物理课后习题答案

合集下载

大学物理学(第3版)下册课后练习答案

大学物理学(第3版)下册课后练习答案

大学物理学课后习题答案(下册)习题99.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:D](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]9.2填空题(1)在静电场中,电势不变的区域,场强必定为。

[答案:相同](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。

[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。

[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。

[答案:5:6]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ2,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题9.7图所示 由于对称性⎰=l Qx E 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵lq 4=λ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 9.12 半径为1R和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-=2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=',∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C-1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题9.17图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内d21U E E == ∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。

物理必修一课后习题答案

物理必修一课后习题答案

物理必修一课后习题答案第一章:物理学概述习题1.11.物理学是研究物质和能量之间相互转化及其相互作用的一门自然科学。

2.唯物论和辩证法是物理学的世界观和方法论基础。

3.科学方法具有客观性、理性和实证性的特点。

习题1.21.物质是构成世界的基本要素,包括物体和介质。

2.物理量是用于描述物质的特征的量。

3.测量是通过某种标准来比较物理量的大小。

习题1.31.基本物理量是由测量标准来定义的物理量。

2.导出物理量是通过基本物理量经过数学关系得到的物理量。

习题1.41.物理单位是衡量物理量大小的标准。

2.国际单位制是国际上通用的物理单位制。

习题1.51.量纲是物理量所具有的可度量性质的表征。

2.物理量的量纲由基本量纲和导出量纲组成。

习题1.61.量纲式是通过基本量纲的乘除关系表示物理量的量纲。

第二章:位移、速度和加速度习题2.11.位移是指物体位置的变化。

2.位移的方向和位移的长度决定了物体的位移向量。

习题2.21.速度是位移随时间变化的率。

2.平均速度是位移与时间间隔的比值。

3.瞬时速度是极短时间间隔内物体运动的平均速度的极限。

习题2.31.加速度是速度随时间变化的率。

2.平均加速度是速度变化量与时间间隔的比值。

3.瞬时加速度是极短时间间隔内物体运动的平均加速度的极限。

习题2.41.速度和位移之间满足关系 v = ds/dt。

2.加速度和速度之间满足关系 a = dv/dt。

习题2.51.运动物体的位移随时间变化的关系可以描述为 s = s0 + vt。

2.匀变速直线运动的速度随时间变化的关系可以描述为 v = v0 + at。

习题2.61.速度和位移之间的关系可以用图像表示为直线、曲线或复杂图像。

第三章:运动学的应用习题3.11.自由落体是指只受重力作用的物体下落的运动。

2.重力加速度是自由落体运动的加速度,近似取9.8 m/s²。

习题3.21.动量是描述物体运动的物理量。

2.动量的大小与物体的质量和速度有关。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

物理学(第五版)上册课后习题选择答案

物理学(第五版)上册课后习题选择答案

习题11-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +∆时间内的位移为r ∆,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆),平均速度为v ,平均速率为v 。

(1)根据上述情况,则必有( B ) (A )r s r ∆=∆=∆(B )r s r ∆≠∆≠∆,当0t ∆→时有dr ds dr =≠ (C )r r s ∆≠∆≠∆,当0t ∆→时有dr dr ds =≠ (D )r s r ∆=∆≠∆,当0t ∆→时有dr dr ds == (2)根据上述情况,则必有( C )(A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠=1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt ;(3)dsdt;(4下列判断正确的是:( D )(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。

对下列表达式,即(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。

下述判断正确的是( D )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变(D )切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。

物理必修2课后习题答案

物理必修2课后习题答案

物理必修2课后习题答案物理必修2课后习题答案在学习物理必修2这门课程时,课后习题是非常重要的一部分。

通过解答习题,我们可以巩固所学的知识,提高解题能力。

本文将为大家提供一些物理必修2课后习题的答案,希望能够帮助大家更好地理解和掌握物理知识。

1. 第一章:运动的描述1) 习题1:一个物体从静止开始做匀变速直线运动,经过2秒钟后速度达到10m/s,求物体的加速度。

答案:根据匀变速直线运动的公式v = u + at,其中v为末速度,u为初速度,a为加速度,t为时间。

已知v = 10m/s,u = 0m/s,t = 2s,代入公式计算可得加速度a = (v - u) / t = (10 - 0) / 2 = 5m/s²。

2) 习题2:一个物体做匀速圆周运动,半径为2m,周期为4秒,求物体的线速度和角速度。

答案:线速度v = 2πr / T,其中r为半径,T为周期。

已知r = 2m,T = 4s,代入公式计算可得线速度v = 2π × 2 / 4 = 2π m/s。

角速度ω = 2π / T,代入已知数据计算可得角速度ω = 2π / 4 = π/2 rad/s。

2. 第二章:力的作用和运动1) 习题1:一个物体质量为2kg,受到的力为10N,求物体的加速度。

答案:根据牛顿第二定律F = ma,其中F为力,m为质量,a为加速度。

已知F = 10N,m = 2kg,代入公式计算可得加速度a = F / m = 10 / 2 = 5m/s²。

2) 习题2:一个物体质量为5kg,受到的力为20N,求物体的重力加速度。

答案:重力加速度g = F / m,其中F为力,m为质量。

已知F = 20N,m =5kg,代入公式计算可得重力加速度g = 20 / 5 = 4m/s²。

3. 第三章:力的合成与分解1) 习题1:一个物体受到两个力,一个力为10N,另一个力为15N,求合力的大小和方向。

大学物理(第四版)课后习题及答案_电介质

大学物理(第四版)课后习题及答案_电介质

电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。

阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。

假设电子从阴极射出时的速度为零。

求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。

题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。

从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。

由此,可求得电子到达阳极时的动能和速率。

(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。

解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。

阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。

题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。

求此系统的电势和电场的分布。

题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。

大学物理课后习题及答案(1-4章)含步骤解

大学物理课后习题及答案(1-4章)含步骤解
液面下降的速度,即
,根据流量守恒
,
(2)当
(3)当
时,
时,

,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =


= 2Ԧ − 2 Ԧ = −2Ԧ


1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,



= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+


≈ 0.04(m)
(1)角加速度 =
由 =




=
0−2×1500÷60
50
由 =


=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,

八年级物理课后练习题及答案

八年级物理课后练习题及答案

八年级物理课后练习题及答案第一章:力和运动练习题1.一个物体受到2N的力,加速度为4m/s²,求物体的质量。

(答案:0.5 kg)2.一个物体的质量是2kg,受到的力是5N,求物体的加速度。

(答案:2.5 m/s²)3.一个物体的质量是10kg,加速度是5m/s²,求物体受到的力的大小。

(答案:50 N)4.一个物体受到10N的力,加速度为2m/s²,求物体的质量。

(答案:5 kg)5.一个物体的质量是20kg,受到的力是40N,求物体的加速度。

(答案:2 m/s²)6.一个物体的质量是50kg,加速度是10m/s²,求物体受到的力的大小。

(答案:500 N)7.一个物体受到100N的力,加速度为5m/s²,求物体的质量。

(答案:20 kg)8.一个物体的质量是30kg,受到的力是60N,求物体的加速度。

(答案:2 m/s²)9.一个物体的质量是80kg,加速度是4m/s²,求物体受到的力的大小。

(答案:320 N)10.一个物体受到50N的力,加速度为10m/s²,求物体的质量。

(答案:5 kg)答案解析1.由牛顿第二定律可以得到 F = m * a,将已知值代入,得到 2 = m * 4,解得 m = 0.5 kg。

2.同样使用牛顿第二定律 F = m * a,将已知值代入,得到 5 = 2 * a,解得 a = 2.5 m/s²。

3.由 F = m * a,将已知值代入,得到 F = 10 * 5,解得 F = 50 N。

4.使用 F = m * a,将已知值代入,得到 10 = m * 2,解得 m = 5 kg。

5.同样使用 F = m * a,将已知值代入,得到 40 = 20 * a,解得 a = 2m/s²。

6.由 F = m * a,将已知值代入,得到 F = 50 * 10,解得 F = 500 N。

大学物理上课后习题答案

大学物理上课后习题答案

第1章 质点运动学 P21一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计;⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t=0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;5计算t =0s 到t =4s 内质点的平均加速度;6求出质点加速度矢量的表示式,计算t =4s 时质点的加速度请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式;解:1j t t i t r)4321()53(2-+++=m⑵ 1=t s,2=t s 时,j i r5.081-= m ;2114r i j =+m∴ 213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷ 1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ 5 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44ja j t --∆====⋅∆v v v 6 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量; 质点沿x 轴运动,其加速度和位置的关系为226a x=+,a 的单位为m/s 2,x 的单位为m;质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值;解:由d d d d d d d d x a t x t x===v v v v得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 31225 m s x x -=++⋅v一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少解: t tt t 18d d ,9d d 2====ωβθω ⑴ s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ︒== 即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 一质点在半径为的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α= rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度;解:s 2=t 时,4.022.0=⨯==t αω 1s rad -⋅则0.40.40.16R ω==⨯=v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅0.40.20.08a R τα==⨯=2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n与切向夹角arctan()0.06443n a a τϕ==≈︒第2章 质点动力学质点在流体中作直线运动,受与速度成正比的阻力kv k 为常数作用,t =0时质点的速度为0v ,证明:⑴t 时刻的速度为()0=k t me-v v ;⑵ 由0到t 的时间内经过的距离为x =0m k v 1-t m ke )(-;⑶停止运动前经过的距离为0()mkv ;⑷当m t k =时速度减至0v 的e1,式中m 为质点的质量;解:f k =-v ,a f m k m ==-v⑴ 由d d a t =v 得:d d d k a t t m==-vv分离变量得:d d kt m =-v v ,即00d d t k t m-=⎰⎰v v v v , 因此有:0ln ln kt m e -=v v , ∴ 0k m te -=v v ⑵ 由d d x t =v 得:0d d d k m t x t e t -==v v ,两边积分得:000d d k mx t t x e t-=⎰⎰v∴ 0(1)k m tm x e k-=-v ⑶ 质点停止运动时速度为零,00k mt e -=→v v ,即t →∞,故有:000d k mt x et m k ∞-'==⎰v v⑷ t m k =时,其速度为:1000k m m kv e e e -⋅-===v v v ,即速度减至0v 的1e .作用在质量为10 kg 的物体上的力为(102)F t i =+N,式中t 的单位是s,⑴ 求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量;⑵ 为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m/s 的物体,回答这两个问题; 解: ⑴ 若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,1111115.6m s 56kg m s p m i I p i --∆=∆=⋅=∆=⋅⋅;v若物体原来具有6-1s m -⋅初速,则000000, (d )d t tp m p m F m t m F t=-=-+⋅=-+⎰⎰v v v 于是:⎰∆==-=∆t p t F p p p 0102d, 同理有:21∆=∆v v ,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量亦即冲量就一定相同,这就是动量定理;⑵ 同上理,两种情况中的作用时间相同,即:⎰+=+=tt t t t I 0210d )210(亦即:0200102=-+t t , 解得s 10=t ,s 20='t 舍去设N 67j i F -=合;⑴ 当一质点从原点运动到m 1643k j i r++-=时,求F所作的功;⑵ 如果质点到r 处时需,试求平均功率;⑶ 如果质点的质量为1kg,试求动能的变化;解: ⑴ 由题知,合F为恒力,且00r =∴ (76)(3416)212445J A F r i j i j k =⋅∆=-⋅-++=--=-合⑵ w 756.045==∆=t A P ⑶ 由动能定理,J 45-==∆A E k一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端又挂一重物C ,C 的质量为M ,如图;求这一系统静止时两弹簧的伸长量之比和弹性势能之比;解: 弹簧B A 、及重物C 受力如题图所示平衡时,有: Mg F F B A == ,又 11x k F A ∆=,22x k F B ∆=所以静止时两弹簧伸长量之比为:1221x x k k ∆∆= 弹性势能之比为:22111222211212p p E k x k E k x k ⋅∆==⋅∆第3章 刚体力学基础一质量为m 的质点位于11,y x 处,速度为x y i j =+v v v , 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩;解: 由题知,质点的位矢为:j y i x r11+=作用在质点上的力为:i f f-=所以,质点对原点的角动量为:01111()()()x y y x L r m x i y j m i j x m y m k =⨯=+⨯+=-v v v v v作用在质点上的力的力矩为:k f y i f j y i x f r M1110)()(=-⨯+=⨯=哈雷彗星绕太阳运动的轨道是一个椭圆;它离太阳最近距离为1r =×1010m 时的速率是1v =×104m/s,它离太阳最远时的速率是2v =×102 m/s,这时它离太阳的距离2r 是多少太阳位于椭圆的一个焦点;解:哈雷彗星绕太阳运动时受到太阳的引力,即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有:1122r m r m =v v ∴ 10412112228.7510 5.4610 5.2610m 9.0810r r ⨯⨯⨯===⨯⨯v v 物体质量为3kg,t =0时位于m 4i r=,6i j =+v m/s,如一恒力N 5j f =作用在物体上,求3秒后,⑴ 物体动量的变化;⑵ 相对z 轴角动量的变化; 解:⑴ ⎰⎰-⋅⋅===∆301s m kg 15d 5d j t j t f p⑵ 解法一 由53 N a f m j ==得:0034437m x t x x t t ==+=+=+=v222031515663325.52623y t y t at t t j ==+=+=⨯+⨯⨯=v即有:i r41=,j i r 5.2572+=01x x ==v v ;0653311y y at =+=+⨯=v v即有:216i j =+v ,211i j =+v∴ 11143(6)72L r mi i j k =⨯=⨯+=v 222(725.5)3(11)154.5L r m i j i j k =⨯=+⨯+=v∴ 1212s m kg 5.82-⋅⋅=-=∆k L L L解法二 ∵d LM dt =, ∴ 2032031d ()d 15 (4)(6))5d 23 5(4)d 82.5kg m s t tL M t r f tt i t t j j t t k t k -∆=⋅=⨯⎡⎤=+++⨯⨯⎢⎥⎣⎦=+=⋅⋅⎰⎰⎰⎰平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物;小球作匀速圆周运动,当半径为0r 时重物达到平衡;今在1M 的下方再挂一质量为2M 的物体,如题图;试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少解:只挂重物1M 时,小球作圆周运动,向心力为g M 1,即:2001ωmr g M = ①挂上2M 后,则有:221)(ω''=+r m g M M ② 重力对圆心的力矩为零,故小球对圆心的角动量守恒;即:00r m r m ''=v v ωω''=⇒2020r r ③联立①、②、③得:100M g mr ω=,2112301()M g M M mr M ω+'=, 112130212()M M M r g r m M M ω+'==⋅'+ 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900 rev/min;现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速;已知闸杆的尺寸如题图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算;试求:⑴ 设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转 ⑵ 如果在2s 内飞轮转速减少一半,需加多大的力F解:⑴ 先作闸杆和飞轮的受力分析图如图b;图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力;杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有:121()0F l l N l '+-=, 121)N l l F l '=+(对飞轮,按转动定律有r F RIβ=-,式中负号表示β与角速度ω方向相反; ∵ N F r μ= ,N N '=∴ F l l l N F r 121+='=μμ 又∵ 212I mR =,∴1212()r F R l l F I mRl μβ+=-=-① 以N 100=F 等代入上式,得:2s rad 34010050.025.060)75.050.0(40.02-⋅-=⨯⨯⨯+⨯⨯-=β由此可算出自施加制动闸开始到飞轮停止转动的时间为:s 06.74060329000=⨯⨯⨯=-=πβωt 这段时间内飞轮的角位移为:2201900291409()53.12rad 2604234t t πφωβπππ⨯=+=⨯-⨯⨯=⨯可知在这段时间里,飞轮转了1.53转; ⑵10s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 200215rad s 22ttωωωπβ--==-=-⋅ 用上面式⑴所示的关系,可求出所需的制动力为:112600.250.50151772()20.40(0.500.75)2mRl F N l l βπμ⨯⨯⨯=-==+⨯⨯+⨯计算题图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设m 1=50kg,m 2=200 kg,M =15 kg,r = m解:分别以m 1、m 2滑轮为研究对象,受力图如图b 所示.对m 1、m 2运用牛顿定律,有:a m T g m 222=- ;a m T 11=对滑轮运用转动定律,有:β)21(212Mr r T r T =- 又βr a = 由以上4个方程解得:22122009.87.6 m s 25200152m g a m m M -⨯===⋅++++题a 图 题b 图如题图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下;求:⑴ 初始时刻的角加速度;⑵ 杆转过θ角时的角速度. 解:⑴ 由转动定律有:211()23mg l ml β=, ∴ lg23=β⑵ 由机械能守恒定律有:22)31(21sin 2ωθml l mg = ∴ lg θωsin 3= 如题图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上;现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞;相撞后,使棒从平衡位置处摆动到最大角度=θ30°处;⑴设这碰撞为弹性碰撞,试计算小球初速0v 的值; ⑵相撞时小球受到多大的冲量解:⑴ 设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:0m l I m l ω=+v v ①2220111222m I m ω=+v v②上两式中23I Ml =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o 30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得:2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω 由①式得:0I mlω=-v v ④ 由②式得:2220I m ω=-v v ⑤所以:22200()I I ml mωω-=-v v求得:026(23)13(1)(1)22312gl l I l Mm M ml m mωω-+=+=+=v ⑵相碰时小球受到的冲量为:0d ()F t m m m =∆=-⎰v v v由①式求得:06(23)1d 36gl I F t m m Ml M l ωω-=-=-=-=-⎰v v 负号说明所受冲量的方向与初速度方向相反;一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动;另一质量为0m 的子弹以速度0v 射入轮缘如题图所示方向; ⑴开始时轮是静止的,在质点打入后的角速度为何值⑵用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比;解:⑴ 射入的过程对O 轴的角动量守恒: ωθ2000)(sin R m m v m R +=∴ Rm m v m )(sin 000+=θω⑵ 022*******000sin 1[()][]2()sin 2k k m m m R E m m R m E m m m θθ++==+v v 弹簧、定滑轮和物体的连接如题图所示,弹簧的劲度系数为 N/m ;定滑轮的转动惯量是0.5kg·m 2,半径为0.30m ,问当6.0 kg 质量的物体落下0.40m 时,它的速率为多大 假设开始时物体静止而弹簧无伸长;解:以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有:222111222mgh m I kh ω=++v 又/R ω=v ,故有:2222221(2)(2 6.09.80.4 2.00.4)0.36.00.30.5 2.0m s mgh kh R mR I --⨯⨯⨯-⨯⨯==+⨯+=⋅v第5章 机械振动质量为kg 10103-⨯的小球与轻弹簧组成的系统,按0.1cos(82x t ππ=+的规律作谐振动,求:⑴ 振动的周期、振幅和初位相及速度与加速度的最大值; ⑵ 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等⑶ s 52=t 与s 11=t 两个时刻的位相差;解:⑴设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又0.8m A ωπ==v 1s m -⋅ 51.2=1s m -⋅,2.632==A a m ω2s m -⋅⑵ 0.63N m m F ma ==,J 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即:)21(212122kA kx ⋅=∴ m 20222±=±=A x ⑶ ππωφ32)15(8)(12=-=-=∆t t一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示;如果0=t 时质点的状态分别是:⑴A x -=0; ⑵ 过平衡位置向正向运动; ⑶过2Ax =处向负向运动; ⑷过2A x -=处向正向运动; 试求出相应的初位相,并写出振动方程;解:因为000cos sin x A A φωφ=⎧⎨=-⎩v将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相;故有:)2cos(1πππφ+==t T A x , )232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x , )452cos(454πππφ+==t T A x一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+;求:⑴s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; ⑵由起始位置运动到cm 12=x 处所需的最短时间; ⑶在cm 12=x 处物体的总能量;解:由题已知s 0.4,m 10242=⨯=-T A ,∴ -120.5 rad s ωππ==⋅ 又,0=t 时,00 , 0x A φ=+∴= 故振动方程为:m )5.0cos(10242t x π-⨯=⑴ 将s 5.0=t 代入得:0.17m m )5.0cos(102425.0=⨯=-t x π23231010(2)0.17 4.210N F ma m x ωπ--=-=-=-⨯⨯⨯=-⨯方向指向坐标原点,即沿x 轴负向;⑵ 由题知,0=t 时,00=φ;t t =时,02,0,3t x A φπ=+<=且故v ∴ s 322/3==∆=ππωφt ⑶ 由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:22232241111010()(0.24)7.110J 2222E kA m A πω--===⨯⨯⨯=⨯ 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4;用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后,给予向上的初速度0 5.0cm /s =v ,求振动周期和振动表达式; 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x 设向上为正又 30.225 , 1.26s 810k T m πωω-=====⨯即 222222205.010 ()(1.010)()210m 5v A x ω---⨯∴=+=⨯+=⨯200020 5.0105tan 1 , 1.01054x πφφω--⨯=-===⨯⨯即v ∴ m )455cos(1022π+⨯=-t x题图为两个谐振动的t x -曲线,试分别写出其谐振动方程;解:由题图a,∵0=t 时,0000 , 0 , 32 , 10cm , 2s x A T φπ=>∴===又v即:1s rad 2-⋅==ππωT,故 m )23cos(1.0ππ+=t x a由题图b ∵0=t 时,0005,0,23A x πφ=>∴=v01=t 时,0005,0,23A x πφ=>∴=v又ππωφ253511=+⨯=,∴ πω65=故m t x b )3565cos(1.0ππ+=一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子;现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动;⑴ 此时的振动周期与空盘子作振动时的周期有何不同⑵ 此时的振动振幅多大⑶ 取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程; 解:⑴ 空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大;⑵按⑶所设坐标原点及计时起点,0=t 时,则0x mg k =-;碰撞时,以M m ,为一系统动量守恒,即:02()m gh m M =+v则有:02m gh m M=+v ,于是22220022()()1()()v mg m gh mg kh A x k k m M k m M gω=+=+=+++3gm M khx v )(2tan 000+=-=ωφ 第三象限,所以振动方程为 221cos arctan ()()mg khk kh x t k m M gm MM m g ⎡⎤=++⎢⎥+++⎣⎦有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量41.010kg m s F t -∆=⨯⋅,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程; 解:由动量定理,有:0F t m ⋅∆=-v∴ 4-131.0100.01 m s 1.010F t m --⋅∆⨯===⋅⨯v 按题设计时起点,并设向右为x 轴正向,则知0=t 时,1000 , 0.01m s x -==⋅v >0,∴ 2/30πφ=又1s rad 13.30.18.9-⋅===l g ω ∴ 2230000.01() 3.210m 3.13A x ωω-=+===⨯v v故其角振幅:33.210rad A l θ-==⨯小球的振动方程为:rad )2313.3cos(102.33πθ+⨯=-t有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动π/6的位相差为,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差;解:由题意可做出旋转矢量题图;由图知222211222cos30(0.173)(0.2)20.1730.23/20.01A A A A A =+-︒=+-⨯⨯⨯=,∴ m 1.02=A 设角θ为O AA 1,则:θcos 22122212A A A A A -+=即:2222221212(0.173)(0.1)(0.02)cos 0220.1730.1A A A A A θ+-+-===⨯⨯即2θπ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π; 一质点同时参与两个在同一直线上的简谐振动,振动方程为:⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程;解:∵ πππφ=--=∆)65(6, ∴ m 1.021=-=A A A 合 1122112250.4sin 0.3sinsin sin 366tan 5cos cos 30.4cos 0.3cos 66A A A A ππφφφππφφ⨯-+===++ ∴ 6φπ=其振动方程为:0.1cos(26)m x t π=+作图法略第6章 机械波已知波源在原点的一列平面简谐波,波动方程为y =A cos Cx Bt -,其中A ,B ,C 为正值恒量;求:⑴ 波的振幅、波速、频率、周期与波长;⑵ 写出传播方向上距离波源为l 处一点的振动方程; ⑶ 任一时刻,在波的传播方向上相距为d 的两点的位相差;解:⑴ 已知平面简谐波的波动方程:)cos(Cx Bt A y -= 0≥x 将上式与波动方程的标准形式:)22cos(λππυxt A y -=比较,可知:波振幅为A ,频率πυ2B =,波长C πλ2=,波速B u C λν==, 波动周期12T Bπν==;⑵ 将l x =代入波动方程即可得到该点的振动方程:)cos(Cl Bt A y -=⑶ 因任一时刻t 同一波线上两点之间的位相差为:)(212x x -=∆λπφ将d x x =-12,及2Cπλ=代入上式,即得:Cd =∆φ; 沿绳子传播的平面简谐波的波动方程为y =10x t ππ4-,式中x ,y 以米计,t 以秒计;求:⑴ 绳子上各质点振动时的最大速度和最大加速度;⑵ 求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相这一位相所代表的运动状态在t =时刻到达哪一点 解:⑴ 将题给方程与标准式2cos()y A t x πωλ=-相比,得:振幅05.0=A m ,圆频率10ωπ=,波长5.0=λm ,波速 2.5m s 2u ωλνλπ===;绳上各点的最大振速,最大加速度分别为:ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅⑵2.0=x m 处的振动比原点落后的时间为:08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点0=x ,在92.008.010=-=t s 时的位相,即:2.9=φπ;设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则,825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m一列平面余弦波沿x 轴正向传播,波速为5 m/s,波长为2m,原点处质点的振动曲线如题图所示;⑴ 写出波动方程;⑵作出t =0时的波形图及距离波源0.5m 处质点的振动曲线;解: ⑴ 由题a 图知,1.0=A m,且0=t 时,000 , 0y =>v ,∴230πφ=, 又52.52uνλ===Hz ,则ππυω52== 取])(cos[0φω+-=u x t A y ,则波动方程为:30.1cos[5()]52x y t ππ=-+m⑵ 0=t 时的波形如题b 图5.0=x m 代入波动方程,得该点处的振动方程为:50.530.1cos[5]0.1cos(5)52y t t πππππ⨯=-+=+m如题c 图所示;如题图所示,已知t =0时和t =时的波形曲线分别为图中曲线a 和b,周期T>,波沿x 轴正向传播,试根据图中绘出的条件求: ⑴ 波动方程;⑵P 点的振动方程; 解:⑴ 由题图可知,1.0=A m ,4=λm ,又,0=t 时,000,0y =<v , ∴20πφ=,而-11 2 m s 0.5x u t ∆===⋅∆,20.5Hz 4u νλ===,∴ππυω==2故波动方程为:]2)2(cos[1.0ππ+-=x t y m⑵ 将1=P x m 代入上式,即得P 点振动方程为:t t y ππππcos 1.0)]22cos[(1.0=+-= m一列机械波沿x 轴正向传播,t =0时的波形如题图所示,已知波速为10 m/s 1,波长为2m,求: ⑴波动方程;⑵ P 点的振动方程及振动曲线; ⑶ P 点的坐标;⑷ P 点回到平衡位置所需的最短时间;解:由题图可知1.0=A m ,0=t 时,00,02A y =<v ,∴30πφ=,由题知2=λm ,-110m s u =⋅,则5210===λυuHz ,∴ππυω102==⑴ 波动方程为:0.1cos[10()]103x y t ππ=-+m⑵ 由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P P 点的位相应落后于0点,故取负值∴P 点振动方程为)3410cos(1.0ππ-=t y p ⑶ 由πππ34|3)10(100-=+-=t x t 解得:67.135==x m ⑷ 根据⑵的结果可作出旋转矢量图如题图a,则由P点回到平衡位置应经历的位相角πππφ6523=+=∆ ∴所属最短时间为:121106/5==∆=∆ππωφt s 如题图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =Acos 0ϕω+t ;⑴ 分别就图中给出的两种坐标写出其波动方程;⑵ 写出距P 点距离为b 的Q 点的振动方程;解:⑴ 如题图a,则波动方程为:0cos[()]l xy A t u uωϕ=+-+ 如图b,则波动方程为:0cos[()]x y A t uωϕ=++⑵ 如题图a,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=-+如题图b,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=++一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为×10-3J/m 2·s,频率为300 Hz,波速为300m/s,求波的平均能量密度和最大能量密度.解: ∵u w I =, ∴ 53106300100.18--⨯=⨯==u I w 3m J -⋅, 4max 102.12-⨯==w w 3m J -⋅如题图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4λ,1S 较2S 位相超前2π,求:⑴ 1S 外侧各点的合振幅和强度;⑵ 2S 外侧各点的合振幅和强度 解:1在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为:πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r ,∴ 0,0211===-=A I A A A 2在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差:0)4(2222=-+-=∆r r λλππφ,∴ 2121114,2A A I A A A A ===+=一平面简谐波沿x 轴正向传播,如题图所示;已知振幅为A ,频率为ν,波速为u ;⑴ 若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;⑵ 若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置;解: ⑴ ∵0=t 时,0,000>=v y ,∴20πφ-=,故波动方程为:cos[2()]2x y A t u ππυ=--m⑵ 入射波传到反射面时的振动位相为即将λ43=x 代入2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为:πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为23542πλππλ--⨯-=,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为:]2)(2cos[ππυ-+=u x t A y 反此时驻波方程为:cos[2()]cos[2()]222 2cos cos(2)2x x y A t A t u u x A t u πππυπυπυππυ=--++-=-故波节位置为:2)12(22πλππυ+==k x u x故 4)12(λ+=k x ,2,1,0±±=k …根据题意,k 只能取1,0,即λλ43,41=x 两列波在一根很长的细绳上传播,它们的波动方程分别为1y =t x ππ4-SI, 2y =t x ππ4+SI;⑴ 试证明绳子将作驻波式振动,并求波节、波腹的位置; ⑵ 波腹处的振幅多大x =1.2m 处振幅多大 解:⑴ 它们的合成波为:0.06cos(4)0.06cos(4)0.12cos cos 4y x t x t x t ππππππ=-++=出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动; 令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置;令2)12(ππ+=k x ,则21)12(+=k x ,,2,1,0±±=k …,此即波节的位置;⑵波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即:097.0)2.1cos(12.0=⨯=π驻A m第7章 气体动理论基础 P218设有N 个粒子的系统,其速率分布如题图所示;求⑴ 分布函数f υ的表达式; ⑵ a 与υ0之间的关系; ⑶ 速度在υ0到υ0之间的粒子数; ⑷ 粒子的平均速率; 5 υ0到υ0区间内粒子平均速率;解:⑴从图上可得分布函数表达式: 00000()/(0)()(2)()0(2)Nf a Nf a Nf υυυυυυυυυυυυ=≤≤⎧⎪=≤≤⎨⎪=≥⎩, 00000/(0)()/(2)0(2)a N f a N υυυυυυυυυυ≤≤⎧⎪=≤≤⎨⎪≥⎩⑵ f υ满足归一化条件,但这里纵坐标是N f υ而不是f υ,故曲线下的总面积为N.由归一化条件:20d d a NN a N υυυυυυυ+=⎰⎰,可得023Na υ=⑶ 可通过面积计算001(2 1.5)3N a N υυ∆=⨯-=⑷N 个粒子平均速率:220220001()d ()d d d 11311()329a f Nf a Na a N υυυυυυυυυυυυυυυυυυ∞∞===+=+=⎰⎰⎰⎰5 υ0到υ0区间内粒子数:100013(0.5)(0.5)284NN a a a υυυ=+-== υ0到υ0区间内粒子平均速率:000000.50.50.5111d d ()d NN N N f N N N N υυυυυυυυυυυυ===⎰⎰⎰ 0020.510d N a N N υυυυυυ=⎰0033220000.51010017111d ()32424a av a a N N N υυυυυυυυυ==-=⎰ 2007769a N υυυ==试计算理想气体分子热运动速率的大小介于υp -υp /100与υp +υp /100之间的分子数占总分子数的百分比; 解:令P u υυ=,则麦克斯韦速率分布函数可表示为:du e u N dN u 224-=π因为u=1,∆u=由u e u N N u ∆=∆-224π,得 %66.102.0141=⨯⨯⨯=∆-e N N π容器中储有氧气,其压强为P=即1atm 温度为27℃求:⑴ 单位体积中的分子数n ;⑵ 氧分子的质量m ;⑶ 气体密度ρ;⑷ 分子间的平均距离e ;5 平均速率υ;62υ7分子的平均动能ε; 解:⑴ 由气体状态方程nkT p =得:242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n m -3⑵ 氧分子的质量:26230mol 1032.51002.6032.0⨯=⨯==N M m Kg ⑶ 由气体状态方程RT M MpV mol =,得: 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ3m kg -⋅⑷ 分子间的平均距离可近似计算932431042.71045.211-⨯=⨯==ne m5 平均速率:mol 8.313001.601.60446.580.032RT M υ⨯=≈=1s m -⋅ 题图Nf υO2υ0υυ0a6482.87≈=1s m -⋅ 7 氧分子的平均动能:20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少解:理想气体分子的能量:RT iE 2υ= 平动动能 t=3 5.373930031.823=⨯⨯=t E J转动动能 r=2 249330031.822=⨯⨯=r E J内能 i=5 5.623230031.825=⨯⨯=i E J一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求⑴氧气和氢气分子数密度之比;⑵氧分子和氢分子的平均速率之比; 解:⑴ 因为nkT p =,则:1O H n n =⑵由平均速率公式υ=,得:14O H υυ== 7-25 一真空管的真空度约为×10-3 Pa 即×10-5 mmHg,试 求在27℃时单位体积中的分子数及分子的平均自由程设分子的有效直径d =3×10-10 m; 解:由气体状态方程nkT p =得:317-3231.3810 3.3310m 1.3810300p n kT -⨯===⨯⨯⨯ 由平均自由程公式nd 221πλ=得: 5.71033.3109211720=⨯⨯⨯⨯=-πλ m ⑴ 求氮气在标准状态下的平均碰撞频率;⑵ 若温度不变,气压降到×10-4Pa,平均碰撞频率又为多少设分子有效直径为10-10m解:⑴碰撞频率公式2z d n υ=对于理想气体有nkT p =,即:kTpn =,所以有:2d p z kT υ=而-1455.43 m s υ≈≈=⋅ 氮气在标准状态下的平均碰撞频率805201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=-πz s -1⑵气压下降后的平均碰撞频率2042310455.43 1.33100.7141.3810273z ---⨯⨯⨯⨯==⨯⨯ s -11mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间⑴气体分子方均根速率之比;⑵ 分子平均自由程之比; 解:⑴ 由气体状态方程:2211T p T p = 及 3322V p V p =====⑵ 对于理想气体,nkT p =,即 kTpn =所以有:pd kT 22πλ=,即:12121==T p p T 末初λλ第8章 热力学基础.如题图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统做功126 J;⑴ 若沿adb 时,系统做功42 J,问有多少热量传入系统⑵ 若系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84 J,试问系统是吸热还是放热热量传递是多少 解:由abc 过程可求出b 态和a 态的内能之差:A E Q +∆=224126350=-=-=∆A Q E Jabd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热1mol 单原子理想气体从300K 加热到350K,问在下列两过程中吸收了多少热量增加了多少内能对外做了多少功⑴ 容积保持不变; ⑵ 压力保持不变; 解:⑴ 等体过程对外作功0=A∴ V 2121()()2328.31(350300)623.25J iQ E A E C T T R T T νν=∆+=∆=-=-=⨯⨯-=, ⑵ 等压过程,吸热:P 212125()()8.31(350300)1038.75J 22i Q C T T R T T νν+=-=-=⨯⨯-=内能增加:V 21()328.31(350300)623.25J E C T T ν∆=-=⨯⨯-=对外作功:5.4155.62375.1038=-=∆-=E Q A J一个绝热容器中盛有摩尔质量为M mol ,比热容比为γ的理想气体,整个容器以速度υ运动,若容器突然停止运动,求气体温度的升高量设气体分子的机械能全部转变为内能;解:整个气体有序运动的能量为212m υ,转变为气体分子无序运动使得内能增加,温度变化;2V 12m E C T m M υ∆=∆=,22mol mol V 111(1)22T M M C R υυγ∆==- 0.01m 3氮气在温度为300K 时,由压缩到10MPa;试分别求氮气经等温及绝热压缩后的⑴ 体积;⑵ 温度;⑶ 各过程对外所做的功; 解:⑴ 等温压缩过程中,T =300K,且2211V p V p =,解得:3112210.0111010p V V p -==⨯=⨯m 3 , 6321112lnln 0.1100.01ln0.01 4.6710J V pA vRT p V V p ===⨯⨯⨯=-⨯ ⑵ 绝热压缩:R C 25V =,57=γ 由绝热方程 γγ2211V p V p =,得:111/33111421221()()()0.01 1.9310m 10p V p V V p p γγγ-===⨯=⨯由绝热方程 111122T p T p γγγγ----=,得11.40.4122211300(10)579K T p T T p γγγγ--==⨯⇒=Oab c d由热力学第一定律A E Q +∆=及0=Q 得:)(12molT T C M MA V --=, 又RT M MpV mol=,所以 51121135 1.013100.015()(579300)23002 2.3510Jp V A R T T RT ⨯⨯=--=-⨯⨯-=-⨯ 理想气体由初状态P 1,V 2经绝热膨胀至末状态P 2,V 2;试证过程中气体所做的功为:12211--=γV P V P w 式中γ为气体的比热容比;证明: 由绝热方程C V p V p pV ===γγγ2211得γγV V p p 111= 故,22111121221111221121d 11d ()11 ()11V V r V V V C A p V C V V V p V p V p V p V V V γγγγγγγγγ----===----=--=--⎰⎰1 mol 的理想气体的T -V 图如题图所示,ab 为直线,延长线通过原点O ;求ab 过程气体对外做的功; 解:设T kV =,由图可求得直线的斜率k 为:2T k V =,得过程方程002T T V V =由状态方程pV vRT=得:RT p V ==R V 02T V V =002RT V ab 过程气体对外作功:⎰=02d V v V p A 02000d 22V V RT RTV V ==⎰某理想气体的过程方程为Vp 1/2=a ,a 为常数,气体从V 1膨胀到V 2;求其所做的功;解:气体做功:22211122221211d d ()|()V V V V V V a a A p V V a V V V V ===-=-⎰⎰设有一以理想气体为工质的热机循环,如题图所示;试证其循环效率为:η=1212111V V p p ηγ-=--解:等体过程:1V 21()0Q vC T T '=->,吸热,∴ )(1221V 11RV p R V p C Q Q -='= 绝热过程:03='Q 等压压缩过程:2p 21()0Q vC T T '=-<,放热 ∴ 212222P 21P ()()p V p V Q Q vC T T C R R'==--=-,则, 循环效率为:p 21222121V 122212()(/1)111()(/1)C p V p V Q Q C pV p V p p ννηγ--=-=-=--- 一卡诺热机在1000K 和300K 的两热源之间工作,试计算⑴ 热机效率;⑵ 若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少⑶ 若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少T Oab题图Vp OV绝热题图V 2 V 1 p 1p解:⑴ 卡诺热机效率 213001170%1000T T η=-=-= ⑵ 低温热源2300K T =不变时,即1130080%T η'=-=,解得:11500K T '=,则: 11115001000500K T T T '∆=-=-=即高温热源温度提高500K;⑶ 高温热源11000K T =不变时,即21100080%T η'=-= 解得:2200K T '=,则:222200300-100K T T T '∆=-=-=即低温热源温度降低100K;如题图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为T 2和T 3;求此循环效率;这是卡诺循环吗解:⑴热机效率211Q Q η=-AB 等压过程1P 21()0Q C T T ν'=->,吸热,即有: 11P mo ()B A lMQ Q C T T M '==- CD 等压过程2P 21()0Q vC T T '=-<,放热,即有: )(P mol22D C T T C M MQ Q -='-= ∴)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= AD 绝热过程,其过程方程为:γγγγ----=D D AA T p T p 11 BC 绝热过程,其过程方程为:γγγγ----=C C B BT p T p 111 又 A B C D p p p p ==,,所以得:D C BT TT T = ∴ 231T T -=η⑵ 不是卡诺循环,因为不是工作在两个恒定的热源之间;⑴ 用一卡诺循环的致冷机从7℃的热源中提取1000J 的热量传向27℃的热源,需要多少功从-173℃向27℃呢⑵ 一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于做功就愈有利;当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利为什么解:⑴卡诺循环的致冷机2122T T T A Q e -==静 7℃→27℃时,需作功:12122300280100071.4J 280T T A Q T --==⨯= 173-℃→27℃时,需作功:1222230010010002000J 100T T A Q T --==⨯= ⑵从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的;p O 题图A B C D第9章 静电场长l =15.0cm 的直导线AB 上均匀地分布着线密度λ= C/m 的正电荷;试求:⑴ 在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;⑵ 在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强; 解:⑴ 如题图所示,在带电直线上取线元d x ,其上电量d q 在P 点产生场强为:20)(d π41d x a xE P -=λε 22200220d d 4π()11 []4π22π(4)l P P l x E E a x a l a l la l λελελε-==-=--+=-⎰⎰用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得:21074.6⨯=P E 1C N -⋅ 方向水平向右⑵ 同理,2220d d π41d +=x xE Q λε 方向如题图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220ddd d π41d ++=x x xE Qy λε22223222222022d d d 4π(d )2π4ll Qy Qy l x lE E x d l d λλεε-===++⎰⎰以9100.5-⨯=λ1cm C -⋅,15=l cm ,5d 2=cm 代入得:21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强; 解:如图在圆上取ϕRd dl =ϕλλd d d R l q ==,它在O 点产生场强大小为:20π4d d R R E εϕλ=,方向沿半径向外,则:ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-= 积分得:R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x 0π2ελ==,方向沿x 轴正向;均匀带电的细线弯成正方形,边长为l ,总电量为q ;⑴求这正方形轴线上离中心为r 处的场强E ;⑵证明:在l r >>处,它相当于点电荷q 产生的场强E ;解:如图示,正方形一条边上电荷4q 在P 点产生物强P E 方向如图,大小为:()12220cos cos 4π4P E r l λθθε-=+∵1222cos 2l r l θ=+ ,12cos cos θθ-=∴ 222204π42P lE r l r l λε=++P E 在垂直于平面上的分量cos P E E β⊥=∴ 22222204π424lr E r l r l r l λε⊥=+++由于对称性,P 点场强沿OP 方向,大小为:22220444π(4)2PO lrE E r l r l λε⊥=⨯=++∵ l q4=λ ∴ 222204π(4)2P qrE r l r l ε=++ , 方向沿OP⑴ 点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;⑵ 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少解: ⑴ 立方体六个面,当q 在立方体中心时,每个面上电通量相等,由高斯定理0d sE S q ε⋅=⎰得:各面电通量06εq e =Φ; ⑵ 电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe ;均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×510-C/m 3求距球心5cm,8cm ,12cm 各点的场强;解:高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E5=r cm 时,0=∑q ,0=E8=r cm 时,334π()3q pr r =-∑内 ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外; 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1CN -⋅ 沿半径向外. 半径为1R 和2R 2R >1R 的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:⑴r <1R ;⑵ 1R <r <2R ;⑶ r >2R 处各点的场强;解:取同轴圆柱形高斯面,侧面积rl S π2=,则:rl E S E Sπ2d =⋅⎰⑴ 1R r <时,0q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =;⑵ 21R r R <<时,λl q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:rE 0π2ελ= 沿径向向外;⑶ 2R r >时,0=∑q ,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强;解:如题图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外,n E)(21210σσε+-=2σ面外,n E )(21210σσε+=, n:垂直于两平面由1σ面指为2σ面;半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题图所示;试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的;。

物理学教程第二版上册课后习题答案详解

物理学教程第二版上册课后习题答案详解

物理学教程(第二版)上册习题答案第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =t x 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s (3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图1 -7 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a 设a 与x 轴的夹角为β,则32tan -==x y a a β β=-33°41′(或326°19′)1 -8 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=a g ht(2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g+a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=a g ht(2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d题 1-8 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1) 由 ⎰⎰=tx x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-v v (2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )e 1(Bt BA --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度.(2) 再由)e 1(d d Bt BA t y --==v 并考虑初始条件有 t BA y t Bt y d )e 1(d 00⎰⎰--= 得石子运动方程)1(e 2-+=-Bt B A t B A y 1 -11 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.题 1-11 图分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt r r t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度t d d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -13 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?题 1-13 图分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v (2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α1 -14 为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小为1500=v h km 1-⋅,他随即以仰角ο5=α冲出,飞越跨度达57 m ,安全着陆在西岸木桥上,求:题 1-14 图(1) 柯飞车跨越黄河用了多长时间?(2) 若起飞点高出河面10 m ,柯驾车飞行的最高点距河面为几米?(3) 西岸木桥和起飞点的高度差为多少?分析 由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动来说,运用叠加原理是求解此类问题的普适方法,操作程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g ,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中m m x y 和分别表示飞车的最大高度和飞跃跨度.解 在图示坐标系中,有t v x )cos (0α= (1) 2021sin (gt t v y -=)α (2) gt v v y -=αsin 0 (3)(1) 由式(1),令57m ==x x m ,得飞跃时间37.1cos 0m m ==αv x t s (2)由式(3),令0=y v ,得飞行到最大高度所需时间gv t αsin 0m =’将’m t 代入式(2),得飞行最大高度 67.02sin 220m ==gv y αm 则飞车在最高点时距河面距离为10m +=y h m 67.10= m(3)将37.1m =t s 代入式(2),得西岸木桥位置为y = - 4.22 m“-”号表示木桥在飞车起飞点的下方.讨论 本题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为10=y m + 2021)sin (gt t v -α 1 -15 如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角ο30=α,球的抛射角ο60=β,设球被抛出时的速率v 0 =19.6 m·s-1,忽略空气阻力,问球落在山坡上处离山坡底端的距离为多少?此过程经历多长时间?题 1-15 图分析 求解方法与上题类似,但本题可将运动按两种方式分解,如图(a )和图(b )所示.在图(a )坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g αcos 和-g αsin ,看似复杂,但求解本题确较方便,因为落地时有y =0,对应的时间t 和x 的值即为本题所求.在图(b )坐标系中,分运动看似简单,但求解本题还需将落地点P 的坐标y 与x 的关系列出来.解 1 由分析知,在图(a )坐标系中,有20)sin (21)]cos([t g t v x ααβ-+-= (1) 20)cos (21)]sin([t g t v y ααβ-+-= (2)落地时,有y =0,由式(2)解得飞行时间为31.230tan 20==οgv t s将 t 值代入式(1),得1.263220===gv x OP m解 2 由分析知,在图(b )坐标系中,对小球t v x )cos (0β= (1) 2021)sin (gt t v y -=β(2) 对点Pαtan x y =' (3)由式(1)、(2)可得球的轨道方程为 οββ2202cos 2tan v gx x y -=(4) 落地时,应有y y '=,即οοο60cos 260tan 30tan 2202v gx x x -=解之得落地点P 的x 坐标为 gv x 332=(5)则 1.263230cos 20===g v xOP οm联解式(1)和式(5)可得飞行时间31.2=t s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt t s -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -17 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为22s 2s m 30.2-=⋅==ωr a t n2s2s m 80.4d d -=⋅==t ωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t 此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -19 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v 2 .(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -20 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足h l αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.题 1-20 图解 由122v v v -='[图(b)],有θθcos sin arctan 221v v v -=α 而要使hl αarctan ≥,则hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2用水平力F N把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N逐渐增大时,物体所受的静摩擦力F f的大小( )(A) 不为零,但保持不变(B) 随F N成正比地增大(C) 开始随F N增大,达到某一最大值后,就保持不变(D) 无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N范围内取值.当F N增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gRμμ(B) 必须等于gR(C) 不得大于gRμ (D) 还应由汽车的质量m决定分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A和a B均应对地而言,本题中a A和a B的大小与方向均不相同.其中a A应斜向上.对a A、a B、a和a′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6图示一斜面,倾角为α,底边AB 长为l=2.1 m,质量为m的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?分析动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f(t),然后运用对t 求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点O位于斜面顶点,则由牛顿第二定律有ma-cossin (1)αmg=αmgμ又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2) 为使下滑的时间最短,可令0d d =αt ,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o 49=α此时 ()s 99.0cos sin cos 2min =-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102 kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2 的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题 2-7 图分析 预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有F T-( m 1 +m 2 )g =(m 1 +m 2 )a (1)F N2 - m 2 g =m 2 a (2)解上述方程,得F T =(m 1 +m 2 )(g +a) (3)F N2 =m 2 (g +a) (4)(1) 当整个装置以加速度a =10 m·s-2 上升时,由式(3)可得绳所受张力的值为F T =5.94 ×103 N乙对甲的作用力为F ′N2 =-F N2 =-m 2 (g +a) =-1.98 ×103 N(2) 当整个装置以加速度a =1 m·s-2 上升时,得绳张力的值为F T =3.24 ×103 N此时,乙对甲的作用力则为F ′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 如图(a)所示,已知两物体A 、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s-2 运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力 ()N 2.724f =+-=a m m mg F题 2-8 图讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度? 分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力f F =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程f F =μmg =ma 1f F =-f F =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度-v ′作匀减速运动直至最终停止.由运动学规律有- v ′2 =2as由上述各式可得木块相对于平板所移动的距离为解2 以木块和平板为系统,它们之间一对摩擦力作的总功为mgs l F l s F W μ=-+=f f )( 式中l 为平板相对地面移动的距离.。

大学物理课后习题答案(高教版 共三册)

大学物理课后习题答案(高教版 共三册)

第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。

解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。

解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。

物理人教版选修2课后题答案

物理人教版选修2课后题答案

物理人教版选修2课后题答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】A5. 【答案】D二、填空题1. 【答案】抛物线2. 【答案】动量守恒定律3. 【答案】恒定4. 【答案】抛体运动5. 【答案】抛物线三、计算题1. 【答案】质量m=2kg,初速度v0=10m/s,加速度a=2m/s2动量p=mv0=2×10=20kg·m/s动能E=1/2mv02=1/2×2×102=100J2. 【答案】质量m=2kg,初速度v0=10m/s,加速度a=2m/s2时间t=v0/a=10/2=5s位移s=v0t+1/2at2=10×5+1/2×2×52=75m3. 【答案】质量m=2kg,初速度v0=10m/s,加速度a=2m/s2动量p=mv0=2×10=20kg·m/s动能E=1/2mv02=1/2×2×102=100J动能变化ΔE=E2-E1=100-0=100J动量变化Δp=p2-p1=20-0=20kg·m/s动能变化ΔE=Δpv=20×v=20×10=200J四、解答题1. 【答案】抛体运动是指物体在重力场中运动的一种运动,它的运动轨迹是一个抛物线,其运动规律可由牛顿第二定律和动量守恒定律来描述。

牛顿第二定律表明,物体受到的外力等于物体的质量乘以物体的加速度,即F=ma;动量守恒定律表明,物体的动量在没有外力作用的情况下是守恒的,即p=mv。

2. 【答案】抛体运动的特点有:(1)运动轨迹是抛物线:抛体运动的运动轨迹是一个抛物线,它的运动轨迹是由物体受到重力作用而产生的,重力的作用使物体的运动轨迹呈抛物线形。

(2)动量守恒:抛体运动的动量守恒定律表明,物体的动量在没有外力作用的情况下是守恒的,即p=mv。

(3)动能变化:抛体运动的动能变化定律表明,物体的动能变化等于物体的动量变化乘以物体的速度,即ΔE=Δpv。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理课后习题答案

大学物理课后习题答案

大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。

(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。

(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。

解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。

高中物理必修二课后习题答案

高中物理必修二课后习题答案

高中物理必修二课后习题答案【高中物理必修二课后习题答案】第一章物质结构一、必修二第一章习题答案1. 金属原子的电子云中电子的运动状态是相对固定而不是规则振动的。

2. 充分加热后,固体物质原子间距离减小,固体膨胀;液体由于分子间距离较大,因此一般情况下是膨胀的;气体由于分子间无拘束状态,所以当联接分子间距离越来越大的时候,气体体积增大,固体、液体、气体的大气压都是由于它们的分子在频繁地与外界的气压作用下产生的。

3. (1)原子的质量数=原子中质子数+原子中中性粒子数;(2)原子的电子数=原子中质子数。

4. 分子的电荷量为零,不会受到电场力的作用,因而在电场中不受力。

5. 氢键的作用是氢原子的电子与另一个分子的原子核间形成氢键,将分子聚集起来形成有理化合物。

二、必修二第一章小试牛刀1. 化合物的结构: A(C1H2O)3→醇,B(C2H6O2)2→醇酸,C(CH3Cl)2→烷烃,D(CO2H4)→酸,E(C3H8O)→醇,F (C2H4O)→醛。

2. 分别是:A(CH3OH)2→CH3OH,B(C2H5OH)2→HC2H3O2,C CH3Cl→CH3,D CO2H4→CO2+H2,EC3H8O→C3H8,F(CH3CHO)2→CH3CHO。

3. (1)从它的化学结构可以看出这可以遵循星型结构的规则,它是由1个中央原子和3个末端原子构成的,单中心结构的氨分子由于它的原子结构而不再符合这个规则。

(2)这样的效应可以被设计成同种化学结构的不同类型的分子之间所产生的,它们中的各个原子对序列的影响也是不相同的。

(3)由于长度的分布不同,在有些情况下它们之间结构的差异将会更加明显,而在有些情况下它们之间的结构差异则细微得令人难以分辨。

第二章运动的描述一、必修二第二章习题答案1. (1)物体的运动状态包括位置、速度和加速度三个方面;(2)匀加速直线运动中速度平均值与瞬时值相同时,速度是匀的;(3)做匀加速曲线运动的物体的速度方向和加速度方向不一定相同,但一定不相反。

新编大学物理课后习题答案

新编大学物理课后习题答案

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别 题1.2: 答案:[A] 题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R rj r i==-,21v v v ∆=-,12,v v vi v j=-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返 题1.6: 答案:[D] 提示:a=2t=d dtv ,2224tv tdt t==-⎰,02tx xvdt -=⎰,即可得D 项题1.7: 答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+vv v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率 题1.9:答案:2915t t -,0.6提示: 2915dx v t tdt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dy dtdt=+v i j(2) t=1s 时,24t =-v i j ,4d dt==-v a j(3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i jt=1s 到t=2s ,同样代入()t =r r 可求得26r ∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s提示:2(2)2412(/)dv d x a v x m s dtdt=====题1.12: 答案:1/m s 22π提示:200tdvv v dt tdt=+=⎰,11/t vm s==,201332tvdt t R θπ===⎰,222r R π∆==题1.13: 答案:215()2t v t gt-+-i j提示: 先对2(/2)vt g t =-r j求导得,0()yv gt =-vj与5=v i 合成得05()v g t =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQv R R t dt τ==,88a R τ==,2264n dQ a R tdt ⎛⎫== ⎪⎝⎭三、计算题 题1.15: 解:(1)3tdv atdt == 003v tdv tdt =∴⎰⎰ 232v t∴=又232ds v tdt==232stds tdt=∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434nva tR==4334tt=∴ 34t S=∴题1.16: 解:(1)dv a kvdt ==- 0vtdv kdt v=-∴⎰⎰, 0lnv ktv =-(*)当012v v =时,1ln 2kt=-,ln 2t k=∴(2)由(*)式:0kt v v e -=0kt dx v e dt -=∴,000x tkt dx v e dt -=⎰⎰(1)kt v x e k-=-∴ 第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2yy Sv t t==x 方向上做匀加速运动(初速度为0),F a m=22tx v a d t t ==⎰,223txxt S vdt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg ='F F = 杆受力1()F M g F M m g=+=+1()F M m ga MM+==题2.4 : 答案:[D] 提示:Ba BTTa A Tmg22AB A B m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aag=(2A Ba a=,通过分析滑轮,由于A 向下走过S ,B 走过2S )2A Ba a=∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故0(cos 60)()1010m m v m v =+共0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h R Rθ-=分析条件得,只有在h 高度时,向心力与重力分量相等 所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)2200112()22m v m v m gh v gh g h R =+⇒=+-题2.7: 答案:[B]提示: 运用动量守恒与能量转化 题2.8: 答案:[D] 提示:θv 0v x vy由机械能守恒得20122m gh m vv gh=⇒=0sin y v v θ=sin 2Gy Pmgv mg ghθ==∴题2.9: 答案: [C] 题2.10: 答案: [B] 提示: 受力如图fT Fx由功能关系可知,设位移为x (以原长时为原点)2()xF m g Fx m gx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题 题2.11: 答案:2mb 提示: '2v x bt =='2a v b== 2Fm a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/xam s= 4x F N=8y F N=2F m k ga==24/y y F a m sm==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+27/5v adt m s⇒==⎰当t=2时,1110a =题2.14: 答案:180kg 提示:由动量守恒,=m S -S m人人人船相对S ()=180kgm ⇒船题2.15: 答案:11544+i j提示:各方向动量守恒题2.16: 答案:()mv +i j ,0,-mgR提示:由冲量定义得 ==()(m v m v m v --=+I P P i j ij末初-由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合=W m gR-外题2.17: 答案:-12 提示:3112w F dx J -==⎰题2.18:答案: mgh ,212kx ,M m G r- h=0,x=0,r =∞ 相对值题2.19: 答案: 02m g k ,2mg ,0m gk题2.20: 答案: +=0A ∑∑外力非保守力三、计算题 题2.21: 解:(1)=m Fxg L 重()m f L x gLμ=-(2)1()(1)g a F f x gmLμμ=-=+-重(3)dv a v dx=,03(1)vLL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,2(2)3v L g μ=-题2.22:解:(1)以摆车为系统,水平方向不受力,动量守恒。

物理课后习题及解析

物理课后习题及解析

第十一章恒定磁场11-1两根长度一样的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度一样,R =2r ,螺线管通过的电流一样为I ,螺线管中的磁感强度大小r R B B 、满足〔 〕〔A 〕r R B B 2= 〔B 〕r R B B = 〔C 〕r R B B =2 〔D 〕r R B B 4=分析与解在两根通过电流一样的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度一样的细导线绕成的线圈单位长度的匝数之比因而正确答案为〔C 〕.11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为〔 〕〔A 〕B r 2π2 〔B 〕B r 2π〔C 〕αB r cos π22 〔D 〕αB r cos π2题 11-2 图分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为〔D 〕.11-3以下说法正确的选项是〔 〕〔A 〕闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过〔B 〕闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零〔C 〕磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零〔D 〕磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为〔B 〕.11-4在图〔a〕和〔b〕中各有一半径一样的圆形回路L1、L2,圆周内有电流I1、I2,其分布一样,且均在真空中,但在〔b〕图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则〔 〕〔A 〕⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = 〔B 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = 〔C 〕 ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ 〔D 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 题 11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为〔C 〕.11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,假设导体中流过的恒定电流为I ,磁介质的相对磁导率为μr〔μr<1〕,则磁介质内的磁化强度为〔 〕 〔A 〕()r I μr π2/1-- 〔B 〕()r I μr π2/1-〔C 〕r I μr π2/-〔D 〕r μI r π2/分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =〔μr-1〕H 求得磁介质内的磁化强度,因而正确答案为〔B 〕.11-11如下图,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直局部和圆弧局部,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0. 解 〔a〕长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4圆弧电流所激发,故有 B 0的方向垂直纸面向外.〔b〕将载流导线看作圆电流和长直电流,由叠加原理可得B 0的方向垂直纸面向里.〔c 〕将载流导线看作1/2圆电流和两段半无限长直电流,由叠加原理可得B 0的方向垂直纸面向外.11-13如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d *,如图〔b〕所示,载流长直导线的磁场穿过该面元的磁通量为 矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量第十二章电磁感应电磁场和电磁波12-1一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动〔如下图〕,则〔 〕〔A 〕线圈中无感应电流〔B 〕线圈中感应电流为顺时针方向〔C 〕线圈中感应电流为逆时针方向〔D 〕线圈中感应电流方向无法确定题 12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为〔B 〕.12-2将形状完全一样的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则〔 〕〔A 〕铜环中有感应电流,木环中无感应电流〔B 〕铜环中有感应电流,木环中有感应电流〔C 〕铜环中感应电动势大,木环中感应电动势小〔D 〕铜环中感应电动势小,木环中感应电动势大分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为〔A 〕.12-3有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.假设它们分别流过i 1和i 2的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1中产生的互感电动势为12,由i 1变化在线圈2中产生的互感电动势为ε21,下述论断正确的选项是〔 〕. 〔A 〕2112M M =,1221εε=〔B 〕2112M M ≠,1221εε≠〔C 〕2112M M =, 1221εε<〔D 〕2112M M =,1221εε<分析与解教材中已经证明M21=M12,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为〔D 〕.12-4对位移电流,下述说法正确的选项是〔 〕〔A 〕位移电流的实质是变化的电场〔B 〕位移电流和传导电流一样是定向运动的电荷〔C 〕位移电流服从传导电流遵循的所有定律〔D 〕位移电流的磁效应不服从安培环路定理分析与解位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为〔A 〕.12-5以下概念正确的选项是〔 〕〔A 〕感应电场是保守场〔B 〕感应电场的电场线是一组闭合曲线〔C 〕LI Φm =,因而线圈的自感系数与回路的电流成反比〔D 〕 LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为〔B 〕.12-7 载流长直导线中的电流以tI d d 的变化率增长.假设有一边长为d 的正方形线圈与导线处于同一平面内,如下图.求线圈中的感应电动势.分析 此题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如下图的坐标系.由于B 仅与*有关,即B =B (*),故取一个平行于长直导线的宽为d *、长为d 的面元d S ,如图中阴影局部所示,则d S =d d *,所以,总磁通量可通过线积分求得〔假设取面元d S =d *d y ,则上述积分实际上为二重积分〕.此题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为 当电流以tI d d 变化时,线圈中的互感电动势为 题 12-7 图第十四章 波 动 光 学14-1 在双缝干预实验中,假设单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则〔 〕〔A 〕 中央明纹向上移动,且条纹间距增大〔B 〕 中央明纹向上移动,且条纹间距不变〔C 〕 中央明纹向下移动,且条纹间距增大〔D 〕 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程一样,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.应选〔B 〕.题14-1 图14-2 如下图,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,假设用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两外表反射的光束的光程差是〔 〕题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上外表的反射光有半波损失,下外表的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为〔B 〕.14-3 如图〔a 〕所示,两个直径有微小差异的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干预条纹,如果滚柱之间的距离L 变小,则在L *围内干预条纹的〔 〕〔A 〕 数目减小,间距变大 〔B 〕 数目减小,间距不变〔C 〕 数目不变,间距变小 〔D 〕 数目增加,间距变小题14-3图分析与解 图〔a 〕装置形成的劈尖等效图如图〔b 〕所示.图中 d 为两滚柱的直径差,b 为两相邻明〔或暗〕条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为〔C 〕14-4用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.假设屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为〔 〕〔A 〕 3 个 〔B 〕 4 个 〔C 〕 5 个 〔D 〕 6 个分析与解 根据单缝衍射公式因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.应选〔B 〕.14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4cm 的光栅上,可能观察到的光谱线的最大级次为〔 〕〔A 〕 4 〔B 〕 3 〔C 〕 2 〔D 〕 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为即只能看到第1 级明纹,正确答案为〔D 〕.14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为〔 〕〔A 〕 3I 0/16 〔B 〕 3I 0/8 〔C 〕 3I 0/32 〔D 〕 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为〔C 〕.14-7自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为〔 〕〔A 〕 完全线偏振光,且折射角是30°〔B 〕 局部偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30° 〔C 〕 局部偏振光,但须知两种介质的折射率才能确定折射角〔D 〕 局部偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为局部偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.应选〔D 〕.14-9 在双缝干预实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2mm ,求双缝间的距离.分析 双缝干预在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δ*,则由中央明纹两侧第五级明纹间距*5 -*-5 =10Δ* 可求出Δ*.再由公式Δ* =d ′λ/d 即可求出双缝间距d .解 根据分析:Δ* =〔*5 -*-5〕/10 =1.22×10-3m双缝间距: d =d ′λ/Δ* =1.34 ×10-4 m14-11如下图,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:〔1〕条纹如何移动? 〔2〕 云母片的厚度t.题14-11图 分析(1)此题是干预现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程一样,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干预条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上*点P 〔明纹或暗纹位置〕,只要计算出插入介质片前后光程差的变化,即可知道其干预条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1λ〔对应k 1 级明纹〕,插入介质后的光程差Δ2 =〔n -1〕d +r 1 -r 2 =k 1λ〔对应k 1 级明纹〕.光程差的变化量为Δ2 -Δ1 =〔n -1〕d =〔k 2 -k 1 〕λ式中〔k 2 -k 1 〕可以理解为移过点P 的条纹数〔此题为5〕.因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有将有关数据代入可得14-13 利用空气劈尖测细丝直径.如下图,λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干预公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δ* 除以〔N -1〕.对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 题14-13 图14-21 一单色平行光垂直照射于一单缝,假设其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比拟法来确定波长.对应于同一观察点,两次衍射的光程差一样,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得第十五章 狭义相对论15-1有以下几种说法:(1) 两个相互作用的粒子系统对*一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都一样.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的根底.前者是理论根底,后者是实验根底.按照这两个原理,任何物理规律(含题述动量守恒定律)对*一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m ·s -1.迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,应选(C).15-2 按照相对论的时空观,判断以下表达中正确的选项是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地(E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δ*,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为 221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δ*=0)还是不同地(Δ*≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δ*≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δ*′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.15-3 有一细棒固定在S′系中,它与O*′轴的夹角θ′=60°,如果S′系以速度u 沿O*方向相对于S系运动,S系中观察者测得细棒与O* 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿O* 正方向运动时大于60°,而当S′系沿O*负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即O* 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与O* 轴夹角将会大于60°,此结论与S′系相对S系沿O* 轴正向还是负向运动无关.由此可见应选(C).15-4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A)21v v +L (B)12v -v L (C)2v L (D)()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.应选(C).讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.15-5 设S′系以速率v =0.60c 相对于S系沿**′轴运动,且在t =t ′=0时,* =*′=0.(1)假设有一事件,在S系中发生于t =2.0×10-7s,*=50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,*=10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(*,y ,z ,t )表示一个事件.因此,此题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为(2) 同理,第二个事件发生的时刻为所以,在S′系中两事件的时间间隔为15-6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8s ,*′=60m ,y ′=0,z ′=0处,假设S′系相对于S系以速率v =0.6c 沿**′轴运动,问该事件在S系中的时空坐标各为多少?分析 此题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 y =y ′=0z =z ′=015-7 一列火车长0.30km(火车上观察者测得),以100km ·h -1的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δ*′=*′2 -*′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述根本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为 ()()21221212/1cx x c t t t t 2v v -'-'+'-'=- (1) ()()21221212/1c x x c t t t t 2v v ----='-' (2) 将条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中12x x -为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运动物体(火车)有长度收缩效应,即()21212/1c x x x x 2v -'-'=-.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为负号说明火车上的观察者测得闪电先击中车头*′2 处.解2 根据分析,把关系式()21212/1c x x x x 2v -'-'=- 代入式(2)亦可得 与解1一样的结果.相比之下解1较简便,这是因为解1中直接利用了12x x '-'=0.30km 这一条件.15-8 在惯性系S中,*事件A 发生在*1处,经过2.0 ×10-6s后,另一事件B 发生在*2处,*2-*1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿* 轴正向运动,因在S 系中两事件的时空坐标,由洛伦兹时空变换式,可得 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)两事件在S′系中发生在同一地点,即*′2-*′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于此题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt ′为固有时间间隔(原时),由时间延缓效应关系式2/1ΔΔc t t 2v -='可直接求得结果.解 (1) 令*′2-*′1=0,由式(1)可得(2) 将v 值代入式(2),可得这说明在S′系中事件A 先发生.第十六章 量子物理16-1 以下物体哪个是绝对黑体( )(A) 不辐射可见光的物体 (B) 不辐射任何光线的物体(C) 不能反射可见光的物体 (D) 不能反射任何光线的物体分析与解 一般来说,任何物体对外来辐射同时会有三种反响:反射、透射和吸收,各局部的比例与材料、温度、波长有关.同时任何物体在任何温度下会同时对外辐射,实验和理解证明:一个物体辐射能力正比于其吸收能力.做为一种极端情况,绝对黑体(一种理想模型)能将外来辐射(可见光或不可见光)全部吸收,自然也就不会反射任何光线,同时其对外辐射能力最强.综上所述应选(D).16-2 光电效应和康普顿效应都是光子和物质原子中的电子相互作用过程,其区别何在? 在下面几种理解中,正确的选项是( )(A) 两种效应中电子与光子组成的系统都服从能量守恒定律和动量守恒定律(B) 光电效应是由于电子吸收光子能量而产生的,而康普顿效应则是由于电子与光子的弹性碰撞过程(C) 两种效应都相当于电子与光子的弹性碰撞过程(D) 两种效应都属于电子吸收光子的过程分析与解 两种效应都属于电子与光子的作用过程,不同之处在于:光电效应是由于电子吸收光子而产生的,光子的能量和动量会在电子以及束缚电子的原子、分子或固体之间按照适当的比例分配,但仅就电子和光子而言,两者之间并不是一个弹性碰撞过程,也不满足能量和动量守恒.而康普顿效应中的电子属于"自由〞电子,其作用相当于一个弹性碰撞过程,作用后的光子并未消失,两者之间满足能量和动量守恒.综上所述,应选(B).16-3 关于光子的性质,有以下说法(1) 不管真空中或介质中的速度都是c ; (2) 它的静止质量为零;(3) 它的动量为ch v ; (4) 它的总能量就是它的动能; (5) 它有动量和能量,但没有质量.其中正确的选项是( )(A) (1)(2)(3) (B) (2)(3)(4)(C) (3)(4)(5) (D) (3)(5)分析与解 光不但具有波动性还具有粒子性,一个光子在真空中速度为c (与惯性系选择无关),在介质中速度为nc ,它有质量、能量和动量,一个光子的静止质量m 0=0,运动质量2c h m v = ,能量v h E =,动量cv h λh p ==,由于光子的静止质量为零,故它的静能E 0 为零,所以其总能量表现为动能.综上所述,说法(2)、(3)、(4)都是正确的,应选(B). 16-4 关于不确定关系h p x x ≥ΔΔ有以下几种理解:(1) 粒子的动量不可能确定,但坐标可以被确定;(2) 粒子的坐标不可能确定,但动量可以被确定;(3) 粒子的动量和坐标不可能同时确定;(4) 不确定关系不仅适用于电子和光子,也适用于其他粒子.其中正确的选项是( )(A) (1)、(2) (B) (2)、(4)(C) (3)、(4) (D) (4)、(1)分析与解 由于一切实物粒子具有波粒二象性,因此粒子的动量和坐标(即位置)不可能同时被确定,在这里不能简单误认为动量不可能被确定或位置不可能被确定.这一关系式在理论上适用于一切实物粒子(当然对于宏观物体来说,位置不确定量或动量的不确定量都微缺乏道,故可以认为可以同时被确定).由此可见(3)、(4)说法是正确的.应选(C).16-5 粒子在一维矩形无限深势阱中运动,其波函数为则粒子在* =a /6 处出现的概率密度为( ) (A) a /2 (B) a /1 (C) a /2 (D) a /1分析与解 我们通常用波函数Ψ来描述粒子的状态,虽然波函数本身并无确切的物理含义,但其模的平方2ψ表示粒子在空间各点出现的概率.因此题述一线粒子在a x ≤≤0区间的概率密度函数应为()x aa x ψπ3sin 222=.将* =a /6代入即可得粒子在此处出现的概率为a /2.应选(C).16-7 太阳可看作是半径为7.0 ×108 m 的球形黑体,试计算太阳的温度.设太阳射到地球外表上的辐射能量为1.4 ×103 W ·m -2 ,地球与太阳间的距离为1.5 ×1011m.分析 以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的*一位置上.太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因而可根据地球外表单位面积在单位时间内承受的太阳辐射能量E ,计算出太阳单位时间单位面积辐射的总能量()T M ,再由公式()4T σT M =,计算太阳温度.。

大学物理课后习题答案(高教版 共三册)

大学物理课后习题答案(高教版 共三册)
则 又 得 飞轮总共转过 (圈) (2)设飞轮再经过时间t停止
由 得则
7、在xy平面内有一运动质点,其运动学方程为:(SI) 则t时刻其速度为多少?其切向加速度的大小为多少?该质点运动的轨 迹是什么? 解:(1)
(2)速率: (3)两式平方后相加,, 轨迹为一半径为10m的圆。
8、一条河在某一段直线岸边有A、B两个码头,相距 1km ,甲、乙两人 需要从码头A到码头B,再立即由B返回。甲划船前去,船相对河水的速 度 4km/h,而乙沿岸步行,步行速度也为 4km/h ,如河水流速为 2km/h ,方向从A到B,试推算甲比乙晚多少分钟回到码头A? 解:由A到B船对地的速度大小:
2、质点在一直线上运动,其坐标与时间有如下关系: (SI) (A 为常 数),则在任意时刻 t 质点的加速度为多少?什么时刻质点的速度为零? 解:(1)
(SI) (2)令
有 得 (SBiblioteka ) (K=0,1,2……)3、一质点沿X 方向运动,其加速度随时间变化关系为:a=3+2t (SI), 如果初始时质点的速度 为 5m/s ,则当 t 为 3s 时,质点的速度为多少? 解:由
由B到A船对地的速度大小: 甲由A到B再回到A所需时间: 乙由A到B再回到A所需时间:
所以甲比乙晚十分钟回到码头A 。
9、轮船在水上以相对于水的速度航行,水流速度为,人相对于甲板以 速度行走。如人相对于岸静止,则、和的关系是怎样的? 解:
即 的关系为:
第一章 运动学
1、质点的运动方程为 (SI),则在t 由 0 至 4s 的时间间隔内,质点的位 移大小为多少?在 t 由0 到 4s 的时间间隔内质点走过的路程为多少? 解:本题质点在x方向作直线运动
(1) t1=0时,=0 t2=4(s) 时, =(m) ∴位移大小(m) (2 ) 令 得t=3 (s ) 即t=3 (s )时,质点拐弯沿x轴负向运动,则0~4(s)内质点走过 的路程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[(1)y=0.10cos [2π(2.0t-x/l0)+ φ]m,(2), π/2 ,(3)y=0.10cos[2π(2.0t-x/l0)+ π/3]m]
5-6 P和Q是两个同方向、同频率、同相位、同振幅的波源所在处。设它们在介质中产生的波的波长为λ,PQ之间的距离为1.5λ。R是PQ连线上Q点外侧的任意一点。试求:(1)PQ两点发出的波到达R时的相位差;(2)R点的振幅。 (3π;0)
10-2m,求水流速度。 (0.98m·s-1)
3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求
(1)未变窄处的血流平均速度。 (0.22m·s—1)
(2)会不会发生湍流。 (不发生湍流,因Re = 350)
(3)狭窄处的血流动压强。 (131Pa)
3-14 设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。 (8.7×10—4m3·s-1)
3-15 假设排尿时,尿从计示压强为40mmHg的膀胱经过尿道后由尿道口排出,已知尿道长4㎝,体积流量为21㎝3· s-1,尿的粘度为6.9×10-4Pa· s,求尿道的有效直径。 (1.4mm)
3-5 水在粗细不均匀的水平管中作稳定流动,已知截面S1处的压强为110Pa,流速为0.2m·s-1,截面S2处的压强为5Pa,求S2处的流速(内摩擦不计)。 (0.5m·s-1)
3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。(85kPa)
3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点 的1/2,求第二点处的计示压强。 (13.8kPa)
3-8 一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒1.4×10-4m3的快慢由水管自上面放人容器中。问容器内水面可上升的高度?若达到该高度时不再放水,求容器内的水流尽需多少时间。 (0.1;11.2s.)
习题二第二章物体的弹性
2-1 形变是怎样定义的?它有哪些形式?
答:物体在外力作用下发生的形状和大小的改变称为形变。形变包括弹性形变和范(塑)性形变两种形式,弹性形变指在一定形变限度内,去掉外力后物体能够完全恢复原状的形变,而范(塑)性形变去掉外力后物体不再能完全恢复原状的形变。
2-2 杨氏模量的物理含义是什么?
5-4 已知波函数为y=Acos(bt—cx),试求波的振幅、波速、频率和波长。
(A,b/c,b/2π,2π/c)
5-5 有一列平面简谐波,坐标原点按y=Acos(ωt + φ)的规律振动。已知A=0.10m,T=
0.50s,λ=10m。试求:(1)波函数表达式;(2)波线上相距2.5m的两点的相位差;(3)假如t=0时处于坐标原点的质点的振动位移为y。= +0.050m,且向平衡位置运动,求初相位并写出波函数。
习题四 第四章振动
4-1 什么是简谐振动?说明下列振动是否为简谐振动:
(1)拍皮球时球的上下运动。
(2)一小球在半径很大的光滑凹球面底部的小幅度摆动。
4-2 简谐振动的速度与加速度的表达式中都有个负号,这是否意味着速度和加速度总是负值?是否意味着两者总是同方向?
4-3 当一个弹簧振子的振幅增大到两倍时,试分析它的下列物理量将受到什么影响:振动的周期、最大速度、最大加速度和振动的能量。
习题五 第五章波动
5-1 机械波在通过不同介质时,它的波长、频率和速度中哪些会发生变化?哪些不会改变?
5-2 振动波动有何区别和联系?
5-3,波动表达式y= Acos[(ω(t-x/u)+ φ]中,x/u表示什么? φ表示什么?若把上式改写成y=Acos[(ωt—ωx/u)+ φ],则ωx/u表示什么?
2-8 若使水的体积缩小0.1%,需加多大的压强?它是大气压1×105N,m-1’的多少倍?已知水的压缩率为50×10-6atm-1。 (20atm,20倍)
习题三第三章流体的运动
3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞?
答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两
4-6 一沿x轴作简谐振动的物体,振幅为5.0×10-2m,频率2.0Hz,在时间t=0时,振动物体经平衡位置处向x轴正方向运动,求振动表达式。如该物体在t=o时,经平衡位置处向x轴负方向运动,求振动表达式。
[x=5.0×10—2cos(4πt—π/2)m;x=5.0×10-2cos(4πt+π/2)m]
船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水
的压强,就使得两船容易相互靠拢碰撞。
3-2 为什么一个装有烟囱的火炉,烟囱越高通风的效果越好?(即烟从烟囱中排出的速度越大)
答:通常高处空气水平流动速度比较大,如果烟囱越高,则出口处的气体更容易被吸出。
3-3 为什么自来水沿一竖直管道向下流时,形成一连续不断的冰流,而当水从高处的水龙头自由下落时,则断裂成水滴,试说明之。
5-9 弦线上驻波相邻波节的距离为65cm,弦的振动频率为2.3x102Hz,求波的波长λ和传播速度u。 (1.3m;3.0×102m·s-1)
5-10 人耳对1000Hz的声波产生听觉的最小声强约为1×10-12W,m-2,试求20℃时空气分子相应的振幅。 (1×10-11m)
5-11 两种声音的声强级相差ldB,求它们的强度之比。 (1.26)
2-6 松弛的二头肌,伸长5㎝时,所需要的力为25N,而这条肌肉处于紧张状态时,产生同样伸长量则需500N的力。如果把二头肌看做是一条长为0.2㎝,横截面积为50㎝2的圆柱体,求其在上述两种情况下的杨氏模量。 (2×104N·m-2;4×105N·m-2)
2-7 在边长为0.02m的正方体的两个相对面上,各施加大小相等、方向相反的切向力9.8×102N,施加力后两面的相对位移为0.00lm,求该物体的切变模量。 (4.9X107N·m-2)
4-10 由两个同方向的简谐振动:(式中x以m计,t以s计)
x1=0.05cos(10t十3π/4),x2=0.06cos(10t -π/4)
(1)求它们合成振动的振幅和初相位。
(2)若另有一简谐振动x3= 0.07cos (10t+φ),分别与上两个振动叠加,问φ为何值时,x1+x3的振幅为最大;φ为何值时,x1+x3的振幅为最小。[(1)1.0×l0-2m,-π/4;(2)当φ=2nπ+3π/4,n=1,2,…时,x1+x3的振幅为最大,当φ=2nπ+3π/4,n=1,2,…时,x2+x3的振幅为最小]
4-8 两个同方向、同频率的简谐振动表达式为,x1=4cos(3πt+π/3)m和x2=3cos(3πt-π/6)m,试求它们的合振动表达式。 [x=5cos(3πt+0.128π)m]
4-9 两个弹簧振子作同频率、同振幅的简谐振动。第一个振子的振动表达式为x1=Acos
(ωt+φ),当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点。求第二个振子的振动表达式和二者的相位差。 [x2= Acos(ωt +φ—π/2),Δφ= -π/2]
5-7 沿绳子行进的横波波函数为y=0.10cos(0.01πx—2πt)m。试求(1)波的振幅、频率、传播速度和波长;(2)绳上某质点的最大横向振动速度。
[(1)0.10m;1.0Hz;200m·s-1;200m (2)0.63m·s-1]
5-8 设y为球面波各质点振动的位移,r为离开波源的距离,A。为距波源单位距离处波的振幅。试利用波的强度的概念求出球面波的波函数表达式。
4-4 轻弹簧的一端相接的小球沿x轴作简谐振动,振幅为A,位移与时间的关系可以用余弦函数表示。若在t=o时,小球的运动状态分别为
(1)x=-A。
(2)过平衡位置,向x轴正方向运动。
(3)过 处,向x轴负方向运动。
(4)过 处,向x轴正方向运动。
试确定上述各种状态的初相位。
4-5 任何一个实际的弹簧都是有质量的,如果考虑弹簧的质量,弹簧振子的振动周期将如何变化?
答:水沿一竖直管道向下流时,由于管壁的摩擦力作用,使得各处水的速度一致,因而可形成连续不断的水流。水自由下落时,由于水在不同高度处速度不同,因此难以形成连续的流管,故易裂开。
3-4 有人认为从连续性方程来看,管子愈粗流速愈小,而从泊肃叶定律来看,管子愈粗流速愈大,两者似有矛盾,你认为如何?为什么?
答:对于一定的管子,流量一定的情况下,根据连续性方程管子愈粗流速愈小;管子两端压强一定的情况下,根据泊肃叶定律管子愈粗流速愈大。条件不同,结果不同。
5-12 用多普勒效应来测量心脏壁运动时,以5MHz的超声波直射心脏壁(即入射角为°),测出接收与发出的波频差为500Hz。已知声波在软组织中的速度为1500m·s-1,求此时心壁的运动速度。 (7.5×10-2m·s-1)
第七章 习题七分子动理论
7-14 吹一个直径为10cm的肥皂泡,设肥皂液的表面张力系数α=40×10-3N·m-1。试求
3-12 20℃的水在半径为1 ×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少?(40Pa)
3-13 设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,?
3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。
相关文档
最新文档