免疫学和免疫学检验:沉淀反应.

合集下载

免疫凝聚反应和免疫沉淀反应的异同

免疫凝聚反应和免疫沉淀反应的异同

免疫凝聚反应和免疫沉淀反应的异同免疫凝聚反应和免疫沉淀反应是免疫学中常见的两种实验方法,用于检测和分析抗原与抗体之间的相互作用。

虽然它们有相似的目的,但在实验原理和操作过程上存在一些不同之处。

免疫凝聚反应是通过观察抗原与抗体的可见凝聚来判断它们之间的相互作用。

在该实验中,抗原和抗体在一定条件下混合,如在适宜的缓冲液中,在适当的温度和时间下反应。

如果抗原与抗体之间存在特异性结合,它们将发生凝聚并形成可见的沉淀物。

这种凝聚反应可以用肉眼或显微镜观察,并通过比较试验组和对照组来判断是否存在特异性反应。

与免疫凝聚反应不同,免疫沉淀反应是通过观察抗原与抗体形成的不可见复合物的沉淀来判断它们之间的相互作用。

在该实验中,抗原和抗体在一定条件下混合,如在适宜的缓冲液中,在适当的温度和时间下反应。

如果抗原与抗体之间存在特异性结合,它们将形成不可见的复合物。

为了让这些复合物沉淀下来,通常需要添加一种沉淀剂,如聚乙二醇。

沉淀形成后,可以通过离心分离沉淀物,并使用其他方法进行进一步的检测和分析。

免疫凝聚反应和免疫沉淀反应在实验原理上的区别导致了它们在操作过程中的一些不同。

在免疫凝聚反应中,通常将已知的抗原溶液与未知的抗体溶液混合,然后观察是否发生凝聚。

而在免疫沉淀反应中,通常将已知的抗体溶液与未知的抗原溶液混合,然后观察是否形成沉淀。

此外,免疫凝聚反应通常是用于初步筛选抗原与抗体的特异性结合,而免疫沉淀反应通常是用于进一步确认和分析抗原与抗体的相互作用。

免疫凝聚反应和免疫沉淀反应在结果的解读上也有所不同。

在免疫凝聚反应中,凝聚程度越明显,说明抗原与抗体之间的特异性结合越强。

而在免疫沉淀反应中,沉淀物的形成越明显,说明抗原与抗体之间的特异性结合越强。

免疫凝聚反应和免疫沉淀反应是两种常见的免疫学实验方法,用于检测和分析抗原与抗体之间的相互作用。

它们在实验原理和操作过程上存在一些不同,但都具有检测和分析特异性结合的能力。

研究人员可以根据实验目的和需要选择适合的方法,以获得准确的实验结果。

医学免疫学沉淀反应

医学免疫学沉淀反应

医学免疫学沉淀反应在医学免疫学的广袤领域中,沉淀反应是一项具有重要意义的检测技术。

它如同一位默默耕耘的“侦探”,帮助我们揭示体内免疫反应的奥秘,为疾病的诊断和研究提供了有力的支持。

要理解沉淀反应,首先得明白什么是抗原和抗体。

抗原就像是一个个“目标嫌疑人”,它们可能是细菌、病毒的一部分,也可能是体内异常产生的蛋白质等。

而抗体则是免疫系统派出的“抓捕能手”,能够特异性地识别并结合抗原。

沉淀反应的发生,正是基于抗原和抗体的这种特异性结合。

当抗原和抗体在适当的条件下相遇,它们会形成肉眼可见的沉淀物,就好像是“嫌疑人”和“抓捕能手”相互纠缠在一起,形成了一个明显的“团伙”。

常见的沉淀反应有多种类型,其中之一是环状沉淀反应。

想象一下,在一个小玻璃管中,先将抗血清小心地铺在底部,然后再将含有抗原的溶液轻轻地叠加在上面。

由于抗原和抗体的比重不同,它们会形成一个清晰的界面。

如果存在对应的抗原,就会在界面处形成白色的沉淀环,就像是给这个“犯罪现场”圈出了关键的证据。

还有一种是絮状沉淀反应。

把抗原和抗体溶液混合在一起,如果它们相互匹配,就会逐渐形成肉眼可见的絮状沉淀物,如同天空中飘落的雪花,纷纷扬扬地聚集在一起。

免疫比浊法也是沉淀反应中的重要一员。

它利用抗原和抗体结合后形成的免疫复合物,引起溶液浊度的变化。

通过专门的仪器测量这种浊度的改变,可以定量地测定抗原或抗体的含量。

这就好比是给“嫌疑人”和“抓捕能手”的“纠缠程度”进行精确的测量和计算。

沉淀反应在医学实践中的应用十分广泛。

在临床诊断中,它可以帮助检测各种疾病相关的抗原或抗体。

比如,对于某些传染病,通过检测患者血清中的特异性抗体,就能判断是否感染了相应的病原体。

对于自身免疫性疾病,检测体内自身抗体的存在和水平,有助于明确诊断和评估病情。

在药物研发和质量控制方面,沉淀反应也发挥着重要作用。

新药的研发过程中,需要对药物的免疫原性进行评估,沉淀反应可以提供有关药物与免疫系统相互作用的重要信息。

免疫学和免疫学检验:沉淀反应.

免疫学和免疫学检验:沉淀反应.

免疫学和免疫学检验:沉淀反应沉淀反应(precipetaiton)是可溶性抗原与相应抗体特异性结合所出现的反。

早在1897年Kraus就发现,细菌培养液与相应抗血清混合时可发生沉淀反应(precipetaiton)是可溶性抗原与相应抗体特异性结合所出现的反。

早在1897年Kraus就发现,细菌培养液与相应抗血清混合时可发生沉淀反应。

1905年Bechhold把抗体放在明胶中,将抗原加于其中,发现沉淀反应可在凝胶中进行。

Oudin(1946)报告了试管免疫扩散技术,Mancini(1965)提出单向免疫扩散技术,使定性免疫试验向定量化发展。

另一方面,免疫浊度法的出现,使沉淀反应达到快速、微量、自动化的新阶段。

沉淀反应分两个阶段,第一阶段发生抗原抗体特异性结合,第二阶段形成可见的免疫复合物(参见第九章)。

经典的沉淀反应在第二阶段观察或测量沉淀线或沉淀环等来判定结果,称为终点法;而快速免疫浊度法则在第一阶段测定免疫复合物形成的速率,称为速率法。

现代免疫技术(如各种标记免疫技术)多是在沉淀反应的基础上建立起来的,因此沉淀反应是免疫学方法的核心技术。

第一节液体内沉淀试验一、絮状沉淀试验絮状沉淀试验为历史较久,又较有用的方法。

该法要点是:将抗原与抗体溶液混合在一起,在电解质存在下,抗原与抗体结合,形成絮状沉淀物。

这种沉淀试验受到抗原和抗体比例的直接影响,因而产生了两种最适比例的基本测定方法。

(一)抗原稀释法抗原稀释法(Dean-Webb法)是将可溶性抗原作一系列稀释,与恒定浓度的抗血清等量混合,置室温或37℃反应后,产生的沉淀物随抗原的变化而不同。

表12-1系以牛血清白蛋白为例的实验结果。

表12-1Dean-Webb定量沉淀试验管号抗原抗体总沉淀量反应过剩物抗原沉淀量抗体沉淀量沉淀中Ab/Ag1 0.003 0.68 0.093 Ab 0.003 0.090 30.02 0.005 0.68 0.145 Ab 0.005 0.140 28.03 0.011 0.68 0.249 Ab 0.011 0.238 21.74 0.021 0.68 0.422 Ab 0.021 0.401 19.15 0.032 0.68 0.571 Ab 0.032 0.539 16.86 0.043 0.68 0.734 - 0.043 0.691 16.17 0.064 0.68 0.720 Ab ---8 0.085 0.68 0.601 Ag ---9 0.171 0.68 0.464 Ag ---10 0.341 0.68 0.368 Ag ---单位:mmol/L 从表12-1可以看出,1~5管为抗体过剩管,7~10管为抗原过剩管,唯第6管沉淀物最多,两者之比为16:1,即最适比。

5章 沉淀反应(免疫学)

5章 沉淀反应(免疫学)

3.方法评价
操作简便。 灵敏度较高,比双扩高约10倍。 分辨率低于双扩。

4. 临床应用

常用于抗原或抗体的定性分析、效价测定和纯度鉴 定等
(二) 火箭免疫电泳

火箭免疫电泳 是将单向免疫扩散和电泳相结合,在电场中
加速定向扩散的单向免疫扩散技术,由于其沉淀形
似火箭,故称为火箭电泳。
1. 基本原理
一、透射免疫比浊法
(transmission turbidimetry)
(一) 基本原理

抗原抗体结合后形成的CIC引起液体介质出 现浊度改变,光线的透过量减少,被吸收 光线量与CIC形成量呈正相关,依所测吸光 度值推算待测抗原的量 。
二、散射免疫比浊法
(nephelometry)

1967年, Ritchie等
方法稳定、简便的方法,不需特别仪器设 备,重复性好,但灵敏度稍差(1.25mg/L)。
(四)临床应用
1.血清学诊断:出现沉淀线,表明存在相应的Ag或Ab.
2.
免疫化学分析:浓度、分子量、纯度、反应性 沉淀线靠近抗原孔,提示抗体含量高;反之则反
出现多条沉淀线,则说明抗原和抗体皆不是单 一成分。可用于鉴定抗原或抗体的纯度。
三、速率抑制免疫比浊法
(rate inhibition immunoturbidimetry)

是一种竞争性结合试验,主要用于测定半抗原和 药物等小分子物质。

试验时先将一定量的已知半抗原-载体(大分子) 与限量的特异性抗体发生反应,生成的免疫复合 物可形成一定的速率散射峰值。
待测抗原与抗体竞争结合,速率散射峰值降低, 降低程度与标本中的待测半抗原成正比。
第5章 沉淀反应 Precipitation

主管检验师资格考试临床免疫学和免疫检验 复习习题第六章沉淀反应(附答案解析)

主管检验师资格考试临床免疫学和免疫检验 复习习题第六章沉淀反应(附答案解析)

主管检验师资格考试临床免疫学和免疫检验复习习题第六章沉淀反应(附答案解析)一、A1题型1、免疫比浊实验属于()A、中和反应B、凝集反应C、沉淀反应D、补体结合反应E、溶血反应2、免疫固定电泳的英文缩写是()A、ECLB、RIEC、RIAD、IFEE、IEP3、对流免疫电泳的原理是()A、单向免疫扩散与电泳相结合的定向加速的免疫扩散技术B、双向免疫扩散与电泳相结合的定向加速的免疫扩散技术C、单向免疫扩散与两相反向的规律改变的电流相结合的免疫扩散技术D、双向免疫扩散与两相反向的规律改变的电流相结合的免疫扩散技术E、抗原抗体反应与电泳相结合的定向免疫扩散技术的统称4、能够定量测定待检标本的免疫学试验是()A、间接凝集试验B、协同凝集试验C、单向扩散试验D、双向扩散试验E、对流免疫电泳5、免疫比浊法对抗体的要求不正确的是()A、特异性强B、效价高C、亲和力强D、使用H型抗体E、使用R型抗体6、免疫比浊法的基本原则是()A、反应体系中保持抗原过量B、反应体系中保持抗体过量C、反应体系中保持抗原抗体为最适比例D、抗体特异性强E、抗体亲和力强7、直接影响絮状沉淀实验的因素是()A、抗原分子量B、抗体分子量C、抗原抗体比例D、反应体系的PHE、反应体系的例子强度8、免疫沉淀法目前应用最广、定量比较准确的主要是下列哪种方法()A、免疫比浊法B、絮状沉淀试验C、单向扩散试验D、双向扩散试验E、棋盘滴定法9、关于双向扩散试验,下列说法错误的是()A、可用于抗原抗体定性分析B、抗原或抗体相对分子量的分析C、可用于抗原纯度分析D、可用于抗原抗体半定性分析E、可用于抗体效价的滴定10、关于免疫电泳技术的基本原理,说法正确的是()。

A、应将凝胶扩散置于交流电场中B、抗原及抗体在一定条件下离解成为带正电或负电的电子,在电场中向同相电荷的电极移动C、电子所带净电荷量越多、颗粒越小,泳动速度越慢D、电流会阻碍抗原、抗体的运行速度,延长两者结合的时间E、多种带电荷的物质电泳存在,抗原决定簇不同的成分可得以区分11、下列说法错误的是()。

医学免疫学沉淀反应

医学免疫学沉淀反应

医学免疫学沉淀反应在医学免疫学的广袤领域中,沉淀反应是一项具有重要意义的检测技术。

它宛如一位精准的侦探,帮助我们揭示免疫系统与各种物质之间的微妙互动和反应。

沉淀反应的原理其实并不复杂。

简单来说,就是当可溶性抗原与相应抗体在特定条件下相遇时,它们会结合形成肉眼可见的沉淀物。

这就好比两个人在特定的场合相遇,并且因为彼此的特质而相互吸引、结合在一起。

这种结合不是随意的,而是基于抗原和抗体之间的特异性识别。

为了更好地理解沉淀反应,我们先来了解一下其中涉及的关键角色——抗原和抗体。

抗原可以是细菌、病毒的表面成分,也可以是体内异常产生的蛋白质等。

它们就像是一个个带着独特标识的“目标分子”。

而抗体则是我们免疫系统为了应对这些抗原而产生的“武器”。

抗体具有高度的特异性,能够精准地识别并结合与之对应的抗原。

在沉淀反应中,常用的方法有多种,比如环状沉淀反应、絮状沉淀反应以及免疫比浊法等。

环状沉淀反应是一种比较经典且直观的方法。

在一个小玻璃管中,先将抗血清小心地铺在底层,然后将含有抗原的溶液轻轻叠加在上面。

如果抗原和抗体能够发生反应,就会在两层溶液的界面处形成一个白色的沉淀环。

这种方法虽然简单,但对于检测微量抗原的敏感性相对较低。

絮状沉淀反应则在操作上稍微复杂一些。

将抗原和抗体溶液混合在一起,在一定的条件下观察溶液中是否出现絮状沉淀物。

这就像是在一个大容器中让抗原和抗体自由“交流”,它们结合后形成的絮状物就是交流的“成果”。

而免疫比浊法则是一种更为定量和精确的方法。

它利用抗原和抗体结合后形成的复合物,导致溶液浊度的改变。

通过专门的仪器来测量浊度的变化,从而计算出抗原的含量。

这种方法在临床检测中应用广泛,例如检测血清中的免疫球蛋白、补体等成分。

沉淀反应在医学实践中有着广泛的应用。

在疾病的诊断方面,它可以帮助检测患者体内是否存在特定的病原体抗原,或者自身产生的异常抗体。

比如,对于梅毒的诊断,就可以通过检测患者血清中的梅毒螺旋体抗体来实现。

沉淀反应名词解释免疫学

沉淀反应名词解释免疫学

沉淀反应名词解释免疫学
嘿,咱说说免疫学里的沉淀反应是啥。

有一回啊,我去实验室找我一个学免疫的朋友玩。

他正在做实验,我就好奇地凑过去看。

他跟我说他在做沉淀反应的实验呢。

沉淀反应呢,简单来说就是在免疫学里一种能让两种东西结合然后产生沉淀的现象。

就好像两个小伙伴见面了,手拉手变成一个大东西,然后沉到下面去了。

比如说,朋友在实验里把一种抗体和一种抗原放在一起。

这抗体和抗原就像两个互相找的小伙伴,一见面就紧紧抱在一起,然后因为太重了就沉到试管底下去了。

这就是沉淀反应。

我看着那个试管,一开始啥也没有,过了一会儿就看到下面有一些沉淀物出现了。

朋友说这就是沉淀反应的结果。

所以啊,沉淀反应在免疫学里很重要呢,可以帮助我们检测一些疾病啥的。

下次你听到沉淀反应这个词,就可以想象两个小伙伴见面然后沉下去的画面啦。

临床检验主管技师 临床免疫学和免疫检验 第六章 沉淀反应

临床检验主管技师 临床免疫学和免疫检验 第六章 沉淀反应

第六章沉淀反应沉淀反应是指可溶性抗原与相应抗体在特定条件下发生特异性结合时出现的沉淀现象。

第一节沉淀反应的特点沉淀反应中的抗原多为蛋白质、多糖、血清、毒素等可溶性物质。

沉淀反应分两个阶段,第一阶段为抗原抗体发生特异性结合,几秒到几十秒即可完成,出现可溶性小的复合物,肉眼不可见;第二阶段为形成可见的免疫复合物,约需几十分钟到数小时才能完成,如沉淀线、沉淀环。

第二节液体内沉淀试验一、絮状沉淀试验抗原抗体溶液在电解质的存在下结合,形成絮状沉淀物,这种絮状沉淀受抗原和抗体比例的直接影响,因此常用来作为测定抗原抗体反应最适比例的方法,常见类型有:(一)抗原稀释法抗原进行一系列稀释与恒定浓度抗血清反应。

(二)抗体稀释法抗体进行一系列稀释与恒定浓度抗原反应。

(三)方阵滴定法即棋盘滴定法。

二、免疫浊度测定属于液体内沉淀反应,其特点是将现代光学测量仪器与自动化检测系统相结合应用于沉淀反应,可进行液体中微量抗原、抗体及小分子半抗原定量检测。

(一)免疫比浊测定的影响因素1.抗原抗体的比例是浊度形成的关键因素。

当抗原过量时,形成的IC分子小,而且会发生再解离,使浊度反而下降,光散射亦减少,这就是高剂量钩状效应。

当抗体过量时,IC的形成随着抗原递增而增加,至抗原、抗体最适比例处达最高峰,这就是经典的海德堡曲线理论。

在反应体系中需保持抗体适当过量,如形成抗原过量则造成测定的准确性降低。

2.抗体的质量对免疫比浊测定法的抗体要求(1)特异性强(2)效价高:低效价(<1:20)抗体会增加非特异性浊度(伪浊度)的产生。

(3)亲和力强:则抗体的活性高,可加快抗原抗体反应的速度,且形成的IC较牢固,不易发生解离。

(4)R型和H型抗体:R型抗体是指以家兔为代表的小型动物被注射抗原免疫后制备的抗血清。

这类抗血清的特点是亲和力较强,抗原抗体结合后不易发生解离。

H型抗体是指以马为代表的大型动物注射抗原后制备的抗血清,这类抗血清的亲和力弱,抗原抗体结合后极易解离。

沉淀反应(免疫学检验课件)

沉淀反应(免疫学检验课件)
第十三章
沉淀反应
沉淀反应
(precipitation)
可溶性抗原(细菌培养滤液、细胞或组织的 浸出液、血清蛋白等)与相应抗体在液相中特异 结合后,形成的免疫复合物受电解质影响出现的 沉淀现象。
反应中的抗原称为沉淀原(precipitinogen) 可以是类脂、多糖或蛋白质等;抗体称为沉淀素 (precipitin)。
❖ (3)溶液中的抗原-抗体复合物的数量要足够多。如果 数量太小,溶液浊度变化太小,对光通量影响不大。
❖ (4)透射比浊是依据透射光减弱的原理来定量的,因此 只能测定抗原-抗体反应的第二阶段,检测需抗原- 抗体温育反应时间,检测时间较长。
❖ (5)检测用的抗体一般应选择亲和力较高的抗体,且在 检测中应保证抗体过量。
退。实际上在电泳的过程中受
负电荷多

电泳力 >
电渗力
抗体 负电荷少
电泳力 ﹤ 电渗力
+
步骤:
制板
3-4ml琼脂
打孔
孔间距3mm
加样
约7ul
抗体
抗原
电泳
总电流=4mA x 1cm/板宽 x N(板数) 20—30分钟
三、免疫电泳技术
免疫电泳技术的用途
是散射比浊法的改良。一般在30~120min内比 浊
用于免疫沉淀反应的缺陷
(1)因为是一次性测定光吸收值,没有考虑每一个待测 样本的吸收和散射效果,可测定结果不准确
(2)测定的仍是抗原-抗体反应的第二阶段,不适合快 速检测。
(3) 终点法存在反应本底(空白管),测定样本的含量 越低,本底比例越大,故在微量测定时,本底的干 扰是影响准确测定的重要因素。
(4)若反应时间过长,IC聚合形成沉淀则导致散射值 偏低。故需掌握最适时间比浊。

沉淀反应临床免疫学和免疫检验

沉淀反应临床免疫学和免疫检验

沉淀反应沉淀反应蛋白质、多糖、毒素等可溶性抗原与相应抗体在特定条件下特异性结合,出现的沉淀现象,称为沉淀反应。

沉淀反应的特点液体内沉淀试验凝胶内沉淀试验免疫电泳技术沉淀反应的特点差异凝集反应沉淀反应抗原性质颗粒性抗原可溶性抗原反应时间数分钟数小时反应产物凝集物沉淀物敏感性高低液体内沉淀试验受抗原抗体比例的影响非常明显,常用作测定抗原抗体的最适比例。

有抗原稀释法、抗体稀释法和棋盘滴定法。

免疫浊度测定应用抗原、抗体在液相中反应后形成的免疫复合物微粒对光线的干扰,利用仪器进行定量检测的一种方法。

在一定范围内,吸光度与免疫复合物的量呈正相关。

免疫浊度测定的影响因素1.抗原抗体比例当反应液中抗体过量时,IC的形成随着抗原递增而增加,至抗原、抗体最适比例处达最高峰,这就是经典的海德堡曲线理论。

2.抗体的质量要求:抗体的特异性强、效价高、亲和力强。

R型>H型。

3.抗原抗体反应的溶液pH6.5~8.5,磷酸盐缓冲液。

4.增浊剂聚乙二醇(PEG)、吐温-20,可消除抗原或抗体分子周围的电子云和水化层,促进抗原、抗体分子靠近,结合形成大分子复合物。

免疫比浊方法分类透射和散射免疫比浊法免疫胶乳比浊法凝胶内沉淀试验单向免疫扩散试验Mancini曲线:适用大分子抗原和长时间扩散(>48小时)的结果;公式:c/d2=k。

Fahey曲线:适用于小分子抗原和较短时间(<24h)扩散的结果处理,用半对数纸画线。

公式:logc/d=k。

双向免疫扩散试验免疫电泳技术免疫电泳技术是电泳分析与沉淀反应的结合产物。

1.加快了反应速度2.集中了扩散方向3.分开了不同的蛋白火箭免疫电泳免疫电泳免疫固定电泳免疫固定电流模式图沉淀反应在医学检验中的应用方法评价应用经典沉淀反应操作繁琐、敏感度低、精密度差、时间长和难以自动化逐渐减少【习题】下列哪项不是沉淀反应的特点A.其特性与经典抗原抗体反应相同B.抗原是可溶性抗原C.反应可分为两个阶段D.抗体是McAbE.需一定电解质『正确答案』D『答案解析』沉淀反应抗体不是单克隆抗体。

沉淀反应

沉淀反应

免疫学及免疫学检验 (一) 透射比浊法
1. 原理 抗原抗体在一定缓冲液中形成免疫复合 物(IC),当光线透过反应溶液时,由于溶液内 复合物粒子对光线的反射和吸收,引起透射 光减少,免疫复合物量越多,透射光越少, 即光线吸收越多,可用吸光度表示。吸光度 和复合物的量成正比,当抗体量固定时,与 待检抗原量成正比。用抗原标准品建立标准 曲线,可测出待检抗原含量。
1. 融化琼脂,浇板 每张载玻片约4ml。 2.凝固,打孔 孔径3mm,孔间距3~5mm,孔型 有双孔型、三角孔型、双排孔型和梅花孔型。 3. 加样 在相对孔内加抗原或抗体。 4.孵育 使抗原抗体自由扩散,在两孔之间抗原 抗体相遇,在比例适时形成可见的沉淀线。沉 淀线的数目、形态和位置与抗原和抗体的纯度、 浓度和扩散速度有关。
免疫学及免疫学检验 单向免疫扩散试验示意图
免疫学及免疫学检验
沉淀环的直径与待检标本内含量不 是直线关系,有两种计算方法:
(1) Mancini曲线:适用于大分子抗原,扩散 时间>48h,使用普通坐标纸作图,扩散环 直径平方和浓度呈线性关系。 (2) Fehcy曲线:适用于较小分子抗原,扩散 时间较短,使用半对数坐标纸作图,抗原 量的对数和扩散圈直径之间呈线性关系。
免疫学及免疫学检验
(三) 方法评价
该试验是经典的血清学反应之一,简 便、快速、实用。故用于鉴定血迹和诊断 炭疽(Ascoli试验)。只能定性,不能定量、 敏感性较低(3~20mg/L),对含有多个抗原 抗体对的反应系统缺乏分辨力。方法难以 推广。
免疫学及免疫学检验
三、免疫浊度试验
经典的免疫沉淀试验是抗原和相应抗体在反应终 点时判定结果,方法存在耗时、敏感度低 (10~100mg/L)和不能自动化等缺点。70年代以来, 根据抗原和抗体所在液相内快速结合并产生浊度的 原理,建立了免疫比浊法。临床常用3种微量免疫技 术,即透射比浊法(transmission turbidimetry)、散射 比 浊 法 (nephelometry) 和 免 疫 胶 乳 比 浊 法 (immunolatex turbidimetry),借助多种自动化分析仪 器来完成。

医学免疫学沉淀反应

医学免疫学沉淀反应

医学免疫学沉淀反应在医学免疫学的领域中,沉淀反应是一项十分重要的实验技术。

它不仅有助于我们对疾病的诊断和监测,还在科研领域发挥着关键作用。

沉淀反应的原理其实并不复杂。

简单来说,就是当可溶性抗原与相应抗体在特定条件下结合时,会形成肉眼可见的沉淀物。

这一过程基于抗原与抗体的特异性结合,只有当两者的结构和电荷相互匹配时,才能发生有效的反应。

沉淀反应的类型多种多样。

其中,环状沉淀反应是比较经典的一种。

在这种反应中,将抗原溶液小心地叠加在抗体溶液之上,在两者的界面处,如果存在对应的抗原抗体,就会形成白色的沉淀环。

这种方法虽然简单直观,但灵敏度相对较低,如今在实际应用中已经不那么常见。

另一种常见的沉淀反应是絮状沉淀反应。

在这个实验中,抗原和抗体溶液混合后,会出现肉眼可见的絮状沉淀物。

然而,这种反应的结果判断往往比较主观,容易受到多种因素的影响,比如溶液的浓度、温度以及混合的方式等。

相较于上述两种方法,免疫比浊法在现代医学中的应用更为广泛。

它通过测量溶液中抗原抗体复合物形成后导致的浊度变化,来定量分析抗原或抗体的含量。

这种方法具有快速、准确、自动化程度高等优点,尤其适用于临床实验室对大量样本的检测。

在实际应用中,沉淀反应有着广泛的用途。

比如在疾病诊断方面,当我们怀疑一个人感染了某种病原体时,可以通过检测患者血清中针对该病原体的特异性抗体来辅助诊断。

如果检测结果显示存在相应的沉淀反应,就提示患者可能已经感染了该病原体。

再比如,在血液制品的质量检测中,沉淀反应可以帮助检测其中是否存在杂质或异常蛋白。

这对于保障血液制品的安全性和有效性至关重要。

不仅如此,沉淀反应在自身免疫性疾病的诊断中也发挥着重要作用。

自身免疫性疾病患者体内常常会产生针对自身组织或细胞的抗体,通过沉淀反应检测这些抗体的存在,可以为疾病的诊断提供有力的依据。

然而,沉淀反应也并非完美无缺。

它可能会受到一些因素的干扰。

比如,标本的采集和处理不当可能会影响抗原或抗体的活性,从而导致假阴性或假阳性结果。

临床免疫学检验课件第6章沉淀反应2

临床免疫学检验课件第6章沉淀反应2

加入抗血清
各管抗体量不变
Ab
振摇 混匀、37℃孵育
Ag
沉淀量不同
轻摇
出现沉淀量最多的管为最适比例管。
表6-1 最适比方阵测定法
抗原稀释度
抗体 稀释度 1/10 1/20 1/40 1/80 1/160 1/320 1/640 对照
1/5
+
++ +++ +++ ++
+
±

1/10
+
++ ++ ++ +++ ++
•基本原理:电泳技术+沉淀反应 •优点:加快沉淀反应的速度;
提高灵敏度。 •应用: 主要用于细微成分的分析。
•电泳原理:带电质点在电场中向带有异相电荷的 电极移动。
•在常规血清蛋白电泳,一般选择可使所有蛋白质 分子均带负电荷的碱性缓冲液。
•电场中的作用力(碱性条件下) 电泳力:蛋白质由阴极向阳极移动。 电渗力:水分子向阴极移动。 若电泳力>电渗力, 向阳极移动(大多数Ag) 电渗力>电泳力, 向阴极移动(Ab)。
• 对待检蛋白质样品定量测定的条件: 1、具有单价特异性抗血清 2、已知含量标准品(绘制标准曲线用) 3、待检含量>1.25ug/ml。(敏感度稍低)
• 单扩试验的应用范围: 常用于IgG、IgA、IgM、C3、C4等测定, 简易的抗原定量技术。
• 双环现象
抗原性相同、扩 散率不同的两个 组分:α重链病 人血清中的α重 链与正常IgA
抗体相遇,在界面处形 •临床意义:
成清晰的乳白色沉淀环。 鉴定血迹、

临床免疫学和免疫检验第六章沉淀反应讲义

临床免疫学和免疫检验第六章沉淀反应讲义

第六章沉淀反应沉淀反应是指可溶性抗原与相应抗体在特定条件下发生特异性结合时出现的沉淀现象。

第一节沉淀反应的特点沉淀反应中的抗原多为蛋白质、多糖、血清、毒素等可溶性物质。

沉淀反应分两个阶段,第一阶段为抗原抗体发生特异性结合,几秒到几十秒即可完成,出现可溶性小的复合物,肉眼不可见; 第二阶段为形成可见的免疫复合物,约需几十分钟到数小时才能完成,如沉淀线、沉淀环。

第二节液体内沉淀试验一、絮状沉淀试验抗原抗体溶液在电解质的存在下结合,形成絮状沉淀物,这种絮状沉淀 因此常用来作为测定抗原抗体反应最适比例的方法,常见类型有:抗原进行一系列稀释与恒定浓度抗血清反应。

抗体进行一系列稀释与恒定浓度抗原反应。

方阵滴定法即棋盘滴定法。

二、免疫浊度测定属于液体内沉淀反应,其特点是将现代光学测量仪器与自动化检测系统相结合应用于沉淀反应,可进 行液体中微量抗原、抗体及小分子半抗原定量检测。

(一)免疫比浊测定的影响因素1. 抗原抗体的比例 是浊度形成的关键因素。

当抗原过量时,形成的IC 分子小,而且会发生再解离,使浊度反而下降,光散射亦减少,这就是高剂量钩状效应。

当抗体过量时,IC 的形成随着抗原递增而增加,至抗原、抗体最适比例处达最高峰,这就是 经典的海德堡曲线理论。

在反应体系中保持抗体适当过量,如形成抗原过量则造成测定的准确性降低。

2. 抗体的质量 对免疫比浊测定法的抗体要求(1) 特异性强 (2) 效价高(3) 亲和力强:则抗体的活性高,不仅可以加快抗原抗体反应的速度,而且形成的IC 较牢固,不易 发生解离。

在速率比浊法中尤为重要。

(4) R 型和H 型抗体:根据抗血清来源的动物种类不同,分为R 型抗体和H 型抗体。

R 型抗体是指以家兔为代表的小型动物 被注射抗原免疫后制备的抗血清。

这类抗血清的特点是 亲和力较强,抗原抗体结合后不易发生解离。

H 型抗体是指以 马为代表的大型动物 注射抗原后制备的抗血清, 这类抗血清的 亲和力弱,抗原抗体结合 后极易解离。

沉淀反应(免疫学检验课件)

沉淀反应(免疫学检验课件)

一、单向琼脂扩散试验 (平板法)
抗体与待测的抗原,在两者比例合适的部位结合形 成沉淀环。环的大小与抗原的浓度成正相关。
本法稳定、简便、无需仪器设备。重复性和线性 均可信,但灵敏度稍差、耗时长、影响因素多。
单向免疫扩散试验
二、双向琼脂扩散试验 (平板法)
将抗原抗体分别加在琼脂糖凝胶不同的对应孔 中,两者在凝胶中自由扩散,在比例合适处形成白 色沉淀线。沉淀线的位置、形状以及对比关系,可 进行定性分析,如抗原或抗体的存在与否、相对含 量估计、相对分子量分析和性质分析。
方法评价:简便快速,只能定性。
二、絮状沉淀试验
原理:抗原溶液与相应抗体溶液混合,在电解质 存在的条件下,抗原与抗体结合出现可见的絮状 沉淀。由此可作为最适比测定的基本方法。
技术要点:
抗原稀释法
抗体稀释法
方阵滴定法
方法评价:简单、不需特殊设备,敏感度较低, 受抗原抗体比例影响非常明显。常用于滴定抗原 抗体反应的最适比例。
沉淀反应
前言
• 沉淀反应(precipitation )

可溶性抗原与相应抗体发生特异性结合,在适
当条件下而出现的沉淀现象。

沉淀反应分类
1.液相内沉淀试验 环状沉淀反应、絮状沉淀反应、 免疫比浊度分析。
2.凝胶内沉淀试验 单向琼脂扩散试验、双向琼脂 扩散试验。
3.凝胶免疫电泳技术 对流电泳技术、免疫电泳技 术、火箭电泳技术、免疫固定电泳技术。
三、免疫比浊度分析
根据抗原抗体在体内快速结合的原理
透射免疫比浊法
(turbidimetric immunoassay)
散射免疫比浊法
(nephelometry immunoassay)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

免疫学和免疫学检验:沉淀反应沉淀反应(precipetaiton)是可溶性抗原与相应抗体特异性结合所出现的反。

早在1897年Kraus就发现,细菌培养液与相应抗血清混合时可发生沉淀反应(precipetaiton)是可溶性抗原与相应抗体特异性结合所出现的反。

早在1897年Kraus就发现,细菌培养液与相应抗血清混合时可发生沉淀反应。

1905年Bechhold把抗体放在明胶中,将抗原加于其中,发现沉淀反应可在凝胶中进行。

Oudin(1946)报告了试管免疫扩散技术,Mancini(1965)提出单向免疫扩散技术,使定性免疫试验向定量化发展。

另一方面,免疫浊度法的出现,使沉淀反应达到快速、微量、自动化的新阶段。

沉淀反应分两个阶段,第一阶段发生抗原抗体特异性结合,第二阶段形成可见的免疫复合物(参见第九章)。

经典的沉淀反应在第二阶段观察或测量沉淀线或沉淀环等来判定结果,称为终点法;而快速免疫浊度法则在第一阶段测定免疫复合物形成的速率,称为速率法。

现代免疫技术(如各种标记免疫技术)多是在沉淀反应的基础上建立起来的,因此沉淀反应是免疫学方法的核心技术。

第一节液体内沉淀试验一、絮状沉淀试验絮状沉淀试验为历史较久,又较有用的方法。

该法要点是:将抗原与抗体溶液混合在一起,在电解质存在下,抗原与抗体结合,形成絮状沉淀物。

这种沉淀试验受到抗原和抗体比例的直接影响,因而产生了两种最适比例的基本测定方法。

(一)抗原稀释法抗原稀释法(Dean-Webb法)是将可溶性抗原作一系列稀释,与恒定浓度的抗血清等量混合,置室温或37℃反应后,产生的沉淀物随抗原的变化而不同。

表12-1系以牛血清白蛋白为例的实验结果。

表12-1Dean-Webb定量沉淀试验管号抗原抗体总沉淀量反应过剩物抗原沉淀量抗体沉淀量沉淀中Ab/Ag1 0.003 0.68 0.093 Ab 0.003 0.090 30.02 0.005 0.68 0.145 Ab 0.005 0.140 28.03 0.011 0.68 0.249 Ab 0.011 0.238 21.74 0.021 0.68 0.422 Ab 0.021 0.401 19.15 0.032 0.68 0.571 Ab 0.032 0.539 16.86 0.043 0.68 0.734 - 0.043 0.691 16.17 0.064 0.68 0.720 Ab ---8 0.085 0.68 0.601 Ag ---9 0.171 0.68 0.464 Ag ---10 0.341 0.68 0.368 Ag ---单位:mmol/L 从表12-1可以看出,1~5管为抗体过剩管,7~10管为抗原过剩管,唯第6管沉淀物最多,两者之比为16:1,即最适比。

(二)抗体稀释法(Ramon)法本法采用恒定的抗原量与不同程度稀释的抗体反应,计算结果同上法,得出的是抗体结合价和最适比。

现今,为了取得抗原与抗体的最佳比例,已将以上两法相结合,即抗原和抗体同时稀释,称为棋盘格法(亦称方阵法),找出最佳配比。

举例见表12-2。

表12-2方阵最适比测定抗体稀释度抗原稀释度1/10 1/20 1/40 1/80 1/160 1/320 1/640 1/12 对照1/5 ++++++++++++± --1/10 +++++++++++++--1/20 ++++++++++++--1/40 -± ++++++++++-1/80 ----++++-“+”为沉淀物量:为最适比从表12-2可以看出,方阵法可较正确地找出抗原与抗体的最适比。

如抗体用1:40。

抗原则按1:320稀释;如抗原是1:160,抗本则用1:20最为恰当。

二、环状沉淀试验环状沉淀试验是Ascoli于1902年建立的,其方法是:先将抗血清加入内径1.5~2mm小玻管中,约装1/3高度,再用细长滴管沿管壁叠加抗原溶液。

因抗血清蛋白浓度高,比重较抗原大,所以两液交界处可形成清晰的界面。

此处抗原抗体反应生成的沉淀在一定时间内不下沉。

一般在室温放置10min至数小时,在两液交界处呈现白色环状沉淀则为阳性反应。

本技术的敏感度为3~20μg/ml抗原量。

环状试验中抗原、抗体溶液须澄清。

该试验主要用于鉴定微量抗原,如法医学中鉴定血迹,流行病学用于检查媒介昆虫体内的微量抗原等,亦可用于鉴定细菌多糖抗原。

因该技术敏感度低,且不能作两种以上抗原的分析鉴别,现已少用。

第二节凝胶内沉淀试验最常用的凝胶为琼脂糖。

由于凝胶内沉淀试验具有高度的敏感性和特异性,且设备简单、操作方便,因而得到广泛应用。

该试验利用可溶性抗原和相应抗体在凝胶中扩散,形成浓度梯度,在抗原与抗体浓度比例恰当的位置形成肉眼可见的沉淀线或沉淀环。

适宜浓度的凝胶可视为一种固相的液体,水分占98%以上,凝胶形成网络,将水分固相化。

抗原和抗体蛋白质在此凝胶内扩散,犹如在液体中自由运动。

大分子(分子量为20万以上)物质在凝胶中扩散较慢,可利用这点识别分子量的差别。

另外,由于琼脂网孔有一定的限度,抗原抗体结合后,复合物的分子量至少应在百万以上,这种超大分子则被网络在琼脂中,经盐水浸泡也只能去除游离的抗原或抗体,这对后面的分析带来极大的方便。

凝胶内沉淀试验可根据抗原与抗体反应的方式和特性,分为单向扩散试验和双向扩散试验。

一、单向扩散试验本试验是在琼脂胶中混入一定量抗体,使待测的抗原溶液从局部向琼脂内自由扩散,在一定区域内形成可见的沉淀环。

根据试验形成可分为试管法和平板法两种。

(一)试管法该方法由Oudin于1946年报道。

将血清或纯化抗体混入约50℃的0.7%琼脂糖溶液中,注入小口径试管内,待凝固后,在凝胶中面加入抗原溶液,让抗原自由扩散入凝胶内,在抗原与抗体比例恰当位置形成沉淀环。

在黑色背景斜射光处,极易观察这种白色不透明沉淀带。

沉淀环的数目和形态受抗原和抗体性质的影响。

溶液内含有多种抗原,在凝胶中含有各自的抗体,扩散后形成相应的抗原抗体复合物,出现多条区带。

试管上部的沉淀带表示抗原量少或者抗体量多;反之,下面的沉淀带则是抗原量大,抗体量少。

另外,抗体类型也有很大区别,如用兔抗血清(R型抗体),抗体过量亦可形成复合物,因而沉淀带宽而界线不清;如用马抗血清(H 型抗体),抗原或抗体过量皆不形成复合物,因而只在比例合适处形成界线清晰的沉淀物(图12-1)。

图12-1两种抗血清形成的沉淀带示意图(二)平板法此法由Mancini于1965年提出,是目前最常用的简易抗原定量技术,其要点是:将抗体或抗血清混入0.9%琼脂糖内(约50℃),未凝固前倾注成平板,凝固后在琼脂板上打孔(一般直径约3~5mm),孔中加入抗原溶液,放室温或37℃让其向四周扩散,24~48h后可见周围出现沉淀环(图12-2)。

图12-2单向辐射状免疫扩散上排为5个不同的参考中、下排为患者血清下排右2为一异常病理血清由于试验中抗原向四周扩散,故又称单向辐射状免疫扩散(singleradialimmunodeffusion,SRID)。

最后,测量沉淀环的直径或计算环的面积。

沉淀环直径或面积的大小与抗原量相关,但不是直线相关,而是对数关系。

同时,这种沉淀还与分子量和抗散时间有关。

抗原含量与环径的关系有两种计算方法: 1.Mancini曲线适用于大分子抗原和长时间扩散(>48h)的结果处理。

使用方格计算纸划线,扩散环直径的平方与抗原浓度呈线性关系(图12-3)。

利用公式表示:C/d2=K图12-3Mancini曲线 T1为1624h;T2为24~48h;T3为48h以上;可见T3为直线,T1为反抛物线式中C=抗原浓度,d=沉淀环直径,K=常数。

2.Fahey曲线这种曲线适用于小分子抗原和较短时间(24h)扩散的结果处理。

使用半对数划线,浓度的对数与扩散圈直径之间呈线性关系(图12-4)。

用公式表示:log/d=K 式中C=抗原浓度(mg/d),d=沉淀环直径,K =发常数。

各种蛋白质只要符合以下3条,几乎皆可用SRID定量测定:①备有仅对某待测抗原的单价特异抗血清;②备有已知含量的标准品;③待测品含量在1.25μg/ml以上(单向扩散技术的敏感度)。

现在最常用于临床检测的项目有IgG、IgA、IgM、C3、C4、转铁蛋白、抗胰蛋白酶、糖蛋白和前白蛋白等多种血浆蛋白。

在检测标本的同时,用已知含量的标准抗原作5~7个稀释度,同时测量圈的大小(见图12-2)。

按扩散时间(Fahey和Mancini法)的不同,取方格纸或对数纸做标准曲线图。

单向琼脂免疫扩散法作为抗原的定量方法,其重复性和线性皆是可信赖的,唯敏感度稍差(不能测μg/ml以下含量)。

另外,以下影响因素也应注意。

1.抗血清不但要求亲和力强、特异性好、效价高,而且还应注意存放的方法,防止效价下降。

2.标准曲线测定必须同时制作,决不可一次做成,长期应用。

3.测定时必须同时加测质控血清,以保证测量准确性。

4.有时出现扩散圈呈两重沉淀环的双环现象。

这是由于出现了不同扩散率、但抗原性相同的两个组分。

例如α重链病血清中出现的α重链和正常IgA发生反应,就形成内外两重环(图12-2)。

图12-4Fahey曲线 t1为1624h;t2为2448h;t3为48h以上可见t1为直线,t3为抛物线 5.在单向扩散试验时,有时会出现结果与真实含量不符,这主要出现在Ig测定中。

如用单向克隆抗体或用骨髓抗原免疫动物获得的抗血清,都存在结合价单一的现象,若用此作为单向扩散试剂测量正常人的多态性抗原,则抗体相对过剩,使沉淀圈直径变小,测量值降低。

6.测得结果的假阳性升高现象与上面相反,如用多克隆抗体测定单克隆病(M蛋白),则抗原相对过剩(单一抗原决定簇成分),致使沉淀圈呈不相关的扩大,从而造成某一成分的伪性增加。

二、双向扩散试验在琼脂内抗原和抗体各自向对方扩散,在最恰当的比例处形成抗原抗体沉淀线,观察这种沉淀线的位置、形状以及对比关系,可作出对抗原或抗体的定性分析。

双向扩散也可分为试管法和平板法两种方法。

(一)试管法试管法由Oakley首先报道。

先在试管中加入含抗体的琼脂,凝固后在中间加一层普通琼脂,冷却后将抗原液体加到上层。

放置后,下层的抗体和上层的抗原向中间琼脂层内自由扩散,在抗原与抗体浓度比例恰当处形成沉淀线。

此法分析效果与Oudin法相似,在临床检验中罕用。

(二)平板法平板法由Ouchterlony首先报道,是抗原抗体鉴定的最基本方法之一。

该法的基本步骤是:在琼脂板上相距3~5mm打一对孔,或者打梅花孔、双排孔、三角孔等(图12-5)。

在相对的孔中加入抗原或抗体,置室温或37℃18~24h后,凝胶中各自扩散的抗原和抗体可在浓度比例适当处形成可见的沉淀线。

相关文档
最新文档