层次分析法的详细步骤

合集下载

层次分析法的具体步骤

层次分析法的具体步骤

层次分析法的具体步骤(1)建立层次结构模型如上所述,家纺纺织产业实施循环经济评价指标体系可被分为四层,最上层为最高层(目标层),即纺织企业循环经济各个方面的综合水平;第二层为准则层,即相互独立、分别隶属于总系统层的子系统;第三层为指数层,是对准则层的进一步细分和阐述;最底层为指标层,该层隶属于准则层,是对纺织企、Ek循环经济各个方面具体的评价指标。

在层次分析法巾多采用三层分析,即目标层、准则层和指标层。

(2)构造比较判断矩阵根据层次结构模型,通过对某层次中各元素的相对重要性做出比较判断,即对于上一层次某一推则而言,在其下一层次中所有与之相关的元素中依次两两比较,从而得出逐层进行判断评分,进而构成两两判断矩阵,如表6—2所示。

如A1,A2,…,久,在考虑相对上一层准则H:前提下构造判断矩阵H‘—A。

具体的做法是:先将矩阵左侧的指标A1依次与矩阵上边一排所列的指标Al—A。

相对于目标Hf做两两比较,比较结果按AHP法设计的范围标度(表6—3)对它的重要性给予量化,并相应填入矩阵第一行;接着依次用左列指标A2,A3,…,A4重复进行上述比较,以完成矩阵的第二行至第n行。

对于每个准则层以及每个准则下的指标群,进行同样过程,这样也就形成了多级比较判断矩阵。

AHP采用这种标度方法,不仅能克服一些指标和指标子系统无标度情况下无法测量、统计等困难,而且这种标度法有特定的科学依据,这主要表现为:第一。

实验心理学有关研究表明,人们对不同程度刺激的感觉区别,最佳的区别个数为7土2,若取其最大的极限,恰好是9个。

也就是说,人们对某个事物的属性同时进行比较,要使其前后的判断基本保持一致,最多只能对9个不向事物向时进行比较判断。

按照人们惯用的相邻标度差为1的离散标度值确定法,对1—9种事物进行比较判别时,其比例标度恰好为[1,9]间的整数。

第二,人们在估计事物问区别时,习惯采用五种判断表述:相等、较强、强、4硼、绝对强。

若需要更高精度,还可在这五种相邻判断之间做出比较,这样共有9个等级。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。

它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。

本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。

一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。

将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。

例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。

2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。

判断可以基于专家经验、问卷调查或实际数据。

对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。

如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。

3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。

通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。

4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。

一致性是指在两两比较中的逻辑关系的一致性。

通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。

5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。

在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。

二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。

假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。

我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。

2. 构造判断矩阵:对于每个子目标,可以进行两两比较。

层次分析法的操作流程

层次分析法的操作流程

层次分析法的操作流程
层次分析法的操作流程主要包括以下四个步骤:
1.建立递阶层次结构模型:首先,明确决策的目标,然后将决策的目标、
考虑的因素(决策准则)和决策对象按照他们之间的相互关系分为最高层、中间层和最低层。

最高层是决策的目的、要解决的问题,通常只有一个因素;最低层是决策时的备选方案或对象层;中间层是考虑的因
素、决策的准则,可以有一个或多个层次。

当准则过多时,应进一步分解出子准则层。

这样,就形成了一个递阶层次结构模型。

2.构造判断矩阵:从层次结构模型的第二层开始,对于从属于(或影响)
上一层每个因素的同一层诸因素,用成对比较法和1~9比较尺度构造成对比较阵,直到最下层。

这一步是为了确定各因素之间的相对重要性。

3.层次单排序及一致性检验:对于每一个成对比较阵,计算其最大特征根
及对应特征向量,然后利用一致性指标、随机一致性指标和一致性比率进行一致性检验。

若检验通过,则特征向量(归一化后)即为权向量;
若不通过,则需重新构造成对比较阵。

这一步的目的是确定各因素或方案的权重。

4.层次总排序及一致性检验:在完成各层次单排序的基础上,计算各层元
素对系统目标的合成权重,并进行总排序。

最后,对排序结果进行一致性检验。

这一步是为了得出各备选方案对于目标的排序权重,从而进行方案选择。

层次分析法是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法,它将决策者的经验判断与定量分析结合起来,能够有效地应用于那些难以用定量方法解决的课题。

在操作过程中,需要注意保持层次结构的清晰和逻辑连贯,同时确保判断矩阵的一致性和准确性。

层次分析步骤汇总

层次分析步骤汇总

层次分析步骤汇总层次分析法(Analytic Hierarchy Process, AHP)是一种常用的决策分析方法,主要适用于多目标、多因素的决策问题。

该方法通过对决策问题进行分层和层次化处理,并对不同层次的因素进行权重分配和层次决策,最终得到最优方案。

以下是层次分析的步骤汇总:步骤一:问题建模首先需要把复杂的决策问题建模,将问题分解成多层的结构,将决策问题描述为一组准则和指标,同时建立每个指标与标准的关系,从而形成决策层次结构。

这个过程需要对决策问题进行严格的描述,而且对问题模型的建立需要考虑实际问题的特点、复杂程度以及数据的可获得性等多个因素。

步骤二:构造判断矩阵在建立完层次结构后,需要对层次结构中每一对相邻的因素进行比较,得出判断矩阵。

判断矩阵是一个关于因素之间关系的数学表达式,揭示了因素之间的相对重要性,最终形成一个权重矩阵。

步骤三:计算判断一致性因为判断矩阵的构造存在主观性,所以需要对判断矩阵的一致性进行检验。

通过计算一致性指标 CR(Consistency Ratio),来评估判断矩阵的一致性。

如果 CR 值小于等于0.1,则可以认为该矩阵是具有较高信度和一致性的。

步骤四:计算权重向量根据判断矩阵和 CR 值计算权重向量,用于表示每个因素相对于上一级因素的重要程度。

具体计算出来的权重向量可以用于计算每个因素在目标指标集中具有的综合得分。

步骤五:计算一致性检验在计算权重向量之后,可以通过计算一致性检验来检测上述步骤是否有误,包括判断矩阵、CR 和权重向量。

如果检验结果符合要求,则可用于评估因素的重要性及最终的决策结果。

步骤六:进行灵敏度分析当权重矩阵中存在误差时,就需要进行灵敏度分析,探讨这种误差对决策结果的影响。

通过改变权重矩阵的自变量,可以测量对因变量的影响。

在错误或违反合理性的情况下,灵敏度分析可以揭示某些因素对最终决策结果具有明显的影响。

总结层次分析法是一种多因素、多目标决策问题应用比较广泛的方法,可以广泛应用于各种涉及多个因素的决策问题中。

层次分析法步骤

层次分析法步骤

层次分析法步骤层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于多准则决策的定量分析工具,可以帮助决策者以一种系统化的方法比较和评估不同准则和选择之间的重要性。

它由美国数学家托马斯·L·塞蒂(Thomas L. Saaty)于20世纪70年代初提出,并逐渐得到广泛应用。

层次分析法的基本思想是将复杂的决策问题分解为多个层次,并在每个层次上进行比较和评估,最后得出一个综合的决策方案。

整个分析过程包括以下几个步骤:1.确定目标和准则:首先需要明确决策的目标以及与之相关的准则。

目标是决策问题的总体要求,而准则则是用来评估和比较不同选择的标准。

2.建立层次结构:将决策问题分解为层次结构,利用层次结构可以清晰地表示不同层次之间的关系。

层次结构由目标层、准则层和选择层组成。

目标层位于最高层,准则层位于中间层,选择层位于最底层。

3.构建判断矩阵:通过对不同层次的元素两两进行比较,构建判断矩阵。

判断矩阵中的每个元素表示一些准则或选择相对于其他准则或选择的重要性。

判断矩阵需要满足一致性要求,即矩阵的特征向量要满足一致性指标。

4.计算权重向量:通过对判断矩阵进行特征值分解,可以得到特征向量。

特征向量表示各个准则或选择的重要性权重,可以用于比较和评估不同准则和选择之间的优先级关系。

5.一致性检验:对于判断矩阵的一致性要求需要进行检验,通常使用一致性指标和一致性比率来评估判断矩阵的一致性程度。

如果判断矩阵的一致性指标超过了一些阈值,就需要重新调整判断矩阵,直到满足一致性要求为止。

6.综合评估和决策:根据权重向量可以对不同准则和选择进行综合评估,计算出每个选择的得分。

最终选择具有最高得分的方案作为决策方案。

7.灵敏度分析:对比不同决策方案的得分,可以进行灵敏度分析,评估权重向量的变动对决策结果的影响程度。

层次分析法兼容主观和客观因素,能够定量评估和比较不同准则和选择之间的重要性,提高决策的科学性和准确性。

层次分析法

层次分析法

e1
1 4.511
0.778
0.172
,
3 0.665
0.4 6 7 e2 Ae1 0.565, e2 3.014,
1.9 9 1
01.55 0.471 e2 0.184, e3 0.559, e3 3.018,
0.661 1.988
0.156 0.473 e3 0.185, e4 0.561,
(4)定义未知参数 在这种问题中,运用层次分析法建立表达式 来表达未曾定义过的量。典型的例子是价值 工程,产品的价值V被定义为
VF C
其中F,C分别为产品的功能系数与成本系数, 它们可以用层次分析来定义。下面是一个 经济学例子。
例5 弹性系数的确定 经济学中有名的Cobb-Douglas生产函 数是
e (1,2,,n )T ,则权系数可取: wi i ,i 1,2,, n
在具体计算中,当
ek 与ek 1
接近到一定程度时,就取 e ek
例1 评价影视作品的水平, 用以下三个变量作评价指标 :
x1 教育性,x2 艺术性,x3 娱乐性
设有一名专家赋值:
x2 1, x3 5, x3 3
w1, w2 ,, wn
这 n 个常数便是权系数, 层次分析法给出了确定它们 的量化方法,其过程如下:
1.成对比较
从x1, x2,, xn中任取xi , xj ,比较它们
对y贡献的大小,给xi xj 赋值如下:
xi
xj
1,当认为“xi与x
贡献程度相同”时
j
xi
xj
3,当认为“xi比x
的贡献略大”时
x1
的概率估值为0.134+0.219+0.026=0.379,

层次分析法步骤

层次分析法步骤

层次分析法步骤一、准备阶段1、定义分析目标。

泛化层次分析法是一种比较主观的方法,用于评估潜在变量或多个变量之间的关系。

在这种情况下,需要确定分析的目标,也就是对变量之间的关系进行分析,了解情况的发展趋势、分析变量的稳定性或不稳定性等。

2、选择分析变量。

分析变量是用来衡量指标的变量,可以为定性变量或定量变量,而且根据研究需要精选变量数量。

3、数据收集。

利用特定的数据收集工具收集相关信息,以便对变量进行分析。

二、建模阶段1、构建层次结构。

首先,要明确需要分析的参数,并将参数归类成不同的层次。

这将是建模和构建层次结构的基础。

2、选择比较参数。

选择可以产生有效的结果的参数作为比较参数,以估算不同层次之间或相同层次之间变量的重要程度。

3、定量化变量并建立模型。

将变量定量化,并根据层次结构和参数选择建立模型,以获得有意义的结果。

三、结果分析阶段1、模型结果检查。

在建模阶段产生的模型结果中,需要检查模型结果。

检查是要确定模型的准确性,检查模型是否满足该分析的要求。

2、变量重要性重要性是指分析中衡量变量重要性的指标,是指由变量的框架和公式组成的模型的可靠性和准确性。

3、层次分析。

层次分析旨在定量的相关变量之间的层次结构的优先关系和重要性。

4、数据可视化。

为了更加清楚地描述结果,需要图形表示,比如柱状图、折线图或饼型图等进行数据可视化。

五、结论根据层次分析法的结果,可以总结出变量的重要性,分析变量的层次之间的关系,用图表的形式表示数据的可视化,更加清楚地为研究者提供了一种量化测量变量之间关系的方法。

层次分析法步骤范文

层次分析法步骤范文

层次分析法步骤范文1.问题分解:第一步是将决策问题进行合理的分解,将复杂的问题分解成一系列相对简单的子问题。

2.构造层次结构:在层次分析法中,层次结构是由目标、准则、指标和方案组成的。

目标是决策问题的最终目的,准则是评价和选择方案的标准,指标是用于评价和选择方案的具体指标,方案是待选方案。

在构造层次结构时,应该首先确定目标,然后确定相应的准则、指标和方案。

3.确定权重:在确定权重时,需要使用专家判断法或问卷调查等方法。

专家判断法是指邀请相关领域的专家给出权重,而问卷调查则是通过收集大量的样本数据来计算权重。

4.计算权重:在层次分析法中,通过对准则两两之间的比较以及指标和方案相对于准则的比较,可以得到一个比较矩阵。

比较矩阵的元素表示准则或指标相对于其他准则或指标的重要程度。

通过对比较矩阵进行一些数学运算,可以得到各个准则和指标的权重。

5.一致性检验:在层次分析法中,一致性检验是为了检查专家判断的一致性。

一致性的检验通常使用一致性指标来衡量,最常用的一致性指标是Consistency Index(CI)和Random Index(RI)。

一致性指标的计算公式为:CI=(λmax-n)/(n-1),其中λmax是比较矩阵的最大特征根,n是比较矩阵的阶数。

6.结果分析:在层次分析法中,通过计算得到的权重可以进行分析和决策。

可以比较不同方案的权重,选择最优方案。

此外,还可以通过调整比较矩阵中的元素,重新计算权重,来进行灵敏性分析。

总的来说,层次分析法是一种结构化的决策方法,它通过将复杂的决策问题分解成一系列相对简单的子问题,通过构造层次结构、确定权重、计算权重、一致性检验和结果分析等步骤,帮助决策者做出合理的决策。

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点层次分析法(Analytic Hierarchy Process, AHP)是一种用于解决复杂决策问题的定量分析方法,它通过构建一个层次结构,对不同因素进行定量比较和权重分配,以便对不同方案进行排序和选择。

以下是层次分析法的基本步骤和要点:1.确定问题及目标:首先要明确决策问题,并确定具体的目标。

问题应该明确、具体和可操作,目标要清晰明确,以便为后续步骤提供指导。

2.建立层次结构:将决策问题按照一定的层次结构进行划分和组织,形成一个决策层次结构。

层次结构应该包含目标层、准则层和方案层,每一层包含若干个因素或指标。

3.构建判断矩阵:对于每一层的因素或指标,通过一对一的比较,构建判断矩阵。

判断矩阵是一个正互反矩阵,矩阵中的元素表示各个因素之间的相对重要性。

比较的方式可以用语言描述、对比法、比例尺法或者问卷调查等方法。

4.计算特征向量:对于判断矩阵,可以通过特征值分解的方法求得其最大特征值和对应的特征向量,特征向量表示各个因素的权重。

5. 一致性检验:通过计算一致性指标(Consistency Index, CI)和一致性比率(Consistency Ratio, CR),检验判断矩阵的一致性。

如果CR小于0.1,则判断矩阵合理,否则需要进行修正。

6.权重分配:将特征向量中的权重归一化,得到各个因素的权重比例。

从目标层到准则层再到方案层,逐层进行权重分配。

7.一致性检验和修正:对层次结构中的不同层次进行一致性检验,并修正不一致的地方。

8.综合评价和排序:通过加权求和的方式,将各个方案得到的权重与各个层次的权重进行综合,得到各个方案的最终得分,从而对方案进行排序和选择。

要点:-层次分析法是逐层进行的,每层次的因素必须具备互斥、完备和排他的性质。

在构建层次结构时,应注意每一层次的因素之间的关系和层次之间的逻辑关系。

-在比较因素之间的重要性时,应该主观客观相结合,充分考虑专家经验和实际情况。

层次分析法步骤介绍

层次分析法步骤介绍

层次分析法整个计算过程包括以下五个部分。

(1)建立递阶层次结构应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。

[25]通常,递阶层次结构包括以下三个基本层次:1.目标层:通过分析,明确目标是什么,将其作为最高层的元素,必须是唯一的,如:选择最合适的供应商2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂程度增多。

这时,需要详细分析各准则元素间的相互关系(是同级关系还是隶属关系)。

如果是隶属关系,则需要构建子准则层甚至更下一层准则。

3.措施层:即方案层。

分析解决问题的方案有哪些,并将其作为最底层因素。

(2)构造判断矩阵并赋值1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。

2.填写判断矩阵:最常用的方法是咨询专家,将两个元素两两比较,按照重要性程度表赋值(见下表)。

表3 重要性标度含义表设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下三个性质:1.a ii=12.a ji=1/a ij3.a ij>0(3)层次单排序与检验1.层次单排序利用数学方法将专家填写后的判断矩阵进行层次排序。

层次单排序是将每一个因2素对于其准则的重要性进行排序,实际就是计算权向量。

计算权向量有特征根法、和法等,以下详细介绍特征根法的计算方法。

A. 计算判断矩阵每一行元素的乘积∏==nj ij i a M 1 (3.2)式中:M i 第i 行各元素的乘积a ij 第i 个元素与第j 个元素的关系比值B. 计算Mi 的n 次方根n i i M W = (3.3)式中:W i 第i 行各元素的乘积的n 次方根M i 第i 行各元素的乘积C. 对向量正规化(归一化处理)∑==ni i ii W W W 1 (3.4)式中:i W 特征向量W i 第i 行各元素的乘积的n 次方根D. 计算判断矩阵的特征根 j nj ij i W a ∑-=1λ (3.5) 式中:λi 第i 个特征根 a ij 第i 个元素与第j 个元素的关系比值W j 第j 个特征向量E. 计算判断矩阵的最大特征根∑=⨯=n i i iW n 1max λλ (3.6) 式中:λmax 最大特征根λi 特征根n 判断矩阵的阶数W 特征向量2. 层次单排序一致性检验需要特别注意:在层层排序中,要对判断矩阵进行一致性检验。

(完整word版)层次分析法步骤

(完整word版)层次分析法步骤

利用层次分析进行风险分析的过程共有5个步骤: 1、建立递阶层次结构模型自上而下通常包括目标层、准则层和方案层,其中目标层是指层次结构中的最高层次,是管理者所追求的最高目标。

准则层是指评判方案优劣的准则,可再细分为子准则层、亚准则层.方案层是指可实行的方案等。

2、就用两两比较法构造比较判断矩阵比较判断矩阵是层次分析的核心,是以上一层某个要素Hs 作为判断标准,对下一层次要素进行两两比较确定的元素值。

例如,在Hs 判断标准下有n 个要素,是对于Hs 准则可得到阶的比较判断矩阵A=(aij )nXn.()()()。

,,,,,,,,。

须进行一致性检验进行决策前利用估计的判断矩阵因此第四条性质不一定满足也就是比较判断矩阵的而存在估计误差一致性不可能做到判断的完全制评价者知识和经验的限由于采用两两比较时因素然而人们对复杂事物各性则该矩阵具有完全一致具有如下性质比较判断矩阵因此的重要性的权重目标一准则个要素对于上一层次某表示某层第即要性的相对重对要素的角度考虑要素表示从判断准则比较判断矩阵中元素jkik ijijjiijii s jijiij j i s ij a a ;a;a a ;aa :A ,。

H j i w ,w w w a ,A A H a =≥===011((1)确定判断准则(九级标度两两比较评分标准)(2)构造判断矩阵3、确定项目风险要素的相对重要性,并进行一致性检验专家对各风险因素进行两两比较评分后,需要知道A 关于HS 的相对重要度,即A 关于HS 的权重、排序和一致性检验,计算如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=......................)1(21222211nn n n n n 1211a a a a a a a a a A ,A 设比较判断矩阵重这也是各因素的相对权的特征向量首先确定判断矩阵()()[]()[]()()[]。

i AW AW nW AW :D 、W W W W ,,,,n ,i WW WW W W W C 、,,,,n ,i ,b B 、,,,,n ,i ,aa b :A A 、i ni iiTn ni iiiTnnj iji ni ijijij 分量的第为向量矩阵征值计算判断矩阵的最大特即为所求的特征向量则归一化将向量判断矩阵按行相加每一列经过归一化后的的每一列归一化将判断矩阵和积法∑∑∑∑=============1max 2112111...21:,...2121*λW :.,,1.0.........\..,.,.,,,.,,1.0..,,..;,0..,1..)2(maxmax 判断否则重新进行两两比较可以接受认为判断矩阵的一致性即只要指标的为衡量判断矩阵一致性并取更为合理的见下表于是引入修正值致性的要求故应放宽对高维矩阵一判断一致性将越差判断矩阵的维数越大判断否则重新进行两两比较可以接受认为判断矩阵的一致性要一般只越差判断矩阵的完全一致性值越大为完全一致当即计算一致性指标须进行一致性检验因此每一个要素满足阵并不能使得比较判断矩不是很精确由于判断矩阵是估计的如前所述一致性判断≤=≤==--==R C I R I C R C R C I R I C I C I C n n nI C :,,,a aa ,,,jkik ij λλ4、计算综合重要度以上分析只得出相对重要度,因此在层次分析法中,还需要计算同一层次所有要素对最高层次(总标准)进行排序,方法是从最上层开始,自上而下地求出各层要素关于总体的综合重要度。

层次分析法的计算步骤

层次分析法的计算步骤

层次分析法的计算步骤层次分析法(Analytic Hierarchy Process, AHP)是一种用于多准则决策的定量分析方法,由美国学者Thomas L. Saaty于1970年代提出。

它通过将一个复杂的多准则问题分解为一系列的层次结构,然后利用专家判断来确定每个层次的权重以及相对优先级,最终得出最佳决策。

下面将详细介绍层次分析法的计算步骤。

1.确定决策的目标和准则:首先明确决策的目标,以及实现这一目标所需的准则。

例如,如果我们要决定购买一台新的汽车,目标可能是选择性价比最高的汽车,准则可能包括价格、燃油经济性、安全性、舒适性等。

3.构建判断矩阵:为了确定每个层次之间的重要性比较,需要构建判断矩阵。

判断矩阵是一种由专家根据经验、知识或直觉所得到的关于准则之间相对重要性的矩阵。

对于每个层次,需要构建一个判断矩阵。

例如,在准则层次,专家需要判断每个准则与其他准则之间的相对重要性。

4.对判断矩阵进行标准化:将判断矩阵进行标准化是为了消除专家主观性的影响。

标准化的方法可以有多种,最常用的方法是将每列元素除以该列元素之和,使每列元素之和等于15.计算权重向量:通过对标准化的判断矩阵进行特征值分解,可以得到特征值和对应的特征向量。

特征向量的元素表示各个准则相对于目标的权重。

为了保证权重之和等于1,需要将特征向量进行归一化。

归一化的方法是将每个元素除以所有元素之和。

6.一致性检验:进行一致性检验是为了评估专家的判断是否一致和合理。

一致性指标(Consistency Index, CI)是用来度量判断矩阵的一致性程度的指标,其计算方法为CI=(λmax-n)/(n-1),其中λmax为最大特征值,n为准则数目。

为了验证判断矩阵的一致性,还需要计算一个随机一致性指标(Random Index, RI)作为对照。

如果CI<0.1,则认为判断矩阵是一致的。

7.一致性修正:如果判断矩阵不一致,可以通过进行一致性修正来提高一致性。

层次分析法(AHP)具体步骤

层次分析法(AHP)具体步骤

层次分析法(AHP)具体步骤:
明确问题
在分析社会、经济的以及科学管理等领域的问题时,首先要对问题有明确的认识,弄清问题的范围,了解问题所包含的因素,确定出因素之间的关联关系和隶属关系。

层次分析法(AHP)具体步骤:
递阶层次结构的建立
根据对问题分析和了解,将问题所包含的因素,按照是否共有某些特征进行归纳成组,并把它们之间的共同特性看成是系统中新的层次中的一些因素,而这些因素
本身也按照另外的特性组合起来,形成更高层次的因素,直到最终形成单一的最高层次因素。

最高层是目标层
中间层是准则层
……..
最低层是方案层或措施层
建立两两比较的判断矩阵
判断矩阵表示针对上一层次某单元(元素),本层次与它有关单元之间相对重要性的比较。

一般取如下形式:
Cs p1p2……p n
p1b11b12 (1)
p2b21b22 (2)
………………………………
p n b n1b n2……b nn
在层次分析法中,为了使判断定量化,关键在于设法使任意两个方案对于某一准则的相对优越程度得到定量描述。

一般对单一准则来说,两个方案进行比较总能判断出优劣,层次分析法采用1-9标度方法,对不同情况的评比给出数量标度。

判断矩阵B具有如下特征:
o b ii = 1
o b ji = 1/ b ij
o b ij = b ik/ b jk
(i,j,k=1,2,….n)
判断矩阵中的b ij是根据资料数据、专家的意见和系统分析人员的经验经过反复研究后确定。

应用层次分析法保持判断思维的一致性是非常重要的,只要矩阵中的b ij满足上述三条关系式时,就说明判断矩阵具有完全的一致性。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。

该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。

本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。

一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。

下面将详细介绍每个步骤。

1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。

通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。

2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。

通常,层次结构包括目标层、准则层和方案层。

目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。

3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。

判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。

通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。

根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。

4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。

常用的计算方法包括特征向量法、层次递推法和最大特征值法等。

根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。

5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。

一致性指标主要包括一致性比率和一致性指数。

一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。

如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。

二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。

假设你准备进行一次旅行,有三个备选目的地:A、B和C。

层次分析法的详细步骤

层次分析法的详细步骤

每一层中的各因素对上一层因素的相对重要性可以用问题1中的方法确 定,由层次关系可以计算出措施层各方案最高层的相对权重,从而给出 各方案的优劣次序。
层次单排序
不同准则对目标的影响已经在问题1中得到了解决,现假定不同措施 对各准则的影响如下:
1.不同措施对调动职工劳动生产积极性影响的成对比较矩阵 (12)
问题1
某工厂在扩大企业自主权后,厂领导正在考虑如何合理地使用企业留 成的利润。在决策时需要考虑的因素主要有
(1) 调动职工劳动生产积极性; (2) 提高职工文化水平; (3) 改善职工物质文化生活状况。
请你对这些因素的重要性进行排序,以供厂领导作参考。
分析和试探求解
这个问题涉及到多个因素的综合比较。由于不存在定量的指标,单凭 个人的主观判断虽然可以比较两个因素的相对优劣,但往往很难给出一 个比较客观的多因素优劣次序。为了解决这个问题,我们能不能把复杂 的多因素综合比较问题转化为简单的两因素相对比较问题呢?运筹学家 想出了一个好办法:首先找出所有两两比较的结果,并且把它们定量 化;然后再运用适当的数学方法从所有两两相对比较的结果之中求出多
决策。
解答
划分层次 显然这是一个多目标的决策,问题涉及到许多因素,各种因素的作用
相互交叉,情况比较复杂。要处理这类复杂的决策问题,首先需要对问 题所涉及的因素进行分析:哪些是要相互比较的;哪些是相互影响的。 把那些要相互比较的因素归成同一类,构造出一个各因素类之间相互联 结的层次结构模型。各因素类的层次级别由其与目标的关系而定。在上 述问题中,因素可以分为三类:
一致性的缺少是造成两种类比方法结果不同的原因。利用最小二乘法 可以证明:用求解特征方程得到的权重向量平均误差较小。因此我们最 好采用这个方法来求解权重向量。

层次分析法步骤介绍

层次分析法步骤介绍

层次分析法步骤介绍层次分析法是一种用于多因素决策分析的常用方法,可以帮助我们更好地处理决策问题。

下面,我们将介绍层次分析法的步骤。

步骤一:构建指标体系题目所涉及的各种因素需要先确定一个指标体系。

指标体系就是一些可以考核、量化和评分的指标,它可以用于衡量问题的不同方面。

例如,如果你要进行人才选拔的决策,可以设置以下几个指标:知识技能水平、工作态度、适应能力等。

步骤二:建立判断矩阵在确定好指标体系后,我们需要通过对指标两两之间的比较,建立一个判断矩阵。

这个矩阵表示各因素之间的重要性关系。

每一列都代表一个指标,每一行则代表这个指标相对于其他指标的权重值。

在这一步骤中,我们需要根据经验、专业知识或实测数据来确定各项因素之间的权重。

步骤三:计算加权平均值一旦确定了判断矩阵,接下来我们需要将判断矩阵中的值代入计算公式。

这一步需要计算每一列的加权平均值,加权平均值是指在各指标权重下,各行的值的加权总和。

步骤四:计算一致性检验指标在计算加权平均值后,我们还需要计算一致性检验指标。

一致性检验指标代表了矩阵的整体一致性程度。

如果一致性检验指标达到一定要求,则认为该判断矩阵具有较高的精度。

否则需要重新调整判断矩阵。

步骤五:反复调整以获取最优矩阵如果一致性检验指标低于要求,我们需要反复调整权重值和比较两两指标,直到一致性检验指标达到要求为止。

当然,这个过程需要基于专业知识和经验,并且需要经过多次计算和比较。

步骤六:应用结果最后,我们需要应用层次分析法计算得出的结果,进行决策分析。

根据得出的本质指标,我们可以比较各选项的差异,以选择最佳的因素组合或最优的决策方案。

层次分析法是一种较为常用的决策分析方法,可以帮助我们更好地理解和处理决策问题。

当然,该方法的应用需要基于相关的专业知识和经验,并且需要注意判断矩阵的一致性问题。

层次分析法实施的步骤

层次分析法实施的步骤

层次分析法实施的步骤概述层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决复杂决策问题的数学模型和方法。

它通过层次化的结构来分析问题,并对各个因素进行权重的判断和排序,最终得出最佳的决策结果。

在实施AHP时,按照以下步骤进行操作。

步骤一:明确问题及目标在实施AHP之前,首先需要明确解决的问题以及所需达到的目标。

这个步骤是决策过程的起点,只有明确了问题和目标,才能有效地进行后续的分析和判断。

步骤二:建立层次结构在明确了问题和目标后,接下来需要建立问题的层次结构。

层次结构是将问题划分为一系列具有层次关系的因素和子因素,形成一个树状结构。

这样做的目的是为了明确问题的结构和因素之间的依赖关系,便于后续的分析和权重判断。

步骤三:构造判断矩阵判断矩阵是AHP的核心工具,用于判断不同因素和子因素之间的相对重要性。

在这一步骤中,需要对每个因素和子因素进行两两比较,根据相对重要性进行评分。

为了进行比较,需要设置一个评分标准,通常使用1到9的数字表示相对重要性,其中1表示相对重要性相等,9表示相对重要性极高。

根据个人对比较的感觉,对每个因素和子因素进行配对比较,填写判断矩阵。

步骤四:计算权重向量在构造判断矩阵后,需要对判断矩阵进行计算,得出每个因素和子因素的权重。

一般使用特征向量法来计算权重向量。

首先,将判断矩阵的每一列进行归一化处理,然后计算归一化后矩阵的特征向量。

特征向量的计算可以使用特征值法或一致性指标法。

最后,得出的特征向量即为权重向量。

步骤五:一致性检验在计算权重向量后,需要进行一致性检验。

一致性检验是判断所构造的判断矩阵是否满足一致性要求的过程。

如果一致性比率超过一定阈值,则需要调整判断矩阵,重新进行计算。

一般情况下,可以计算判断矩阵的一致性指标CI和一致性比例CR。

如果CR 小于0.1,则判断矩阵通过一致性检验,可以继续进行后续的分析和决策。

步骤六:综合判断和决策在计算了权重向量并通过一致性检验后,可以将得到的权重向量应用于问题的层次结构中。

层次分析法的具体步骤

层次分析法的具体步骤

层次分析法的具体步骤
层次分析法是一种多因素决策方法,其具体步骤如下:
1. 确定决策目标:明确决策的目标,确定需要选择的方案或选项。

2. 列出准则:对于每个可选方案,列出与目标相关的准则或要素。

这些准则应该是可以量化的,例如成本、效益、质量等等。

3. 构建层次结构:将需要比较的准则按照层次结构排序。

通常情况下,决策目标位于最高层,准则位于下一级,再下一级是具体的备选方案。

这种结构可以用一个树状图表示。

4. 建立判断矩阵:对于每个准则与备选方案之间的重要程度或权重,依据专家意见和实际情况构建判断矩阵。

5. 计算权重向量:通过计算判断矩阵的特征向量,得到每个准则和备选方案的权重。

6. 一致性检验:对于每个准则和备选方案,验证其在判断矩阵中的数值是否一致。

若不一致,则需要对判断矩阵进行修正,重新计算权重向量,直至满足一致性要求为止。

7. 得出结论:根据各个备选方案的权重值,确定最优解或多个备选解,并进行评价和比较以做出最终决策。

总之,层次分析法可以帮助人们在复杂的多因素决策过程中,合理地评估各种因素的重要程度,提高决策的科学性和准确性。

层次分析法的具体实施步骤

层次分析法的具体实施步骤

层次分析法的具体实施步骤引言层次分析法(Analytic Hierarchy Process,AHP)是一种用于多因素决策的定量方法。

它于1970年由美国运筹学家托马斯·L·赛蒂斯(Thomas L. Saaty)提出,被广泛应用于决策分析、评估以及资源分配等领域。

本文将介绍层次分析法的具体实施步骤,以帮助读者快速理解和应用该方法。

步骤一:明确决策目标在使用层次分析法进行决策之前,首先需要明确决策的目标。

这个目标应该是明确的、可操作的,并且对于决策者来说具有一定的重要性。

步骤二:构建层次结构在明确了决策目标之后,下一步是构建层次结构。

层次结构是指将决策问题拆分为一系列层级的因素,以及这些因素之间的关系。

通常,层次结构由目标层、准则层和方案层组成。

2.1 目标层目标层是决策问题的最高层级,代表决策的最终目标。

在这一层级上,需要明确决策的总体目标是什么。

2.2 准则层准则层是决策目标下一级的层次,代表实现目标的准则和要素。

在这一层级上,需要列出能够影响决策目标实现的所有准则,并对其进行量化。

2.3 方案层方案层是决策问题的最底层,代表可选择的决策方案。

在这一层级上,需要列出所有可以选择的方案,并且对每个方案进行量化和评估。

步骤三:建立判断矩阵建立判断矩阵是层次分析法的核心步骤之一。

判断矩阵用于评估在不同层级之间的因素之间的相对重要性。

通过对判断矩阵的填写和计算,可以确定每个因素相对于其他因素的权重。

3.1 构建准则层判断矩阵在准则层,需要对每个准则两两进行比较,以确定它们之间的相对重要性。

比较可以用数字(1-9)来表示,其中1表示两个因素完全相同的重要性,9表示其中一个因素比另一个因素极其重要。

3.2 构建方案层判断矩阵在方案层,需要对每个方案两两进行比较,以确定它们之间的相对优劣。

同样地,比较可以用数字来表示。

步骤四:计算权重向量在建立了判断矩阵之后,下一步是计算权重向量。

权重向量用于表示每个因素相对于其他因素的重要性,是决策结果的依据。

层次分析法步骤

层次分析法步骤

层次分析法步骤层次分析法是一种多因素决策分析方法,它通过比较不同因素对决策目标的影响程度来确定最优的决策方案。

该方法在各个领域中被广泛应用,如项目管理、市场调研、风险评估等。

层次分析法主要分为以下几个步骤:第一步:明确决策目标在使用层次分析法进行决策之前,首先需要明确决策目标。

决策目标可以是一个具体的问题,也可以是一项任务或一项计划。

第二步:确定准则和因素在确定决策目标之后,需要确定相关的准则和因素。

准则是评价决策目标的标准,而因素是影响决策目标实现的因素。

第三步:建立层次结构在第二步确定的准则和因素之间可能存在着复杂的关系,需要建立一个层次结构来明确它们之间的关系。

层次结构是由上级准则到下级准则、因素组成的一个树状结构。

第四步:建立判断矩阵建立了层次结构之后,需要对各个因素进行比较和评价。

使用判断矩阵可以将比较和评价过程转化为数值计算。

判断矩阵是一个方阵,其中的元素表示两个因素之间的相对重要性。

第五步:计算权重向量通过对判断矩阵进行数值计算,可以得到一个权重向量,用来表示各个因素对决策目标的重要程度。

权重向量的计算可以采用特征向量法或最大特征值法。

第六步:一致性检验在计算完权重向量之后,需要对判断矩阵进行一致性检验,以确定计算结果的可靠性。

一致性检验可以采用一致性指标和一致性比率来进行。

第七步:综合评价和决策通过将各个因素的权重与其对决策目标的评价结果进行综合,可以得到对各个方案的比较和评价结果。

根据这些结果,可以进行最终的决策。

层次分析法的实施过程中需要注意以下几点:首先,判断矩阵的建立应该充分考虑到实际情况,尽量减少主观因素的影响;其次,一致性检验是确保决策结果可靠的关键步骤,应该进行认真的分析和判断;最后,由于层次分析法涉及到大量的比较和评价,因此需要有足够的数据支持和专业知识。

总之,层次分析法是一种有效的决策分析方法,可以帮助人们在面对复杂的决策问题时做出合理的决策。

通过明确决策目标、确定准则和因素、建立层次结构、建立判断矩阵、计算权重向量、进行一致性检验以及综合评价和决策,可以得到最优的决策方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析方法问题1某工厂在扩大企业自主权后,厂领导正在考虑如何合理地使用企业留成的利润。

在决策时需要考虑的因素主要有(1)调动职工劳动生产积极性;(2)提高职工文化水平;(3)改善职工物质文化生活状况。

请你对这些因素的重要性进行排序,以供厂领导作参考。

分析和试探求解这个问题涉及到多个因素的综合比较。

由于不存在定量的指标,单凭个人的主观判断虽然可以比较两个因素的相对优劣,但往往很难给出一个比较客观的多因素优劣次序。

为了解决这个问题,我们能不能把复杂的多因素综合比较问题转化为简单的两因素相对比较问题呢?运筹学家想出了一个好办法:首先找出所有两两比较的结果,并且把它们定量化;然后再运用适当的数学方法从所有两两相对比较的结果之中求出多因素综合比较的结果。

具体操作过程如下:1) 进行两两相对比较,并把比较的结果定量化。

首先我们把各个因素标记为B1:调动职工劳动生产积极性;B2:提高职工文化水平;B3:改善职工物质文化生活状况。

根据心理学的研究,在进行定性的成对比较时,人们头脑中通常有5种明显的等级:相同、稍强、强、明显强、绝对强。

因此我们可以按照下表用1~9尺度来定量化。

假定各因素重要性之间的相对关系为:B2比B1的影响强,B3比B1的影响稍强,B2比B3的影响稍强,则两两相对比较的定量结果如下:为了便于数学处理,我们通常把上面的结果写成如下矩阵形式,称为成对比较矩阵。

1231 2 311/51/3 513 31/31 B B BB B B ⎛⎫ ⎪ ⎪ ⎪⎝⎭(1)2) 综合排序为了进行合理的综合排序,我们把各因素的重要性与物体的重量进行类比。

设有n件物体:A1, A2, …, A n,它们的重量分别为:w1, w2, …, w n。

若将它们两两相互比较重量,其比值(相对重量)可构成一个n ×n 成对比较矩阵1,11,21,111212,12,22,21222,1,2,12/////////n n n n n n n n n n n n a a a w w w w w w a aa w ww w w w A aa a w w w w w w ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (2) 经过仔细观察,我们发现成对比较矩阵的各行之和恰好与重量向量 W = (w 1,w 2, …, w n )T 成正比,即1,12,21,j n j j n j n a w a w a w =⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪∝ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑ (3)根据类比性,我们猜想因素的重要性向量与成对比较矩阵(1)之间也有同样的关系存在。

由此,我们可以得到因素的重要性向量为12311/51/323/15513931/3113/3w W w w ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪=∝++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(4)为了使用方便,我们可以适当地选择比例因子,使得各因素重要性的数值之和为1 (这个过程称为归一化,归一化后因素重要性的数值称为权重,重要性向量称为权重向量) ,这样就得到一个权重向量1230.1030.6060.291w W w w ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(5)上式中元素的权重大小给出了各因素重要性的综合排序。

对(2)式的进一步分析还可以发现1,11,21,112,12,22,22,1,2,n n n n n n n n a a a w w a a a w w AW n nW a a a w w ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (6) 这说明W 还是成对比较矩阵A 的特征向量,对应的特征值为n ,理论上已严格地证明了n 是A 的唯一最大特征值。

按类比法,我们也可以用求解特征方程的办法来得到重要性向量。

与(1)式对应的特征方程为11223311/51/351331/31w w w n w w w ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(7)由此可以解出其最大特征值为 n ’=3.038,对应的特征向量为: W ’=(0.105,0.537,0.258)T(8) 一致性检验既然存在误差,我们就需要知道误差的程度到底有多大?会不会影响综合排序的结果?理论上已经证明:对于具有一致性的成对比较矩阵,最大特征值为n ;反之如果一个成对比较矩阵的最大特征值为n ,则一定具有一致性。

估计误差的存在破坏了一致性,必然导致特征向量及特征值也有偏差。

我们用n’表示带有偏差的最大特征值,则n’与n 之差的大小反映了不一致的程度。

考虑到因素个数的影响,Saaty 将CI n nn =--'1(9)定义为一致性指标。

当CI = 0时,成对比较矩阵A 矩阵完全一致,否则就存在不一致;CI 越大,不一致程度越大。

为了确定不一致程度的允许范围,Saaty 又定义了一个一致性比率CR ,当CR CI RI =</.01 (10)时,认为其不一致性可以被接受,不会影响排序的定性结果。

(10)式中R I 值如下表所示应用上面的结果,我们可以算出成对比较矩阵(1)有 CI =0.019,CR = 0.033(11)因此其不一致性可以被接受。

问题2某工厂在扩大企业自主权后,厂领导正在考虑如何合理地使用企业留成的利润。

可供选择的方案有:I 、发奖金;II 、扩建食堂、托儿所;III 、开办职工技校;IV 、建图书馆;V 、引进新技术。

在决策时需要考虑到调动职工劳动生产积极性,提高职工文化水平和改善职工物质文化生活状况等三个方面。

请你对这些方案的优劣性进排序,以便厂领导作决策。

解答划分层次显然这是一个多目标的决策,问题涉及到许多因素,各种因素的作用相互交叉,情况比较复杂。

要处理这类复杂的决策问题,首先需要对问题所涉及的因素进行分析:哪些是要相互比较的;哪些是相互影响的。

把那些要相互比较的因素归成同一类,构造出一个各因素类之间相互联结的层次结构模型。

各因素类的层次级别由其与目标的关系而定。

在上述问题中,因素可以分为三类:第一是目标类,即合理地使用今年企业留利××万元;第二是准则类,这是衡量目标能否实现的标准,如调动职工劳动积极性、提高企业的生产技术水平等等;第三是措施类,指实现目标的方案、方法、手段等等。

按目标到措施自上而下地将各类因素之间的直接影响关系分不同层次排列出来,可以构成一个直观的层次结构图。

如下图所示:每一层中的各因素对上一层因素的相对重要性可以用问题1中的方法确定,由层次关系可以计算出措施层各方案最高层的相对权重,从而给出各方案的优劣次序。

层次单排序不同准则对目标的影响已经在问题1中得到了解决,现假定不同措施对各准则的影响如下:1.不同措施对调动职工劳动生产积极性影响的成对比较矩阵11234512345135471/313251/51/311/221/41/22131/71/51/21/31B C C C C C C C C C C ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(12)其权重向量为:W T 104910232009201380046=(.,.,.,.,.) 2.不同措施对提高职工文化水平影响的成对比较矩阵22345234511/71/31/5715331/511/351/331B C C C C C C C C ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(13)其中措施I (发奖金)对提高职工文化水平没有什么影响,在成对比较矩阵中不出现,重要性按零计算。

其权重向量为:W T 200055056401180263=(,.,.,.,.) 3.不同措施对改善职工物质文化生活状况影响的成对比较矩阵312341234113311331/31/3111/31/311B C C C C C C C C ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(14)其权重向量为:W T 304060406009400940=(.,.,.,.,)总排序上述过程中求出的是同一层次中相应元素对于上一层次中的某个因素相对重要性的排序权值,这称为层次单排序。

若模型由多层次构成,计算同一层次所有因素对于总目标相对重要性的排序称为总排序。

这一过程是由最高层到最低层逐层进行的。

设上一层次A 包含m 个因素A 1, A 2, …, A m ,其总排序的权重值分别为a 1, a 2, …, a m ;下一层次B 包含k 个因素B 1, B 2, …,B k ,,它们对于A j 的层次单排序的权重值分别为b 1,j , b 2,j , …, b k,j (当B i 与A j 无联系时,b i,j = 0 );此时B 层i 元素在总排序中的权重值可以由上一层次总排序的权重值与本层次的层次单排序的权重值复合而成,结果为: w b a i k i i j j mj ===∑,,,,112(15)由此,各个方案相对于目标层的总排序可以用下表计算写成矩阵形式为0.4910.0000.4060.1570.1050.2320.0550.4060.1460.6370.0920.5640.0940.3930.2580.1380.1180.0940.1130.0460.2630.0000.172⎛⎫⎛⎫⎪⎪⎛⎫ ⎪ ⎪ ⎪ ⎪⎪= ⎪⎪⎪ ⎪⎝⎭ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭(16)上式给出了5种措施对实现目标的权重向量,根据这个权重向量,我们可以看出措施(方案)III 对实现目标的作用最大,因此是最佳方案。

结束语上面给出的是一个典型的例子,由此不难看出层次分析方法在解决复杂问题中的作用。

听课是学习,使用也是学习,而且是更重要的学习。

希望同学们能够仿照上面的典型例子,应用层次分析方法来解决一两个身边的实际问题。

相关文档
最新文档