法修改以后,又改成三年,现在基本上认为临床研究批件从颁发至日起三年内是有效的。如果临床研究批件超过了这个有效期,是需要重新向SPDA申报的。我们在选择临床批件的时候,如果看到临床批件超过了这个时限的话,应该说是不能要的。大家看到这个批件日期是06 年的,如果这个项目现在开始进行临床实验,应该说是失效的。第一,操作这个临床实验的时候,很多医院会告诉你,这个批件已经过期了我们不做这个临床实验。第二,如果能把这个环节躲过去,即使你做了临床实验,你报到国家,他也可能会不接受你的临床实验资料,或者说给你退审,这就是一个非常严重的问题。首先要把握临床批件,一定是没有过期的。当然有些临床批件虽然是过期了,但是它已经进行了一定的操作,通常大家用一种方法,先找了药物临床实验机构,先定了方案,先在国家食品药品监督管理局进行备案,如果这种前提下通常大家还是认可的。 第二,临床前研究工艺资料与实际是否相一致。因为我们新药开发经历了几个阶段,尤其前些年是比较混乱的阶段,那些天的临床研究批件申报的资料和实际的工艺可能会有出入,特别是07年以前的临床研

内分泌临床药物治疗学复习题 (1)

内分泌临床药物治疗学期末复习题 填空题: 1. 糖尿病典型的临床表现有、和。 2. 糖尿病管理的五架马车是、、、和。 3. 原发性骨质疏松症分三大类,即__________、__________、__________。 4. 2型糖尿病的治疗原则是、、、和。 5. 低血糖典型表现(Whipple三联征),即____ ______、___ _ __ _ ___、____ _ _____。 6. 骨强度反应了骨骼的两个主要方面,即和。单选题: 1. 糖尿病是一组病因不明的内分泌代谢病,其共同主要标志是(D)A多饮、多尿、多食B乏力C尿糖阳性D高血糖E消瘦 2. 若诊断临床糖尿病,应选择下述哪项检查(D) A尿糖B空腹血糖C空腹胰岛素测定D口服糖耐量试验E糖化血红蛋白 3. 根据2013年《中国2型糖尿病防治指南》,2型糖尿病患者空腹血糖的控制标准是(D) A≤10mmol/L B≤7mmol/L C 3.0mmol/L-7.8mmol/L D 4.4mmol/L-7.0mmol/L E≤3.9mmol/L-6.1mmol/L 4. 根据2013年《中国2型糖尿病防治指南》,合并有冠心病的2型糖尿病患者LDL的控制标准是(C)

A≤3.10mmol/L B≤2.1mmol/L C≤1.8mmol/L D ≤2.6mmol/L E≤1.0mmol/L 5. 双胍类降糖药最常见的副作用为(D) A乳酸性酸中毒B低血糖C过敏性皮疹D胃肠道反应E肝功异常 6. 为了减轻二甲双胍副作用,服用方法最好是(E) A 饭前B空腹C晨起D 睡前E饭中或饭后 7. 磺脲类药物的主要副作用是(B) A恶心,呕吐B低血糖反应C肝功能损害D白细胞减少E皮肤瘙痒 8. 下列哪种磺脲类药物可用在轻中度肾功能不全患者(D) A 格列本脲 B 格列吡嗪C格列吡嗪D格列喹酮 E 格列美脲 9. 根据磺脲类药物的药代动力学特点,宜服用该类药物的时间是(D) A 空腹 B 饭后 C 饭前1小时 D 饭前15~30分钟 E 饭中 10. 根据格列奈类药物的药代动力学特点,宜服用该类药物的时间是(B) A 空腹B饭前15分钟C 饭前1小时D饭后E 饭中 11. 下列哪类药物与胰岛素合用最易发生水钠储留(C) A 双胍类 B 磺脲类 C 噻唑烷二酮类 D DPP-4抑制剂 E α-糖苷酶抑制剂 12. 下列哪种DPP-4抑制剂使用不受肝肾功能影响(B) A 阿格列汀B利格列汀C 维格列汀D西格列汀E 沙格列汀 13. 下列哪类降糖药物在降糖的同时降低体重更明显(A) AGLP-1类似物B DPP-4抑制剂C双胍类

费托合成工艺学习报告(本科)

关于煤间接液化技术“费-托合成”的学习报告 报告说明 F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。 一、F-T合成的基本原理 主反应 生成烷烃: nCO+2n+1H2==C n H2n+2+nH2O(1) n+1H2+2nCO==C n H2n+2+nCO2(2) 生成烯烃: nCO+2n H2==C n H2n+nH2O(3) n H2+2nCO==C n H2n+nCO2(4) 副反应 生成含氧有机物: nCO+2n H2==C n H2n+nH2O(5) nCO+(2n?2)H2=C n H2n O2+(n?2)H2O(6) n+1CO+2n+1H2==C n H2n+1CHO+nH2O(7) 生成甲烷: CO+3H2==CH4+H2O(8) 积碳反应: CO+H2==C+H2O(9) 歧化反应: 2CO==C+C O2(10) F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1

和3是生产过程中主要反应。其合成的烃类基本为直链型、烯烃基本为1-烯烃。5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。 二、高温工艺与低温工艺 反应温度不同,F-T 合成液体产物C 数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。低温工艺约在200-240摄氏度下反应,即可使用Fe 催化剂也可用Co 系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。高温工艺约在350摄氏度情况下反应,一般使用熔铁催化剂,产品主要是小分子烯烃和汽油。 由于温度不同,高低温工艺采用的反应器也有所不同,低温工艺主要采用固定床反应器、浆态床反应器;高温工艺主要用循环流化床、固定流化床反应器。 下面关于首先报告我对反应基本流程的认识 首先无论何种反应器都需要先将合成气和循环气加热到一定温度后输入反应器,再经过均布装置将合成气均匀散开,之后进入反应段。由于炉内反应基本为强放热反应,对于低温工艺需要设置通水的管道利用水汽蒸发转移热量提高效率,而高温工艺由于强烈的对流换热所以并不要求特殊的冷却系统。 反应段过后主要是催化剂回收和产品分离的问题,这一点主要是利用旋分器、重力沉降(反应中催化剂结团结块)等方式。图1为反应器的基本结构示意图 图1反应器基本结构示意图 这里再简要报告我对以上提到的四类反应器认识 2 46 5 3 1 1-合成气注入通道;2-均布段;3-冷却管道;4- 反应段;5-分离段;6-输出通道;(吴尧绘制)

诺氟沙星的合成工艺路线改进

诺氟沙星的合成工艺路线改进 学生姓名梁蕾蕾 班级化药903班 专业名称化学制药技术 系部名称制药工程系 指导教师张静 提交日期 2011/12/20 答辩日期 2011/12/26 河北化工医药职业技术学院 2011年12月

目录 摘要 (4) 1 前言 (4) 1.1喹诺酮类药物 (4) 1.1.1喹诺酮简介 (5) 1.1.2抗菌作用机制 (5) 1.1.3喹诺酮类的共性 (5) 1.1.4作用 (6) 1.2诺氟沙星概述 (6) 1.2.1背景介绍 (6) 1.2.2物理性质 (6) 1.2.3药理毒理 (6) 1.3发展状况 (7) 2 制备工艺的优化 (8) 2.1环合反应的优化 (8) 2.2乙基化反应的优化 (10) 2.3哌嗪化反应的优化 (11) 3 反应中溶剂的优化 (12) 4 反应过程中杂质的检测与定量 (13)

5 其他诺氟沙星合成工艺 (14) 5.1以 A-(2,4-二氯-5-氟苯甲酰)乙酸乙酯为起始原料 (14) 5.2以3-乙氧基-2-(2,4-二氯-5-氟苯甲酰基)丙烯酸乙酯为起始原料 (15) 6 总结 (17) 参考文献 (18) 致谢 (20)

摘要 诺氟沙星是第3 代喹诺酮类优秀的抗菌药物之一,在医疗领域有着重要的意义。本文主要对诺氟沙星的合成工艺做了相应的总结,对其中一些典型的合成路线进行了优劣势的分析,并提供了相应的优化方案。 诺氟沙星合成工艺路线大致有两大类型:一、经分子内亲桉取代或Deckmann环余方法先合成喹诺酮环后引入哌嗪基;二、先引入哌嗪基,再逐步形成喹诺酮环。 目前,国内外较多地采用第一类型合成路线:即以3-氯-4-氟苯胺为起始原料,经与EMME (乙氧基亚甲基丙二酸二乙酯)缩合、经烷基化剂乙基化得中间体1-乙基-6-氟-7-氯-1,4-二氢-4-氧-喹啉-3-羧酸乙酯,水解后哌嗪化得诺氟沙星。 本文以 3- 氯- 4- 氟苯胺为起始原料, 经与乙氧基亚甲基丙二酸二乙酯(EMME)缩合、Gould- Jacobs环化、乙基化、硼酸酯络合及与无水哌嗪缩合等五步反应合成了诺氟沙星,总收率为 66.3%。 关键字:诺氟沙星,合成,工艺改进 1 前言 1.1喹诺酮类药物

雷诺嗪

1 雷诺嗪(Ranolazine ,Ranexa ) [异名] Ranexa TM [化学名] (±)N-(2,6-二甲基苯基)-4-[2-羟基-3-(2-甲氧苯氧基)丙基]-1-哌嗪乙酰胺 (士 )N-(2,6-dimethylphenyl)-4-[2-hydroxy-3-(2-methoxyphenoxy)-propyl]-1-piperazine acetamide [开发单位]美国Syntex(Roche)公司 [首次上市时间和国家]2006年初,美国。 [性状]白色或类白色结晶性粉末,无臭,味微苦。在水中几乎不溶;在丙酮、95%乙醇中略溶;在甲醇中溶解;在二氯甲烷中易溶。略有引湿性。mp :110.9—111.7℃,熔距不超过2℃。 [药理作用]本品为部分脂肪酸氧化(pfox)抑制剂。可以抑制脂肪酸的β-氧化,进一步激活丙酮酸脱氢酶(PDH),增加葡萄糖氧化,使心肌代谢方式发生改变而提高心肌氧的利用率。这个代谢转化可以增加单位摩尔氧的消耗所产生的ATP 量,降低乳酸含量,减轻酸中毒程度,在心肌供氧减少的情况下保持心肌组织的正常功能,且在不改变血液动力学参数的条件下,发挥其抗心绞痛的作用,同时还可防止乳酸酸中毒。 [适应症] 心绞痛、心肌缺血 [推荐合成路线] 以2,6-二甲基苯胺为原料与氯乙酰氯缩合得酰胺,与哌嗪缩合,再与1-(2-甲氧基苯氧基)-2,3-环氧丙烷加成得雷诺嗪,如图所示。

2 一、 N-(2,6-二甲基苯基)-2-氯-乙酰胺Ⅳ的合成 在1 000 ml 圆底烧瓶中,投入2,6-二甲基苯胺(18.2 g ,0.15 mol),甲苯(300 ml),碳酸钠(15.9 g ,0.15 mol),水(300 ml);剧烈搅拌下,缓慢滴加氯乙酰氯(20.3 g ,0.18 mol),控温20~35℃反应1~2 h ,TLC 检测反应进程。反应完全后,冰浴冷却结晶,抽滤,用甲苯洗涤,用异丙醇(或乙醇)重结晶,得化合物Ⅳ,白色针状晶体(28.2 g ,收率95.2%;mp :148.0~149.5℃)。 二、 N-(2,6-二甲基苯基)-1-哌嗪乙酰胺Ⅴ的合成 在1 000 ml 圆底烧瓶中加入哌嗪二盐酸盐(52.5 g ,0.33 mol),哌嗪(25.8 g ,0.30 mol),无水乙醇(500 ml),回流温度下反应约1 h ,将化合物Ⅳ(49.3 g ,0.25 mol)分批加入,反应3~4 h ,TLC 检测反应进程.反应完全后,冷却,滤出白色固体(哌嗪二盐酸盐,回收利用)。母液浓缩后加少量水溶解,冰浴下用氢氧化钠水溶液调节溶液pH 值,使pH>10。用二氯甲烷(200 ml ×4次)萃取,萃取液用少量水洗。有机层用无水硫酸镁干燥过滤,过滤除去干燥剂,浓缩,用乙醚重结晶,得化合物Ⅴ,白色(略黄)粉末状固体(53.6 g ,收率87%;mp :99.5~101.5℃)。 三、3-(2-甲氧基苯氧基)-1,2-环氧丙烷Ⅱ的合成 在500 ml 三口圆底烧瓶中,加入邻甲氧基苯酚(49.6 g ,0.40 mol),环氧氯丙烷(185.0 g ,2.0mol),碳酸钾(110.6 g ,0.8 mol),聚乙二醇400(催化量,约20滴),机械搅拌,控温70℃,反应1~2h ,TLC 检测反应进程。反应完全后,冷却、过滤,用环氧氯丙烷洗涤滤饼.减压蒸出环氧氯丙烷(可回收利用),得到的残余物减压蒸馏,收集136.0~138.0℃/30 mmHg 的馏分,即化合物Ⅱ(65.5 g ,收率91%)。 四、雷诺嗪的合成 在500 ml 三口圆底烧瓶中,加入化合物Ⅴ(49.4 g ,0.20 mol),无水乙醇(300 ml),回流温度下缓慢滴加化合物Ⅱ(36.0 g ,0.20mol)继续在回流条件下反应3~4 h ,TLC 检测反应进程,反应完全后,冷却,抽滤干燥得白色固体(93.2 g ,收率93%,mp :164.5~166.5℃)。 波谱数据: IR(cm 1 ):3525(O-H),3374(N-H),3167(ArH),2999(Ar-CH3),2835(亚甲基),1691(羰基),1593~1455(苯环骨架), 1225和l223(醚键),773(苯环三邻取代),748(苯环邻二取代); 1H NMR :11~12(m,1H,-OH),10.18(s,1H,N-H),7.11(m ,3H ,苯环),7.01~6.88(m ,4H ,苯环),4.44(m,1H,CHOH),4.25(m,3H,OCH3),4.01~3.99(m,4H,COCH2,-OCH2),3.77~3.44(m,8H,哌嗪环),3.31(m ,2H ,CH2CHOH),2.18(m ,6H ,2个CH3); EI-MS : m/z (%)=428(M++1) 。 [其他合成路线] 路线1: 以2-甲氧基苯酚为原料与环氧氯丙烷经O-烷基化反应得1-(2-甲氧基苯氧基)-2,3-环氧丙烷,与哌嗪加成后再与N-(2,6-二甲基苯基)-2-氯乙酰胺缩合得雷诺嗪,如图所示。

2018年度滨州科学技术奖拟评审项目

2018年度滨州市科学技术奖拟评审项目 一、自然科学奖(5项) 序号项目名称完成单位完成人所属县区1 瘦素受体信号在抗抑郁药物治疗中的作用研究滨州医学院附属医院郭明,赵娣,胡凤爱,柳敦江市直 2 多囊卵巢综合症患者nesfatin-1测定及其对颗 粒细胞的影响 滨州医学院附属医院 王雁林,李清春,李明娥,王梅林,刁兴华, 何秀香,李学峰,马鹤,孙静,雷聪 市直 3 功能性磁共振在胶质瘤的应用:动物实验与临床 研究 滨州医学院附属医院姜兴岳,谢庆芝,郭兰田,许昌,王山山市直 4 高容量长寿命稀土-镁-镍基储氢合金的应用基础 研究 滨州学院,山东省科学院新材料研究所高志杰,张会明,郑晓冬,张素卿市直 5 酵母菌油脂合成及其调控的分子机理滨州职业学院赵春海,王致鹏,池振明市直 二、科技进步奖(98项)

序号项目名称完成单位完成人所属县区 1 机采棉播种关键技术装备的研发应用滨州市农业机械化科学研究所张爱民,孙冬霞,李伟,刘凯凯,禚冬玲,宫建勋,李明 军,廖培旺,曹龙龙,郝延杰,王成,宋德平 市直 2自走式棉秆收获打捆机的研发与关键技术 研究 滨州市农业机械化科学研究所,农业部南京农 业机械化研究所 刘凯凯,廖培旺,宋德平,张爱民,禚冬玲,陈明江,曹 龙龙,孙冬霞,李伟,刘玉京,宫建勋,王振伟 市直 3 食用菌轻简化栽培及绿色防控技术的集成 与应用 滨州市农业环境保护工作站,山东农业工程学 院,滨州市福哲思蕈菌有限公司,山东惠民春 生食用菌科技开发有限公司 刘善勇,王继堂,张国顺,韩莉莉,牛贞福,李东起,赵 永红,单宝强,刘振霞,董洪新 市直 4 可追溯冬枣安全管理标准化技术集成与示 范 滨州市农业科学院,滨州市科学技术情报研 究所,滨州市植物保护站 张路生,高曙光,刘俊展,李占俊,王晓亮,李景茹,李 占辉,范晓明,刘长明,刘树泽,常慧红,冯松魁 市直 5 高效光催化材料的制备及处理工业有机废 水技术研究 滨州学院商希礼,段永正,李跃金,杜平,郑晶静市直 6 钢筋混凝土框架结构基于性能的地震损伤 控制创新技术 滨州学院,同济大学,滨州北海经济开发区规 划建设局 郑建波,蒋欢军,杨滨斌,陈林之,邢雪阳,马辉市直 7 应变岩爆发生机理重要影响因素滨州学院,华北水利水电大学,山东瑞祥路桥 工程有限公司 杜帅,赵菲,郑建波,王洪建,邢雪阳,张茜茜,郎东莹, 王志鑫,秦朝辉 市直 8 新型高效廉价重金属吸附剂的制备及其性 能研究 滨州学院李晶,贾冬梅,李跃金,商希礼,刘元伟,刘国霞市直 9 现场可编程控制器仿真调试仪的研究与实 现 滨州职业学院 曹艳艳,崔立功,吕茜,郭洪强,张利建,王春鹏,李丽, 郭涛 市直 10 蔬菜轻简化栽培技术集成与应用滨州职业学院,滨州市蔬菜生产办公室,山 东省潍坊市农业科学院,山东农业工程学院 董霞,杨晓东,国淑梅,刘善勇,范小滨,范海波,刘悦 上,张峰,梅红星,魏德军,刘芳,柴青山 市直 11 封闭式无菌全自动微量加液控制系统的研 发 滨州职业学院 张利建,林娜,韩玉霞,崔海娜,郭洪强,林媚,张金兰, 张泽礼 市直 12 少水节能生态染整关键生产技术研发华纺股份有限公司王力民,罗维新,刘水超,李春光,闫英山,吕建品,刘 跃霞,杨玉华,王海花,孙臣,楚云荣,贾洪斌 滨城区 13 纯棉织物短流程低水耗印染新技术开发华纺股份有限公司王力民,罗维新,闫英山,李春光,吕建品,刘跃霞,楚 云荣,刘宁宁,孙红玉,杨玉华,赵海青 滨城区

费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍 间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。 间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。 在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。煤间接液化技术的发展 煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923 首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。 自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。在同一时期,日本、法国、中国也有6套装置建成。 二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费-托合成技术工业化的国家。1992 和1993年,又有两座基于天然气的费-托合成工厂建成,分别是南非Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自己的费-托合成工艺,转让许可证技术,并且计划在拥有天然气的边远地域来建造费-托合成天然气液化工厂。 F-T合成的主要化学反应 F-T合成的主反应: 生成烷烃:nCO+(2n+1)H2 = CnH2n+2+nH2O 生成烯烃:nCO+(2n)H2 = CnH2n+nH2O 另外还有一些副反应,如: 生成甲烷:CO+3H2 = CH4+H2O 生成甲醇:CO+2H2 = CH3OH 生成乙醇:2CO+4H2 = C2H5OH+ H2O 积炭反应:2CO = C+CO2 除了以上6个反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应。

盐酸雷诺嗪缓释片处方优化及犬体内药代动力学的研究

DOI:10.16438/j.0513-4870.2010.09.019 ·1170·药学学报Acta Pharmaceutica Sinica 2010, 45 (9): 1170?1176 盐酸雷诺嗪缓释片处方优化及犬体内药代动力学的研究 李长军, 于艳玲, 杨清敏, 李颖, 张宇红, 王晶翼* (齐鲁制药有限公司药物研究院, 山东济南 250100) 摘要: 通过研制盐酸雷诺嗪缓释片 (RH-ST), 研究其在犬体内的药代动力学, 并与盐酸雷诺嗪普通片(RH-CT) 进行比较。采用3种缓释骨架材料羟丙基甲基纤维素 (HPMC K4M) /乙基纤维素 (EC 100cp) /丙烯酸 树脂 (Eudragit?RL100) 组合应用, 并以正交试验设计确定三者的最佳处方量, 达到12 h的缓释。用液质联用 法测定6只Beagle犬单剂量给药及多剂量给药后不同时间血浆中盐酸雷诺嗪的浓度, 并与RH-CT比较, 按照 Loo-Riegelman方程计算药物吸收分数, 通过BAPP2.0程序计算药动学参数。HPMC K4M、EC 100 cp和 Eudragit?RL100三者的用量均影响药物的释放, 随着用量增加, 释放变慢; 影响程度由高到低依次为HPMC K4M、EC 100 cp、Eudragit?RL100。RH-ST体外可达12 h缓释, 释药动力学符合Higuchi方程。单剂量口服RH-CT 和RH-ST后, 体内血药浓度经时过程均符合双室模型, RH-ST体内吸收与体外释放相关性较好。与RH-CT相比 [(0.79 ± 0.33) h], Beagle犬多剂量口服RH-ST的达峰时间(T max) 明显延长[(3.00 ± 0.50) h], 相对生物利用度大 于80%。多种骨架材料的组合应用, 有效地降低了缓释片的片重, 并且在体内外均能缓慢释放, 降低血药浓度波 动, 提高患者的顺应性。 关键词: 盐酸雷诺嗪; 缓释片; 正交试验; 药代动力学 中图分类号: R943 文献标识码:A 文章编号: 0513-4870 (2010) 09-1170-07 Optimizaion of the formulation of ranolazine hydrochloride sustained-release tablet and its pharmacokinetics in dogs LI Chang-jun, YU Yan-ling, YANG Qing-min, LI Ying, ZHANG Yu-hong, WANG Jing-yi* (Research and Development Division, Qilu Pharmaceutical Co., Ltd, Jinan 250100, China) Abstract: Ranolazine hydrochloride sustained-release tablet (RH-ST) was prepared and its release behavior in vitro was studied. The pharmacokinetic characteristics and bioavailability in six Beagle dogs after oral administration of RH-ST and ranolazine hydrochloride common tablets (RH-CT) as reference were compared. Three kinds of matrix, hydroxypropylmethylcellulose (HPMC K4M), ethylcellulose (EC 100cp) and acrylic resins (Eudragit?RL100) were selected as functional excipients to keep ranolazine hydrochloride (RH) release for 12 hours. Through orthogonal designs, the polymers were quantified and the optimized cumulative release profile was obtained. The single oral dose of RH-ST 500 mg and RH-CT 333.3 mg was given to six dogs using a two way crossover design. Plasma levels were determined by LC-MS and the absorption fractions were calculated according to Loo-Riegelman formula. The steady-state concentration of RH in plasma of six dogs and its pharmacokinetics behaviors after continuous oral administration of RH-ST and RH-CT at different time intervals were studied by LC-MS. The steady-state pharmacokinetic parameters were computed by software program BAPP2.0. With the increase of the amount of the matrix, the drug release was decreased. The most important factor influencing drug release is the quantity of HPMC K4M. Drug release within the period (from 0 h to 12 h) fitted well into Higuchi model. The correlation coefficient (r) between the dissolution in vitro in release media of the distilled water and the absorptin fraction in vivo was 0.955 0. To compare with RH-CT, 收稿日期: 2010-04-15. *通讯作者Tel: 86-531-83129968, Fax: 86-531-83126688, E-mail: jingyi.wang@https://www.360docs.net/doc/374196299.html,

相关文档
最新文档