小学六年级数学求阴影部分面积

合集下载

6年级数学求阴影部分面积的题

6年级数学求阴影部分面积的题

6年级数学求阴影部分面积的题一、引言在六年级数学中,求阴影部分面积是一个常见的题型。

这类题目不仅考察学生的基础几何知识,还要求他们具备一定的思维能力和解题技巧。

本文将围绕以下九个方面解析求阴影部分面积的题目。

二、圆与扇形的面积计算1.圆的面积公式:A = πr²,其中r为圆的半径。

2.扇形的面积公式:A = 1/2 × r²×θ,其中θ为扇形的圆心角(弧度制)。

三、三角形与四边形的面积计算1.三角形的面积公式:A = 1/2 × base × height。

2.四边形的面积公式:根据具体情况选择合适的公式,如矩形、平行四边形等。

四、组合图形的面积计算1.组合图形由多个基本图形组成,需要分别计算各部分的面积,然后相加得到总面积。

2.注意事项:计算过程中要保持图形形状不变,避免错误计算。

五、半圆的面积计算1.半圆的面积公式:A = πr²/2,其中r为半圆的半径。

2.注意事项:计算过程中要注意半圆的定义和范围。

六、圆环的面积计算1.圆环的面积公式:A = π(R² - r²),其中R为外圆的半径,r为内圆的半径。

2.注意事项:计算过程中要注意内外圆的位置关系和半径大小。

七、阴影部分的面积计算1.根据题目要求,选择合适的公式或方法计算阴影部分的面积。

2.注意阴影部分的形状和范围,避免出现错误计算。

八、面积与周长的关系1.在求阴影部分面积时,要考虑与之相关的周长关系,以帮助确定图形的形状和大小。

2.了解周长与面积之间的相互关系,有助于更好地解决相关问题。

九、面积与其他几何量的关系1.在求阴影部分面积时,还需要考虑与其相关的其他几何量,如长度、宽度、角度等。

2.通过建立关系式,有助于确定图形的形状和大小,从而更准确地计算阴影部分的面积。

十、面积的近似计算1.在某些情况下,由于图形的不规则性或测量误差等原因,需要进行近似计算。

六年级数学求阴影面积与周长

六年级数学求阴影面积与周长

六年级数学求阴影面积与周长例1.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例2.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例3.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。

小学六年级数学 阴影部分面积的计算 例题+针对性练习(带答案)

 小学六年级数学 阴影部分面积的计算  例题+针对性练习(带答案)

阴影部分面积的计算【例题1】求图中阴影部分的面积(单位:厘米)。

【解析】如图所示的特点,阴影部分的面积可以拼成1/4圆的面积。

62×3.14×1/4=28.26(平方厘米)答:阴影部分的面积是28.26平方厘米。

练习1:1.求下面各个图形中阴影部分的面积(单位:厘米)。

答案:18平方厘米2.求下面各个图形中阴影部分的面积(单位:厘米)。

答案:36平方厘米3.求下面各个图形中阴影部分的面积(单位:厘米)。

答案:50平方厘米【例题2】求图中阴影部分的面积(单位:厘米)。

【解析】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。

从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

3.14×4×4×1/4-4×4÷2÷2=8.56(平方厘米)答:阴影部分的面积是8.56平方厘米。

练习2:1.计算下面图形中阴影部分的面积(单位:厘米)。

答案:8平方厘米2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

答案:8平方厘米3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

答案:4.56平方厘米【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。

求长方形ABO1O的面积。

【解析】因为两圆的半径相等,所以两个扇形中的空白部分相等。

又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。

所以3.14×12×1/4×2=1.57(平方厘米)答:长方形长方形ABO1O的面积是1.57平方厘米。

练习3:1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。

答案:12.56平方厘米2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

小学六年级数学求阴影部分面积(圆)

小学六年级数学求阴影部分面积(圆)

计算图19-1中阴影部分面积是多少平方厘米?(圆的半径r=10厘米,∏取3.14)分析:要计算图19-1中阴影部分的面积,关键在于处理图中空白部分的面积。

利用割补进行转化,把空白部分转移到圆的边缘。

如图19-2所示,这样阴影部分面积就可以转化为41圆面积加上两个正方形的面积来计算。

解 ∏×102×41+102×2=25∏+200=78.5+200=278.5图19-3大小两圆相交部分面积是大圆面积的154,是小圆面积的53,量得小圆的半径是5厘米,问大圆的半径是多少厘米?分析:因为已知阴影部分与大圆,小圆的面积比,所以可以先求出两圆面积的比,继而求出它们的半径比。

,解 设阴影部分的面积为1.则小圆面积是415,小圆面积是35。

于是: 大圆面积:小圆面积=415:35=49=(23)2 5×23=7.5厘米如图19-4,正方形面积是8平方厘米。

求阴影部分的面积是多少平方厘米?分析:这道题按常规思路是:要求阴影部分的面积,用正方形的面积减去一个四分之一圆的面积。

因此,只要知道圆的半径,问题就得到解决了。

但是,从题中的已知条件知道,圆的半径是不可能求出的,问题难以得解。

这时,就必须改变解题思路,重新审题和分析图形,从图中不难看到,正方形的边长等于圆的半径,进而可以推出a ×a=r ×r=8平方厘米。

所以,在求四分之一圆的面积时,就不必按常规的方法,去求解圆的半径,而直接用8平方厘米代替r ×r 的面积,四分之一圆的面积是3.14×8×41=6.28平方厘米,则阴影部分的面积就是8-3.14×8×41=1.72平方厘米。

如图19-7,求空白部分的面积是正方形面积的几分之几?分析:因为圆和正方形它们的对称性,可以先画出两条辅助线帮助分析,即将正方形分成4个全等的小正方形。

先看上面的两个小正方形,从圆中可知,A=B ,C=D 。

小学数学六年级总复习:求阴影部分面积方法举例

小学数学六年级总复习:求阴影部分面积方法举例

求阴影部分面积方法举例1、用替换法求面积“替换”就是等量代换。

用一种量(或一种量的一部分)来替代和它相等的另一种量(或另一种量的一部分),从而减少问题中的数量个数,降低解题难度,然后设法将这个被代换的量求出。

【例】:如图所示,正方形的面积为12平方厘米,求阴影部分的面积。

【分析】设正方形的边长为r,则r×r=r2=12,用12替换r2即可求出扇形的面积,进而求出阴影部分的面积。

列式:12-3.14×12÷4=12-9.42=2.58(平方厘米)同类练习:(1)如图所示,图中正方形的面积为10平方厘米,求阴影部分的面积。

(2)如图所示,三角形OAB的面积是7cm2,求图中阴影部分的面积。

(3)如图所示。

②如果环形面积是25.12cm2,求阴影部分的面积。

2、用割补法求面积(这里主要讲“补”)补一些单一图形或集合图形使之成为可以计算的形或体,再解答,这种方法称之为割补法。

【例】:求图中阴影部分面积(单位:cm)。

【分析】在原图的基础上,补上一个与原图完全相同的图形,如右图所示。

列式:10×10-3.14×()2÷2=100-39.25=10.75(cm2)3、用构造法求面积在计算某些图形题时,把原来不易处理的、不规则的图形,通过平移、旋转、翻折后,重新构成一个新的更便于处理的图形来解决问题,这种方法,称之为构造法。

【例】1:求图3(1)a 中阴影部分的面积。

(单位:厘米)【分析】观察图3(1)a ,会发现阴影部分中包含了与左边空白部分完全相同的扇形,将它平移到空白部分上,恰好与所剩阴影部分构成一个正方形。

如图3(1)b 将阴影部分重新构成了一个正方形。

列式:S 阴S 正=10×10=100(平方厘米)【例】2:如图3(2)a ,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成了一个直角三角形。

六年级数学求阴影面积与周长

六年级数学求阴影面积与周长

六年级数学求阴影面积与周长例1.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例2.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例3.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。

小学六年级数学之圆_阴影部分面积(含答案)

小学六年级数学之圆_阴影部分面积(含答案)

求阴影部分面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分面积。

(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

小学六年级数学圆求阴影部分面积

小学六年级数学圆求阴影部分面积

小学六年级数学圆求阴影部分面积
求阴影部分面积是小学六年级数学中的一个重要概念,它是学习几何图形的基础。

求阴影部分面积可以帮助学生更好地理解几何图形的特点,从而更好地掌握数学知识。

求阴影部分面积的基本概念是:当一个几何图形的一部分被另一个几何图形遮挡时,就会形成阴影部分,这部分被称为阴影部分。

求阴影部分面积的方法是:首先,确定几何图形的形状,然后根据几何图形的形状,计算出阴影部分的面积。

求阴影部分面积的具体步骤如下:
1.确定几何图形的形状,如圆形、三角形、矩形等。

2.根据几何图形的形状,计算出阴影部分的面积。

3.如果是圆形,可以用圆的面积公式来计算阴影部分的面积,即:阴影部分面积=πr²,其中r为圆的半径。

4.如果是三角形,可以用三角形的面积公式来计算阴影部分的面积,即:阴影部分面积=1/2×a×h,其中a为三角形的底边,h为三角形的高。

5.如果是矩形,可以用矩形的面积公式来计算阴影部分的面积,即:阴影部分面积=a×b,其中a为矩形的长,b为矩形的宽。

通过以上步骤,小学六年级学生可以更好地理解求阴影部分面积的概念,并能够根据不同几何图形的形状,计算出阴影部分的面积。

这样,学生就可以更好地掌握数学知识,为今后的学习打下坚实的基础。

小学六年级圆_阴影部分面积含答案

小学六年级圆_阴影部分面积含答案

求阴影部分面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米.解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

小学六年级圆_阴影部分面积(含答案)

小学六年级圆_阴影部分面积(含答案)

求阴影部分面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米) 解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

小学六年级圆_阴影部分面积(含答案)

小学六年级圆_阴影部分面积(含答案)

求阴影部分面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米) 解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘形的差来求,无需割、补、增、减变形) 米例9.求阴影部分的面积。

小学六年级数学求阴影面积与周长

小学六年级数学求阴影面积与周长

小学六年级数学求阴影面积与周长例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

小学六年级数学求阴影部份面积

小学六年级数学求阴影部份面积

小学六年级(求阴影部份面积练习题)1.求阴影部份面积(单位:cm)。

解:阴影部份的面积=正方形的面积-两个空白的面积;一个空白的面积=正方形的面积-半径为2的14圆面积;S阴=S正-2×S空×3.14×22)=2×2−2×(2×2−14=4−2×(4−3.14)=4−1.72=2.28cm22.求阴影部份面积(单位:cm)。

解:作辅助线如下图所示,空白①与阴影②的面积相等,所以:阴影部份的面积=边长为10的正方形面积。

S阴=S正=10×10=100cm23.求阴影部份面积(单位:cm)。

解:阴影部份的面积=两个阴影三角形的面积之和。

S阴=S左阴影三角形+ S右阴影三角形=1 2×10×6+12×6×6=30+18=48cm24.求阴影部份面积(单位:cm)。

解:阴影部份的面积=边长为10的正方形面积-空白部份的面积,经观察发现:空白部份可组合成一个直径为10的圆。

空白部份的面积=直径为10的圆面积。

S阴=S正方形- S直径为10的圆=10×10−12×3.14×52=100−39.25=60.75cm25. 求阴影部份面积(单位:cm)。

解:作辅助线如下图所示,阴影部份的面积=S甲+S乙+S丙+S丁。

观察发现,S 甲+S丁=直径为6的半圆的面积,恰好与空白半圆的面积一样。

所以阴影部分的面积=长为6、宽为3的长方形的面积。

S阴= 6×3=18cm26. 求阴影部份面积(单位:cm)。

解:作辅助线如下图所示,将阴影部份分成相等的四部分,阴影部份的面积=4×S②。

S②=半径为2的1圆面积-边长为2的直角等腰三4角形的面积S阴=4×S②=4×(14×3.14×22−12×2×2)=4×(3.14−2)=2.28cm27. 求阴影部份面积(单位:cm)。

小学六年级求阴影部分面积试题和答案

小学六年级求阴影部分面积试题和答案
所以面积为:1×2=2平方厘米
例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
解:设小圆半径为r,4 =36,?r=3,大圆半径为R, =2 =18,
将阴影部分通过转动移在一起构成半个圆环,
所以面积为:π( - )÷2=4.5π=14.13平方厘米
例21.图中四个圆的半径都是1厘米,求阴影部分的 面积。
阴影部分面积为:(3π-6)× =5.13平方厘米
例16.求阴影部分的面积。(单位:厘米)
??
?解: [π +π -π ]
= π(116-36)=40π=125.6平方厘米
例17.图中圆的半径为5厘米,求阴影部分的面积。(单 位:厘米)
解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和。
例28.求阴影部分的面积。(单位:厘米)
解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,
三角形ABD的面积为:5×5÷2=12.5
弓形面积为:[π ÷2-5×Fra bibliotek]÷2=7.125
所以阴影面积为:12.5+7.125=19.625平方厘米
解法二:右上面空白部分为小正方形面积减去 小圆面积,其值为:5×5- π =25- π
求阴影部分面积
例1.求阴影部分的面积。(单位:厘米)
解:这是最基本的方法: ?圆面积减去等腰直角三角形的面积,?
× -2×1=1.14(平方厘米)
例2.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米)
解:这也是一种最基本的方法用正方形的面积减去 圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以 =7,

超全六年级阴影部分的面积(详细答案)

超全六年级阴影部分的面积(详细答案)
S阴 S梯形 =(4+7)×4÷2=22 cm 2 。
26、求下图阴影部分的面积。(单位:厘米)
解: S阴
S 梯形ABCE
SE C G
SA BG
=(CE+AB)·BC÷2+CE·CG÷2-AB·(BC+CG) ÷2=(2+4)×4÷2+2×2÷2-4×(4+2)÷2
=12+2-12=2 cm 2 。
圆的半径,
S阴=
S 梯形
=
1 2
(2
4) 2
=6(
cm
2
)
3、如图,平行四边形的高是 6 厘米,面积是 54 平方厘米,求阴影三角形的面 积。
解:SABCD= A D A O =54 平方厘米,且 AO=6 厘米,所以 AD=9 厘米。由图形可知 A E D
是等腰直角三角形,所以 AE=AD,OE=OF=AE-AO=9-6=3cm,BO=BC-OC=9-3=6cm。
27、求下图阴影部分的面积。(单位:厘米) 解:半圆的半径=梯形的高=4÷2=2 厘米,
S阴
S 梯形
-S半圆
=(4+6) ×

2-3.14 ×
22
÷2=10-6.28=3.72 cm 2 。
28、四边形 BCED 是一个梯形,三角形 ABC 是一个直角三角形,AB=AD, AC=AE,求阴影部分的面积。(单位:厘米)
2
此题也可以把 BGE 割补到④的位置, 即 GFD,阴影部分面积为四分之一圆 面积。
S阴
S 梯形
-S
=(8+12)×4÷2-8×4÷2=24
dm
2
30.如图,已知 AB=8 厘米,AD=12 厘米,三角形 ABE 和三角形 ADF 的面积各

六年级求阴影部分面积大全

六年级求阴影部分面积大全

求阴影面积是数学考试的重点,那么一般求阴影面积的题都应该怎么算呢?
面积求解类型
1、从整体图形中减去局部;
2、割补法:将不规则图形通过割补,转化成规则图形。

3、平移法:平移法是指把一些不规则的几何图形沿水平或垂直方向移动,拼成一个规则的几何图形,从而求出面积的方法。

4、旋转法是指把一些几何图形绕某一点沿顺时针(或逆时针)方向转动一定的角度,使分散的、不规则的几何图形合并成一个规则的几何图形,从而求出面积的方法。

5、等分法是指把一个几何图形平均分成若干个完全相同的小图形,然后根据大图形与小图形面积之间的倍数关系进行求解的方法。

重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。

能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。

一些几何图形的面积
正方形的面积=边长×边长。

长方形的面积=长×宽。

平行四边形的面积=底×高。

三角形的面积=底×高/2。

梯形的面积=(上底+下底)×高/2。

圆的面积=π×半径的平方。

六年级上册数学求阴影面积的七种类型归纳

六年级上册数学求阴影面积的七种类型归纳

六年级上册数学求阴影面积的七种类型归纳
以下是六年级上册数学求阴影面积的七种类型归纳:
1.直接计算法:当阴影部分是一个规则图形时,可以直接使用相应图形的面积公式进行计算。

2.相减法:当阴影部分是由两个或多个规则图形组成时,可以将阴影部分的面积看作是这些规则图形面积的差。

3.割补法:将阴影部分通过切割、平移、旋转等方式,拼成一个规则图形,然后计算其面积。

4.等积变形法:根据等积原理,将阴影部分与一个已知面积的规则图形进行等积变换,然后计算阴影部分的面积。

5.比例法:当阴影部分与某个规则图形之间存在比例关系时,可以利用比例关系求出阴影部分的面积。

6.方程法:通过建立方程来求解阴影部分的面积。

7.实际问题法:将阴影部分的面积问题与实际生活中的问题相结合,通过分析实际问题来求解阴影部分的面积。

需要注意的是,在解决具体问题时,需要根据具体情况选择合适的方法。

同时,要注意单位的统一和计算的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学求阴影部分面积
计算图19-1中阴影部分面积是多少平方厘米?(圆的半径r=10厘米,∏取3.14)
分析:要计算图19-1中阴影部分的面积,关键在于处理图中空白部分的面积。

利用割补进行转化,把空白部分转移到圆的边缘。

如图19-2所示,这样阴影部分面积就可以转化为
4
1圆面积加上两个正方形的面积来计算。

解 ∏×102×41+102×2=25∏+200=78.5+200=278.5
图19-3大小两圆相交部分面积是大圆面积的154,是小圆面积的5
3,量得小圆的半径是5厘米,问大圆的半径是多少厘米?
分析:因为已知阴影部分与大圆,小圆的面积比,所以可以先求出两圆面积的比,继而求出它们的半径比。


解 设阴影部分的面积为1.则小圆面积是
415,小圆面积是3
5。

于是: 大圆面积:小圆面积=415:35=49=(23)2 5×23=7.5厘米
如图19-4,正方形面积是8平方厘米。

求阴影部分的面积是多少平方厘米?
分析:这道题按常规思路是:要求阴影部分的面积,用正方形的面积减去一个四分之一圆的面积。

因此,只要知道圆的半径,问题就得到解决了。

但是,从题中的已知条件知道,圆的半径是不可能求出的,问题难以得解。

这时,就必须改变解题思路,重新审题和分析图形,从图中不难看到,正方形的边长等于圆的半径,进而可以推出a ×a=r ×r=8平方厘米。

所以,在求四分之一圆的面积时,就不必按常规的方法,去求解圆的半径,而直接用8平方厘米代替r ×r 的面积,四分之一圆的面积是3.14×8×
41=6.28平方厘米,则阴影部分的面积就是8-3.14×8×4
1=1.72平方厘米。

如图19-7,求空白部分的面积是正方形面积的几分之几?
分析:因为圆和正方形它们的对称性,可以先画出两条辅助线帮助分析,即将正方形分成4个全等的小正方形。

先看上面的两个小正方形,从圆中可知,A=B ,C=D 。

故有A+D=B+C 。

这样,可以得到阴影部分的面积与空白部分的面积是正方形面积的二分之一。

求图19-8中阴影部分的面积。

分析:阴影部分的面积是以边长为20的正方形与半径为20的
41圆面积差减去边长为10的正方形与半径为10的4
1圆面积差的2倍。

S 阴影=[20×20-3.14×202×41-10×10-3.14×102×4
1]×2=(86-21.5)×2=129
如图19-9,A ,B 是两个圆的圆心,那么两个阴影部分的面积差是多少?
分析:两个阴影部分面积都难以直接求得,要计算它们面积的差需要转化。

甲- 乙=(甲+丙+丁)-(乙+丙+丁),甲丙丁的面积之和是大圆面积的四分之一,3.14×4×

4
1;乙丙丁的面积,乙加丙是一个长方形,2×4,丁的面积可以直接求,3.14×2×2×4
1。

这样两个阴影部分的面积差可以求得。

3.14×4×4×41-(4×2+3.14×2×2×41)=1.42
求图19-10阴影部分的面积。

分析:这道题的阴影部分可以从半径为6的
41圆面积中减去其中的空白部分的面积。

3.14×6×6×41-(6×4-3.14×4×4×4
1)=28.26-11.44=16.82
如图19-12,ABCG 和CDEF 都是正方形,DC 等于12厘米,CB 等于10厘米。

求阴影的面积。

分析: 要运用求积公式直接求出阴影部分的面积是行不通的,因为阴影部分的面积是不规
则图形。

可以运用转化的方法,先求出直角梯形ABCF 的面积和圆心角为FCD 的扇形面积,所得的差就是阴影部分的面积。

直角梯形的面积为:(10+12)×10÷2=110平方厘米。

41圆的面积:3.14×122÷4=3.14×144÷4=113.04 直角三角形的面积为:10×(10+12)÷
2=22×5=110 阴影部分的面积为110+113.04-110=113.04平方厘米。

求图19-15中的阴影部分的面积。

(OB=4厘米)
分析: 如图19-16,首先可以用虚线连接AC 、BC 、OC ,并标出S1、S2、S3、S4,则阴影部分S1与空白部分S3面积相等。

阴影部分S2与空白部分S4面积相等,所以阴影部分的面积等于41圆面积减去1个直角三角形的面积。

3.14×42×41-4×4×2
1=3.14×4-8=4.56平方厘米
如图19-17,以小正方形4角的顶点为圆心,边长的一半为半径,作4个圆,在4个圆外作一正方形,每边都与其中两个圆各有一个接触点,求阴影部分的面积S 。

单位厘米。

分析:仔细分析观察后,便可看出阴影部分的面积S 等于大正方形面积S 减去小正方形的面积和4个4
3小圆面积的和。

解:S=40×40-[(40÷2)2+3.14×(40÷2÷2)2×
43×4]=1600-[400+942]=1600-1432=258平方厘米。

相关文档
最新文档