(完整版)中考复习2角平分线专题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线专题
【类型一】角平分线倒角模型
例1、把一副学生用三角板)9060
30(︒︒︒、、和)904545(︒︒︒、、如图(1)放置在平面直角坐标系中,点A 在y 轴正半轴上,直角边AC 与y 轴重合,斜边AD 与y 轴重合,直角边AE 交x 轴于F,斜边AB 交x 轴于G,O 是AC 中点,8=AC .
(1)把图1中的AED Rt ∆绕A 点顺时针旋转α度)900(︒<≤α得图2,此时AGH ∆的面积是10,AHF ∆的面积是8,分别求F 、H 、B 三点的坐标;
(2)如图3,设AHF ∠的平分线和AGH ∠的平分线交于点M,EFH ∠的平分线和FOC ∠的平分线交于点N,当改变α的大小时,M N ∠+∠的值是否会改变?若改变,请说明理由;若不改变,请求出其值.
检测1、如图,已知点A 是y 轴上一动点,B 是x 轴上一动点,点C 在线段OB 上,连接AC ,AC 正好是OAB ∠的角平分线,DBx ABD ∠=∠,问动点A ,B 在运动的过程中,AC 与BD 所在直线的夹角是否发生变化,请说明理由;若不变,请直接写出具体值。
x
y
检测2、如图探究与发现:
探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.
探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?
已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P 与∠A+∠B的数量关系.
探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?
请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:.
【类型二】点在线,垂两边
例2、如图(1),ABC
CD⊥,垂足为D。AF平分CAB
ACB,AB
∠,交CD于点
∠90
Rt∆中,︒
=
E,交CB于点F。
(1)求证:CF
CE=。
(2)将图(1)中的ADE
A
D
∆的位置,使点E落在BC边上,其它条件不∆沿AB向右平移到'
'E
'
变,如图(2)所示。试猜想:'
BE与CF有怎样的数量关系?请证明你的结论。
检测1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线A B的距离
是_________.
检测2、已知∠1=∠2,∠3=∠4,求证AP平分∠BAC。
【类型三】线被垂,顺势延
例3、如图,已知等腰Rt △ABC 中,∠A =90°,AB =AC ,BD 是∠ABC 的平分线,从C 向BD 作垂线,垂足为E.求证:BD =2CE.
变式、如图,ODC ∆中,︒=∠90D ,EC 是DCO ∠的平分线,CE OE ⊥,点E 作OC EF ⊥于点F,判断E F 与OD 之间的数量关系,并加以证明.
例4、如图(a)所示,BD 、CE 分别是△ABC 的外角平分线,过点A 作BD AD ⊥,CE AE ⊥,垂足分别为D 、E,连接DE,求证:BC DE //,)(21
AC BC AB DE ++=;
(2)如图(b)所示,BD 、CE 分别是△ABC 的内角平分线,其他条件不变;
(3)如图(c)所示,BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线,其他条件不变;
则在图(b)、图(c)两种情况下,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜测,并对其中一种情况进行证明.
检测1、如图,△ABC 中,AD 平分BAC ∠,AD CD ⊥于D,G 为BC 的中点,
求证:(1)AB DG //;(2))(2
1
AC AB DG -=.
检测2、如图,在△ABC 中,AC AB 3=,BAC ∠的平分线交BC 于点D,过点B 作AD BE ⊥,垂足为E,求证:DE AD =.
【类型四】遇平行,等腰现
例5、(1)已知:在△ABC 中,AC AB =,BD 平分ABC ∠,CD 平分ACB ∠,过点D 作BC EF //,分别交AB 、AC 于E 、F 两点(如图1).
图中共有________个等腰三角形,分别是__________;EF 与BE 、CF 之间的关系是_______.
(2)若将(1)中“△ABC,AC AB =”改为“若△ABC 为不等边三角形”,其余条件不变(如图2),则图中共有_________个等腰三角形,分别是_________;EF 与BE,CF 之间的关系是________.
AC AB >ABC ∠CD ACG ∠点作BC DE //,分别交AB 、AC 于E 、F 两点,则EF 与BE 、CF 之间有何关系?写出你的结论,并加以证明
(4)已知:如图4,点D 在△ABC 外,BD,CD 分别平分△ABC 的外角GBC ∠和HCB ∠,过点D 作B C //DE ,分别交BG,CH 于E,F 两点,则EF 与BE,CF 之间存在怎样的关系?写出你的结论,并加以证明.
检测1、(1)如图(a)所示,在△ABC 中,∠ABC 与∠ACB 的角平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,若BD+CE=9,则线段DE 之长为__________。
(2)如图(b) 所示在△ABC 中,BD 、CD 分别平分∠ABC 和∠ACB ,DE ∥AB ,FD ∥AC ,如果BC=6,则△DEF 的周长为_________。
检测2、如图,已知直线CD AB //,︒=∠=∠100C A ,E 、F 在CD 上,且满足ABD DBF ∠=∠,BE 平分CBF ∠.
(1)求DBE ∠的度数.
(2)若平行移动AD,那么BDC BFC ∠∠:的比值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.
(3)在平行移动AD 的过程中,是否存在某种情况,使ADB BEC ∠=∠若存在,求出其度数;若不存在,请说明理由.
检测3、如图,梯形ABCD 中AD//BC ,半圆O 的直径在BC 上,且与另三边相切,如果AB=2,C D=3,则BC=( )。