排列组合中的分堆问题
10.2排列组合中的分组分配问题
2 10
2 8
2 6
4 4
4 4
2、有六本不同的书分给甲、乙、丙三名同学,按下条 件,各有多少种不同的分法? (1)每人各得两本; (2)甲得一本,乙得两本,丙得三本; (3)一人一本,一人两本,一人三本; (4)甲得四本,乙得一本,丙得一本; (5)一人四本,另两人各一本·
(1) (2) (3) 2 2 C6C4 1 2 C6C5 2 C2 3 C3 3 A3 (4) (5)
3 3 3 9 3 6
种.
3 ⑤先分3件为一堆有 C9 种方法,然后6件平均分配应有
3 2 2 2 C C C C C C C 9 6 4 2 1260 种. 种方法,故共有 3 A3 A
2 6
2 4 3 3
2 2
三:部分均分有分配对象的问题 例3 .12支笔按3:3:2:2:2再任意分给A、B、 C、D、E五个人有多少种不同的分法?
3 4 5 3 C 12 C 9 C 5 A 3 (2) C 3 C 4 C 5 9 5 12 5 5 2 (3) C 12 C 10 C 5 5 5 1 2 (4) A 3 C 12 C 10 C 5
12! 8! 4!· 8! 4!· 4!
1 3!
5775
• 练习1:把10人平均分成两组,再从每组中
选出正、副组长各一人,共有多少种选法?
解:分两步,先分组,再分别在每一组中选正、副 组长. 5 5 C10 C5 分组有 种方法, 2 A2
每组中选正、副组长都有 A 种方法. 由分步计数原理共有
5 5 C10 C5 2 2 A A 种. 5 5 50400 2 A2
2 5
二:均分有分配对象的问题
例2:6本不同的书按2∶2∶2平均分给甲、乙、 丙三个人,有多少种不同的分法?
排列组合的题型与方法
(二)分组分配问题 5.限制条件的分配问题分类法: 例6.某高校从某系的10名优秀毕业生中选4人分别到西 部四城市参加中国西部经济开发建设,其中甲同学不 到银川,乙不到西宁,共有多少种不同派遣方案?
A 60 种。 A
5 5 2 2
(一)排序问题 4.定位问题优先法:某个或几个元素要排在指定位 置,可先排这个或几个元素;再排其它的元素。
例4.现有1名老师和4名获奖同学排成一排照相留念, 若老师不站两端则有不同的排法有多少种?
解析:老师在中间三个位置上选一个有 A1 种 ,
3
种,4名同学在其余4个位置上有 A4 种方法; 4
解析、(1)先从10人中选出2人承担甲项任务,再从剩下的8人中 选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务, 2 1 1 不同的选法共有 C10 C8C7 2520 种
(二)分组分配问题 2.有序分配问题逐分法:有序分配问题指把元素分成若 干组,可用逐步下量分组法.
例3、(2)12名同学分别到三个不同的路口进行流量的 调查,若每个路口4人,则不同的分配方案有( A )
(2)5本不同的书,全部分给4个学生,每个学生至少 一本,不同的分法种数为( B ) A、480种 B、240种 C、120种 D、96种
2 4 C5 A4 240
(二)分组分配问题
4.名额分配问题隔板法(无差别物品分配问题隔板法): 例5:10个三好学生名额分到7个班级,每个班级至少 一个名额,有多少种不同分配方案?
排列组合问题的解答技巧和记忆方法
排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。
二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
顿悟排列组合80题
求 2 号白球与 4 号红球排在一起,一共有_____种不同的排法. 30、有红,黄,蓝三种颜色的球各 7 个,每种颜色的 7 个球分别标有数字 1,2,3,4,5,6,7,从 中任取 3 个标号不同的球,这 3 个球颜色互不相同且所标数字互不相邻的取法种数是 多少?
3 3 4
(E) 8!C6 4!
4
19、 A, B, C , D, E 五人并排站成一排,如果 A, B 必须相邻且 B 在 A 的右边,那么不同的排 法种数有 A、60 种 B、48 种 C、36 种 D、24 种 E、28 20、1 名老师和 4 名同学排成一排照相留念,若老师不站两端则有不同的排法有____种 21、有两排座位,前排 11 个座位,后排 12 个座位,现安排 2 个人就座,规定前排中间的 3 个座位不能坐,并且这 2 人不左右相邻,那么不同排法的种数是 (A) 234 (B) 346 (C)350 (D) 363 (E)280 22、电视台连续播放 6 个广告,其中含 4 个不同的商业广告和 2 个不同的公益广告,要求 首尾必须播放公益广告,则共有______种不同的播放方式. 23、不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能 排在一起,则不同的排法种数共有 A、12 B、20 C、24 D、48 E、28 24、有 6 个座位连成一排,安排 3 人就座,恰有两个空位相邻的不同坐法有 A、36 B、48 C、72 D、96 E、38 25、5 人站成一排,其中 A 不在左端也不和 B 相邻的排法种数为 A、48 B、54 C、60 D、66 E、38 26、由数字 0,1,2,3,4,5 可以组成无重复数字且奇偶数字相间的六位数的个数有 A、72 B、60 C、48 D、52 E、38 27、用 1、2、3、4、5、6、7、8 组成没有重复数字的八位数,要求 1 和 2 相邻,3 与 4 相 邻,5 与 6 相邻,而 7 与 8 不 相邻,这样的八位数共有 个. . A、182 B、146 C、196 D、576 E、380 28、有 8 个不同元素排成两排,每排 4 个元素,其中 a、b 不可以相邻和相对,有多少种排 法? 29、标号为 1,2,3,4 的红球与标号为 1,2 的白球排成一排,要求每个白球的两边都有红球,且要
高中数学排列组合-平均分组(分配问题)讲解
复习巩固:
1、组合定义:
一般地,从n个不同元素中取出m(m≤n)个元素并成 一组,叫做从n个不同元素中取出m个元素的一个组合.
2、组合数:
从n个不同元素中取出m(m≤n)个元素的所有组合的个
数,叫做从n个不同元素中取出m个元素的组合数,用符号
C
m n
表示.
3、组合数公式:
Cnm
Anm Amm
C
2 6
C
2 4
C
2 2
A
3 3
A
3 3
C
2 6
C
2 4
C
2 2
=90
三、部分均分有分配对象的问题
例3 12支笔按3:3:2:2:2分给A、B、C、D、E五 个人有多少种不同的分法?
方法:先分再排法。分成的组数看成元素的个数·
解:均分的五组看成是五个元素在五个位置上 作排列
C
13 2 C
3 9
C62
较大的相同的一个组合数.
2 此性质的作用:恒等变形,简化运算.在今后学 习“二项式定理”时,我们会看到它的主要应用.
排列组合中的分组(堆)分配问题
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
1.把abcd分成平均两组有_____多少种分法?
ab
cd
ac
bd
ad
bc
bc
ad
C
2 4
C
2 2
A
n(n 1)(n 2) m!
(n m 1)
Cnm
n! m!(n
m)!
高中数学分堆分配问题
高中数学分堆分配问题篇一:高中数学排列组合中的分组分配问题排列组合中的分组分配问题分组分配问题是排列组合教学中的一个重点和难点。
某些排列组合问题看似非分配问题,实际上可运用分配问题的方法来解决。
下面就排列组合中的分组分配问题,谈谈自己在教学中的体会和做法。
一、提出分组与分配问题,澄清模糊概念n个不同元素按照某些条件分配给k个不同得对象,称为分配问题,分定向分配和不定向分配两种问题;将n个不同元素按照某些条件分成k组,称为分组问题.分组问题有不平均分组、平均分组、和部分平均分组三种情况。
分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的;而后者即使2组元素个数相同,但因对象不同,仍然是可区分的.对于后者必须先分组后排列。
二、基本的分组问题例1 六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?(1)每组两本.(2)一组一本,一组二本,一组三本. (3)一组四本,另外两组各一本.22分析:(1)分组与顺序无关,是组合问题。
分组数是C26C4C2=90(种) ,这90种分组实际上重复了6次。
我们不妨把六本不同的书写上1、2、3、4、5、6六个号码,考察以下两种分法:(1,2)(3,4)(5,6)与(3,4)(1,2)(5,6),由于书是均匀分组的,三组的本数一样,又与顺序无关,所以这两种分法是同一种分法。
以上的分组方法实际上加入了组的顺序,因此还应取消分组的顺序,即除以组数的全排列数A3所以分法是3,222C6C4C2=15(种)。
(2)先分A3323组,方法是C1那么还要不要除以A3由于每组的书的本数是不一样的,6C5C3,3?我们发现,23因此不会出现相同的分法,即共有C16C5C3=60(种) 分法。
11(3)分组方法是C46C2C1=30(种) ,那么其中有没有重复的分法呢?我们发现,其中两组的书的本数都是一本,因此这两组有了顺序,而与四本书的那一组,由于书的本数不一样,CC2C1=15(种)。
排列组合问题的解答技巧和记忆方法
排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。
二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
排列组合中的分堆问题最新版
例2:(1)6本不同的书按2∶2∶2平均分给甲、 乙、丙三个人,有多少种不同的分法?
方法:先分再排法。分成的组数看成元 素的个数·
(1)均分的三组看成是三个元素在三 个位置上作排列
(1)
C
2 6
C
2 4
C
2 2
A
3 3
A
3 3
C
2 6
C
2 4
C
2 2
例2:(1)6本不同的书按 2∶2∶2平均分给甲、乙、丙三个 人,有多少种不同的分法?
一:均分不安排工作的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
(1)
C
14 2 C
84C
4 4
A
3 3
12! 8! 1 5775
4!·8! 4!·4! 3!
(2)
C
12 2 C
120C82
C
6 6
A
3 3
二:分堆安排工作的问题
C
2 6
C
2 4
C
2 2
(2)
C
1 6
C
2 5
C
3 3
(3)
C
1 6
C
2 5
C
3 3
A
3 3
(4)
C
4 6
C
1 2
C
1 1
(5)
Aቤተ መጻሕፍቲ ባይዱ
1 3
C
4 6
C
1 2
C
1 1
练习3
练习:12本不同的书分给甲、乙、丙三人按下列条 件,各有多少 种不同的分法?
高中数学排列组合-平均分组(分配问题)
点拨提高
一、均分无分配对象的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法? 4 4 4 C C C 8 4 12 (1) 3 A3 2 6 2 2 C C C C 8 10 6 12 (2) 3 A3
12! 8! 4!· 8! 4!· 4!
m n! A n(n 1)(n 2)(n m 1) m m n Cn Cn m Am m! m !(n m)!
我们规定:Cn 1.
0
定理 1:
C
m n
Cn
nm
性质2
证明 :
m n
c n 1 c n c n
m1 n
m
m
m 1
C C
n! n! m!(n m)! (m 1)![n (m 1)]! n!( n m 1) n! m ( n m 1 m) n! m!( n m 1)! m!( n 1 m)! (n 1)! m C n 1 . m![(n 1) m]!
——组合应用题
复习巩固:
1、组合定义: 一般地,从n个不同元素中取出m(m≤n)个元素并成 一组,叫做从n个不同元素中取出m个元素的一个组合. 2、组合数: 从n个不同元素中取出m(m≤n)个元素的所有组合的个 数,叫做从n个不同元素中取出m个元素的组合数,用符号 m 表示. Cn 3、组合数公式:
3 9
3 6
3 3
练习2
2:10本不同的书
(1)按2∶2∶2∶4分成四 堆有多少种不同的分法?
(1) ( 2)
(2)按2∶2∶2∶4分给甲、 乙、丙、丁四个人有多少 种不同的分法?
排列组合中的分堆与分配问题
排列组合中的分堆与分配问题作者:陈学帅来源:《中国校外教育·综合(上旬)》2015年第13期摘要:介绍了排列、组合中比较困难的分堆与分配问题的解决方法。
从分给的对象和被分的元素是否相同(即有无差别)两个方面分别进行了研究。
分给的对象相同(即无差别)但被分的元素不相同是分堆问题,当各堆的元素数不同时是非平均分堆,一堆一堆的拿开即可;当各堆(或部分堆)的元素数相同时是平均分堆,按堆拿开后,若有k堆元素数相等,再除以;分给的对象不同(即有差别)是分配问题,给不同的对象逐次拿开或先分堆再分配。
关键词:排列组合分堆分配解决方法排列、组合中的分堆与分配问题是近几年高考中的一个热点问题,同时也是学生学习中的一个难点,本文就从被分的元素和分给的对象两端这两个方面来探讨一下此类问题的解决方法。
在将某些元素进行分配的问题中,我们按分给的对象是否相同(即有无差别)分为分堆问题与分配问题。
一、分堆问题分堆是研究将元素所分给的对象相同(即无差别)但被分的元素不相同的一类问题。
当各堆(或部分堆)分得的元素数相同时,称为平均分堆;当每堆分得的元素数各不相同时,称为非平均分堆。
1.非平均分堆例:将6名运动员分成三组,其中有一组1人的,一组2人的,一组3人的,有多少种不同的分法?解:本题中由于分给的对象无差别,并且每组的人数各不相同,所以这是一个非平均分堆问题,按题设要求逐堆随机拿开即可。
二、分配问题将元素所分给的对象不相同(即有差别)时的问题叫做分配问题。
分配问题按被分的元素是否相同又分为被分的元素相同(无差别)的分配问题与被分的元素不相同(即有差别)的分配问题两类:(一)被分的元素相同(无差别)的分配问题此类分配问题中,由于被分的元素无差别,因此在分配中,若将若干个元素平均分给几个对象,则只有一种分法;若几个对象所得元素数各不相同,则存在不同的分法。
例2.要从7个班中选10人参加数学竞赛,每个班至少出1人,共有多少种不同的选法?分析:本例其实就是将10个参加数学竞赛的名额分给7个班的分配问题,被分的名额是无差别的,但分给的对象即7个班是不同的。
关于排列组合中的分组排队问题
关于排列组合中的分组排队问题类型Ⅰ 分组问题例1有6本不同的书,计算以下情况的各种可能?①将其平均分给甲乙丙三人 ②将其平均分成三堆③将其分成三堆,一堆1本,一堆2本, 一堆3本 ④将其分成三堆,两堆1本,一堆4本⑤将其分给甲乙丙三人,甲得1本,乙得2本 丙得3本 ⑥分给甲乙丙三人,一人得1本,一人得2本,一人得3本. ⑦分给甲乙丙三人每人至少一本答案:①90222426=C C C ②15/33222426=A C C C ③60332516=C C C④4622441516C A C C C = ⑤60332516=C C C ⑥36033332516=A C C C ⑦该问题可以转化三种类型ⅰ: 222型 90222426=C C Cⅱ: 123型 36033332516=A C C Cⅲ: 114型 33463322441516A C A A C C C = 小试牛刀:已知集合(}4.3,2,1=A ,集合{}2,1--=B .设映射B A f →: 且集合B 中元素在集合A 中都有原象,那么这样的映射有__________种 类型Ⅱ 排队问题 例2七人排队① 共有多少种排法?② 7名同学站成2排(前3后4) ③ 甲在中间 ④ 甲不在中间 ⑤ 甲乙在两端 ⑥ 甲乙不相邻⑦ 甲乙不在排首排尾 ⑧ 甲乙中间夹一人⑨ 甲乙中间至少两人 ⑩ 甲乙丙顺序一定 ⑪ 甲乙两人之间恰有3人 ⑫ 甲乙不在两端且与丙不相邻答案:⑪504077=A ⑫504077=A ⑬ 72066=A⑭43206616=A C ⑮2405522=A A ⑯36002655=A A⑰2400245566775525=+-=A A A A A ⑱1200552215=A A C⑲552215226677A A C A A A -- ⑳3377A A⑴232235A A A ⑵1080332223222224442412=⎩⎨⎧⨯+A A A A A A A A C 甲乙不相邻甲乙相邻 类型Ⅲ 隔板问题例3:12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有___________种。
高中数学排列组合 平均分组(分配问题)
五、当堂训练
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
C132
C
39 C 36
C
3 3
A
4 4
练习2
2:10本不同的书
(1)按2∶2∶2∶4分成四
堆有多少种不同的分法? (1)
(2)按2∶2∶2∶4分给甲、
乙、丙、丁四个人有多少 (2)
(1)
C
2 6
C
2 4
C
2 2
(2)
C
1 6
C
2 5
C
3 3
(3)
C
1 6
C
2 5
C
3 3
A
3 3
(4)
C
4 6
C
1 2
C
1 1
(5)
A
1 3
C
4 6
C
1 2
C
1 1
练习4:12本不同的书分给甲、乙、丙三人按下列 条件,各有多少 种不同的分法?
(1)一人三本,一人四本,一人五本;
(2)甲三本,乙四本,丙五本;
1.有分配对象和无分配对象
2.分配对象确定和不固定
三、效果检测
1.把abcd分成平均两组有_____多少种分法?
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
C
2 4
C
2 2
A
2 2
3
这两个在分组时只能算一个
2.平均分成的组,不管它们的顺序如何,都是一种情况,
所以分组后要除以Amm,即m!,其中m表示组数。
2017国考:隔板法计算行测数量关系同素分堆问题
2017国考:隔板法计算行测数量关系同素分堆问题在行测数量关系考察中,排列组合中的同素分堆问题是其中一个重点,也是难点,很多考生为之头疼。
事实上,它比较简单,技巧性方法性很强,要想把此类题目做好,就必须掌握实用技巧。
它有一个固定的套路去解题,在此,中公教育专家给大家介绍并总结一下做题的规律。
一、题目特征把n个相同的元素分给m个不同的对象,每个对象至少分得1个,一共有多少种不同的分法?所以其本质就是相同元素的不同分堆问题。
二、基本条件n个元素是完全相同的。
所分的元素必须分完,不允许剩余。
每个对象至少分到一个。
三、基本公式把n的相同的元素分给m个不同的对象,每个对象至少1个元素,问有多少种不同分法的问题可以采用隔板法,共有C(n-1,m-1)种。
接下来,通过具体例题为大家展示一下如何运用。
例1、有10个完全相同的玩具车,分给3个不同的小朋友,每个小朋友至少分得1个玩具车,问有多少种不同的分配方案?A、32B、36C、72D、48 【答案】:B【中公解析】观察题干,符合隔板法的使用要求。
10个玩具车分成3个小朋友意味着分成3堆, 10个玩具车中间有9个空隙,要分成3堆需要插上2块板,最后相当于在9个间隙当中插入2块板。
即:C(9,2)=9×8/2=36,(在此过程中,无需再考虑顺序),所以,本题的正确答案为B选项。
例2、有30个苹果,分给4个不同的小朋友,每个小朋友至少分得4个苹果,问有多少种不同的分配方案?A、540B、680C、1360D、1456【答案】:B【中公解析】观察题目,发现不符合隔板法第三个应用要求,需要进行转化:每个小朋友每个人先给3个苹果,还剩下18个苹果,即可转化为:18个苹果分给4个小朋友,每个小朋友至少分得一个苹果,有多少种分法?就是在17个间隙当中插入3块板,即C(17,3)=17×16×15/3×2×1=680,所以,本题的正确答案为B选项。
顿悟排列组合80题(精华)
顿悟排列组合80题【分堆(分组)与分配】1、8本不同的书,按照以下要求分配,各有多少种不同的分法?⑴一堆1本, 一堆2本, 一堆5本;⑵甲得1本,乙得2本,丙得5本;⑶三人,一人1本, 一人2本, 一人5本;⑷平均分给甲、乙、丙、丁四人;⑸平均分成四堆;⑹分成三堆,一堆4本,一堆2本,一堆2本;⑺给三人一人4本, 一人2本, 一人2本。
2、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法种数共有______3、6名旅客安排在3个房间,每个房间至少安排一名旅客,则不同的安排方法种数共____4、把A、B、C、D四个小球平均分成两组,有_________种分法5、七个人参加义务劳动,按下列方法分组有______种不同的分法(1)分成三组,分别为1人、2人、4人;(2)选出5个人再分成两组,一组2人,另一组3人。
6、四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有_____种7、5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为(A)480 (B)240 (C)120 (D)96 (E)808、将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为A.70 B.140 C.280 D.840 E. 809、将9个(含甲、乙)平均分成三组,甲、乙分在不同组,则不同分组方法的种数为A.220 B.240 C.420 D.210 E. 18010、从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有A.300 B.240 C.144 D.96 E. 28011、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有___种.(A)480 (B)600 (C)430 (D)500 (E)48012、将9本不同的书分成3堆,问:(1)每堆3本,有多少种不同的分法?若分给三人,每人3本,又有多少种不同分法?(2)一堆5本,其余两堆各2本,有多少种不同的分法?若分给甲,乙,丙3人,①每人拿一堆,有多少种不同的分法?②若甲得5本,乙与丙各得2本,又有多少种分法?(3)如果一堆4本,一堆3本,一堆2本,又有多少种的分法?【排队、排座位(元素--位置):相邻捆绑与相间插空】13、6人排成一排照相,甲不排在左端,乙不排在右端,共有______种不同的排法14、n 个人围圆桌而坐,一共有_________种不同的排法15、7人照相,要求排成一排,甲乙两人相邻但不排在两端,不同的排法共有______种。
排列组合中的分堆问题
P(n,m)=n!/(n-m)!,其中n!表示n的 阶乘,即n×(n-1)×(n-2)×...×3×2×1。
组合
组合的定义
01
从n个不同元素中取出m个元素(m≤n),不考虑顺序,称为从
n个不同元素中取出m个元素的组合。
组合的计算公式
02
C(n,m)=n!/[(n-m)!m!],其中C(n,m)表示从n个不同元素中取出
分堆问题的变种研究
不同限制条件下的分堆问 题
例如,限制每堆中元素的数量、种类或顺序 ,研究这些限制条件对分堆问题解法的影响 。
分堆问题的加权变种
在分堆过程中,给每个元素赋予不同的权重,研究 如何根据权重进行最优分堆。
分堆问题的动态规划解法
研究如何使用动态规划算法解决分堆问题, 以及如何优化动态规划算法的效率。
动态规划法
动态规划法是一种通过将问题分解为 重叠的子问题并存储子问题的解来避 免重复计算的算法。在分堆问题中, 动态规划法可以用来解决具有重叠子 问题和最优子结构的问题。
VS
动态规划法的优点是能够处理具有重 叠子问题和最优子结构的问题,并且 可以避免重复计算。但是,对于一些 问题,动态规划法的空间复杂度可能 会很高。
分堆问题在现实生活中的应用前景
分堆问题在资源分配中的应用
研究如何利用分堆问题解决资源分配问题,例如,将有限的资源分配给不同的项目或任务 。
分堆问题在物流与供应链管理中的应用
研究如何利用分堆问题优化物流和供应链管理中的分拣、打包等问题。
分堆问题在计算机科学中的应用
研究如何利用分堆问题解决计算机科学中的算法设计和数据结构问题。
THANKS FOR WATCHING
感谢您的观看
游戏算法优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6:某外商计划在四个候选城市投资3个不同的项目 且在同一个城市投资的项目不超过2个,则该外商不 同的投资方案有( )种
.
C122C1A 50C 2255A22 C122C150C55
(4)一人两本,另两人各五本·
C122C1A 50C 2255A333C122.C150C55
练习
1.有4个不同的球,4个不同的盒子,把球全 部放入盒内, (1)共有多少种放法? (2)恰有1个盒不放球,有多少种放法? (3)恰有1个盒内放2个球,有多少种放法? (4)恰有2个盒内不放球,有多少种放法?
2:将4名大学生分配到3个乡镇去当村官,每个 乡镇至少一名,则不同的分配方案有多少种?
3:5名志愿者分到3所学校支教,每个学校至少 去一名志愿者,则不同的分派方法共有多少种?
4: 将9个(含甲、乙)平均分成三组,甲、乙分 在同一组,则不同分组方法的种数为
5:将5名实习教师分配到高一年级的3个班实习, 每班至少1名,最多2名,则不同的分配方案有
C
2 10
C
2 8Biblioteka C2 6C
4 4
(2)按2∶2A∶332∶4分给甲、乙、丙、丁四个人有
多少种不同的分法?
.
C120C82C62C44 A33
A44
非均分问题
例1:6本不同的书
(1)按1∶2∶3分成三堆有多少种不同的分法?
C16
C
2 5
C
3 3
(2)按1∶2∶3分给三个人有多少种不同的分法?
C16C52C33 A33
注意
(1)非均分问题只要按比例分完再用乘法原理作积 (2)分组安排工作要把组数当作元素个数再作排列
.
非均分问题
例2.有六本不同的书分给甲、乙、丙三名同学,按 下条件,各有多少种不同的分法?
(1)每人各得两本;C62C42C22
(2)甲得一本,乙得两本,丙得三本;C16C52C33
(3)一人一本,一人两本,一人三本;C16C52C33A33
.
问题1 把abcd平均分成两组有_____多少种分法?
ab
cd
ac
bd
ad
bc
bc
ad
bd
ac
cd
ab
这两个在分组时只能算一个
结论:平均分成的组,不管它们的顺序 如何,都是一种情况,所以分组后要 除以 A mm,即m!,其中m表示组数。
.
均分不安排工作的问题
例1:12本不同的书
(1)按4∶4∶4平均分成三堆有多少种不同的分
(4)甲得四本,乙得一本,丙得一本;C
64C
C 1 1
21
(5)一人四本,另两人各一本·
C A 4 6
3 3
或
C 64C 21C A22
1 1
A
3 3
.
练习
12本不同的书分给甲、乙、丙三人按下列条 件,各有多少 种不同的分法?
(1)一人三本,一人四本,一人五本;C132C94C55A33 (2)甲三本,乙四本,丙五本; C132C94C55 (3)甲两本,乙、丙各五本;
法?
C142C84C44 A33
5775
(2)按2∶2∶2∶6分成四堆有多少种不同的分法?
C
2 12
C
2 10
C
2 8
C
6 6
A33
.
分堆安排工作的问题
例2:(1)6本不同的书按2∶2∶2平均分给 甲、乙、丙三个人,有多少种不同的分法?
方法:先分再排。分成的组数看成元素的个数·
C62C42C22 A33
A33
C62C42C22
(2)12支笔按3:3:2:2:2分给A、B、C
、D、E五个人有多少种不同的分法?
C132C93C62C42C22 A22 A33
A55
.
练习
1:12本不同的书平均分成四组有多少种不同分
法?
C
3 1
2
C
3 9
C
3 6
C
3 3
A
4 4
2:10本不同的书
(1)按2∶2∶2∶4分成四堆有多少种不同的分法?