第三章 多维随机变量及其分布(复习)

合集下载

第三章 多维随机变量及其分布

第三章  多维随机变量及其分布

第三章 多维随机变量及其分布一、选择题1.X,Y 相互独立,且都服从]1,0[上的均匀分布,则服从均匀分布的是( A ).A.(X,Y)B.XYC.X+YD.X -Y 2.设X,Y 独立同分布,11{1}{1},{1}{1},22P X P Y P X P Y =-==-=====则(C ).A.X =YB.0}{==Y X P C.21}{==Y X PD.1}{==Y XP3.设)(1x F 与)(2x F分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数,则b a ,的值可取为( A ). A.52,53-==b a B.32,32==b a C.23,21=-=b aD.23,21-==b a4.设随机变量iX 的分布为12101~(1,2){0}1,111424i X i X X -⎛⎫ ⎪=== ⎪⎝⎭且P 则12{}P X X ==( A ).A.0B.41 C.21D.15.下列叙述中错误的是( D ).A.联合分布决定边缘分布B.边缘分布不能决定决定联合分布C.两个随机变量各自的联合分布不同,但边缘分布可能相同D.边缘分布之积即为联合分布6.设随机变量(X,Y) 的联合分布为: 则b a ,应满足( B ).A .1=+b a B. 13a b += C.32=+b aD.23,21-==b a7.接上题,若X ,Y 相互独立,则( A ). A.91,92==b a B.92,91==b a C.31,31==b aD.31,32=-=b a8.同时掷两颗质体均匀的骰子,分别以X,Y 表示第1颗和第2颗骰子出现的点数,则( A ). A.1{,},,1,2,636P X i Y j i j ==== B.361}{==Y X PC.21}{=≠Y XP D.21}{=≤Y X P9.设(X,Y)的联合概率密度函数为⎩⎨⎧≤≤≤≤=其他,y x y x y x f 010,10,6),(2,则下面错误的是( C ). A.1}0{=≥XP B.{0}0P X ≤= C.X,Y 不独立D.随机点(X,Y)落在{(,)|01,01}D x y x y =≤≤≤≤内的概率为110.接上题,设G 为一平面区域,则下列结论中错误的是( B ). A.{(,)}(,)GP X Y G f x y dxdy ∈=⎰⎰B.2{(,)}6GP X Y G xydxdy ∈=⎰⎰C.120{}6x P XY dx x ydy≥=⎰⎰ D.⎰⎰≥=≥yx dxdyy x f Y XP ),()}{(11.设(X,Y)的联合概率密度为(,)0,(,)(,)0,h x y x y D f x y ≠∈⎧=⎨⎩其他,若{(,)|2}G x y y x =≥为一平面区域,则下列叙述错误的是( C ).1 2 3 1 1/6 1/9 1/18 2 1/3abX YA.{,)(,)GP X Y G f x y dxdy ∈=⎰⎰B.⎰⎰-=≤-Gdxdyy x f X YP ),(1}02{C.⎰⎰=≥-Gdxdy y x h X YP ),(}02{ D.⎰⎰=≥DG dxdy y x h X YP ),(}2{12.设(X,Y)服从平面区域G 上的均匀分布,若D 也是平面上某个区域,并以GS 与DS 分别表示区域G 和D 的面积,则下列叙述中错误的是( A ). A.{(,)}D GS P X Y D S ∈=B.0}),{(=∉G Y X PC.GD G S S D Y X P -=∉1}),{( D.{(,)}1P X Y G ∈=13.设系统π是由两个相互独立的子系统1π与2π连接而成的;连接方式分别为:(1)串联;(2)并联;(3)备用(当系统1π损坏时,系统2π开始工作,令21,X X分别表示21ππ和的寿命,令321,,X X X 分别表示三种连接方式下总系统的寿命,则错误的是( ). A.211X X Y += B.},m ax{212X X Y = C.213XX Y+= D.},m in{211X X Y=14.设二维随机变量(X,Y)在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布.记.2,12,0;,1,0⎩⎨⎧>≤=⎩⎨⎧>≤=Y X YX V Y X Y X U则==}{V U P ( D ). A.0 B.41C.21D.4315.设(X,Y)服从二维正态分布),,,,(222121ρσσμμN ,则以下错误的是( B ). A.),(~211σμN XB ),(~221σμN XC.若0=ρ,则X,Y 独立D.若随机变量),(~),,(~222211σμσμN T N S 则(,)S T 不一定服从二维正态分布16.若),(~),,(~222211σμσμN Y N X ,且X,Y 相互独立,则( C ).A.))(,(~22121σσμμ+++N Y X B.),(~222121σσμμ---N Y XC.)4,2(~2222121σσμμ+--N Y XD.)2,2(~2222121σσμμ+--N Y X17.设X ,Y 相互独立,且都服从标准正态分布(0,1) N ,令,22Y XZ +=则Z 服从的分布是(C ).A .N (0,2)分布 B.单位圆上的均匀分布 C.参数为1的瑞利分布 D.N (0,1)分布 18.设随机变量4321,,,X X X X独立同分布,{0}0.6,i P X =={1}0.4i P X ==(1,2,3,4)i =,记1234X X D X X =,则==}0{DP (B ).A.0.1344B.0.7312C.0.8656D.0.3830 19.已知~(3,1)XN -,~(2,1)Y N ,且,X Y 相互独立,记27,Z X Y =-+~Z 则( A ).A.)5,0(NB.)12,0(NC.)54,0(ND.)2,1(-N 20.已知s i n (),0,,(,)~(,)40,C xy x y X Y f x y π⎧+≤≤⎪=⎨⎪⎩其他则C 的值为( D ). A.21B.22 C.12- D.12+21.设⎪⎩⎪⎨⎧≤≤≤≤+=其他,020,10,31),(~),(2y x xy x y x f Y X ,则}1{≥+Y X P =( A ) A.7265 B.727 C.721 D.727122.为使⎩⎨⎧≥=+-其他,00,,),()32(y x Ae y x f y x 为二维随机向量(X,Y)的联合密度,则A 必为( B ).A.0B.6C.10D.16 23.若两个随机变量X,Y 相互独立,则它们的连续函数)(X g 和)(Y h 所确定的随机变量( C ).A.不一定相互独立B.一定不独立C.也是相互独立D.绝大多数情况下相独立 24.在长为a 的线段上随机地选取两点,则被分成的三条短线能够组成三角形的概率为( A ).A.21B.31C.41D.5125.设X 服从0—1分布,6.0=p ,Y 服从2=λ的泊松分布,且X,Y 独立,则YX+( B ).A.服从泊松分布B.仍是离散型随机变量C.为二维随机向量D.取值为0的概率为0 26.设相互独立的随机变量X,Y 均服从]1,0[上的均匀分布,令,Y X Z +=则( B ).A.Z 也服从]1,0[上的均匀分布B.0}{==Y X PC.Z 服从]2,0[上的均匀分布D.)1,0(~N Z27.设X,Y 独立,且X 服从]2,0[上的均匀分布,Y 服从2=λ的指数分布,则=≤}{Y X P ( A ).A.)1(414--eB.414e- C.43414+-eD.2128.设⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(~),(2y x xy y x f Y X ,则(X,Y)在以(0,0),(0,2),(2,1)为顶点的三角形内取值的概率为( C ). A. 0.4 B.0.5 C.0.6 D.0.8 29.随机变量X,Y 独立,且分别服从参数为1λ和2λ的指数分布,则=≥≥--},{1211λλY X P ( B ).A.1-eB.2-eC.11--eD.21--e30.设22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y A e-+++-+-=,则A 为( B ).A.3π B.π3C.π2 D.2π31.设某经理到达办公室的时间均匀分布在8点12点,他的秘书到达办公室的时间均匀分布在7点到9点.设二人到达的时间相互独立,则他们到达办公室的时间相差不超过5分钟的概率为( A ). A.481 B.21 C.121 D.24132.设12,,,nX X X 相独立且都服从),(2σμN ,则( B ).A.12nXX X === B.2121()~(,)n X X X N nnσμ+++C.)34,32(~3221+++σμN XD.),0(~222121σσ--N X X33.设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积为,,D GS S,则{(,)}P x y D ∈=( C ).A.GD S S B.GG D S S C.⎰⎰Ddxdyy x f ),(D.⎰⎰Ddxdy y x g ),(二、填空题1.),(Y X 是二维连续型随机变量,用),(Y X 的联合分布函数),(y x F 表示下列概率: (1);____________________),(=<≤≤c Y b X a p F(b,c)-F(a,c)(2);____________________),(=<<b Y a Xp F(a,b)(3);____________________)0(=≤<a Y p F(+∞,a)-F(+∞,0)(4).____________________),(=<≥b Y a Xp F(+∞,b)-F(a,b)2.随机变量),(Y X 的分布率如下表,则βα,应满足的条件是61=+βα.X Y1 231 1/6 1/9 1/1821/2α β 3.设平面区域D 由曲线xy 1=及直线2,1,0e x x y ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 的联合分布密度函数为 .4.设),,,,(~),(222121ρσσμμN Y X ,则Y X ,相互独立当且仅当=ρ0 . 5.设相互独立的随机变量X 、Y 具有同一分布律,且X 的分布律为P (X=0)=1/2,P (X=1)=1/2,则随机变量Z=max{X,Y}的分布律为 .6.设随机变量321,,X X X 相互独立且服从两点分布⎪⎪⎭⎫⎝⎛2.08.010,则∑==31i iX X 服从 二项 分布 X~b (3,0.2) .7.设X 和Y 是两个随机变量,且P{X ≥0,Y ≥0}=3/7,P{X ≥0}=P{Y ≥0}=4/7,则P{max (X ,Y )≥0}= 5/7 . 8.设某班车起点站上车人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立.以Y 表示在中途下车的人数,则在发车时有n 个乘客的条件下,中途有m 人下车的概率为mn m mnp p C --)1(;二为随机变量(X ,Y )的概率分布为!)1(),(n ep p C m Y n XP nmn m m nλλ---===9.假设一设备开机后无故障工作的时间X 服从参数为1/5的指数分布,设备定时开机,出现故障时自动关机,而在无故障时工作2小时便关机,则该设备每次开机无故障工作的时间Y 的分布函数 .10.设两个随机变量X 与Y 独立同分布,且P (X=-1)=P (Y=-1)=1/2,P (X=1)=P (Y=1)=1/2,则P (X=Y )= 1/2 ;P (X+Y=0)= 1/2 ; P (XY=1)= 1/2 .。

多维随机变量及其分布考研试题及答案

多维随机变量及其分布考研试题及答案


PX m 1 2
则下列式子正确的是(
1 2
).
A . X Y;
m PY m
-1 1
1
1
2
2
B . P{ X Y} 0;
C . P{ X Y} 1 2;
D . P{ X Y} 1.
【解题分析】 乍看似乎答案是 A, 理由是 X 和 Y 同分布 , 但这是错误的 , 因为 , 若 X Y , 说明 X 取什么值时 , Y 也一定取相同的值 , 而这是不可能的 , 所以只能从剩下的三个答案中
第三章 多维随机变量及其分布 一、填空题
1. ( 1994 年数学一)设相互独立的两个随机变量
X ,Y 具有同一分布律,且 X 的分布
律为
X


11P2源自2则随机变量 Z max{ X , Y} 的分布律为
.
【解题分析】 首先要根据 Z 的定义确定 Z 的取值范围 , 然后求 Z 取值的概率即可 . 解 : 由于 X ,Y 仅取 0、1 两个数值,故 Z 也仅取 0 和 1 两个数值,因 X ,Y 相互独立,
1 1 FX z 1 FY z
3 / 11
出发求解即可 .
解 : 由题设 X e( )
e x , x 0,
0,
x 0.
令 1 X , 2 2,则
0,
x 0,
0, x 2,
F ( x) 1
1 e x,
x
F (x) 0, 2
1, x 2.
于是 Y min{ X ,2} min{ 1, 2} 的分布函数为
Z max{ X ,Y} 的分布函数为 Fz (z) F1( x) F2 ( y) ,可知 F1( x) F2( x) 必为某一随机变量的

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第3章 多维随机变量及其分布【圣才

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第3章 多维随机变量及其分布【圣才
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 3 章 多维随机变量及其分布 3.1 复习笔记
一、多维随机变量联合分布的性质(见表 3-1-1) 表 3-1-1 联合分布的性质
二、边际分布与随机变量的独立性 1.边际分布(见表 3-1-2)
表 3-1-2 边际分布
j
5i
j
100
5
用表格形式表示如下表 3-2-1:
7 / 124
圣才电子书

十万种考研考证电子书、题库视频学习平台
表 3-2-1
行和就是 X 的分布 h(5,100,50)(超几何分布)。
列和就是 Y 的分布 h(5,100,30)(超几何分布)。
P(X≥2,Y≥1)=0.66158。
i 1
X2,…,Xn 相互独立。
n
连续随机变量:若 p(x1, x2 ,L , xn ) pi (xi ) ,则 X1,X2,…,Xn 相互独立。 i 1
三、多维随机变量函数的分布 1.最大值与最小值的分布 (1)最大值分布:
FY ( y) P( maxX1,X 2,L ,X n y)
n
=P(X1 y, X 2 y,L , X n y)= Fi (y)
1Ex4p(4 )*4E4x4p(2)4*L4 *4Ex4p(43) =Ga(m,)
m个
(4)χ2 分布的可加性:m 个χ2 变量相互独立,则
2 (n1)* 2 (n2 )*L * 2 (nm )= 2(n1+n2 +L +nm)
四、多维随机变量的特征数(见表 3-1-3)
3 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)全概率公式:密度函数形式:

第3章多维随机变量及其分布

第3章多维随机变量及其分布

f(x, y)
1
e ,
1 2(12
[ )
(
x1 12
)2
2
(
x1 )(y 12
2
)

(
y
2 22
)2
]
212 1 2
其中,1、2为实数,1>0,2>0, | |<1,则称(X, Y) 服从参数1,2, 1, 2, 的二维正态分布,可记为
元函数f(Dx1,x2,x.1.,...x. nx)n使 :得a对1 任x意的bn1元,...立a方n 体x bn

PX1...X n D
...
D
f (x1, x2 ,...xn )dx1...dxn
则称(X1,X2,...Xn)为n维连续型随机变量,称f(x1,x2,...xn) 为(X1,X2,...Xn)的概率密度。
A6
1
(2)F (1,1) 16e(2x3y)dxdy (1 e2 )(1 e3) 0 0
(3) (X, Y)落在三角形区域D:x0, y0, 2X+3y6 内的概率。
解 P{(X ,Y ) D} 6e(2x3y)dxdy
D
3 22x3
dx 6e(2x3y)dy
F ( x,) lim F ( x, y) 0 y
(2)单调不减 对任意y R, 当x1<x2时, F(x1, y) F(x2 , y); 对任意x R, 当y1<y2时, F(x, y1) F(x , y2).
(3)右连续 对任意xR, yR,
F(x,
y0

0)
... ... ... ... ... ...

第三章多维随机变量及其分布典型考题附答案

第三章多维随机变量及其分布典型考题附答案

第三章多维随机变量及其分布1. (2016)设随机变量X 与Y 相互独立且均服从正态分布2(1,)N σ, 则概率{min(,)1}P X Y >=14. 2. (2016)设二维随机变量(,)X Y 的联合概率密度函数为1,01,02(,),0,x y xf x y <<<<⎧=⎨⎩其他(1) 求边缘概率密度函数()X f x ; (2) 求条件概率密度函数|(|)Y X f y x ; (3) 求概率{1}P X Y +<. 解答: (1)2,01()(,)d .0,X x x f x f x y y +∞-∞<<⎧==⎨⎩⎰其他 …..............................4分(2)在01x <<时: |(,)(|)()Y X X f x y f y x f x =1,02.20,y xx ⎧<<⎪=⎨⎪⎩其他 ........................4分(3){1}P X Y +<213021d d .3y y y x -==⎰⎰ ...............................................................2分3. (2016)已知二维随机变量(,)X Y 在区域{(,)01,01}D x y x y =≤≤≤≤上服从均匀分布, 令随机变量1, 0, X YU X Y ≤⎧=⎨>⎩,(1) 求(,)X Y 的联合概率密度函数; (2) 求U 的分布律;(3) 求随机变量Z U X =+的分布函数()F z .解答: (1)1,01,01(,).0,x y f x y <<<<⎧=⎨⎩其他 ..............................................3分(2)1{1}{}P U P X Y ==≤=, 故1{0}P U ==, 因此U 的分布律为:分(3)(){}{}F z P Z z P U X z =≤=+≤{1}{|1}{0}{|0}P U P U X z U P U P U X z U ==+≤=+=+≤= 11{1}{}22P X z P X z =≤-+≤ 当0z <时: ()0F z =;当01z ≤<时: 01()0d 22z zF z x =+=⎰; 当12z ≤<时: 1011()d 222z zF z x -=+=⎰;当2z ≥时: ()1F z =.即 0,0(),0 2.21,2z z F z z z <⎧⎪⎪=≤<⎨⎪≥⎪⎩ ........................3分4. (2015)在[0,1]中随机地取两个数X 和Y , 则概率1{max(,)}2P X Y ≤= 0.25 .5. (2015)设二维随机变量(,)X Y 的联合概率密度函数为(,)f x y , ,X Y 的边缘概率密度函数分别为(),()X Y f x f y , 则在X x =的条件下, Y 的条件概率密度函数|(|)Y X f y x = D .(A) ()()X Y f x f y(B)()()X Y f x f y (C)(,)()Y f x y f y (D)(,)()X f x y f x 6. (2015)设二维随机变量(,)X Y 的联合概率密度函数为1,01,(,)10,x y f x y x⎧<<<⎪=-⎨⎪⎩其他. (1) 求(,)X Y 的边缘概率密度函数()X f x 和()Y f y ; (2) 求概率{2}P Y X >. 解答: (1)()(,)d X f x f x y y +∞-∞=⎰111,01,d ,01,10,0,x x y x x ⎧<<<<⎧⎪==-⎨⎨⎩⎪⎩⎰其它.其它. ...........................……4分 ()(,)d Y f y f x y x +∞-∞=⎰1ln(1),01,d ,01,10,0,y y y x y x ⎧--<<<<⎧⎪==-⎨⎨⎩⎪⎩⎰其它.其它. ......................……4分 (2){2}(,)d d DP Y X f x y x y >=⎰⎰112021d d 1xx y x=-⎰⎰1ln 2=-. 或: 1201d d 1y y x x=-⎰⎰1ln 2=- .......................................……2分 7. (2015)设二维随机变量(,)X Y 服从矩形域{}(,)02,01D x y x y =≤≤≤≤上的均匀分布, 记0,,1,.X Y U X Y ≤⎧=⎨>⎩ 0,2,1,2.X Y V X Y ≤⎧=⎨>⎩(1) 将(,)U V 的联合分布律的表格填全;(2) 判断U 与V 是否独立? (3) 设Z U V =+, 求Z 的分布律. 解答:(1)1{0,0}{,2}{}4P U V P X Y X Y P X Y ===≤≤=≤=; 1{1,0}{,2}{2}4P U V P X Y X Y P Y X Y ===>≤=<≤=;{0,1}{,2}0P U V P X Y X Y ===≤>=,故 1{1,1}2P U V ===, 则(,)U V 的联合分布律为:….................…..6分 (2)U , V 的边缘分布律为:1{0}4P U ==, 3{1}4P U ==, 1{0}2P V ==, 1{1}2P V ==,因为{0,0}{0}{0}P U V P U P V ==≠=⋅=, 所以U 与V 不独立. ..........……...1分 (3)Z8. (2014)设二维随机变量(,)X Y 服从区域{(,)01,02}G x y x y =≤≤≤≤上的均匀分布, 则{2}P X Y X <<= 0.25 . (C) ()a μσ-Φ (D) 1()a μσ--Φ9. (2014)设1X 和2X 是任意两个相互独立的连续型随机变量, 它们的概率密度函数分别是1()f x 和2()f x , 分布函数分别是1()F x 和2()F x , 则 D . (A) 12()()f x f x +必为某一随机变量的概率密度函数 (B) 12()()f x f x 必为某一随机变量的概率密度函数 (C) 12()()F x F x +必为某一随机变量的分布函数 (D) 12()()F x F x 必为某一随机变量的分布函数10. (2014)设随机变量X 与Y 相互独立且服从同一分布, X 的分布律为{}13P X i ==,(1,2,3)i =, 记min(,)U X Y =, 则{2}P U =的值为 B .(A)19(B)13(C)59(D)8911. (2014)设二维随机变量(,)X Y 的联合概率密度函数为0e ,(,)0,y x y f x y -<<⎧=⎨⎩,其他. (1)求(,)X Y 的边缘概率密度函数()X f x ;(2)在X x =的条件下, 求Y 的条件概率密度函数()Y X f y x ; (3)求概率{1}P X Y +<. 解答:(1)+-()(,)d X f x f x y y ∞∞=⎰e d ,0,0,0.y x y x x +∞-⎧>⎪=⎨⎪≤⎩⎰ e ,0,0,0.x x x -⎧>=⎨≤⎩ ……………………4分(2)当0x >时:e ,0,(,)()()0,x y Y X X x y f x y f y x f x -⎧<<==⎨⎩其它. ……………………3分 (3){}11112211(,)d d d e d 1e 2e xy xx y P X Y f x y x y x y ----+<+<===+-⎰⎰⎰⎰. …………3分。

第三章多维随机变量及其分布知识点梳理

第三章多维随机变量及其分布知识点梳理

第三章多维随机变量及其分布知识点梳理1. 联合分布函数与边缘分布函数之间的关系:_______________。

2. 联合分布函数的性质:(1)._______________。

(2)._____________________________________。

(3)._____________________________________。

(4)._____________________________________。

(5).________________________________________________。

3. 二维随机变量的相关性质:4.____________________。

5. 随机变量的分布:(1).和分布:___________________________________________。

当X 与Y 独立时,________________________________。

(2).商分布:___________________________________________。

当X 与Y 独立时,________________________________。

(3).极值分布:M=max{x,y}:________________________________________。

N=min{x,y}:________________________________________。

一个前提:_________________________。

6. 常见的二维分布:(1).二维均匀分布:_______________________________________。

(2).二维正态分布:________________________________________。

7. 分布的可加性:(1).X~B(m,p),Y~B(n,p),且X 与Y 相互独立,则X+Y~___________。

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布

求概率 (1)PX 1,Y 3;(2)PX Y 3
解 PX 1,Y 3 f (x, y)dxdy
D

1
dx
3 1 (6 x y)dy
0 28

11 08
(6 y

xy

1 2
y2)
3 2
dx

3 8
4 2
12
续解 ……….
PX Y 3 f (x, y)dxdy
1. 3
y
y x
o
x
四、小结
在这一节中,我们与一维情形相对照,介绍了 二维随机变量的分布函数 ,离散型随机变量的分 布律以及连续型随机变量的概率密度函数.
例 已知二维随机变量(X,Y)的分布密度为
f
(x,
y)

1 8
(6

x

y),
0 x 2, 2 y 4
0,
其他
解答 PX Y 4 X 1
4
PX Y 4, X 1
2

PX 1
12
2
dx
4x 1 (6 x y)dy
1 2 8
7 48 7
2
dx
4 1 (6 x y)dy
1 28
3 8 18
第二节 边缘分布
边缘分布函数 离散型随机变量的边缘分布律 连续型随机变量的边缘概率密度 小结
称为二维随机变量 X ,Y 的分布函数, 或者称为随机
变量 X 和 Y 的联合分布函数.
分布函数的函数值的几何解释
将二维随机变量 X ,Y 看成是平面上随机点的 坐标, 那么,分布函数 F x, y在点 x, y 处的函数值 就是随机点 X ,Y 落在下面左图所示的,以点 x, y

3.3-多维随机变量及其分布

3.3-多维随机变量及其分布

f X|Y ( x | y)
f (x, y) fY ( y)
称为随机变量X 在Y y的条件下的条件密度函数.
fY X y
x
f (x, y)
fX x
称为随机变量Y 在 X x的条件下的条件密度函数.
条件密度函数的性质
性质1 对任意的 x,有 fX Y x y 0
性质 2 fX Y x ydx 1 简言之,fX Y x y是密度函数.
和的分布:Z = X + Y 二、连续型分布的情形
设X和Y的联合密度为 f (x,y),求Z=X+Y的密度
Z=X+Y的分布函数是: FZ(z)=P(Z≤z)=P(X+Y ≤ z)
f (x, y)dxdy
D
这里积分区域D={(x, y): x+y ≤z}
是直线x+y =z 左下方的半平面.
FZ (z) f (x, y)dxdy
(3) F (, y) 0, F ( x,) 0 F (,) 0, F (,) 1
(4)关于x或y右连续
(5)对 x1 x2 , y1 y2 ,有
P(x1 X x2, y1 Y y2 )
F ( x2 , y2 ) F ( x1, y2 ) F ( x1, y1 ) F ( x2 , y1) 0
二维随机变量(X,Y) 离散型
X和Y 的联合概率分布列
P(X xi ,Y yj) pij,
i, j =1,2, …
pij 0, i, j 1,2,
pij 1
ij
一维随机变量X 离散型
X的概率分布列
P(Xxk) pk,
k=1,2, …
pk 0, k=1,2, …
pk1

考研概率统计--多维随机变量及其分布笔记

考研概率统计--多维随机变量及其分布笔记
Note:若G为非非矩形,推nothing
若G为矩形,服从均匀;推:X服从均匀,Y服从均匀,X,Y独立立
2)二二维正态分布(the special one)
1.定义;
Note:1.淡化公式,强调性质
2.规律律:e的-x2,e的-y2,e的-xy
2.性质:
(1)联合可以推边缘;边缘不不能推联合
(2)(aX+bY,cX+dY)服从二二维正态分布(利利用用卷积公式证明)(只要求 5个参数即可)(联合的线性仍然正态)
(3)aX+bY服从正态(只要求2个参数)(二二维推一一维线性依然是正态的)
(4)X和Y相互独立立互推p=0(独立立性仅有数字特征决定)
四 二二维随机变量量函数的分布
1.二二维离散型:已知联合概率分布律律,求Z=g(X,Y)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 ห้องสมุดไป่ตู้二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
2.二二维随机变量量的联合分布函数
1)X,Y取积;
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
方方法:枚举,合并(相同量量合并)
Note:当然还有二二维

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(多维随机变量及其分布)【圣才出品】

茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(多维随机变量及其分布)【圣才出品】

为 n 次独立重复试验中 Ai 出现的次数,i=1,2,…,r.则(X1,X2,…,Xr)取值(n1,
n2,…,nr)的概率,即 A1 出现 n1 次,A2 出现 n2 次,……,Ar 出现 nr 次的概率为
P( X1 n1, X 2 n2 ,
n! , X r nr ) n1!n2!
pi1
pi2
pij
(2)联合分布列的基本性质:
①非负性:Pij≥0;
②正则性:Pij≥0,

pij 1
i1 j1
2 / 138
圣才电子书 十万种考研考证电子书、题库视频学习平台

求二维离散随机变量的联合分布列,关键是写出二维随机变量可能取的数对及其发生的 概率.
中仸意取出 n 个,若记 Xi 为取出的 n 个球中 i 号球的个数,i=1,2,…,r,则
P( X1 n1, X 2 n2 ,
N1 N2 Nr
,
Xr

nr )


n1

n2

N

nr


n

其中 n1+n2+…+nr=n
(3)多维均匀分布
故积分区域的边界线是否在积分区域内丌影响概率计算结果.
3 / 138
圣才电子书

5.常用多维分布
十万种考研考证电子书、次独立重复试验,如果每次试验有 r 个互丌相容结果:A1,A2,…Ar,之一发生,
且每次试验中 Ai 发生的概率为 pi=P(Ai),i=1,2,…,r,且 p1+p2+…+pr=1.记 Xi
设 D 为 Rn 中的一个有界区域,其度量(平面的为面积,空间的为体积等)为 SD,如

最新第三章--多维随机变量及其分布总结

最新第三章--多维随机变量及其分布总结

精品文档第三章 多维随机变量及其分布第一节 二维随机变量一、二维随机变量的分布函数设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.首先引入(X , Y )的分布函数的概念.定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1)(1)与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质:1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;111=∑∑∞=∞=i j ijp.我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为=),(y x F ∑∑≤≤==x x yy jii j y Y x X P },{=∑∑≤≤x x yy iji j p这里∑∑≤≤x x yy i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时,精品文档各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=312231=⋅. 同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=31. 即(X , Y )的分布律如右表所示.当x < 1, 或y < 1时, F {x , y } = 0; 当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31; 当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 31; 当x ≥ 2, y ≥ 2时, F {x , y } = 1.所以, (X , Y )的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,1,21,22,21,31,21,2111,0),(y x y x y x y x y x y x F 或或或三、二维连续型随机变量设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有⎰⎰∞-∞-=y x dudv v u f y x F ),(),(,则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0; 2︒1),(),(=+∞+∞=⎰⎰∞+∞-∞+∞-F dxdy y x f3︒ 若f (x , y )在点(x , y )处连续, 则有),(),(2y x f yx y x F =∂∂∂ 4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=∈Gdxdy y x f G Y X P ),(}),{( (2)例2 设二维连续型随机变量(X , Y )的概率密度为⎩⎨⎧>>=+-.,0,0,0,2),()(其它y x Ae y x f y x求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.解: (1) 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得21=A .精品文档(2) ⎰⎰∞-∞-+-=yxy x dxdy e y x F )(),(=⎪⎩⎪⎨⎧>>⎰⎰+-,,0,0,0,00)(其它y x dxdy e yxy x =⎩⎨⎧>>----.,0,0,0),1)(1(其它y x e e yx (3) edxdy e e dxdxdy y x f Y X P xy x D21),()},{(101-===⎰⎰⎰⎰---. 例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,0,20,10,3),(2其它y x xy x y x f , 求P {Y ≥ X }. 解: P {Y ≥ X }=2417)3(),(221=+=⎰⎰⎰⎰≤xxy dy xy x dxdxdy y x f . 以上关于二维随机变量的讨论, 不难推广到n (n > 2)维随机变量的情形. 一般地, 设E 是一个随机试验,它的样本空间为S , 设X 1、X 2、…、X n 是定义在S 上的随机变量, 则由它们构成的一个n 维向量(X 1, X 2, …, X n )称为n 维随机向量或n 维随机变量.对任意n 个实数x 1、x 2、…、x n , n 元函数F (x 1, x 2, …, x n ) = P {X 1 ≤ x 1, X 2 ≤ x 2, …, X n ≤ x n }称为n 维随机变量(X 1, X 2, …, X n )的分布函数或随机变量(X 1, X 2, …, X n )的联合分布函数, 它具有与二元分布函数类似的性质.第二节 边 缘 分 布设(X , Y )是二维随机变量, 其分布函数为F (x , y ), 事件{X ≤ x }即为{ X ≤ x , Y < +∞}, 从而由(X , Y )的分布函数可定出X 的分布函数, 记为F X (x ).F X (x ) = P {X ≤ x } = P { X ≤ x , Y < +∞} = F (x , +∞)=),(lim y x F y +∞→.我们称F X (x )为关于X 的边缘分布函数. 类似的可定义关于Y 的边缘分布函数为F Y (y ) = P {Y ≤ y } = P {X < +∞, Y ≤ y }= F (+∞, y ) = ),(lim y x F x +∞→.一、离散型设(X , Y )为二维离散型随机变量, 其分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), 则∑∑≤∞==+∞=x x j ijX i px F x F 1),()(, ∑∑≤∞==+∞=y y i ijY i py F y F 1),()(.从而X 与Y 的分布律分别为 ∑∞===1}{j iji px X P , i = 1, 2, …; ∑∞===1}{i ijj py Y P , j = 1, 2, …;记=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….分别称p i ⋅和p ⋅ j 为(X , Y )关于X 与Y 的边缘分布律.注: 1︒ 边缘分布律具有一维分布律的一般性质. 2︒ 联合分布律唯一决定边缘分布律, 反之不然. 二、连续型设二维连续型随机变量(X , Y )的概率密度为f (x , y ), 由精品文档⎰⎰∞-∞+∞-=+∞=xX dx dy y x f x F x F ]),([),()(;⎰⎰∞-∞+∞-=+∞=yY dy dx y x f y F y F ]),([),()(.知X 与Y 都是连续型随机变量. 它们的概率密度分别为⎰∞+∞-=dy y x f x f X ),()(;⎰∞+∞-=dx y x f y f Y ),()(.称f X (x )与f Y (y )分别为(X , Y )关于X 与Y 的边缘概率密度.例2 设D 是平面上的有界区域, 其面积为A , 若二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧∈=,,0,),(,1),(其它D y x Ay x f 则称(X , Y )在D 上服从均匀分布.现(X , Y )在以原点为中心、1为半径的圆域上服从均匀分布, 求边缘概率密度. 解: 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得A = π.当|x | < 1时, ⎰∞+∞-=dy y x f x f X ),()(21112122x dy x x-==⎰---ππ; 当|x | ≥ 1时, f X (x ) = 0, 即⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2x x x x f X π同理可得, ⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2y y y y f Y π例3 设二维随机变量(X , Y )的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 其中μ1、μ2、σ1、σ2、ρ 都是常数, 且σ1 > 0, σ2 > 0, -1 < ρ < 1. 我们称(X , Y )为服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布, 试求二维正态随机变量的边缘概率密度.解: 令m = ⎥⎦⎤⎢⎣⎡-+----222221212121)())((2)(σμσσμμρσμy y x x2121212122121221212222)()()())((2)(σμσμρσμρσσμμρσμ-+---+----=x x x y x y2121221122)()1(σμρσμρσμ--+⎥⎦⎤⎢⎣⎡---=x x y . 所以, ⎰∞+∞-=dy y x f x f X ),()(=⎰∞+∞----dy e m )1(22212121ρρσπσ精品文档⎰∞+∞-⎥⎦⎤⎢⎣⎡--------=dy e ex y x 2112222121)1(212)(221121σμρσμρσμρσπσ.令⎪⎪⎭⎫ ⎝⎛----=1122211σμρσμρx y t , 则dt dy 221σρ⋅-=, 从而, 22222)1(211212211222ρσπσρσμρσμρ-=⋅-=⎰⎰∞+∞--∞+∞-⎥⎦⎤⎢⎣⎡-----dt edy e t x y . 所以, 21212)(121)(σμσπ--=x X ex f (+∞<<-∞x ). 同理可得, 22222)(221)(σμσπ--=y Y e y f (+∞<<-∞y ).表明, ),(~211σμN X , ),(~222σμN Y . 此例说明, 二维正态随机变量(X , Y )中的X 、Y 都服从正态分布, 并且与参数ρ 无关. 所以对于确定的μ1、μ2、σ1、σ2而取不同的ρ, 对应了不同的二维正态分布, 但是其中每个随机变量都分别服从相同的正态分布. 因此, 仅由关于X 和Y 的边缘概率密度(分布), 一般不能确定X 和Y 的联合概率密度(分布).第四节 相互独立的随机变量我们知道, 两事件A 、B 相互独立的充要条件是 P (AB ) = P (A )P (B )由此我们引进随机变量相互独立的定义.定义 设F (x , y )及F X (x )、F Y (y )分别是二维随机变量(X , Y )的分布函数及边缘分布函数, 若对于所有的x 、y , 有 P {X ≤ x , Y ≤ y } = P {X ≤ x } P {Y ≤ y }, 即F (x , y ) = F X (x )F Y (y ) (1) 则称随机变量X 和Y 是相互独立的.可见, 在随机变量X 和Y 相互独立的情况下, 由关于X 和Y 的边缘分布函数就唯一地确定(X , Y )的联合分布函数, 而且还可推得}{},{}/{x X P x X y Y P x X y Y P ==≤==≤}{},{lim0x x X x P x x X x y Y P x ∆+≤≤∆+≤≤≤=→∆),(),(),(),(lim0+∞-+∞∆+-∆+=→∆x F x x F y x F y x x F x)()()()()()()()(lim0+∞-+∞∆+-∆+=→∆Y X Y X Y X Y X x F x F F x x F y F x F y F x x F )()()()]()([lim 0x F x x F y F x F x x F XX Y X X x -∆+-∆+=→∆= F Y (y ) =P {Y ≤ y }.这就是说在X 和Y 相互独立的情况下条件分布与边缘分布相同, 即条件分布化成了无条件分布. 一、离散型设二维离散型随机变量(X , Y )的联合分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …),(X , Y )关于X 和关于Y 的边缘分布律分别为精品文档=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….则X 和Y 相互独立的充要条件是P {X = x i , Y = y j } = P {X = x i } P {Y = y j }, 即p ij =⋅i p j p ⋅(2)二、连续型设二维连续型随机变量(X , Y )的联合概率密度为f (x , y ), 关于X 和Y 的边缘概率密度为f X (x )和f Y (y ), 则X 和Y 相互独立的充要条件是等式 f (x , y ) = f X (x ) f Y (y ) (3) 几乎处处成立.例3 设(X , Y )服从二维正态分布, 即其联合概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 证明: X 和Y 相互独立的充要条件是ρ = 0.例4 若(X , Y )的联合概率密度为⎩⎨⎧≥≥=+-,,0,0,0,),()(其它y x e y x f y x 则X 和Y 相互独立.证: 显然⎩⎨⎧≥=-,,0,0,)(其它x e x f x X ⎩⎨⎧≥=-,,0,0,)(其它y e y f y Y 故有f (x , y ) = f X (x ) f Y (y ). 从而X 和Y 相互独立.例5 设X 与Y 是两个相互独立的随机变量, X 在[0, 0.2]上服从均匀分布, Y 的概率密度为⎩⎨⎧≥=-,,0,0,5)(5其它y e x f y Y试求: (1) X 与Y 的联合概率密度;(2) P {Y ≤ X }.解: (1) 由已知条件, 得⎩⎨⎧≤≤=,,0,2.00,5)(其它x x f X 从而得X 与Y 的联合概率密度为⎩⎨⎧≥≤≤=-.,00,2.00,25),(5其它y x e y x f y(2) P {Y ≤ X }= P {Y - X }⎰⎰≥-=),(y x dxdy y x f ,积分区域如图, 化成二次积分后得⎰⎰≈=⎥⎦⎤⎢⎣⎡=≤-2.00103679.0),(}{e dx dy y x f X Y P x .以上关于二维随机变量的一些概念, 很容易推广到n 维随机变量的情形.设n 维随机变量(X 1, X 2, …, X n )的联合分布函数为F (x 1, x 2, …, x n ), 若存在非负函数f (x 1, x 2, …, x n ), 使得对于任意实数x 1、x 2、…、x n , 有精品文档F (x 1, x 2, …, x n ) =⎰⎰⎰∞-∞-∞--n n x x x n n dx dx dx x x x f 112121),,,(,则称f (x 1, x 2, …, x n )为n 维随机变量(X 1, X 2, …, X n )的联合概率密度.称),,,()(111+∞+∞= x F x F X , ),,,,(),(2121,21+∞+∞= x x F x x F X X , …为关于X 1, (X 1, X 2), …的边缘分布函数, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X dx dx dx x x x f x f32211),,,()(1, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X X dx dx dx x x x f x x f432121,),,,(),(21, …为关于X 1, (X 1, X 2), …的边缘概率密度.若对于所有的x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ))()()(2121n X X X x F x F x F n =, 则称X 1, X 2, …, X n 是相互独立的, 对离散型即连续型随机变量, 也有类似的结论. 若对于所有的x 1、x 2、…、x m ; y 1、y 2、…、y n , 有F (x 1, x 2, …, x m ; y 1, y 2, …, y n ) = F 1 (x 1, x 2, …, x m ) F 2 (y 1, y 2, …, y n )其中F 1、F 2和F 依次为(X 1, X 2, …, X m )、(Y 1, Y 2, …, Y n )和(X 1, X 2, …, X m ; Y 1, Y 2, …, Y n )的分布函数, 则称随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )是相互独立的.定理 设随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )相互独立, 则X i (i = 1, 2, …, m )与Y j (j = 1, 2, …, n )相互独立. 又若h 、g 是连续函数, 则h (X 1, X 2, …, X m )和g (Y 1, Y 2, …, Y n )也相互独立.第三节、条件分布离散型:在已知X=x i 的条件下,Y 取值的条件分布为;∙===i ij i j p p x X y Y P )|(在已知Y=y j 的条件下,X 取值的条件分布为,)|(jij j i p p y Y x X P ∙===连续型:在已知Y=y 的条件下,X 的条件分布密度为)(),()|(y f y x f y x f Y =; 在已知X=x 的条件下,Y 的条件分布密度为)(),()|(x f y x f x y f X =例3.9: 设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中},1||,1|:|),{(≤-≤+=y x y x y x D 求X 的边缘密度()X f x 和X 的边缘密度()Y f y精品文档解:1,(,)20,.Df x y ⎧⎪=⎨⎪⎩其他111111,10;21()(,)1,01;20,.x x x X x dy x x f x f x y dy dy x x +--+∞+-∞-⎧=+-<<⎪⎪⎪===-<<⎨⎪⎪⎪⎩⎰⎰⎰-其他例3.10 设在一段时间内进入某一商店的顾客人数X 服从泊松分布()P λ,每个顾客购买某种商品的概率为p ,并且每个顾客是否购买某种商品相互独立,求进入商店的顾客购买该种商品的人数Y 的分布列。

最新第3章 多维随机变量及其分布习题库及答案PPT课件

最新第3章 多维随机变量及其分布习题库及答案PPT课件
(1) 先确定 (X,Y) 的联合概率密度 f(x,y);
(2) 确定 Z=g(X,Y) 的取值范围;
(3) 计算 Z=g(X,Y) 的分布函数
FZ(z) P{Z z}P{g(X,Y) z}
P{(X,Y)Dz} f(x,y)dxdy,
Dz
其中Dz {(x,y) g(x,y)z}.
(4) fZ(z)= F’Z(z).
维随机变量 ( X, Y ) 具有概率密度
f(x,y)S1, (x,y)D, 0, 其他 .
则称( X,Y )在D上服从均匀分布.
(2) 二维正态分布
若二维随机变量 ( X,Y ) 具有概率密度
1
f(x,y)
2πσσ e 1ρ 1 2
2 2 (1 1 ρ 2 )[(x σ μ 1 2 1 )2 2 ρ (x σ μ 1 1 σ )2y ( μ 2 ) (y σ μ 2 2 2 )2]
3.边缘分布函数
F X ( x ) P X x P X x , Y F ( x , )
F Y ( y ) P Y y P X , Y y F ( , y )
由分布函数的定义可得到联合分布函数和边缘分布 函数的关系。
几何意义:
FX(x)和FY(y)的函数值表示随机点(X,Y)落入如下左图
X 的边缘概率密度.
fX(x)f(x,y)dy.
注:X 与 Y 之间的关系这个信息是包含在(X, Y) 的联合概率密度函数之内的.
4. 条件密度函数
设 X 和 Y 的联合概率密度和边缘概率密度分别为 f (x,y), fX(x),fY(y),
➢对一切使 fX(x)0 的x , 定义 f(x,y)
则随机Z 变 g(量 X,Y)的 函分 数布律为

概率论第三章题库

概率论第三章题库

第三章 多维随机变量及其分布一、选择题1、(易)设任意二维随机变量(X ,Y )的两个边缘概率密度函数分别为f X (x )和f Y (y ),则以 下结论正确的是( ) A.⎰+∞∞-=1)(dx x f XB.⎰+∞∞-=21)(dx y f Y C.⎰+∞∞-=0)(dx x f X D.⎰+∞∞-=0)(dx y f Y2、(易)设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~( ) A. 211(,)N μσB. 221(,)N μσC. 212(,)N μσ D. 222(,)N μσ 3、(易)设二维随机变量(X ,Y )服从区域D :x 2+y 2≤1上的均匀分布,则(X ,Y )的概率密度为( )#A. f(x ,y)=1B. 1(,)0,x y D f x y ∈⎧=⎨⎩,(,),其他C. f(x ,y)=1πD. 1(,)0,x y D f x y π⎧∈⎪=⎨⎪⎩,(,),其他4、(中等)下列函数可以作为二维分布函数的是( ).A .1,0.8,(,)0,.x y F x y +>⎧=⎨⎩其他 B .⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt ey x F y x t s C . ⎰⎰=∞-∞---y x ts dsdt e y x F ),( D .⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x ey x F y x5、(易)设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧<<<<,,0;20,20,41其他y x则P{0<X <1,0<Y <1}=( ) A .41 B .21C .43D .1¥6、(中等)设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βαB .91,92==βαC .32,31==βαD .31,32==βα7、(中等)设二维随机变量(X ,Y )的联合分布函数为F(,x y ). 其联合概率分布律为YX 0 <1 2 -1 00 0 \2则F (0,1)=( )A. B. C. D.8、(难)设随机变量X 和Y 相互独立,且X ~N (3,4),Y ~N (2,9),则Z=3X -Y ~( ) A. N (7,21) B. N (7,27) C. N (7,45) D. N (11,45)9、(难)设随机变量X ,Y 相互独立,且X ~N (2,1),Y ~N (1,1),则( ) {X -Y ≤1}=21B. P{X -Y ≤0}=21 —C. P{X +Y ≤1}=21 D. P{X +Y ≤0}=21 10、(易)设二维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F Y D .1二、填空题11、(易)设随机变量X ,Y 相互独立,且P{X ≤1}=21,P{Y≤1}=31,则P{X ≤1,Y ≤1}=___. 12、(易)设二维随机变量),(Y X 的分布函数为),(y x F ,则(,)F -∞-∞=______.13、(中等)设二维随机变量(X ,Y )的分布函数为⎩⎨⎧>>--=--,,0,0,0),e 1)(e 1(),(其他y x y x F y x ,则当x >0时, X 的边缘分布函数F X (x )=__________.*14、(易)已知当0<x <1,0< y <1时,二维随机变量(X,Y )的分布函数F(x ,y ) =22x y ,记(x ,y )的概率密度为f (x ,y ) ,则f (1148,)=__________.15、(中等)设二维随机变量(X ,Y )的分布律为则{}=≤<2,1Y X P ______.16、(易)设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=____.17、(中等)设随机变量X,且Y =X 2,记随机变量Y 的分布函数为F Y (y ),则F Y (3)=__________. 18、(易)设随机变量X 和Y 相互独立,它们的分布律分别为,则19、(易)设二维随机变量(X,Y)的分布律为则P{XY=0}=__________.三、计算题20、(中等).袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码 为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布;"(2) 求关于X 和关于Y 的边缘分布; (3) X 与Y 是否相互独立 【解】(1) X 与Y 的联合分布律如下表3 4 5${}i P X x =13511C 10= 3522C 10= 3533C 10= 61023511C 10= 3522C 10= (310 3 02511C 10= 110{}i P Y y = 110310 610#(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立Y X0 5.4161 231 41 YX21、(中等)某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名,现从8名委员中随机指定3名担任学生会主席,设X,Y分别为主席来自理科、工科的人数,求:(1)(X,Y)的联合分布律;;(2)X,Y的边缘分布.P(X=0,Y=0)=C(3,3)/C(8,3)=1/56P(X=0,Y=1)=C(3,1)*C(3,2)/C(8,3)=9/56P(X=0,Y=2)=C(3,1)*C(3,2)/C(8,3)=9/56P(X=0,Y=3)=C(3,3)/C(8,3)=1/56P(X=1,Y=0)=C(2,1)*C(3,2)/C(8,3)=6/56P(X=1,Y=1)=C(2,1)*C(3,1)*C(3,1)/C(8,3)=18/56P(X=1,Y=2)=C(2,1)*C(3,1)/C(8,3)=6/56P(X=2,Y=0)=C(2,2)*C(3,1)/C(8,3)=3/56P(X=2,Y=1)=C(2,1)*C(3,1)/C(8,3)=3/56X边缘分布Y Y Y Y P(X=i)0 1 2 3X 0 1/56 9/56 9/56 1/56 5/14X 1 3/28 9/28 3/28 0 15/28X 2 3/56 3/56 0 0 3/28Y边缘分布P(Y=j) 5/28 15/28 15/56 1/56 122、(中等)设二维随机变量(X,Y)的概率密度为!⎩⎨⎧≤≤≤≤=.,0;20,2,),(其他yxcxyyxf求:(1)常数c ;∫f(x,y)dxdy=∫cxydxdy=c ∫xdx ∫ydy =c(1/2*x^2|从0到2)(1/2*y^2|从0到1) =c(1/2*2^2-0)(1/2*1^2-0) =c*2*1/2=c 并且∫f(x,y)dxdy=1 所以c=1(2)求(X ,Y )分别关于X ,Y 的边缘密度);(),(y f x f Y X (3)判定X 与Y 的独立性,并说明理由; (4)求P {}1,1>>Y X .)23、(较难)设随机变量(,)X Y 的分布函数为(,)(arctan )(arctan)23xy F x y A B C =++,试求:(1)常数A 、B 、C (2)试问X 与Y 是否独立(3)求X 与Y 的联合概率密度函数 F(x,y)=A(B+arctanx/2)(C+arctany/3) F(-∞,-∞)=A(B-π/2)(C-π/2)=0 F(-∞,+∞)=A(B-π/2)(C+π/2)=0 F(+∞,-∞)=A(B+π/2)(C-π/2)=0 F(+∞,+∞)=A(B+π/2)(C+π/2)=1 解得:A=1/π^2,B=π/2,C=π/2 F(+∞,y)=1/2+1/π*arctan (y/3)F(x,+∞)=1/2+1/π*arctan (x/2) F(x,y)=F(+∞,y)×F(x,+∞) X 和Y 相互独立. (X,Y)的联合概率密度:6/(11π)(π/2+arctan x/2)(π/2+arctan Y/3)24、(中等)设二维随机变量(,)X Y 的概率密度为#()()602,24,0k x y x y f x y ⎧--<<<<=⎨⎩求: (1)常数k ;(2)(,)X Y 关于X ,Y 的边缘概率密度(),()X Y f x f y ; (3){}4P X Y +<. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故18R =(3)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰【题5图其他25、(中等)设二维随机变量(,)X Y 的概率密度为()()2360,0,0x y ex y f x y -+⎧>>⎪=⎨⎪⎩求: (1)(,)X Y 关于X ,Y 的边缘概率密度(),()X Y f x f y ; (2)判断随机变量X 与Y 是否独立其他26、(中等)设X 和Y 是两个相互独立的随机变量,X 在[0,4]上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e 求X 和Y 的联合概率密度(,)f x y .【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他. 故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图{。

概率论与数理统计讲义第三章 多维随机变量及其分布

概率论与数理统计讲义第三章 多维随机变量及其分布

第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={ω},若随机变量X1(ω),X2(ω),…,X n(ω)定义在S上,则称(X1(ω),X2(ω),…,X n(ω))为n维随机变量(向量)。

简记为(X1,X2,…,X n)。

二维随机向量(X,Y),它可看作平面上的随机点。

对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。

研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。

§ 3.1 二维随机变量的分布一.离散型随机变量1.联合分布律定义3.1 若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。

设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i, j=1,2,…——(3.1)称 (3.1)式为(X,Y)的联合分布律。

(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij ≥ 0,i, j=1,2,… (2) ∑ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.≥0②∑ p i.=1p .j = p{Y=y i }j=1,2,… ①p .j ≥0②∑ p .j =1我们称p i.和p .j 分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。

二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij (3.4) 同理可得 p .j =i∑p ij(3.5)例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y随机地在1到X中取一值。

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(多维随机变量及其分布)【圣才出品】

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(多维随机变量及其分布)【圣才出品】

Y=y 条件下 X 的条件分布函数为
F x y j P X xi Y y j pi j
xi x
xi x
X=x 条件下 Y 的条件分布函数为
F y xi P Y y j X xi p j i
yjy
yjy
2.连续随机变量的条件分布
Y=y 条件下 X 的条件分布函数和条件密度函数: F
1 / 124
圣才电子书

十万种考研考证电子书、题库视频学习平台
表 3-1-2 边际分布
2.随机变量间的独立性
n
对任意 n 个实数 X1,X2,…,Xn:若 F ( x1, x2,, xn )= Fi ( xi ) ,则 X1,X2,…,
i =1
Xn 相互独立。
n
离散随机变量:若 P( X1=x1, X 2 =x2,, X n xn ) P( Xi xi ) ,则 X1, i 1
xy
x p u, y pY y
du ;
px
y
p x, y pY y

F X=x 条件下 Y 的条件分布函数和条件密度函数:
yx
y p x,v pX x
dv ;
py
x
px, y pX x

5 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台

Exp()*Exp()**Exp() =Ga(m,) m个
(4)χ2 分布的可加性:m 个χ2 变量相互独立,则
2 (n1)* 2 (n2 )** 2 (nm )= 2 (n1 +n2 + +nm )
四、多维随机变量的特征数(见表 3-1-3)
3 / 124
圣才电子书 十万种考研考证电子书、题库视频学习平台

概率论与数理统计期末复习2.docx

概率论与数理统计期末复习2.docx

概率密度他,y )=叮P ),前提是/(x, y )在点(x, y )处连续:dxoy概率密度/(x,y )的四条性质1一4;特别留意:p{(x,y )w G}= G边缘分布函数:Fx M = F&,+8)二匚上/(x, y)dy^x , F Y (x) = F (+ 8, y) = J 二 J 二/(x, y)dx^y边缘概率密度:fx (x )=C/k y )dy ,/『(y )=C/U y )dx根据联合概率密度o 边缘概率密度,根据联合分布函数o 边缘分布函数 (Fx (X )= lim F (x, y ), Fy (y ) = li m F (x, y )).【例1-1】盒子里装了 3只黑球,2只红球和2只白球,在其中任意取4只球,以X 表示取 到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.【例1・2】将一枚硬币投掷3次,以X 表示前两次屮出现H 的次数,以Y 表示三次屮出现 H 的次数,求X, Y 的联合分布律和(X, Y )的边缘分布律.概率论与数理统计期末复习(二) 第三章多维随机变量及其分布一、二维随机变量:(重点)1. 二维随机变量的分布函数的性质1-4.2. 离散型随机变量的分布函数和分布律.(1) 联合分布函数 F (x,y) = P{X <x,Y < y}, F (x,j)= X 工打;x^xy^y(2)边缘分布函数:F x (x ) = F (x,+oo )=工土 Pq ‘你(兀)=F (+8,y )=为£內; Xj y=l(3) 联合分彳|j 律:求出 P\x =x iy Y = yj\= pjj(i = 1,2,...;j = 1,2,...)列表; 边缘分布律:求出P{x =x z }= £厲;P {Y = y ;}= X Pij ,列表.;=1 i=\根据联合分布律o 边缘分布律,根据联合分布函数o 边缘分布函数((X )= limF (x,y ),•<(4) F r (y )= lim F (M ))・XT+oo3.连续型随机变量的分布函数和概率密度.(1) 分布函数F (x,y )=匚匚/仏v )dudv ; (2)(3)(4)【例1-3]以X记作某医院一天出生婴儿总个数,Y为英中男婴的个数,设X和Y的联合分布律为:躯v沪兰牢n弊: rn\\n-rnj., m -()丄2,…,/?; n= (),1,2,…(1)求边缘分布律;(2)求条件分布律P{X = m Y =诂和?{y = mX= n}.【例2・1】设随机变量(X, Y)的概率密度为:&(6_x_ y).()v x V 2,2 v y v 4,0,其他(1)确定常数k的值;(2)求P{X <!,/< 3}, P{X <1.5}, P{X + Y< 4}的值.【例2・2】设随机变量(X, Y)具有分布函数:+ 严>=>0*>01—0,其他求其边缘分布函数.【例2・3】设二维随机变量(X, Y)的概率密度为:e~y,0 < x< y0,其他求具边缘概率密度.二、条件分布1.会求离散型随机变量的条件分布律p{x =易Y I P[X=x jy Y =2.会求连续型随机变量的条件概率密度和分布函数.(如=舗,加如=呛环』吃翔心fx\Y【例3・1】设二维随机变量(X, Y)的概率密度为:、^x2y,x2 <y<l/U y) = 4o,其他(1) 确定边缘概率密度;求条件概率密度/x|,巾)' 并写出『专时条件概率密度;求条件概率密度/r|X(.y|x), 并写出X冷时『的条件概率密度;y>-Y 1142【例3・2】设随机变最X 〜〃(0,1),当给定X 二x 时,随机变最Y 的条件概率密度为:/ . x x,0< _y< 丄 Alx尤0,英他(1) 求X 和Y 的联合概率密度/gy); (2) 求边缘概率密度/r (>0: (3) 求 P{X > Y}. 三、独立性1. 离散型随机变量X 和Y 如何判断相互独立?2. 连续型随机变量X 和Y 如何判断相互独立? 3・能否记住二维正态分布的概率密度?当且仅当0 = 0,随机变量X,y 相互独立;记作(X,Y )~/7仏,〃2,杆,<7孑,p)・4. 两个独立变量X, Y 分别服从;1|,久2的泊松分布,则X + Y~/r (入+丸2)・5・两个独立变量X, Y 分别服从二项分布佃,”),(“2,“),贝!j X + Y ~ b(n x +n 2,p).【例4-1】(1)设随机变量(X, Y)具有分布律:P{X = x,Y = y}= p 2() - p)x+y ~2,0 < p<],x,yE N"求证:随机变量X, Y 相互独立; (2)设随机变量(X, Y)具2有分布函数:(1-严))2 0,() Sy Ml,F (x, y)=・ 1 一 e _ax ,兀 X (),)‘> 1, a > 0,0,其他■证明:随机变量X, Y 相互独立.【例4-2】若随机变量(x,y)〜川(//],//2,杆,云,卩),证明:当且仅当0 = 0吋,随机变量X" 和互独立.【例4-3】设X 和Y 是两个相互独立的随机变量,X 在区间(0,1)上服从均匀分布,Y 的概率 密度为:(I/^2其中边缘概率密度:_ 2p“I )3 - /) + 砂21,y >0o,其他(1) 求X 和Y 的联合概率密度;(2) 设有关于G 的二次方程Q 2+2X G + Y = 0,求此方程有实根的概率. 四、两个随机变量的函数分布(重难点)1. Z=X+Y 分布,Z=XY 分布,Z=Y/X 分布. (1) Z=X+Yfz (z ) = C/C - y)dy =C/(x, z -恥若X, Y 相互独立,fz (z) = Cfx (z - y)fr (y)dy =J 二/x (x)/y C - /加(卷积公式)(提前指出x, z 所满足的不等式)(2) Z=XY=右匚/兀若 X, Y 相互独立,f 7 (z)= ~\^2fx W/y 丫»(3) Z=Y/X//0 = |对二/(2加,若 X, Y 相互独立,/z (z) =f x (x )A {zx)dx2・ M=max{X, Y}分布,N=min{X, Y}分布.前提:随机变量X 和Y 相互独立!(1) M=max{X, Y}^max (z) =P{X<z y Y<z}= p{x < Z }P \Y <Z }=F X (z )F r (z)对于n 个随机变量而言,特殊地,相互独立且满足同一分布函数F(x),则F^ax (z)二[F (Z )]" !(2) N=min{X, Y}F min (z)=P{/V <z}=\-P{N >Z }=\-P{X >Z ,Y>Z }=\-P{X > Z }P \Y > z}= 1-[1- F x (z)][l - 耳(z)] 对于n 个随机变量而言,特殊地,相互独立且满足同一分布函数F(x),则Fmin(z) = l-[l-F (Z )]"!【例5・1】设X 和Y 是两个相互独立的随机变量,其概率密度分別为:y x (x) = J 1,°~X ~1, f Y (y ) = i e ~^y>()Jx{丿〔0,英他川丿〔0,其他求随机变量Z 二X+Y 的概率密度.【例5-2】设随机变量X 和Y 相互独立,它们的概率密度均为:求Z 二Y/X 的概率密度.【例5-3】设随机变量X, Y 的概率密度为:0,其他/(x) =«e'\x>0 0,其他/(x, y) = <2,x>0,y>0(1) X 和Y 是否相互独立? (2)求Z 二X+Y 的概率密度.【例5-4]设随机变量X 和Y 的概率密度为:呢g) o,其他⑴确定常数b ;(2)求边缘概率密度/x (A-),/r (y);⑶ 求函数U 二max{x, y}和V = min{x, y}的分布函数. 【练习】1. 设二维随机变最(X, K)的联合概率密度为:求: (1)求常数£:⑵求X, Y 的边缘概率密度乐X ), f^y),并判断X 与丫是否相互独立(说明原因)? (3) 求 P{ X+ Y< 1}.2. (12-7)设随机变量X 与Y 相互独立,且分别服从参数为1和参数为4的指数分布,则 P{X < Y}的值() 1124(A) -(B) -(C) -(D)-53353. (11-14)设二维随机变量X, Y 服从正态分布N (/A “Q 2Q 2,0),贝I JE (XK 2)W 值为.4.(11-22)设随机变量X 与Y 的概率分布分别为:且 p\x 2 = Y 2}=\.(1)求二维随机变量X, Y 的概率分布; ⑵求Z 二XY 的概率分布; ⑶求X 与Y 的相关系数卩灯・PXY亦质5. (10-22)设二维随机变量X, Y 的概率密度为f^y)=Ae-2x2+2xy ,-y\x,ye R ,求:⑴常数A ;(2)求条件概率密度刼x(y|dkx.fg y) = \0 < x < y < 1其他X1P1 233Y -1 0 1 P1 31 31 36.(09-22)袋了中装冇1个红球,2个黑球和3个白球,现冇放回地从袋了中取2次,每次取一个球.以X, Y, Z分别代表两次取球所取得红球,白球,黑球的个数.⑴求p{x = 1|Z = o};(2)求二维随机变量X, Y的概率分布.7.(08-22)设随机变量X1JY相互独立,X的概率密度为P{X =/} = !(/= -1,0,D,Y的概率密度为从小蠶F,记Z二X+Y.(1)求P<Z<^X=ol;(2)求Z 的概率密度/z(z).8.(07-10)设随机变量X和Y服从二维正态分布,HX和Y不相关,f x (x), f Y(_y)分别表示X 和Y的概率密度,则在Y = y的条件下,X的条件概率密度/xygy)为()(A) f x(x)(B) f Y (y) (C)/x(x)/r(y) (D)吕#9.(07-16)在区间(0,1)中随机选择2个数,贝I」这两个数之差的绝对值小于+的概率为.10・(07・22)设二维随机变量X, Y的概率密度为:2-x- yfi <x< 1,0 < y <0,其他(1)求P{x > 2/};⑵求Z=X+Y的概率密度/z(z).11.(06-6)设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max{x,.y}<l}^.12.(06-22)设随机变量X的概率密度为:—,一1 < x<2/x W =-丄,0 < x < 240,其他令K = X2, F(x, y)为二维随机变最X, Y的分布函数.求1 、(1) Y 的概率密度f Y(y);(2)F --,4 .13.(05-13)设二维随机变量X, Y的概率分布为X/Y 0 1 00.4 a 1b 0」 已知随机事件{x=o}与{X + Y = l}相互独立,则() (A) a=0.2, b=0.3(B)a=0.4, b=0.1(C) a=0.3, b=0.214. (05・22)设二维随机变量X, Y 的概率密度为=〔0,其他(1) (X, Y)的边缘概率密度/x(4/r(.v): ⑵Z=2X-Y 的概率密度/z (z).心)设二维随机变量(X, Y)的概率密度为血)=緩矿^,求呛+切的值.16.(01-11)设某班车起点站上客人数X 服从参数为久伉>0)的泊松分布,每位乘客在中途下车 的概率为p(o<p<l),且中途下车与否相互独立.以Y 表示在中途下车的乘客人数.求: (1) 在发车时有n 名乘客的条件下,中途有m 人下车的概率; (2) 二维随机变量(X, Y)的概率分布. 17设A, B 为两个随机事件,且P(A) =丄,4V [1, A 发生, A = v0, A 不发生,求:(1) 二维随机变量(x,y )的概率分布; (2) Z = X 2 + Y 2的概率分布.18. (99-5)设两个相互独立的随机变SX-U Y 分別服从正态分布N (0,1)和皿1,1),则() (A) p{x + y<o} = -(B) P{x + Y< 1}=丄 (C) p{x-y<o}=丄(D) P {X -Y <\} = -219. 设某仪器由寿命伸位:kh)为X, Y 的两部件组成,(X, Y)的联合分布窗数为:求:(1) 边缘分布函数;(2) 联介概率密度和边缘概率密度; (3) 两部件寿命都超过100h 的概率. 20. 设二维随机变量(X, Y)的概率密度为:(D) a=0.1, b=0.4P(B\A) = y P(A |5) = |,令 v fl, B 发生, r = <0, B 不发生.F (九 j)=-(),其他求:(1) 边缘概率密度; (2) 条件概率密度; (3) p{x > 2|y < 4}21. (13-22)设随机变量X 的概率密度为/(x )=h x2,0<x<3,令随机变量丫二0,其他求:(1) Y 的分布函数; (2) 概率 P{X<Y}.e"v ,O<x< y 0,其他2,X 51 X,1<X<2; 1,X >2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

o
x
(4) 两个常用的分布
1.均匀分布
设 D 是平面上的有界区域, 其面积为 S, 若二 维随机变量 ( X, Y ) 具有概率密度
1 , ( x , y ) D, f ( x, y) S 0, 其他.
则称( X,Y )在D上服从均匀分布.
例6 已知随机变量 ( X , Y ) 在 D上服从均匀分布, 其中D: y, 0 x 1, y 0 x y yx 求 P{ X Y 1 }
其中 pij 0,
pij 1. i 1 j 1


二维随机变量 ( X,Y ) 的分布律也可表示为: X x1 x2 xi Y
y1 y2 yj
p11
p12
p21
p22


pi 1
pi 2


p1 j
p2 j

pij

例1
设(X,Y)的分布律如下,求a的值. X 1 2 3 Y
-1 1
13
0
a 6
14
14
a
2
解:由分布律的性质可知:
1 a 1 1 1 1 2 a 1 a , a 3 6 4 4 3 2 1 所以 a 3
例2
设(X,Y)的分布律为
X Y
1
2
3
0
0.1
0.25
0.1
0.3 0.25
1
0
求 (1) P{ X 0}
(2) P{X 1, Y 2}
i 1

j 1, 2, ,
分别称 pi (i 1, 2,) 和 p j ( j 1, 2,) 为 ( X , Y ) 关于 X 和关于 Y 的边缘分布律.
X
Y
x1 x2 xi
y1
p11
y2
p12


yj
p1 j


p21
p22

p2 j




pi1
pi 2
y
30 F ( x , y ) F ( x 0, y ), F ( x , y ) F ( x , y 0), 即 F ( x , y ) 关于 x 右连续, 关于 y 也右连续.
4 对于任意 ( x1 , y1 ), ( x2 , y2 ), x1 x2 , y1 y2 ,
对于任意固定的y, F ( , y ) lim F ( x , y ) 0; 对于任意固定的x , F ( x , ) lim F ( x , y ) 0;
y
x
F ( ,) x F ( x , y ) 0, lim
y
F ( ,) x F ( x , y ) 1. lim

D1
f ( x , y )dxdy
y
0.5 1
D
2dxdy 2 dxdy
D1 D1
yx
2 SD1
1 1 2 4 2
D1
1
x
x y 1
2.二维正态分布
若二维随机变量 ( X,Y ) 具有概率密度
f ( x, y) 1 2πσ1σ 2 1 ρ
2 1 ( x μ1 )2 2 ρ ( x μ1 )( y μ2 ) ( y μ2 )2 2 2 σ1σ 2 2(1 ρ2 ) σ1 σ2
e
( x , y )
其中μ1 , μ2 , σ1 , σ 2 , ρ为常数, σ1 0, σ 2 0,1 ρ 1, 则称( X ,Y )服从参数为μ1 , μ2 , σ1 , σ 2 , ρ的二维正态分 2 2 ( X ,Y ) ~ N ( μ1 , μ2 , σ1 , σ 2 , ρ). 布.记为
例4
设二维随机变量( X , Y ) 具有概率密度
2e ( 2 x y ) , x 0, y 0, f ( x, y) 其它. 0, (1) 求分布函数 F ( x , y ); ( 2) 求概率 P{Y X }.
(2) 将 ( X,Y )看作是平面上随机点的坐标, y 即有 P{Y X } P{( X ,Y ) G }
0
有 F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 ) 0.
二维离散型随机变量的分布律
设二维离散型随机变量 X ,Y )所有可能取的 ( 值为 ( x i , y j ), i , j 1,2,, 记 P { X x i , Y y j } pij , 随机变量X和Y的联合分布律. i , j 1,2,, 称此为二维离散型随机 变量( X ,Y ) 的分布律, 或

(1) F ( x, y)
y


x
f (u, v) d u d v
y x 2e(2u v) d u d v, x 0, y 0, 0 0 0, 其他.
(1 e2 x )(1 e y ), x 0, y 0. 得F ( x , y ) 0, 其他.
为随机变量 ( X , Y ) 关于X的边缘分布函数.
记为 FX ( x) F ( x, ). 同理令 x ,
称FY ( y) F (, y) P{X , Y y} P{Y y}
为随机变量 ( X,Y ) 关于 Y 的边缘分布函数.
离散型随机变量的边缘分布
的概率是
P {( X ,Y ) G } f ( x , y ) d x d y .
G
例4
设二维随机变量( X , Y ) 具有概率密度
2e ( 2 x y ) , x 0, y 0, f ( x, y) 其它. 0, (1) 求分布函数 F ( x , y ); ( 2) 求概率 P{Y X }.
(2) 性质
10 f ( x, y ) 0.
2
0





f ( x, y) d x d y F (, ) 1.
2 F ( x, y) 3 0 若f ( x , y )在( x , y )连续, 则有 f ( x , y ). xy 4 0 设G是xoy平面上的一个区域点( X ,Y )落在G内 ,
第三章
多维随机变量及其分布
一、重点与难点 二、主要内容 三、往年考题
一、重点与难点
1.重点
二维随机变量的分布( 联合 边缘 ) 有关二维随机变量概率的计算 随机变量的独立性
2.难点
联合概率分布 随机变量函数的分布
二、主要内容
多维随机变量的定义
设 E 是一个随机试验 , 它的样本空间是 , 设 X 1 , X 2 , ,X n是定义在 上的n个随机变量 , 由它们构成的一个向量 ( X 1 , X 2 , ,X n ) , 称为n维 随机向量或n维随机变量。 特别地,当n 2时,即( X 1 , X 2 ),称为二维随 机向量或二维随机变量。
(1) 定义
对于二维随机变量( X ,Y ) 的分布函数F ( x , y ), 如果存在非负的函数 f ( x , y ) 使对于任意 x , y 有 F ( x, y)
f (u, v ) d u d v ,
y
x
则称 ( X ,Y ) 是连续型的二维随机变 , 函数 f ( x , y ) 量 称为二维随机变量( X ,Y ) 的概率密度, 或称为随机 变量 X 和 Y 的联合概率密度 .

(1) 因为
2 4
f ( x, y ) d x d y 1,

所以
0 2 k (6 x y ) d y d x 1 ,
1 k ; 8
( 2) P{ X 1,Y 3} 0 2
1
3
1 3 (6 x y ) d y d x ; 8 8
二维随机变量的分布函数
(1) 定义
设 ( X ,Y ) 是二维随机变量 对于任意实数 x , , y , 二元函数 : F ( x , y ) P{( X x ) (Y y )} P{ X x ,Y y } 称为二维随机变量( X ,Y ) 的分布函数, 或称为随 机变量X 和 Y 的联合分布函数 .
(3) P{X Y 2}
例3 一个袋中有三个球,依次标有数字 1, 2, 2, 从中任取一个, 不放回袋中 , 再任取一个, 设每 次取球时,各球被取到的可能性相等,以 X, Y 分 别记第一次和第二次取到的球上标有的数字 , 求 ( X, Y ) 的分布律. 1 2 2
解 ( X, Y ) 的可能取值为 (1,2), ( 2,1), ( 2,2).
012 42 12 142 pi P{ X xi } 4 7
p j P{Y y j } 4 7 3 7
3 7
连续型随机变量的边缘分布
定义 对于连续型随机变量( X ,Y ), 设它的概率密
度为 f ( x , y ), 由于 FX ( x ) F ( x , ) 记 f X ( x)
f ( x , y ) d x d y
G
YX
G
O

0
y

2e
( 2 x y )
d xd y 1. 3
x
例5 设二维随机变量( X ,Y ) 具有概率密度
k (6 x y ), 0 x 2, 2 y 4, f ( x, y) 其他. 0, (1) 确定常数 k; ( 2) 求 P{ X 1,Y 3}; ( 3) 求 P{ X 1.5}; (4) P{ X Y 4}.
相关文档
最新文档