七年级数学相交线与平行线测试题

合集下载

2023年北师大七年级数学下册第二章《相交线与平行线》综合测评卷附答案解析

2023年北师大七年级数学下册第二章《相交线与平行线》综合测评卷附答案解析

2023年七年级数学下册第二章《相交线与平行线》综合测评卷(试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 在数学课上,老师让同学们画对顶角∠1与∠2,下列画法正确的是()A B C D2. 如图1,三条直线交于点O,若∠1=30°,∠2=60°,则直线AB与CD的位置关系是()A. 平行B. 垂直C. 重合D. 以上均有可能图1 图2 图33. 如图2,已知a∠b,直线a,b被直线c所截,若∠1=∠60°,则∠2的度数为()A. 130°B. 120°C. 110°D. 100°4. 一副三角尺按图3所示放置,点C在FD的延长线上,若AB∠CF,则∠DBC的度数为()A. 10°B. 15°C. 30°D. 45°5. 如图4,在三角形ABC中,AB∠AC,AD∠BC,垂足分别为点A,D,则点B到直线AD的距离为()A. 线段AB的长B. 线段BD的长C. 线段AC的长D. 线段DC的长图4 图5 图6 图7 图86. 如图5,与∠α构成同位角的角有()A. 1个B. 2个C. 3个D. 4个7. 有下列说法:∠两条直线被第三条直线所截,内错角相等;∠互补的两个角就是平角;∠过一点有且只有一条直线与已知直线平行;∠平行于同一条直线的两直线平行;∠在同一平面内,垂直于同一条直线的两条直线平行. 其中正确的有()A. 0个B. 1个C. 2个D. 3个8.如图6,∠AOB与∠AOC互余,∠AOD与∠AOC互补,OC平分∠BOD,则∠AOB的度数是()A.20°B.22.5°C.25°D.30°9.如图7,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,∠ODE=∠ADC.若反射光DC恰好与OB平行,则∠DEB的度数是()A. 74°B. 63°C. 64°D. 73°10. 如图8,已知AF平分∠BAC,D在AB上,DE平分∠BDF,∠1=∠2,有下列结论:∠DF∠AC;∠DE∠AF;∠∠1=∠DF A;∠∠C+∠DEC=180°.其中成立的有()A. ∠∠∠B. ∠∠∠C. ∠∠∠D. ∠∠∠二、填空题(本大题共6小题,每小题3分,共18分)11. 图9是苗苗同学在体育课上跳远后留下的脚印,她的跳远成绩是线段(选填“AM”“BN”或“CN”)的长度,这样测量的依据是.图9 图10 图1112. 如图10,已知直线AB与CD相交于E点,FE∠AB,垂足为点E,若∠1=120°,则∠2=°.13. 如图11,已知DE∠BF,AC平分∠BAE,∠DAB=70°,那么∠ACF=°.14. 如图12,点E是AD延长线上一点,∠B=30°,∠C=120°,如果添加一个条件,使BC∠AD,则可添加的条件为.(只填一个即可)图12 图13 图1415. 如图13,把一张长方形纸片沿AB折叠,已知∠1=75°,则∠2的度数为________°.16. 如图14,已知DH∠EG∠BC,DC∠EF,DC与EG交于点M,那么在图中与∠EFB相等的角(不包括∠EFB)有.(填上所有符合条件的角)三、解答题(本大题共6小题,共52分)17.(6分)如图15,已知∠α,∠β,求作∠AOB,使∠AOB=2∠α-∠β.(要求:尺规作图,不写作法,保留作图痕迹)图1518.(7分)如图16,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°,求∠COF的度数.图1619.(8分)如图17,已知∠1+∠2=180°,∠3=∠B,直线AB与DE是否平行?并说明理由.图1720.(9分)如图18,已知∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?请说明理由.图1821.(10分)如图19,已知直线AB,CD相交于点O,OF平分∠AOE,∠COF=∠DOF=90°.(1)写出图中所有与∠AOD互补的角.(2)若∠AOE=120°,求∠BOD的度数.图1922.(12分)如图20,已知BC∠EG,AF∠DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.图20附加题(共20分,不计入总分)1.(6分)如图1,已知点D是射线AB上一动点,连接CD,过点D作DE∠BC交直线AC于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A. 104°B. 64°C. 104°或64°D. 104°或76°2.(14分)如图2,已知直线l1∠l2,直线l3与l1,l2分别交于点C,D,在C,D之间有一点P,当P点在C,D之间运动时,∠P AC,∠APB,∠PBD之间的数量关系是否发生变化?若点P在C,D两点的外侧运动时(与点C,D不重合),试探索∠P AC,∠APB,∠PBD之间的数量关系.图2参考答案一、1. C 2. B 3. B 4. B 5. B 6. C 7. C 8. B 9. A 10. A二、11. BN垂线段最短12. 30 13. 125 14. 答案不唯一,如∠1=30°15. 30 16. ∠DCB,∠GMC,∠DME,∠HDC,∠FEG三、17. 解:如图1所示,∠AOB即为所求.图118.∠COF=110°.19.解:AB∥DE.理由如下:因为∠1+∠ADC=180°,∠1+∠2=180°,所以∠ADC=∠2.根据“同位角相等,两直线平行”,可得EF∥DC.根据“两直线平行,内错角相等”,可得∠3=∠EDC.因为∠3=∠B,所以∠EDC=∠B.根据“同位角相等,两直线平行”,可得AB∥DE.20. 解:(1)AD∠BC.理由如下:因为∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,所以∠ADF=∠BCF.根据“同位角相等,两直线平行”,可得AD∠BC.(2)AB∠EF.理由如下:因为BE平分∠ABC,所以∠ABC=2∠ABE.因为∠ABC=2∠E,所以∠ABE=∠E.根据“内错角相等,两直线平行”,可得AB∠EF.21. 解:(1)因为直线AB,CD相交于点O,所以∠AOC,∠BOD分别与∠AOD互补.因为OF平分∠AOE,所以∠AOF=∠EOF.因为∠COF=∠AOF+∠AOC,∠DOF=∠EOF +∠EOD,且∠COF=∠DOF=90°,所以∠DOE=∠AOC,所以∠DOE也是∠AOD的补角.所以与∠AOD互补的角有∠AOC,∠BOD和∠DOE.(2)因为OF平分∠AOE,所以∠EOF=12∠AOE=12×120°=60°.因为∠DOF=90°,所以∠DOE=∠DOF-∠EOF=90°-60°=30°.因为∠DOE与∠BOD都是∠AOD的补角,所以∠BOD=∠DOE=30°.22. 解:(1)因为BC∠EG,所以∠E=∠1=50°.因为AF∠DE,所以∠AFG=∠E=50°.(2)如图2,过点A作AM∠BC.因为BC∠EG,所以AM∠EG,所以∠F AM=∠AFG=50°.因为AM∠BC,所以∠QAM=∠Q=15°. 所以∠F AQ=∠F AM+∠QAM=50°+15°=65°.因为AQ平分∠F AC,所以∠CAQ=∠F AQ=65°.所以∠MAC=∠CAQ+∠QAM=65°+15°=80°. 图2因为AM∠BC,所以∠ACB=∠MAC=80°.附加题1. C 提示:分两种情况讨论:∠点D在线段AB上;∠点D在线段AB的延长线上.2. 解:不变化,当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由如下:如图1,过点P作PE∠l1,则∠APE=∠PAC.因为l1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.图1 图2 图3若点P在C,D两点的外侧运动时(与点C,D不重合),有两种情况:∠如图2,当点P在点C的上方时,∠APB=∠PBD-∠PAC. 理由如下:过点P作PE∠l1,则∠APE=∠PAC.因为l 1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APB=∠BPE-∠APE =∠PBD-∠PAC.∠如图3,当点P在点D的下方时,∠APB=∠PAC-∠PBD. 理由如下:过点P作PE∠l2,则∠BPE=∠PBD.因为l1∠l2,所以PE∠l1,所以∠APE=∠PAC,所以∠APB=∠APE-∠BPE =∠PAC-∠PBD.。

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。

七年级数学第五章相交线与平行线单元检测

七年级数学第五章相交线与平行线单元检测

“第五章相交线与平行线”单元检测一、选择题:(每题4分,共32分)1、如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC =70°,则∠BOD的度数等于()A.30°B.35°C.20°D.40°2、如图,直线a、b被直线c所截,若a∥b,∠1=130°,则∠2等于()A.30°B.40°C.50°D.60°3、邻补角是()A、有公共顶点且互补的两个角B、有一条公共边且相等的两个角C、和为180°的两个角D、有公共顶点且有一条公共边,另一边互为反向延长线的两个角4、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A、第一次右拐50 o,第二次左拐130 oB、第一次左拐50 o,第二次右拐50 oC、第一次左拐50 o,第二次左拐130 oD、第一次右拐50 o,第二次右拐50 o5、如图,下列条件中能判定的是()A.B.C.D.6、同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A、a∥dB、b⊥dC、a⊥dD、b∥c7、如图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°第6题C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°8、在综合实践活动课上,小红准备用两种不同颜色的布料缝制一个正方形坐垫,坐垫的图案如图所示,应该选图中的哪一块布料才能使其与右图拼接符合原来的图案模式()二、填空题:(每题4分,共16分)9、如图,AB⊥CD,垂足为B,EF是过点B的一条直线,已知∠EBD=130°,则∠ABF=____ _.10、把命题“锐角的补角是钝角”改写成“如果……,那么……”的形式是:___11、如图,AB∥CD,直线EF分别交AB、CD分于点E、F,FH平分∠EFD,若∠1=110°,则∠2=___ __.12、如图,DAE是一条直线,DE∥BC,则∠BAC=___ _13、如图,已知//AE BD ,∠1=130o ,∠2=30o , 则∠C = .三、解答题:13、在网格图中平移三角形ABC ,使得点A 与点D 重合,请你画出平移后 的三角形。

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)

第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种说法中,正确的是A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【答案】C2.如图所示,若∠1与∠2互补,∠2与∠4互补,则A.l3∥l4B.l2∥l5C.l1∥l5D.l1∥l2【答案】D【解析】因为∠1与∠2互补,∠2与∠4互补,可知∠1+∠2=180°,∠2+∠4=180°,所以∠1=∠4,根据内错角相等,两直线平行可得l1∥l2,故选D.3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【答案】D4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】三角板的∠CAB,沿着FE进行平移后角的大小没变,而平移前后的两个角是同位角,所以画图原理是“同位角相等,两直线平行”.5.如图,给出下面的推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC=180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF.其中正确的是A.①②③B.①②④C.①③④D.②③④【答案】B二、填空题:请将答案填在题中横线上.6.在同一平面内有四条直线a、b、c、d,已知:a∥d,b∥c,b∥d,则a和c的位置关系是__________.【答案】a∥c【解析】∵a∥d,b∥c,b∥d,∴a∥c.故答案为:a∥c.7.如图,直线a、b被直线c所截,若要a∥b,需增加条件__________(填一个即可).【答案】答案不唯一,如∠1=∠3.【解析】∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:∠1=∠3.8.如图所示,若∠1=70°,∠2=50°,∠3=60°,则________________∥________________.【答案】DE;AC三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,已知∠1=∠3,AC平分∠DAB,你能推断出哪两条直线平行?请说明理由.【解析】可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).10.如图,若∠1与∠B互为补角,∠B=∠E,那么直线AB与直线DE平行吗?直线BC与直线EF平行吗?为什么?【解析】BC∥EF,理由如下:∵∠1+∠B=180°,∴AB∥DE,∵∠1+∠B=180°,∠B=∠E.∴∠1+∠E=180°,又∠1=∠2,∴∠2+∠E=180°,∴BC∥EF.11.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.12.如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:因为∠1=65°,∠2=65°,所以∠1=∠2.所以__________∥__________.(__________)因为AB与DE相交,所以∠1=∠4(__________),所以∠4=65°.又因为∠3=115°,所以∠3+∠4=180°.所以__________∥__________.(__________)。

2024-2025学年人教版数学七年级下学期《第5章相交线与平行线》测试卷及答案解析

2024-2025学年人教版数学七年级下学期《第5章相交线与平行线》测试卷及答案解析

A.3.5
B.4
10.如图,下列说法错误的是( )
C.5.5
第 2 页 共 38 页
D.6.5
A.∠A 与∠B 是同旁内角
B.∠1 与∠3 是同位角
C.∠2 与∠A 是同位角
D.∠2 与∠3 是内错角
11.下列所示的四个图形中,∠1 和∠2 是同位角的是( )
A.①②
B.②③
12.如图,∠BAC 和∠BCA 是( )
A.A 点
B.B 点
C.C 点
8.下列图形中,线段 MN 的长度表示点 M 到直线 l 的距离的是(
D.D 点 )
A.
B.
C.
D.
9.如图,A 是直线 l 外一点,过点 A 作 AB⊥l 于点 B,在直线 l 上取一点 C,连结 AC,使
AC=2ABLeabharlann P 在线段 BC 上连结 AP.若 AB=3,则线段 AP 的长不可能是( )
循反射定律发生反射,当光线 PQ 经过 n 次反射后与边 OA 或 OB 平行时,称角为定角α
的 n 阶平行逃逸角,特别地,当光线 PQ 直接与 OA 平行时,称角β为定角α的零阶平行
逃逸角.
(1)已知∠AOB=α=20°,
①如图 1,若 PQ∥OA,则∠BPQ=
°,即该角为α的零阶平行逃逸角;
第 5 页 共 38 页
25.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,
C.110°
D.100°
3.如图,若 AB,CD 相交于点 O,∠AOE=90°,则下列结论不正确的是( )
A.∠EOC 与∠BOC 互为余角
B.∠EOC 与∠AOD 互为余角

七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题 含答案

七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。

人教版数学七年级下册第5章专题01 相交线与平行线测试试卷(含答案)

人教版数学七年级下册第5章专题01 相交线与平行线测试试卷(含答案)

人教版数学7年级下册第5章专题01 相交线与平行线一、选择题(共24小题)1.下面各图中∠1和∠2是对顶角的是( )A.B.C.D.2.如图,下列图形中的∠1和∠2不是同位角的是( )A.B.C.D.3.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30',则下列结论中不正确的是( )A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30'4.如图,点O在直线BD上,已知∠1=20°,OC⊥OA,则∠DOC的度数为( )A.20°B.70°C.110°D.90°5.下列说法错误的是( )A.两条直线相交,只有一个交点B.在连接直线外一点与直线上各点的线段中,垂线段最短C.同一平面内,过一点有且只有一条直线垂直于已知直线D.直线外一点到直线的距离就是这点到直线的垂线段6.如图,在三角形ABC中,∠ACB=90°,CD⊥AB,垂足为D,则下列说法不正确的是( )A.线段AC的长是点A到BC的距离B.线段AD的长是点C到AB的距离C.线段BC的长是点B到AC的距离D.线段BD的长是点B到CD的距离7.如图,已知AC⊥BC于点C,CD⊥AB于点D,亮亮总结出了如下结论:①线段AC的长,表示点A到直线BC的距离;②线段CD的长,表示点C到直线AB的距离;③线段AD的长,表示点A到直线CD的距离;④∠ACD是∠BCD的余角.亮亮总结的结论正确的有( )个.A.1B.2C.3D.48.如图,AC⊥BC,CD⊥AB,则点A到CD的距离是线段( )的长度.A.CD B.AD C.BD D.BC9.如图,点P是直线l外一点,从点P向直线l引PA,PB,PC,PD四条线段,其中只有PC与l垂直,这四条线段中长度最短的是( )A.PA B.PB C.PC D.PD10.如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )使AC=53A.3.5B.4.1C.5D.5.511.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠3;②∠2=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判定a∥b的是( )A.①②④B.①③④C.②③④D.①②③12.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是( )A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行13.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )A.15°B.25°C.35°D.50°14.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2( )A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°15.若将一副三角板按如图所示的方式放置,则下列结论正确的是( )A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE16.如图,下列说法中,正确的是( )A.若∠3=∠8,则AB∥CDB.若∠1=∠5,则AB∥CDC.若∠DAB+∠ABC=180°,则AB∥CDD.若∠2=∠6,则AB∥CD17.如图,下列能判定AB∥CD的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°.A.1B.2C.3D.418.如图,在下列条件中,能够证明AD∥CB的条件是( )A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠319.如图为平面上五条直线l1,l2,l3,l4,l5相交的情形,根据图中标示的角度,下列叙述正确的是( )A.l1和l3平行,l2和l3平行B.l1和l3平行,l2和l3不平行C.l2和l3平行,l4和l5不平行D.l2和l3平行,l4和l5平行20.下列说法中正确的是( )A.过一点有且只有一条直线与已知直线平行B.两条直线有两种位置关系:平行或相交C.同一平面内,垂直于同一直线的两条直线平行D.三条线段两两相交,一定有三个交点21.如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知∠1=∠3,∠2+∠3=180°,求证:AB与DE平行.证明:①:AB∥DE;②:∠2+∠4=180°,∠2+∠3=180°;③:∠3=∠4;④:∠1=∠4;⑤:∠1=∠3.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①22.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.15°B.18°C.25°D.30°23.如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为( )A.40°B.35°C.30°D.25°24.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A.58°B.42°C.32°D.30°二、填空题(共11小题)25.如图,CE∥AB,∠ACB=75°,∠ECD=45°,则∠A的度数为 .26.如图,已知DE∥BC,BE平分∠ABC,若∠1=70°,则∠AEB的度数为 .27.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC 为 度.28.如图,l1∥l2,则﹣γ+α+β= .29.如图,∠PQR=138°.SQ⊥QR于Q,QT⊥PQ于Q,则∠SQT等于 .30.如图,直线AB、CD相交于点O,过点O作EO⊥AB.若∠1=55°,则∠2的大小为 度.31.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD = .32.如图,CD⊥AD,BE⊥AC,AF⊥CF,CD=2cm,BE=1.5cm,AF=4cm,则点A到直线BC的距离是 cm,点B到直线AC的距离是 cm,点C到直线AB的距离是 cm.33.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,AB=5,则点C到AB的距离为 .34.如图,要从马路对面给村庄P处拉网线,在如图所示的几种拉网线的方式中,最短的是PB,理由是 .35.如图,小华同学的家在点P处,他想尽快到公路边,所以选择沿线段PC去公路边,那么他的这一选择体现的数学基本事实是 .三、解答题(共16小题)36.如图,AB∥CD,点E在BC上.求证:∠B=∠D+∠CED.37.如图:已知直线AB、CD相交于点O,EO⊥CD.(1)若∠AOC=34°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:4,直接写出∠AOE= .38.(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFD=30°.则∠EPF= ;(2)【问题归纳】如图1,若AB∥CD,请猜想∠BEP,∠PFD,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?直接写出结论.39.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC,DA⊥FE于点A,∠FAB=55°,求∠ABD的度数.40.如图,在△ABC中,AD⊥BC于D,G是BA延长线上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)求证:AB=AC;(2)猜想并证明,当E在AC何处时,AF=2BD.41.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°,求∠AGC的度数.42.如图,直线AB与CD相交于点O,OE是∠BOC的平分线,如果∠BOC:∠DOF:∠AOC =1:2:4.求∠BOE和∠DOF的度数.43.如图,OB⊥OD,OC平分∠AOD,∠BOC=40°,求∠AOB的大小.44.如图,直线AB,CD,EF相交于点O,OG平分∠BOC,∠DOF=90°.(1)写出∠AOE的余角和补角;(2)若∠BOF=30°,求∠AOE和∠COG的度数.45.已知AM∥CN,点B在直线AM、CN之间,∠ABC=88°.(1)如图1,请直接写出∠A和∠C之间的数量关系: .(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .46.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°( )又,∵∠1=∠B(已知)∴ (同位角相等,两直线平行)∴∠AFB=∠AOE( )∴∠AFB=90°( )又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=( )°又∵∠A+∠2=90°(已知)∴∠A=∠AFC( )∴AB∥CD.(内错角相等,两直线平行)47.如图,已知点D是△ABC中BC边上的一点,DE⊥AC于点E,∠AGF=∠ABC,∠1+∠2=180°.(1)求证:DE∥BF;(2)若AF=3,AB=4,求BF的长.48.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,请将解题过程填写完整.解:∵EF∥AD(已知),∴∠2= ( ),又∵∠1=∠2(已知),∴∠1=∠3( ),∴AB∥DG( )∴∠BAC+ =180°( ),∵∠BAC=70°(已知),∴∠AGD=110°49.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F,若∠OFD=65°,补全图形,并求∠1的度数.50.如图,已知∠A=∠F,∠MCB+∠B=180°,AC⊥BC,垂足是C.(1)AN和EF平行吗?为什么?请说明理由.(2)若∠BEF=70°,求∠MCN的度数.51.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,求证:AC∥DF.参考答案一、选择题(共24小题)1.B2.C3.D4.C5.D6.B7.D8.B9.C10.D11.B12.C13.C14.A15.B16.D17.C18.D19.D20.C21.B22.A23.B24.C二、填空题(共11小题)25.60°26.35°27.7028.180°29.42°30.3531.40°32.4;1.5;233.12534.垂线段最短35.垂线段最短三、解答题(共16小题)36.证明:∵AB∥CD,∴∠B+∠C=180°,在△ECD中,∠CED+∠D+∠C=180°,∴∠C=180°﹣∠CED﹣∠D,∴∠B+180°﹣∠CED﹣∠D=180°,∴∠B=∠CED+∠D.37.解:(1)∵EO⊥CD,∴∠EOC=90°,∵∠AOC=34°,∴∠BOE=180°﹣∠AOC﹣∠COE=56°,∴∠BOE的度数为56°;(2)∵∠BOD:∠BOC=1:4,∠BOD+∠BOC=180°,∴∠BOD=180°×1=36°,14∴∠AOC=∠BOD=36°,∵∠COE=90°,∴∠AOE=∠AOC+∠COE=126°,∴∠AOE的度数为126°,故答案为:126°°.38.解:(1)如图1,过点P作PM∥AB,∵AB∥CD,∴AB∥PM∥CD,∴∠1=∠BEP=25°,∠2=∠PFD=30°,∴∠EPF=∠1+∠2=25°+30°=55°.故答案为:55°;(2)∠EPF=∠BEP+∠PFD,理由如下:如图1,∵AB∥CD,∴AB∥PM∥CD,∴∠1=∠BEP,∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD;(3)∠PFC=∠PEA+∠EPF,理由如下:如图2,过P点作PN∥AB,∵AB∥CD,∴AB∥PN∥CD,∴∠PEA=∠NPE,∠FPN=∠PFC,∴∠PFC=∠FPN=∠NPE+∠EPF=∠PEA+∠EPF.39.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE于E,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,∴∠ADC=∠2=∠DAF﹣∠FAB,∵∠FAB=55°,∴∠ADC=35°,∵DA平分∠BDC,∠1=∠BDC,∴∠1=∠BDC=2∠ADC=70°∴∠ABD=180°﹣70°=110°.40.(1)证明:∵AH平分∠GAC,∴∠GAF=∠FAC,∵AH∥BC,∴∠GAF=∠ABC,∠FAC=∠C,∴∠ABC=∠C,∴AB=AC.(2)解:当AE=EC时,AF=2BD.理由:∵AB=AC,AD⊥BC,∴BD=DC,∵AF∥BC,∴∠FAE=∠C,∵∠AEF=∠CEB,AE=EC,∴△AEF≌△CEB(ASA),∴AF=BC=2BD.41.(1)证明:∵AB ∥DF ,∴∠D +∠BHD =180°,∵∠D +∠B =180°,∴∠B =∠DHB ,∴DE ∥BC ;(2)解:∵DE ∥BC ,∠AMD =70°,∴∠AGB =∠AMD =70°,∴∠AGC =180°﹣∠AGB =180°﹣70°=110°.42.解:设∠BOC =x °,则∠DOF =2x °,∠AOC =4x °,由题意得:x +4x =180,解得:x =36,∴∠BOC =36°,∠DOF =72°,∠AOC =144°,∵OE 是∠BOC 的平分线,∴∠BOE =∠COE =12∠BOC =12×36°=18°.43.解:∵OB ⊥OD ,∴∠BOD =90°,又∵∠BOC =40°,∴∠COD =90°﹣40°=50°,∵OC 平分∠AOD ,∴∠AOD =2∠COD =100°,∴∠AOB =∠AOD ﹣∠BOD=100°﹣90°=10°,即∠AOB=10°.44.解:(1)∠AOE的余角是∠AOC,∠BOD;补角是∠AOF,∠EOB;(2)∠AOE=∠BOF=30°;∵∠DOF=90°,∴∠COF=90°,∵∠BOC=∠BOF+∠COF,∴∠BOC=90°+30°=120°,∵OG平分∠BOC,∠BOC=60°.∴∠COG=1245.解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵∠ABC=88°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=88°.故答案为:∠A+∠C=88°;(2)∠A和∠C满足:∠C﹣∠A=92°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵∠ABC=88°.∴∠ABE+∠CBE=88°.∴∠A+180°﹣∠C=88°.∴∠C﹣∠A=92°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∠MAB.∴∠GAF=12∵CH平分∠NCB,∠BCN.∴∠BCF=12∵∠B=88°,∴∠BFC=88°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=88°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,(∠BCN﹣∠MAB).∴∠AGH=12由(2)知:∠BCN﹣∠MAB=92°,∴∠AGH=1×92°=46°.2故答案为:46°.46.证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.47.(1)证明:∵∠AGF=∠ABC,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°,∴DE∥BF;(2)解:∵DE⊥AC,∴∠DEA=90°,∵DE∥BF,∴∠BFA=∠DEA=90°,∵AF=3,AB=4,∴BF===48.解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.49.(1)证明:∵OC⊥OD,∴∠COD=90°,∴∠1+∠DOB=90°,∵∠D与∠1互余,∴∠D+∠1=90°,∴∠D=∠DOB,∴ED∥AB;(2)解:如图,∵ED∥AB,∠OFD=65°,∴∠AOF=∠OFD=65°,∵OF平分∠AOD,∴∠AOD=2∠AOF=130°,∵∠COD=90°,∠AOD=∠1+∠COD,∴∠1=40°.50.解:(1)AN∥EF,理由如下:∵∠MCB+∠B=180°,∴FM∥AB,∴∠A=∠MCA,∵∠A=∠F,∴∠MCA=∠F,∴AN∥EF;(2)∵∠BEF=70°,AN∥EF,∴∠A=∠BEF=70°,∵FM∥AB,∴∠FCN=∠A=70°,∴∠MCN=180°﹣∠FCN=110°.51.证明:如图,∵∠1=∠2(已知),且∠1=∠3(对顶角相等),∴∠2=∠3,∴EC∥DB(同位角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF(内错角相等,两直线平行).。

2023年七年级数学下第5章《相交线与平行线》测试卷及答案解析

2023年七年级数学下第5章《相交线与平行线》测试卷及答案解析

2023年七年级数学下第5章《相交线与平行线》测试卷一.选择题(共10小题)
1.三条直线相交,交点最多有()
A.1个B.2个C.3个D.4个
2.如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于(

A.159°B.161°C.169°D.138°
3.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC )
的度数为(
A.40°B.50°C.60°D.140°
4.下列命题正确的是()
A.圆内接四边形的对角互补
B.平行四边形的对角线相等
C.菱形的四个角都相等
D.等边三角形是中心对称图形
5.下列命题是假命题的是()
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
6.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中
第1页共16页。

人教版七年级数学下册《相交线与平行线》专项练习题-附含答案

人教版七年级数学下册《相交线与平行线》专项练习题-附含答案

人教版七年级数学下册《相交线与平行线》专项练习题-附含答案一.选择题(共9小题满分18分每小题2分)1.(2分)(2022秋•丹东期末)若将一副三角板按如图所示的方式放置则下列结论正确的是()A.∠1=∠2 B.如果∠2=30°则有AC∥DEC.如果∠2=45°则有∠4=∠D D.如果∠2=50°则有BC∥AE解:∵∠CAB=∠DAE=90°∴∠1=∠3 故A错误.∵∠2=30°∴∠1=∠3=60°∴∠CAE=90°+60°=150°∴∠E+∠CAE=180°∴AC∥DE故B正确∵∠2=45°∴∠1=∠2=∠3=45°∵∠E+∠3=∠B+∠4∴∠4=30°∵∠D=60°∴∠4≠∠D故C错误∵∠2=50°∴∠3=40°∴∠B≠∠3∴BC不平行AE故D错误.故选:B.2.(2分)(2022春•宜州区期中)如图AB∥CD BF交CD于点E AE⊥BF∠CEF=35°则∠A是()A.35°B.45°C.55°D.65°解:∵AE⊥BF∴∠AEF=90°∴∠AEC=90°﹣∠CEF=90°﹣35°=55°∵AB∥CD∴∠A=∠AEC=55°.故选:C.3.(2分)(2022春•江汉区校级月考)如图给出了过直线外一点作已知直线的平行线的方法其依据是()A.同位角相等两直线平行B.内错角相等两直线平行C.同旁内角互补两直线平行D.对顶角相等两直线平行解:如图给出了过直线外一点作已知直线的平行线的方法其依据是同位角相等两直线平行.故选:A.4.(2分)(2022春•新罗区期中)如图将一个宽度相等的纸条沿AB折叠一下若∠1=140°则∠2的值为()A.100°B.110°C.120°D.130°解:如图:∵宽度相等的纸条沿AB折叠一下∴纸条两边互相平行∴2∠3=∠1 ∠2+∠3=180°∵∠1=140°∴∠3=∠1=70°∴∠2=180°﹣∠3=110°故选:B.5.(2分)(2022春•温江区期末)将一副直角三角板如图放置已知∠B=60°∠F=45°AB∥EF则∠CGD=()A.45°B.60°C.75°D.105°解:∵∠B=60°∴∠A=30°∵EF∥BC∴∠FDA=∠F=45°∴∠CGD=∠A+∠FDA=45°+30°=75°.故选:C.6.(2分)(2022春•牡丹江期中)如图AB∥CD F为AB上一点FD∥EH且FE平分∠AFG过点F作FG ⊥EH于点G且∠AFG=2∠D则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是()A.1个B.2个C.3个D.4个解:延长FG交CH于I.∵AB∥CD∴∠BFD=∠D∠AFI=∠FIH∵FD∥EH∴∠EHC=∠D∵FE平分∠AFG∴∠FIH=2∠AFE=2∠EHC∴3∠EHC=90°∴∠EHC=30°∴∠D=30°∴2∠D+∠EHC=2×30°+30°=90°∴①∠D=30°;②2∠D+∠EHC=90°正确∵FE平分∠AFG∴∠AFI=30°×2=60°∵∠BFD=30°∴∠GFD=90°∴∠GFH+∠HFD=90°可见∠HFD的值未必为30°∠GFH未必为45°只要和为90°即可∴③FD平分∠HFB④FH平分∠GFD不一定正确.故选B.7.(2分)(2019秋•淮阴区期末)如图将长方形ABCD沿线段EF折叠到EB'C'F的位置若∠EFC'=100°则∠DFC'的度数为()A.20°B.30°C.40°D.50°解:由翻折知∠EFC=∠EFC'=100°∴∠EFC+∠EFC'=200°∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°故选:A.8.(2分)(2021春•奉化区校级期末)如图AD∥BC∠D=∠ABC点E是边DC上一点连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB作∠FEH的角平分线EG交BH于点G若∠DEH =100°则∠BEG的度数为()A.30°B.40°C.50°D.60°解:设FBE=∠FEB=α则∠AFE=2α∠FEH的角平分线为EG设∠GEH=∠GEF=β∵AD∥BC∴∠ABC+∠BAD=180°而∠D=∠ABC∴∠D+∠BAD=180°∴AB∥CD∠DEH=100°则∠CEH=∠FAE=80°∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β在△AEF中 80°+2α+180﹣2β=180°故β﹣α=40°而∠BEG=∠FEG﹣∠FEB=β﹣α=40°故选:B.9.(2分)(2022春•大观区校级期末)如图AB∥CD P为AB上方一点H、G分别为AB、CD上的点∠PHB、∠PGD的角平分线交于点E∠PGC的角平分线与EH的延长线交于点F下列结论:①EG⊥FG;②∠P+∠PHB=∠PGD;③∠P=2∠E;④若∠AHP﹣∠PGC=∠F则∠F=60°.其中正确的结论有()个.A.1 B.2 C.3 D.4解:∵GF平分∠PGC GE平分∠PGD∴∠PGF=∠PGC∠PGE=∠PGD∴∠EGF=∠PGF+∠PGE=(∠PGC+∠PGD)=即EG⊥FG故①正确;设PG与AB交于M GE于AB交于N∵AB∥CD∴∠PMB=∠PGD∵∠PMB=∠P+∠PHM∴∠P+∠PHB=∠PGD故②正确;∵HE平分∠BHP GE平分∠PGD∴∠PHB=2∠EHB∠PGD=2∠EGD∵AB∥CD∴∠PMB=∠PGD∠ENB=∠EGD∴∠PMB=2∠ENB∵∠PMB=∠P+∠PHB∠ENB=∠E+∠EHB∴∠P=2∠E故③正确;∵∠AHP﹣∠PMC=∠P∠PMH=∠PGC∠AHP﹣∠PGC=∠F∴∠P=∠F∵∠FGE=90°∴∠E+∠F=90°∴∠E+∠P=90°∵∠P=2∠E∴3∠E=90解得∠E=30°∴∠F=∠P=60°故④正确.综上正确答案有4个故选:D.二.填空题(共10小题满分20分每小题2分)10.(2分)(2022秋•宁强县期末)将一张长方形纸片按如图所示的方式折叠BD、BE为折痕若∠ABE=20°则∠DBC为70 度.解:根据翻折的性质可知∠ABE=∠A′BE∠DBC=∠DBC′又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°∴∠ABE+∠DBC=90°又∵∠ABE=20°∴∠DBC=70°.故答案为:70.11.(2分)(2022春•新乐市校级月考)如图直线EF CD相交于点O OA⊥OB垂足为O且OC平分∠AOF.(1)若∠AOE=40°则∠DOE的度数为70°;(2)∠AOE与∠BOD的数量关系为∠AOE=2∠BOD.解:(1)∵OA⊥OB∴∠AOB=90°∵∠AOF+∠AOE=180°∠AOE=40°∴∠AOF=140°∵OC平分∠AOF∴∠AOC=∠COF=70°∵∠BOD+∠AOB+∠AOC=180°∴∠DOE=∠COF=70°.故答案为:70°;(2)∵∠AOE+∠AOF=180°∠AOC=∠COF∴∠AOC=(180°﹣∠AOE)=90°﹣∠AOE∵∠BOD+∠AOB+∠AOC=180°∴∠BOD=180°﹣90°﹣∠AOC=90°﹣(90°﹣∠AOE)=﹣∠AOE∴∠AOE=2∠BOD.故答案为:∠AOE=2∠BOD.12.(2分)(2022春•环翠区期末)如图AB∥EF∠C=90°则α、β和γ的关系是α+β﹣γ=90°.解:过点C作CM∥AB过点D作DN∥EF则:∠BCM=∠ABC=α∠EDN=∠DEF=γ∵AB∥EF∴CM∥DN∴∠DCM=∠CDN∵∠BCM+∠DCM=90°∠CDN+∠EDN=β∴α+(β﹣γ)=90°∴α+β﹣γ=90°.故答案为:α+β﹣γ=90°.13.(2分)(2022春•绍兴期末)如图已知直线AB∥CD点M、N分别在直线AB、CD上点E为AB、CD 之间一点且点E在MN的右侧∠MEN=128°.若∠BME与∠DNE的平分线相交于点E1∠BME1与∠DNE1的平分线相交于点E2∠BME2与∠DNE2的平分线相交于点E3……依此类推若∠ME n N=8°则n的值是 4 .解:过E作EH∥AB E1G∥AB∵AB∥CD∴EH∥CD E1G∥CD∴∠BME=∠MEH∠DNE=∠NEH∴∠BME+∠DNE=∠MEH+∠NEH=∠MEN=128°同理∠ME1N=∠BME1+∠DNE1∵ME1平分∠BME NE1平分∠DNE∴∠BME1+∠DNE1=(∠BME+∠DNE)=∠MEN∴∠ME1N=∠MEN同理∠ME2N=∠ME1N=∠MEN∠ME3N=∠ME2N=∠MEN•∴∠ME n N=∠ME n﹣1N=∠MEN若∠ME n N=8°则∠MEN=×128°=8°∴n=4.故答案为:4.14.(2分)(2022春•镜湖区校级期末)有长方形纸片E F分别是AD BC上一点∠DEF=x(0°<x<45°)将纸片沿EF折叠成图1 再沿GF折叠成图2.(1)如图1 当x=32°时∠FGD′=64 度;(2)如图2 作∠MGF的平分线GP交直线EF于点P则∠GPE=2x.(用x的式子表示).解:(1)由折叠可得∠GEF=∠DEF=32°∵长方形的对边是平行的∴∠DEG=∠FGD′∴∠DEG=∠GFE+∠DEF=64°∴∠FGD′=∠EGD=64°∴当x=32°时∠GFD′的度数是64°.故答案为:64;(2)∠GPE=2∠GEP=2x.由折叠可得∠GEF=∠DEF∵长方形的对边是平行的∴设∠BFE=∠DEF=x∴∠EGB=∠BFE+∠D′EF=2x∴∠FGD′=∠EGB=2x由折叠可得∠MGF=∠D′GF=2x∵GP平分∠MGF∴∠PGF=x∴∠GPE=∠PGF+∠BFE=2x∴∠GPE=2∠GEP=2x.故答案为:∠GPE=2x.15.(2分)(2022春•诸暨市期末)从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出已知入射光线OA的反射光线为AB∠OAB=∠COA=72°.在如图中所示的截面内若入射光线OD经反光罩反射后沿DE射出且∠ODE=27°.则∠AOD的度数是45°或99°.解:∵DE∥CF∴∠COD=∠ODE.(两直线平行内错角相等)∵∠ODE=27°∴∠COD=27°.在图1的情况下∠AOD=∠COA﹣∠COD=72°﹣27°=45°.在图2的情况下∠AOD=∠COA+∠COD=72°+27°=99°.∴∠AOD的度数为45°或99°.故答案为:45°或99°.16.(2分)(2022春•九龙坡区校级期中)如图将长方形ABCD沿EF翻折再沿ED翻折若∠FEA″=105°则∠CFE=155 度.解:由四边形ABFE沿EF折叠得四边形A′B′FE∴∠A′EF=∠AEF.∵∠A′EF=∠A′ED+∠DEF∠AEF=180°﹣∠DEF.∴∠A′ED+∠DEF=180°﹣∠DEF.由四边形A′B′ME沿AD折叠得四边形A″B″ME∴∠A′ED=∠A″ED.∵∠A″ED=∠A″EF+∠DEF=105°+∠DEF∴∠A′ED=105°+∠DEF.∴105°+∠DEF+∠DEF=180°﹣∠DEF.∴∠DEF=25°.∵AD∥BC∴∠DEF=∠EFB=25°.∴∠CFE=180°﹣∠EFB=180°﹣25°=155°.故答案为:155.17.(2分)(2022春•东湖区校级月考)如图直线EF上有两点A、C分别引两条射线AB、CD∠DCF=60°∠EAB=70°射线AB、CD分别绕A点C点以1度/秒和3度/秒的速度同时顺时针转动在射线CD转动一周的时间内使得CD与AB平行所有满足条件的时间=5秒或95秒.解:∵∠EAB=70°∠DCF=60°∴∠BAC=110°∠ACD=120°分三种情况:如图①AB与CD在EF的两侧时∠ACD=120°﹣(3t)°∠BAC=110°﹣t°要使AB∥CD则∠ACD=∠BAC即120°﹣(3t)°=110°﹣t°解得t=5;②CD旋转到与AB都在EF的右侧时∠DCF=360°﹣(3t)°﹣60°=300°﹣(3t)°∠BAC=110°﹣t°要使AB∥CD则∠DCF=∠BAC即300°﹣(3t)°=110°﹣t°解得t=95;③CD旋转到与AB都在EF的左侧时∠DCF=(3t)°﹣(180°﹣60°+180°)=(3t)°﹣300°∠BAC=t°﹣110°要使AB∥CD则∠DCF=∠BAC即(3t)°﹣300°=t°﹣110°解得t=95∴此情况不存在.综上所述当时间t的值为5秒或95秒时CD与AB平行.故答案为:5秒或95秒.18.(2分)(2022春•沙坪坝区校级月考)已知如图AD∥BC BD∥AE DE平分∠ADB且ED⊥CD若∠AED+∠BAD=127.5°则∠BCD﹣∠EAB=37.5 度.解:设∠ADE=x∵DE平分∠ADB∴∠EDB=∠ADE=x又ED⊥CD∴∠EDC=90°∴∠BDC=90°﹣x∵AD∥BC∴∠DBC=∠ADB=2x∠BCD=180°﹣(90°﹣x+2x)=90°﹣x∵BD∥AE∴∠AED=∠EDB=x∵∠AED+∠BAD=127.5°∴∠BAD=127.5°﹣x∠EAB=180°﹣(127.5°﹣x+2x)=52.5°﹣x∴∠BCD﹣∠EAB=(90°﹣x)﹣(52.5°﹣x)=37.5°.故答案为:37.5.19.(2分)(2022春•渭滨区期末)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G D、C分别在M、N的位置上若∠EFG=49°则∠2﹣∠1=16°.解:∵AD∥BC∴∠2=∠DEG∠EFG=∠DEF=49°∵长方形纸片ABCD沿EF折叠后ED与BC的交点为G∴∠DEF=∠GEF=49°∴∠2=2×49°=98°∴∠1=180°﹣98°=82°∴∠2﹣∠1=98°﹣82°=16°.故答案为16°.三.解答题(共9小题满分62分)20.(6分)(2022秋•丹东期末)如图已知∠1=∠BDC∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC DA⊥FE于点A∠FAB=55°求∠ABD的度数.(1)证明:∵∠1=∠BDC∴AB∥CD∴∠2=∠ADC∵∠2+∠3=180°∴∠ADC+∠3=180°∴AD∥CE;(2)解:∵CE⊥AE于E∴∠CEF=90°由(1)知AD∥CE∴∠DAF=∠CEF=90°∴∠ADC=∠2=∠DAF﹣∠FAB∵∠FAB=55°∴∠ADC=35°∵DA平分∠BDC∠1=∠BDC∴∠1=∠BDC=2∠ADC=70°∴∠ABD=180°﹣70°=110°.21.(6分)(2019春•本溪期中)已知如图AB∥CD①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D(直接写结论).由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D)(直接写结论).②从图(1)图(2)任选一个图形说明①中其中一个结论成立的理由.[延伸拓展]利用上面(1)(2)得出的结论完成下题③已知AB∥CD∠ABE与∠CDE两个角的角平分线相交于点F.若∠E=60°求∠BFD的度数.解:①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D.由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D).故答案为:∠BED=∠B+∠D;∠BED=360°﹣(∠B+∠D);②如图(1)所示:过点E作EM∥AB∵AB∥CD EM∥AB∴EM∥CD∥AB∴∠B=∠BEM∠MED=∠D∴∠BED=∠BEM+∠MED=∠B+∠D∴∠BED=∠B+∠D;如图(2)所示:过点E作EM∥AB∵AB∥CD EM∥AB∴EM∥CD∥AB∴∠B+∠BEM=180°∠MED+∠D=180°∴∠BED=∠BEM+∠MED=360°﹣(∠B+∠D);③如图(3)过点E作EN∥AB∵BF、DF分别是∠ABE和∠CDE的平分线∴∠EBF=∠ABE∠EDF=∠CDE∵AB∥CD∴∠ABE+∠BEN=180°∵AB∥CD AB∥NE∴NE∥CD∴∠CDE+∠NED=180°∴∠ABE+∠E+∠CDE=360°∵∠E=60°∴∠ABE+∠CDE=300°∴∠EBF+∠EDF=150°∴∠BFD=360°﹣60°﹣150°=150°.22.(6分)(2022•衡东县校级开学)如图1 AB∥CD∠PAB=124°∠PCD=120°求∠APC的大小.小明的解题思路:过点P作PM∥AB通过平行线的性质来求∠APC.(1)按小明的解题思路可求得∠APC的大小为116 度;(2)如图2 已知直线m∥n直线a b分别与直线m n相交于点B、D和点A、C.点P在线段BD上运动(不与B、D两点重合)记∠PAB=α∠PCD=β问∠APC与αβ之间有何数量关系?判断并说明理由;(3)在(2)的条件下若把“线段BD”改为“直线BD”请求出∠APC与αβ之间的数量关系.解:(1)过P作PM∥AB如图:∴∠APM+∠PAB=180°∴∠APM=180°﹣124°=56°∵AB∥CD∴PM∥CD∴∠CPM+∠PCD=180°∴∠CPM=180°﹣120°=60°∴∠APC=56°+60°=116°;故答案为:116;(2)∠APC=∠α+∠β理由如下:过P作PE∥AB交AC于E如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∴∠APC=∠APE+∠CPE=∠α+∠β;(3)当P在线段BD延长线时∠APC=∠α﹣∠β;理由如下:过P作PE∥AB如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∵∠APC=∠APE﹣∠CPE∴∠APC=∠α﹣∠β;当P在DB延长线时∠APC=∠β﹣∠α;理由如下:过P作PE∥AB如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∵∠APC=∠CPE﹣∠APE∴∠APC=∠β﹣∠α综上所述当P在线段BD延长线时∠APC=∠α﹣∠β;当P在DB延长线时∠APC=∠β﹣∠α;当P在线段BD上时∠APC=∠α+∠β.23.(6分)(2022春•鹿邑县月考)如图已知AB∥CD∠ABE与∠CDE的平分线相交于点F.(1)如图1 若∠E=70°求∠BFD的度数;(2)如图2 若∠ABM=∠ABF∠CDM=∠CDF写出∠M和∠E之间的数量关系并证明你的结论.解:(1)如图1 过点E作EN∥AB∵EN∥AB∴∠ABE+∠BEN=180°∵AB∥CD AB∥NE∴NE∥CD∴∠CDE+∠NED=180°∴∠ABE+∠E+∠CDE=360°∵∠E=70°∴∠ABE+∠CDE=290°∵∠ABE与∠CDE的平分线相交于点F∴∠ABF+∠CDF=(∠ABE+∠CDE)=145°过点F作FG∥AB∵FG∥AB∴∠ABF=∠BFG∵AB∥CD FG∥AB∴FG∥CD∴∠CDF=∠GFD∴∠BFD=∠ABF+∠CDF=145°;(2)结论:∠E+6∠M=360°证明:∵设∠ABM=x∠CDM=y则∠FBM=2x∠EBF=3x∠FDM=2y∠EDF=3y由(1)得:∠ABE+∠E+∠CDE=360°∴6x+6y+∠E=360°∵∠M+∠EBM+∠E+∠EDM=360°∴6x+6y+∠E=∠M+5x+5y+∠E∴∠M=x+y∴∠E+6∠M=360°.24.(6分)(2022秋•绿园区期末)【问题情景】如图1 若AB∥CD∠AEP=45°∠PFD=120°.过点P 作PM∥AB则∠EPF=105°;【问题迁移】如图2 AB∥CD点P在AB的上方点E F分别在AB CD上连接PE PF过P点作PN∥AB问∠PEA∠PFC∠EPF之间的数量关系是∠PFC=∠PEA+∠FPE请在下方说明理由;【联想拓展】如图3所示在(2)的条件下已知∠EPF=36°∠PFA的平分线和∠PFC的平分线交于点G过点G作GH∥AB则∠EGF=18°.解:(1)∵AB∥PM∴∠1=∠AEP=45°∵AB∥CD∴PM∥CD∴∠2+∠PFD=180°∵∠PFD=120°∴∠2=180°﹣120°=60°∴∠1+∠2=45°+60°=105°.即∠EPF=105°故答案为:105°.(2)∠PFC=∠PEA+∠EPF.理由:∵PN∥AB∴∠PEA=∠NPE∵∠FPN=∠NPE+∠FPE∴∠FPN=∠PEA+∠FPE∵PN∥AB AB∥CD∴PN∥CD∴∠FPN=∠PFC∴∠PFC=∠PEA+∠FPE故答案为:∠PFC=∠PEA+∠FPE.(3)∵GH∥AB AB∥CD∴GH∥AB∥CD∴∠HGE=∠AEG∠HGF=∠CFG又∵∠PEA的平分线和∠PFC的平分线交于点G∴由(2)可知∠CFP=∠FPE+∠AEP∴∠HGF=(∠FPE+∠AEP)∴∠EGF=∠HGF﹣∠HGE=(36°+∠AEP)﹣∠HGE=18°.故答案为:18°.25.(8分)(2022春•富县期末)如图AD∥BC∠BAD的平分线交BC于点G∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图②线段AG上有一点P满足∠ABP=3∠PBG过点C作CH∥AG.若在直线AG上有一点M使∠PBM=∠DCH求的值.(1)证明:∵AD∥BC∴∠GAD=∠BGA∵AG平分∠BAD∴∠BAG=∠GAD∴∠BAG=∠BGA;(2)解:有两种情况:①当M在BP的下方时如图设∠ABC=4x∵∠ABP=3∠PBG∴∠ABP=3x∠PBG=x∵AG∥CH∴∠BCH=∠AGB==90°﹣2x ∵∠BCD=90°∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x ∴∠ABM=∠ABP+∠PBM=3x+2x=5x∠GBM=2x﹣x=x∴∠ABM:∠GBM=5x:x=5;②当M在BP的上方时如图同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x ∠GBM=2x+x=3x∴∠ABM:∠GBM=x:3x=.综上的值是5或.26.(8分)(2022春•武汉期末)已知点E F分别在直线AB CD上点P在直线AB上方.问题探究:(1)如图1 ∠CFP+∠EPF=∠AEP证明:AB∥CD;问题拓展:(2)如图2 AB∥CD∠AEP的角平分线EK所在的直线和∠DFP的角平分线FR所在的直线交于Q点请写出∠EPF和∠EQF之间的数量关系并证明.问题迁移:(3)如图3 AB∥CD直线MN分别交AB CD于点M N若点H在线段MN上且∠MEF=α请直接写出∠HFE∠MEH和∠EHF之间满足的数量关系(用含α的式子表示).(1)证明:如图∵∠AEP是△PEH的外角∴∠AEP=∠EPF+∠EHP∵∠CFP+∠EPF=∠AEP∴∠EHP=∠CFP∴AB∥CD;(2)解:如图 2∠Q+∠P=180°理由如下:∵AB∥CD∴∠AEK=∠CME∠EHF=∠PFD∵EK平分∠AEP∴∠AEK=∠KEP∴∠AEK=∠KEP=∠CME设∠AEK=∠KEP=∠CME=x则∠QMF=x∠AEP=2x∴∠PEH=180°﹣2x∵FR平分∠PFD∴∠PFR=∠DFR设∠PFR=∠DFR=y则∠MFQ=y∠EHF=2y∴∠Q=180°﹣∠QMF﹣∠MFQ=180°﹣x﹣y∵∠EHF是△EHP的外角∴∠EHF=∠PEH+∠P∴∠P=∠EHF﹣∠PEH=2y﹣(180°﹣2x)=2x+2y﹣180°∴2∠Q+∠P=180°;(3)解:如图∵∠MEF=α∴∠HEF=α﹣∠MEH∵∠HEF+∠EHF+∠HFE=180°∴α﹣∠MEH+∠EHF+∠HFE=180°∴∠EHF+∠HFE﹣∠MEH=180°﹣α∴∠HFE∠MEH和∠EHF之间满足的数量关系是∠EHF+∠HFE﹣∠MEH=180°﹣α.27.(8分)(2022春•建邺区校级期末)【探究结论】(1)如图1 AB∥CD E为形内一点连结AE、CE得到∠AEC则∠AEC、∠A、∠C的关系是∠AEC =∠A+∠C(直接写出结论不需要证明):【探究应用】利用(1)中结论解决下面问题:(2)如图2 AB∥CD直线MN分别交AB、CD于点E、F EG1和EG2为∠BEF内满足∠1=∠2的两条线分别与∠EFD的平分线交于点G1和G2求证:∠FG1E+∠G2=180°.(3)如图3 已知AB∥CD F为CD上一点∠EFD=60°∠AEC=3∠CEF若8°<∠BAE<20°∠C的度数为整数则∠C的度数为42°或41°.(1)解:过点E作EF∥AB∴∠A=∠1∵AB∥CD EF∥AB∴EF∥CD∴∠2=∠C.∵∠AEC=∠1+∠2∴∠AEC=∠A+∠C(等量代换)故答案为:∠AEC=∠A+∠C;(2)证明:由(1)可知:∠EG2F=∠1+∠DFG2∵FG2平分∠MFD∴∠EFG2=∠DFG2∵∠1=∠2∴∠EG2F=∠2+∠EFG2∵∠EG1F+∠2+∠EFG2=180°∴∠FG1E+∠G2=180°;(3)由(1)知:∠AEF=∠BAE+∠DFE设∠CEF=x则∠AEC=3x∵∠EFD=60°∴x+3x=∠BAE+60°∴∠BAE=4x﹣60°又∵8°<∠BAE<20°∴8°<4x﹣60°<20°解得17°<x<20°又∵∠DFE是△CEF的外角∴∠C=∠DFE﹣∠CEF=∠DFE﹣x∵∠C的度数为整数∴x=18°或19°∴∠C=60°﹣18°=42°或∠C=60°﹣19°=41°故答案为:42°或41°.28.(8分)(2022春•颍州区期末)(1)问题背景:如图1 已知AB∥CD点P的位置如图所示连结PA PC试探究∠APC与∠A、∠C之间的数量关系并说明理由.解:(1)∠APC与∠A、∠C之间的数量关系是:∠APC=∠A+∠C.理由:如图1 过点P作PE∥AB∴∠APE=∠A∵AB∥CD∴PE∥CD∴∠CPE=∠C∴∠APE+∠CPE=∠A+∠C∴∠APC=∠A+∠C.总结:本题通过添加适当的辅助线从而利用平行线的性质使问题得以解决.(2)类比探究:如图2 已知AB∥CD线段AD与BC相交于点E点B在点A右侧.若∠ABC=40°∠ADC=80°求∠AEC的度数.(3)拓展延伸:如图3 若∠ABC与∠ADC的角平分线相交于点F请直接写出∠BFD与∠AEC之间的数量关系∠BFD=∠AEC.解:(2)如图2 过E点作EM∥AB∴∠BEM=∠ABC∵AB∥CD∴CD∥EM∴∠MED=∠ADC∴∠AEC=∠BED=∠BEM+∠MED=∠ABC+∠ADC=40°+80°=120°;(3)由(2)知:∠AEC=∠ABC+∠ADC如图3 过F点作FN∥AB∴∠ABF=∠BFN∵AB∥CD∴CD∥FN∴∠NFD=∠FDC∴∠BFD=∠ABF+∠FDC∵BF平分∠ABC DF平分∠ADC∴∠ABF=∠ABC∠FDC=∠ADC∴∠BFD=(∠ABC+∠ADC)=∠AEC.即∠BFD=∠AEC.故答案为∠BFD=∠AEC第31页共31。

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线测试题一、填空题1. 一个角的余角是30º,则这个角的补角是 .2. 一个角与它的补角之差是20º,则这个角的大小是 .3. 时钟指向3时30分时,这时时针与分针所成的锐角是 .4. 如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.5. 如图③,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD= 28º,则∠BOE = 度,∠AOG = 度.6. 如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度.7.把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠OGC = .8. 如图⑦,正方形ABCD中,M在DC上,且BM = 10,N是AC上一动点,则DN + MN的最小值为 .9. 如图所示,当半径为30cm的转动轮转过的角度为120 时,则传送带上的物体A平移的距离为cm 。

10. 如图所示,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到图中EF和EG的位置,则△EFG为三角形,若AD=2cm,BC=8cm,则FG = 。

11. 如图9,如果∠1=40°,∠2=100°,那么∠3的同位角等于,∠3的内错角等于,∠3的同旁内角等于.12.如图10,在△ABC中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC 上或与AC平行,另一组对边分别在BC上或与BC平行. 若各矩形在AC 上的边长相等,矩形a的一边长是72 cm,则这样的矩形a、b、c…的个数是_ .二、选择题1. 下列正确说法的个数是( )①同位角相等 ②对顶角相等 ③等角的补角相等 ④两直线平行,同旁内角相等 A . 1, B. 2, C. 3, D.42. 下列说法正确的是( )A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线. 3. 下列图中∠1和∠2是同位角的是( )A. ⑴、⑵、⑶,B. ⑵、⑶、⑷,C. ⑶、⑷、⑸,D. ⑴、⑵、⑸4. 如果一个角的补角是150°,那么这个角的余角的度数是 ( ) A.30° B.60° C.90° D.120°5. 下列语句中,是对顶角的语句为 ( ) A.有公共顶点并且相等的两个角 B.两条直线相交,有公共顶点的两个角 C.顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角 6. 下列命题正确的是 ( ) A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行7. 两平行直线被第三条直线所截,同旁内角的平分线 ( )A.互相重合B.互相平行C.互相垂直D.无法确定 8. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

下列图案中,不能由一个图形通过旋转而构成的是( )9. 三条直线相交于一点,构成的对顶角共有( )E ABCDG FA B C DA、3对B、4对C、5对D、6对10. 如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有( )A.5个B.4个C.3个D.2个11. 如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为()。

A、30B、36C、42D、1812. 如图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、计算题1. 如图,直线a、b被直线c所截,且a∥b,若∠1=118°求∠2为多少度?2. 已知一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数等于多少?四、证明题1. 已知:如图,DA⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试猜想BC与AB有怎样的位置关系,并说明其理由2. 已知:如图所示,CD∥EF,∠1=∠2,. 试猜想∠3与∠ACB 有21CDB怎样的大小关系,并说明其理由3. 如图,已知∠1+∠2+180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并对结论进行说明.4. 如图,∠1=∠2,∠D=∠A,那么∠B=∠C吗?为什么?五、应用题1. 如图(a)示,五边形ABCDE是张大爷十年前承包的一块土地示意图,经过多年开垦荒地,现已变成图(b)所示的形状,但承包土地与开垦荒地的分界小路(即图(b)中折线CDE)还保留着.张大爷想过E点修一条直路,直路修好后,•要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)(1)写出设计方案,并在图中画出相应的图形;(2)说明方案设计理由.AEDNMAECDB(a) (b)321FAGECDBFEDCBA211D2HFAGECB1. 120°2. 100°3. 75°4. 80°5. 62°,59°6. 90°7. 125°8. 109. 20π10. 直角,6cm11. 80,80,10012. 9BDDBDDCCDAAC三、(1)解:∵∠1+∠3=180°(平角的定义)又∵∠1=118°(已知)∴∠3= 180°-∠1 = 180°-118°= 62°∵a∥b (已知)∴∠2=∠3=62°( 两直线平行,内错角相等)答:∠2为62°(2)解:设这个角的余角为x,那么这个角的度数为(90°-x),这个角的补角为(90°+x),这个角的余角的补角为(180°-x) 依题意,列方程为:1(x+90°)+90°180°-x=2解之得:x=30°这时,90°-x=90°-30°=60°.答:所求这个的角的度数为60°.另解:设这个角为x,则:1(180°-x) = 90°180°-(90°-x)-2解之得:x=60°答:所求这个的角的度数为60°.四、(1)解: BC与AB位置关系是BC⊥AB 。

其理由如下:∵ DE平分∠ADC, CE平分∠DCB (已知),∴∠ADC=2∠1, ∠DCB=2∠2 (角平分线定义).∵∠1+∠2=90°(已知)∴∠ADC+∠DCB = 2∠1+2∠2= 2(∠1+∠2)=2×90° = 180°.∴ AD ∥BC(同旁内角互补,•两直线平行). ∴ ∠A+∠B=180°(两直线平行,同旁内角互补).∵ DA ⊥AB (已知) ∴ ∠A=90°(垂直定义). ∴∠B=180°-∠A = 180°-90°=90°∴BC ⊥AB (垂直定义).(2)解: ∠3与∠ACB 的大小关系是∠3=∠ACB ,其理由如下:∵ CD ∥EF (已知),∴∠2=∠DCB(两直线直行,同位角相等). 又∵∠1=•∠2 (已知),∴ ∠1=∠DCB (等量代换).∴ GD ∥CB ( 内错角相等,两直线平行 ). ∴ ∠3=∠ACB ( 两直线平行,同位角相等 ). (3)解:∠ACB 与∠DEB 的大小关系是∠ACB=∠DEB.其理由如下: ∵∠1+∠2=1800,∠BDC+∠2=1800, ∴∠1=∠BDC ∴BD ∥EF∴∠DEF=∠BDE ∵∠DEF=∠A ∴∠BDE=∠A ∴DE ∥AC∴∠ACB=∠DEB 。

(4)解:∵∠1=∠2 ∴AE ∥DF ∴∠AEC=∠D ∵∠A=∠D ∴∠AEC=∠A ∴AB ∥CD∴∠B=∠C.五、解:(1)画法如答图.连结EC,过点D 作DF ∥EC, 交CM 于点F,连结EF,EF 即为所求直路的位置. (2)设EF 交CD 于点H,由上面得到的结论,可知:S △ECF = S △ECD , S △HCF = S △EHD. 所以S 五边形ABCDE =S 四边形ABFE , S 五边形EDCMN =S 四边形EFMN .H F N MA EC DB。

相关文档
最新文档