滚动轴承的寿命计算(2)

合集下载

发电厂-滚动轴承寿命计算(检修标准)

发电厂-滚动轴承寿命计算(检修标准)

滚动轴承寿命计算一、额定寿命与额定动载荷1、轴承寿命在一定载荷作用下,轴承在出现点蚀前所经历的转数或小时数,称为轴承寿命。

由于制造精度,材料均匀程度的差异,即使是同样材料,同样尺寸的同一批轴承,在同样的工作条件下使用,其寿命长短也不相同。

若以统计寿命为1单位,最长的相对寿命为4单位,最短的为0.1-0.2单位,最长与最短寿命之比为20-40倍。

为确定轴承寿命的标准,把轴承寿命与可靠性联系起来。

2、额定寿命同样规格(型号、材料、工艺)的一批轴承,在同样的工作条件下使用,90%的轴承不产生点蚀,所经历的转数或小时数称为轴承额定寿命。

3、基本额定动载荷为比较轴承抗点蚀的承载能力,规定轴承的额定寿命为一百万转(106)时,所能承受的最大载荷为基本额定动载荷,以C表示。

也就是轴承在额定动载荷C作用下,这种轴承工作一百万转(106)而不发生点蚀失效的可靠度为90%,C越大承载能力越高。

对于基本额定动载荷(1)向心轴承是指纯径向载荷(2)推力球轴承是指纯轴向载荷(3)向心推力轴承是指产生纯径向位移得径向分量二、轴承寿命的计算公式:洛阳轴承厂以208轴承为对象,进行大量的试验研究,建立了载荷与寿命的数字关系式和曲线。

式中:--轴承载荷为P时,所具有的基本额定寿命(106转)L10C--基本额定动载荷 Nε--指数对球轴承:ε=3对滚子轴承:ε=10/3P--当量动载荷(N)把在实际条件下轴承上所承受的载荷: A、R ,转化为实验条件下的载荷称为当量动载荷,对轴承元件来讲这个载荷是变动的,实验研究时,轴承寿命用106转为单位比较方便(记数器),但在实际生产中一般寿命用小时表示,为此须进行转换L10×106=Lh×60n所以滚动轴承寿命计算分为:1、已知轴承型号、载荷与轴的转速,计算Lh;2、已知载荷、转速与预期寿命,计算C ,选取轴承型号。

通常取机器的中修或大修界限为轴承的设计寿命,一般取L h '=5000,对于高温下工作的轴承应引入温度系数ftCt=ftC上两式变为:对于向心轴承对于推力轴承三、当量动载荷P的计算在实际生产中轴承的工作条件是多种多样的,为此,要把实际工作条件下的载荷折算为假想寿命相同的实验载荷--当量载荷。

滚动轴承寿命计算

滚动轴承寿命计算

70000C(a=15º) 70000AC(a =25º) 70000B(a =40º)
FS=Fr/(2Y)
FS=eFr
FS=0.68Fr
FS=1.14Fr
派生轴向力的概念
FR
Fr1
FS1
FS2
Fr2
FS1 Fr1
FR Fr2 FS2
轴向力的计算
FN2
外部 轴向力
外部 径向力
FN1
1.若 Fae+ FS2 >FS1
表13-4 温度系数
轴承工作 温度℃
100
125
150 200
250
300
温度系数 ft
1
0.95 0.90 0.80 0.70
0.60
修正后的计算公式:
L ftC P
106 r
Lh
106
60n
ftC P
h
C
P
ft
60nL'h 106
N
工作中冲击振动 → C ↓ 引进载荷系数 fP 进行修正。 表10-7 载荷系数
α= 25˚ α= 40˚
圆锥滚子轴承(单列)
调心球轴承(双列)
0.178 0.357 0.714 1.07 1.43 ……
-------
----
----
0.38 0.40 0.23 0.46 0.47 ……
0.68 1.14
1.5tgα 1.5tgα
1.47
1.40 1.30 1.23 0.44 1.19 ……
载荷性质 无冲击或轻微冲击 中等冲击 强烈冲击
fP
1.0~1.2
1.2~1.8
1.8~3.0
最终计算公式:

滚动轴承的寿命计算

滚动轴承的寿命计算

滚动轴承的寿命计算1 基本额定寿命和基本额定动载荷轴承中任一元件出现疲劳点蚀前的总转数或一定转速下工作的小时数称为轴承寿命。

大量实验证明,在一批轴承中结构尺寸、材料及热处理、加工方法、使用条件完全相同的轴承寿命是相当离散的(图1是一组20套轴承寿命实验的结果),最长寿命是最短寿命的数十倍。

对一具体轴承很难确切预知其寿命,但对一批轴承用数理统计方法可以求出其寿命概率分布规律。

轴承的寿命不能以一批中最长或最短的寿命做基准,标准中规定对于一般使用的机器,以90%的轴承不发生破坏的寿命作为基准。

(1)基本额定寿命 一批相同的轴承中90%的轴承在疲劳点蚀前能够达到或超过的总转数r L (610转为单位)或在一定转速下工作的小时数()h h L 。

图1 轴承寿命试验结果可靠度要求超过90%,或改变轴承材料性能和运转条件时,可以对基本额定寿命进行修正。

(2)基本额定动载荷 滚动轴承标准中规定,基本额定寿命为一百万转时,轴承所能承受的载荷称为基本额定动载荷,用字母C 表示,即在基本额定动载荷作用下,轴承可以工作一百万转而不发生点蚀失效的概率为90%。

基本额定动载荷是衡量轴承抵抗点蚀能力的一个表征值,其值越大,轴承抗疲劳点蚀能力越强。

基本额定动载荷又有径向基本额定动载荷(r C )和轴向基本额定动载荷(a C )之分。

径向基本动载荷对向心轴承(角接触轴承除外)是指径向载荷,对角接触轴承指轴承套圈间产生相对径向位移的载荷的径向分量。

对推力轴承指中心轴向载荷。

轴承的基本额定动载荷的大小与轴承的类型、结构、尺寸大小及材料等有关,可以从手册或轴承产品样本中直接查出数值。

2 当量动载荷轴承的基本额定动载荷C (r C 和a C )是在一定条件下确定的。

对同时承受径向载荷和轴向载荷作用的轴承进行寿命计算时,需要把实际载荷折算为与基本额定动载荷条件相一致的一种假想载荷,此假想载荷称为当量动载荷,用字母P 表示。

当量动载荷P 的计算方法如下:同时承受径向载荷r F 和轴向载荷a F 的轴承()P r a P f XF YF =+(1)受纯径向载荷r F 的轴承(如N 、NA 类轴承)P r P f F =(2)受纯轴向载荷a F 的轴承(如5类、8类轴承)P a P f F =(3)式中:X ——径向动载荷系数,查表1; Y ——轴向动载荷系数,查表1; P f 冲击载荷系数,见表2。

滚动轴承受力计算及寿命计算

滚动轴承受力计算及寿命计算

滚动轴承相关计算1.当量动载荷轴承承受的载荷,虽有单一径向载荷或轴向载荷,但是,实际上却往往是同时承受径向载荷与轴向载荷的联合载荷,而且其大小和方向也会发生变化。

在这种情况下,计算轴承疲劳寿命不能直接采用轴承承受的载荷。

为此,就要假定一个在各种旋转条件与载荷条件下,都能保证与轴承实际疲劳寿命等同,大小恒定,且通过轴承中心的假想载荷。

这一假想载荷,称为当量动载荷。

设径向当量载荷为P r,径向载荷为F r,轴向载荷为F a,接触角为α,则径向当量载荷与轴承载荷的关系将近似于下列公式:P r=XF r+YF a (1)式中, X:径向载荷系数Y:轴向载荷系数轴向载荷系数随接触角而变;滚子轴承接触角恒定,与接触角无关;单列深沟球轴承与角触球轴承的接触角却随着轴向载荷加大而增大。

接触角的这种变化,可用基本而定静载荷C0r与轴向载荷F a的比值来表示。

为此,在表1中列出了该比值莹莹接触角的轴向载荷系数。

当同时承受径向载荷与轴向载荷、接触角α≠90°时,推力轴承的轴向当量载荷P a为:P a=XF r+YF a (2)2.三列组合角接触球轴承的当量动载荷当使用角接触球轴承并要求承受较大轴向载荷时,如图所示,采用3套单列轴承组合的组合方法有3种,分别以联装代号DBD、DFD、DTD来表示。

在计算这种组合轴承的疲劳寿命时,与单列轴承或双列轴承一样,也采用由轴承承受的径向载荷与轴向载荷求出的当量动载何进行计算。

设径向当量载荷为P r,径向载荷为F r,轴向载荷为F a,接触角为α,则径向当量载荷与轴承载荷的关系将近似于下列公式:P r=XF r+YF a (1)式中, X:径向载荷系数Y:轴向载荷系数轴向载荷系数,会随着接触角而变化。

接角角较小的角接触球轴承在轴向载荷增大时,接触角也会变大。

接触角的这一变化.可以用基本额定静载荷C0r与轴向载荷F a的比值来表示。

因此、接触角为15°的角接触球轴承,就表示与该比值相应接触角的轴向载荷系数。

滚动轴承寿命计算

滚动轴承寿命计算

谢谢观看
基本概念
当量动载荷:在进行寿命计算时,需将作用在轴承
上的实际载荷Fr、Fa折算成与上述条件相当的载荷,即当量 动载荷P。
当量静载荷:当量静载荷P0 是指承受最大载荷滚动
体与滚道接触中心处,引起与实际载荷条件下相当的接触应力 时的假想静载荷。
滚动轴承寿命计算
❖ 实际计算轴承寿命时,常用小时作为计算单位。
滚动轴承寿命计算
CONTENTS
1 基本概念

2 滚动轴承寿命计算

3 角接触轴承的轴向载荷计算 4 滚动轴承的静载荷计算
基本概念
轴承寿命:是指单个轴ຫໍສະໝຸດ (任一滚动体或套圈滚道)出现疲劳点
蚀前转过的总转数,或在一定转速下的工作小时数。
基本额定寿命:是指一批相同的轴承在相同条件下运转,
其中90%的轴承未发生疲劳失效时的总转数或在一定转速下所 能运转的总工作小时数,标准规定用L10或Lh表示基本额定寿 命。
得,方向沿轴线由轴承外圈的宽边指向窄边。(见教材) ❖ 2.角接触轴承轴向力Fa的计算 ❖ 为了使角接触轴承能正常工作,一般这种轴承都要成对使用,并将两个轴承对称
安装。 ❖ 常见有两种安装方式: ❖ 图a,为外圈窄边相对安装,称为正装或面对面安装; ❖ 图b,为两外圈宽边相对安装,称为反装或背靠背安装.
FS2 的大小和方向。 ❖ (2)绘制如上图所示的计算简图。标出上述三个力。 ❖ (3)将轴向外力 FA及与之同向的内部轴向力相加,取其之和与另一反向的内
部轴向力比较大小。
角接触轴承的轴向载荷计算
按下述方法确定各轴承所受的总轴向力:
❖ 若 FS1 +FA ≥FS2 ,根据计算简图,外圈固定不动,轴与固结在一起的内圈有右 移趋势,则轴承2被压紧,轴承1被放松。

轴承设计寿命计算公式汇总

轴承设计寿命计算公式汇总

一、滚动轴承承载能力的一般说明滚动轴承的承载能力与轴承类型和尺寸有关。

相同外形尺寸下,滚子轴承的承载能力约为球轴承的1.5~3倍。

向心类轴承主要用于承受径向载荷,推力类轴承主要用于承受轴向载荷。

角接触轴承同时承受径向载荷和轴向载荷的联合作用,其轴向承载能力的大小随接触角α的增大而增大。

二、滚动轴承的寿命计算轴承的寿命与载荷间的关系可表示为下列公式:或式中:──基本额定寿命(106转);──基本额定寿命(小时h);C──基本额定动载荷,由轴承类型、尺寸查表获得;P──当量动载荷(N),根据所受径向力、轴向力合成计算;──温度系数,由表1查得;n──轴承工作转速(r/min);──寿命指数(球轴承,滚子轴承)。

三、温度系数f t当滚动轴承工作温度高于120℃时,需引入温度系数(表1)表1 温度系数工作温度/℃<120 125 150 175 200 225 250 300f t 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60四、当量动载荷当滚动轴承同时承受径向载荷和轴向载荷时,当量载荷的基本计算公式为式中:P——当量动载荷,N;——径向载荷,N;——轴向载荷,N;X——径向动载荷系数;Y——轴向动载荷系数;——负荷系数五、载荷系数f p当轴承承受有冲击载荷时,当量动载荷计算时,引入载荷系数(表2)表2 冲击载荷系数f p载荷性质f p举例无冲击或轻微冲击 1.0~1.2 电机、汽轮机、通风机、水泵等中等冲击 1.2~1.8 车辆、机床、起重机、内燃机等强大冲击 1.8~3.0 破碎机、轧钢机、振动筛等六、动载荷系数X、Y表3 深沟球轴承的系数X、Y表4 角接触球轴承的系数X、Y表5 其它向心轴承的系数X、Y 表6 推力轴承的系数X、Y七、成对轴承所受轴向力计算公式:角接触球轴承:圆锥滚子轴承:式中e为判断系数,可由表4查出;Y应取表5中的数值。

●正排列:若则若则●反排列:若则若则八、成对轴承当量动载荷根据基本公式:式中:P——当量动载荷,N;——径向载荷,N;——轴向载荷,N;X——径向动载荷系数;Y——轴向动载荷系数;——负荷系数。

机械设计(9.5.1)--滚动轴承寿命计算公式

机械设计(9.5.1)--滚动轴承寿命计算公式

一、基本概念
1.轴承的寿命
在一定载荷作用下,轴承运转到任一滚动体或内、外圈滚道上出现疲劳点蚀前所经历的总转数。

寿命数据离散性非常大。

2.一批轴承的寿命
对于一批同型号的滚动轴承,在一定条件下进行疲劳试
验,对试验数据统计处理后,得
出轴承的疲劳破坏概率与转数间
的关系。

一、基本概念
3.基本额定寿命
一批同型号的轴承,在同一条件下运转,当有10%的轴承产生疲劳点蚀时,
轴承所经历的总转数L
(单位106转)或工作
10
(单位h),称为滚动轴承的基本小时数L
10h
额定寿命。

4.基本额定动载荷
=1(106)时轴承能
基本额定寿命L
10
够承受极限载荷称为基本额定动载荷,用C
表示。

反映了轴承承载能力的大小。

二、计算公式
L 10/106r 0151015C
P /N r 10,1610101010εε
εε
⎪⎭⎫ ⎝⎛=====P C L C L P C P L L P 时
当常数
二、计算公式
h
6010r 10t 6h 106t 10εε⎪⎭⎫ ⎝⎛=⎪⎭
⎫ ⎝⎛=P C f n L P C f
L 当轴承的预期寿命取定时,可求出轴承应具有的基本额定动载荷
9-5 滚承寿命算公式 三、不同可靠度下滚承寿命算
动轴计动轴计
三、不同可靠度下滚动轴承寿命计算
10
1L L n α=
可靠度R / %
909596979899α1 1.00.620.530.440.330.21。

滚动轴承的寿命计算

滚动轴承的寿命计算

滚动轴承寿命计算辅导一、基本概念:㈠、滚动轴承主要失效形式及设计准则:1、疲劳点蚀失效:是指滚动轴承的滚动体或内外圈上出现的点蚀斑点。

设计准则:防止产生疲劳点蚀失效需进行寿命计算。

Lh ≧〔Lh〕2、塑性变形失效:是指内外圈或滚动体产生过量的塑性变形。

设计准则:防止产生塑性变形失效需进行静负荷计算。

PO ≦〔PO〕3、磨损失效:是指内外圈或滚动体的过量磨损。

设计准则:防止产生磨损失效需限制转速。

n max≦n lim㈡、滚动轴承寿命计算中的基本概念:1、滚动轴承寿命:是指滚动轴承内外圈或滚动体在发生第一个疲劳点蚀前总转动次数或总工作时间。

注:滚动轴承寿命是相当离散的,即同一批生产出的同类滚动轴承,其寿命相差很大。

2、可靠度R:由于滚动轴承寿命的离散性,需对生产的滚动轴承的进行抽样试验,以检验滚动轴承的合格率。

设抽样试验件数为N,在特定的载荷下进行加载试验。

经过一个T)后,其中有N f件发生点蚀。

滚动轴特定的时间(转次L或时间LH承的可靠度R:R=×注:滚动轴承的可靠度与试验中所加的载荷和试验时间有关。

国标规定:①、滚动轴承试验载荷C:对向心类和角接触类滚动轴承的试验载荷是纯径向载荷。

C=Cr(Fr)对仅能承受轴向载荷的推力轴承的试验载荷是纯轴向载荷。

C=Ca(Fa)②、试验时间:L=106转次。

③、在试验载荷为C,试验时间为L=106转次时,滚动轴承的可靠度R≧90%时,滚动轴承合格。

3、基本额定寿命L或Lh:滚动轴承的额定寿命是指滚动轴承在可靠度R=90%,试验载荷为C时的寿命,即是试验时间106转次。

L=106转次。

4、基本额定动载荷C:滚动轴承的额定动负荷C是指在可靠度R=90%,试验时间为106转次时轴承所能承受的最大载荷,既是滚动轴承的试验载荷。

注:各类滚动轴承的额定动负荷C可查机械设计手册确定。

5、滚动轴承的寿命计算:滚动轴承寿命计算是解决当实际滚动轴承上承受的载荷不等于额定动负荷时,滚动轴承的寿命是多少?即:滚动轴承上载荷P=C时,轴承寿命是L=106转次。

滚动轴承的失效形式及寿命计算

滚动轴承的失效形式及寿命计算

轴承寿命曲线
滚动轴承的失效形式及寿命计算
1.3 基本额定动载荷及寿命计算
大量试验表明:对于相同型号的轴承,在不同载荷F1, F2 , F3 ,…作用下,若轴承的 寿命分别为L1 , L2 , L3 ,… (106转),则它们之间有如下的关系:
滚动轴承的失效形式及寿命计算
1.4 当量动载荷的计算
滚动轴承的基本额定动载荷是在一定条件下确定的。对向心轴承是指承受纯径向载荷; 对推力轴承是指承受中心轴向载荷。如果作用在轴承上的实际载荷与上述条件不一样,必须 将实际载荷换算为与上述条件相同的载荷后,才能与基本额定动载荷进行比较。换算后的载 荷是一种假定的载荷,称为当量动载荷。径向和轴向载荷分别用Fr和Fa表示。
对于向心轴承,径向当量动载荷P与实际载荷Fr和Fa的关系式为
径向轴承只承受径向载荷时,其当量动载荷为
推力轴承只能承受轴向载荷,其当量动载荷为
滚动轴承的失效形式及寿命计算
1.1 主要失效形式
1. 滚动体ห้องสมุดไป่ตู้力
滚动轴承在通过轴心线的轴向载荷(中心轴向载荷)犉犪作用下,可认为各滚动体所承 受的载荷是相等的。当轴承受纯径向载荷Fr作用时(见图),由于各接触点上存在弹性变形, 使内圈沿Fr方向下移一距离δ,上半圈滚动体不承受载荷,而下半圈各滚动体承受不同的载 荷。处于Fr作用线最下位置的滚动体受载最大Fmax ,而远离作用线的各滚动体,其受载就逐 渐减小。对于α=0°的向心轴承可以导出
滚动轴承的失效形式及寿命计算
2. 滚动轴承的失效形式
(1)疲劳破坏 (2)塑性变形
径向载荷的分布
滚动轴承的失效形式及寿命计算
1.2 轴承寿命
轴承的套圈或滚动体的材料首次出现疲劳点蚀前, 一个套圈相对于另一个套圈的转数,称为轴承的寿命。 寿命还可以用在恒定转速下的运转小时数来表示。

轴承设计寿命计算公式汇总

轴承设计寿命计算公式汇总

、滚动轴承承载能力的一般说明滚动轴承的承载能力与轴承类型和尺寸有关。

相同外形尺寸下,滚子轴承的承载能力约为球轴承的 1.5 ~3倍向心类轴承主要用于承受径向载荷,推力类轴承主要用于承受轴向载荷。

角接触轴承同时承受径向载荷和轴向载荷的联合作用,其轴向承载能力的大小随接触角a的增大而增大。

二、滚动轴承的寿命计算轴承的寿命与载荷间的关系可表示为下列公式:£10 =或式中:I——基本额定寿命(106转);-L——基本额定寿命(小时h); C——基本额定动载荷,由轴承类型、尺寸查表获得;P——当量动载荷(N),根据所受径向力、轴向力合成计算;弋--- 温度系数,由表1查得;n「—轴承工作转速(r/min ); F——寿命指数(球轴承「一,滚子轴承')。

三、温度系数f t当滚动轴承工作温度高于120C时,需引入温度系数(表1)表1温度系数四、当量动载荷当滚动轴承同时承受径向载荷和轴向载荷时,当量载荷的基本计算公式为P叮网皿式中:P――当量动载荷,N; 1――径向载荷,N; I――轴向载荷,N; X――径向动载荷系数;Y――轴向动载荷系数;1负荷系数五、载荷系数f p当轴承承受有冲击载荷时,当量动载荷计算时,引入载荷系数(表2)表2冲击载荷系数f p六、动载荷系数X、Y表3深沟球轴承的系数X、Y表4角接触球轴承的系数X、Y表5其它向心轴承的系数X、Y表6推力轴承的系数X、Y七、成对轴承所受轴向力计算公式:角接触球轴承:弘迟圆锥滚子轴承:式中e为判断系数,可由表4查出;Y应取表5中T厂」的数值。

•正排列:若则打;- ■'-若则'•反排列:若则'若则'\八、成对轴承当量动载荷根据基本公式:刁叮3隔+马加g(咖隔)式中:P――当量动载荷,N; 1――径向载荷,N; I――轴向载荷,N; X――径向动载荷系数;Y――轴向动载荷系数;1负荷系数。

九、修正额定寿命计算对于要求不同的可靠度、特殊的轴承性能以及运转条件不属于正常情况下的轴承寿命计算时,可采用修正额定寿命计算公式:S - “阳仏0式中:――特殊的轴承性能、运转条件以及不同可靠度要求下的修正额定寿命(106转);a i――可靠度的寿命修正系数;a2——特殊的轴承性能寿命修正系数;a3——运转条件的寿命修正系数。

滚动轴承寿命计算

滚动轴承寿命计算

滚动轴承寿命计算(圆锥滚子轴承30209,正装结构) ----cr=67800; % 额定动载荷(N)c0r=83500; % 额定静载荷(N)e=0.40; % 判断参数y=1.5; % 轴向系数fra=round(sqrt(fah^2+fav^2)); % A轴承径向载荷(N)frb=round(sqrt(fbh^2+fbv^2)); % B轴承径向载荷(N)sa=round(fra/2/y); % A轴承内部轴向力(N)sb=round(frb/2/y); % B轴承内部轴向力(N)if fa+sb>=safaa=fa+sb; % 确定紧轴承A轴向载荷(N) fab=sb; % 确定松轴承B轴向载荷(N) elsefab=abs(fa-sa); % 确定紧轴承B轴向载荷(N) faa=sa; % 确定松轴承A轴向载荷(N) endif faa/fra>=e % 轴承A轴向载荷与径向载荷之比xa=0.40; % 确定A轴承载荷折算系数X ya=y; % 确定A轴承载荷折算系数Y elsexa=1;ya=0;endpa=round(xa*fra+ya*faa); % 轴承A当量动载荷(N)if fab/frb>=e % 轴承B轴向载荷与径向载荷之比xb=0.40; % 确定B轴承载荷折算系数X yb=y; % 确定B轴承载荷折算系数Y elsexb=1;yb=0;endpb=round(xb*frb+yb*fab); % 轴承B当量动载荷(N)fp=1.5; % 轴承载荷系数(减速器中等冲击)lha=round(1e6/60/n2*(cr/fp/pa)^(10/3)); % 计算轴承A寿命(h)lhb=round(1e6/60/n2*(cr/fp/pb)^(10/3)); % 计算轴承B寿命(h)disp ' 'disp ' ========== 圆锥滚子轴承寿命计算 ==========';fprintf(1,' 30209轴承额定动载荷 cr = %3.0f N \n',cr); fprintf(1,' 额定静载荷 c0r = %3.0f N \n',c0r); fprintf(1,' 判断参数 e = %3.3f \n',e);fprintf(1,' 轴向系数 y = %3.3f \n',y);fprintf(1,' A轴承径向载荷 fra = %3.0f N \n',fra); fprintf(1,' B轴承径向载荷 frb = %3.0f N \n',frb); fprintf(1,' A轴承内部轴向力 sa = %3.0f N \n',sa); fprintf(1,' B轴承内部轴向力 sb = %3.0f N \n',sb); fprintf(1,' A轴承轴向载荷 faa = %3.0f N \n',faa); fprintf(1,' B轴承轴向载荷 fab = %3.0f N \n',fab); fprintf(1,' [A轴承]-轴向与径向载荷之比 fae = %3.3f \n',faa/fra); fprintf(1,' 径向载荷系数 xa = %3.2f \n',xa); fprintf(1,' 轴向载荷系数 ya = %3.2f \n',ya); fprintf(1,' 当量动载荷 pa = %3.0f N \n',pa); fprintf(1,' [B轴承]-轴向与径向载荷之比 fbe = %3.3f \n',fab/frb); fprintf(1,' 径向载荷系数 xa = %3.2f \n',xb); fprintf(1,' 轴向载荷系数 ya = %3.2f \n',yb); fprintf(1,' 当量动载荷 pa = %3.0f N \n',pb); fprintf(1,' 轴承A寿命 lha = %3.0f h \n',lha); fprintf(1,' 轴承B寿命 lha = %3.0f h \n',lhb);。

滚动轴承寿命计算(Rollingbearinglifecalculation)

滚动轴承寿命计算(Rollingbearinglifecalculation)

滚动轴承寿命计算(Rolling bearing life calculation)Rolling bearing life calculationI. rated life and rated dynamic load1, bearing lifeUnder certain loads, the number of revolutions or hours experienced by the bearing before pitting occurs is known as the bearing life.Because of the difference in manufacturing accuracy and material uniformity, even the same material, the same size of the same batch of bearings, under the same operating conditions, the life expectancy is not the same. If statistics, the life span is 1 units, the longest relative life is 4 units, the shortest is 0.1-0.2 units, the longest and the shortest life expectancy is 20-40 times.To determine the standard of bearing life, the bearing life is related to reliability.2. Rated lifeThe same specifications (models, materials, processes) of a number of bearings in the same working conditions, 90% of the bearings do not produce pitting corrosion, the experience of revolutions or hours, known as the bearing life rating.3 、 basic dynamic load ratingIn order to compare the carrying capacity of bearings against pitting corrosion, it is stipulated that the maximum life load of the bearings is the basic rated dynamic load when the rated life of the bearings is one million RPM (106), expressed in C.That is, bearing in the rated dynamic load C, this kind of bearing work one million turns (106) without pitting corrosion, the reliability of failure is 90%, and the larger the C, the higher the carrying capacity.For the basic rated dynamic load(1) radial bearings are pure radial loads(2) thrust ball bearings refer to purely axial loads(3) radial thrust bearings refer to radial components which produce pure radial displacementTwo. Calculation formula of bearing life:Luoyang bearing factory takes 208 bearings as the object, carries on the massive experimental research, has established the load and the life digital relations and the curve.In style:When the L10-- bearing load is P, it has the basic rated life (106 RPM)C-- basic rated dynamic load NEpsilon indexFor ball bearings: epsilon =3For roller bearings: epsilon =10/3P-- equivalent dynamic load (N)The loads in the actual conditions on the bearing: A, R, into the load under the experimental conditions is called equivalent dynamic load, the load bearing element in terms of this change, experimental research, with 106 units into the bearing life more convenient (counter), but in the production in real life as for this hour, to be convertedL10 * 106=Lh * 60NthereforeThe calculation of rolling bearing life is divided into:1, the known bearing type, load and shaft speed, calculated Lh;2, known load, speed and life expectancy, calculated C, select the bearing type.Usually, the intermediate repair or overhaul limits of the machine are designed for the design life of the bearing.Lh'=5000 is generally adopted, and the temperature coefficient ft shall be introduced for the bearings under high temperatureCt=ftCT = 120125150200300FT 10.95, 0.90, 0.80, 0.60The upper two forms become:For centripetal bearingsFor thrust bearingsThree. Calculation of equivalent dynamic load PIn practical production, the working conditions of bearings are varied. For this reason, the load under actual working conditions should be converted to the equivalent load of the same experimental load as the imaginary life.For N0OOO, NU0OOO, NJ0OOO and NA0000, only radial load is applied: Pr = RfpFor 51000 and 52000, only axial load is applied: Pa=AfpFor other types of bearings, 2OOOO, lOO00, 20OOO, 60000, 70000, 30000, 29000Pr=fp (XR+YA)In style:R-- bearings actually carry radial loadsA-- bearings actually carry axial loadsX-- radial load factorY-- axial load factorFp-- load factor, considering the changes of load and stress, machine inertia and so onFour. Axial load calculation of radial thrust bearing1. pressure centerThe outer ring is the intersection of the reaction line and the axis lineFor thrust bearingsFormula: Dm = 0.5 (D, ten, d)For a longer span shaft, for simplified calculation, it is assumed that the center of pressure is at the center of the bearing width.2. axial load calculationFirst introduced: bearings, bearing 13-13, b), uranium bearing reverse mounting drawing 13-13a)When the radial thrust bearing is subjected to radial load, the axial force S is generated,Calculated in table 13-7:70000C:S = 0.4R, 70OOOAC:S = 0.7R, 70OOOB:S = R30OOO:S = R/ (2Y)As shown in figure 13--13, a pair of axial thrust bearings support the shaft with a load of Fr, FaIn order to calculate the equivalent dynamic load of each bearing, P must first find R1, A1 and R2, and A2. According to Fr, it is easy to find R1 and R2; while calculating A1 and A2, not only Fa but also axial force S1, S2 should be consideredFigure b) shown as a formal, take the axis, the inner ring and the rolling body as the separation body, under the action of Fr, the bearing outer ring on the separation of the body reaction force N decomposition into R, SFigures S2 and Fa are identical1) if Fa+S2=S1To keep balance, A1=Fa+S2 A2=S12) if the Fa+S2 > S1, the axis has a tendency to move towards the left; in order to keep balance, the bearings must bebalanced by the outer ring of the bearing Fb1Bearing 1 is compressed: A1=Fa+S2=S1+Fb1Bearing 2 is loosened: A2=S1+Fb1-Fa=S23) if Fa+S2 < S1, then the axis has the trend of moving to the right, the bearing 2 is compressed, the bearing 1 relaxes, in order to maintain the balance, the bearing 2 receives the bearing outer ring to balance the force Fb2Compression bearing 2:A2=S1-Fa=S2+Fb2The loosened bearing 1:A1=Fa+S2+Fb2=S1The following summarizes methods for calculating axial load A of bearings 30000 and 70000:(L) according to the bearing installation structure, to ascertain the shaft all the axial force force to distinguish, pressing and loosening of bearing force is, by pointing to the back of the bearing is pressed by the surface.(2) the compressed bearing, the axial force A equals the algebraic sum of the other axial forces in addition to the axial force derived by itself.(3) the axial force A is equal to the axial force derived from the relaxation of the bearings.Five 、 static load of rolling bearingsFor low speed or basically non rotating bearings, the rolling contact surface due to contact stress is too large, resulting in permanent excessive dent, known as plastic deformation, resulting in impact vibration. Therefore, the size of the bearing should be selected according to the static strength, and the capacity of the bearing to resist plastic deformation is also determined by the nominal static load.Static load ratings: specification rules make load maximum rolling body and weak raceway on permanent deformation and load of the rolling element diameter is equal to 1/10000, as shown by C0 static load ratings.The manual lists the C0 values for all types of bearings.Static strength calculationC0 = S0P01. equivalent static load P0(L) 6OOOO, 30OOO, 70OOO, l0OOO, 200OOOP0=X0R+Y0AType: X0 and Y0, see table 13-8P0, if P0 < R, take P0 = R(2) thrust bearing;P0A=A+2.3tg alpha2.S0-- safety factor of static strength, table 13-8Life calculation of rolling bearings (four) 2009, 07, 30, 16:16, business clubCalculation method of business service 07 month 30 days of fatigue life calculation of the bearing fatigue life is based on the national standard GB6391-96 "rolling bearings - rated load and rated life calculation method and the national standard" ISO281/I-1997 "rolling bearings - rated load and rated life - Part 1: calculation method" as the basis, in addition and also introduces the calculating method of Bearing Company New Sweden SKF bearing company new bearing fatigue life and fatigue life theory. 1. The basic formula of fatigue life, the basic formula for calculating the fatigue life of rolling bearings, in many ways, to meet the needs of different uses, are described below. (1) the basic rating life equation (expressed by the total number of relevant basic concepts, 1), before the introduction of the basic rating life equation, first introduced the basic concepts related to several: fatigue -- the individual bearing life in either of its single bearing ring (or washer) or rolling of the material fatigue before the first time among them, a ring (or washer) relative to the other ring (or washer) total revolution rotation. Bearing a group operation under the same conditions of a set of conditions for reliability of bearing life run under the same conditions the same, can be expected to reach or exceed a specified percentagefor a single life, bearing, reliability of the bearing can reach or exceed a specified life concept. The basic rated life of a bearing - a single bearing or a set of identical bearings operating under the same conditions, has a reliability of 90%. Calculation of bearing basic rating life equation formula 3, the basic rating life equation expressed by the total number of revolutions of the basic rated fatigue life of L10=C/P type in L10 - bearing (106R); C: the centripetal bearing radial equivalent dynamic load (N), the thrust bearing for the axial load (dynamic equivalent N; P) - bearing of centripetal radial equivalent dynamic load (N), the thrust bearing for the axial equivalent dynamic load (N); e - life index of ball bearings for rolling bearing =3 epsilon, epsilon =10/3. Formula 5-1 is the standard formula for calculating the basic rated life of rolling bearings stipulated by the national standards and international standards of china. The revolution recorder of the bearing fatigue bearing life tester can record the total rotation speed of the bearing fatigue test accurately, and it can be conveniently compared with the calculation result. Scope 4, basic rating life equation basic rating life equation for calculating the fatigue life of 5-1 rated in the rolling bearing has the following technical conditions; bearing size bearing dimensions selected corresponding national standards; bearing with high quality hardened steel manufacturing and good machining quality; rolling bearing contact surface (surface quality including the geometry precision and material) with conventional standard. These bearings must be properly installed, adequately lubricated, free of outside impurities, and not operating in extreme conditions. When these conditions are not met, the calculation results of use type 5-1 will deviate. In order to offset such deviations, the resultsobtained by the formula 5-1 must be multiplied by the corresponding correction coefficients. The application of 5 basic rating life limit equation basic rating life equation 5-1 does not apply to such as deep groove ball bearings installed filled, or in other types of bearing roller and raceway has a considerable gap between the contact area, because the bearing capacity of this gap affects the contact area. Type 5-1 is not applicable to the case where the roller is operated directly on the surface of the shaft or the seat bore, unless the corresponding shaft or socket is made entirely in accordance with the technical conditions of the bearing element.When the bearing is in actual use of the load for non normal distributions (such as centrifugal force because of the axis misalignment, shaft or shell have large deformation, rolling or other high speed effect, and the radial bearing large clearance or cause pre load etc.), calculate the basic rating life by type 5-1, you can not get a satisfactory result. For all types of bearings, when the equivalent dynamic load of Pr or Po is greater than the basic dynamic load rating of Cr or Co, at the same time for deep groove ball bearings, when the equivalent dynamic load of Pr is greater than the basic static load rating of Co, application of 5-1 is restricted, the fatigue life of the bearing to a user asked how to calculate the bearing factory bearing. 5-1 has not been estimated to characteristics such as quality of hardened steel (composition, inclusions, microstructure and hardness) effect or material factors and operation condition factors on fatigue life of bearing, the double row bearings and two-way thrust bearing, the application of the formula must also be approximately assumed these bearings are ideal symmetry. The basic rating life equation 2,with the total number of hours for the operation condition of constant speed, the basic rating life calculation formula for the total number of hours, to determine the bearing maintenance and replacement cycle is more convenient. This formula will be only 5-1 transform can be obtained, i.e. type in Ln - rated fatigue life (H; n) - speed (r/min). 2, the kilometer number formula of rolling bearings used in various vehicles in the traffic hub, with a few kilometers said life is more convenient, so the formula is the fatigue life of type in LK - rated (KM); DR - wheel diameter (mm). 3, can high reliability life calculation formula for some important applications, more than 90% reliability of bearing fatigue life expectation, the high reliability of the fatigue life calculation formula of Ln=a1L10 type in Ln - to improve the reliability of fatigue life the (H) - L10; fatigue life; fatigue life rating (106r/h) A1 - (106r/h) - A1 reliability; reliability coefficient。

滚动轴承的寿命计算

滚动轴承的寿命计算

轴承1被压紧 轴承2被放松
Fa1 =Fd2+Fae=7440N Fa12=Fd2=5440N
六.轴承寿命计算步骤
求R1、R2
→求Fa1、Fa2→
求P1、P2→
求Lh(C′)
例3:接上题,如果n=960r/min,fP=1.2, 求轴承寿命。
解:查得7212AC轴承的C=42800N,e=0.68
Fa1/R1=7440/5000=1.488>e
┌深沟球轴承—按f0Fa /C0r f0 =14.7 └角接触球轴承—按Fa /C0 查 e
查e
②判 Fa/Fr 与 e 的关系→定X、Y
Fa/Fr ≤e
Fa/Fr >e
-轴向力较小,可忽略不计, Y=0
-轴向力较大,要计 即:X≠1, Y≠0
只能承受纯径向载荷的轴承(N、NA类)P=fP Fr
(3)磨损、胶合、内外圈和保持架破损→不正常
寿命计算 →静强度计算
(二) 轴承的寿命
01 1.轴承寿命:
轴承中任一元件出现疲劳点蚀前,一 个套圈相对另一套圈的转数或工作小时数。
02 2.基本额定寿命L10:
指一批相同的轴承,在相同运转条件下,有90%的轴承没有发生疲劳点蚀前的转数或总工作小时数。 寓意:⑴一批轴承中有90%的寿命将比其基本额定寿命长
载荷R1=3500N,Fa1=1606N,R2=2500N,Fa2=0
f解P=:1.查2,得试:求CP01=、2P922。00Ne10.2 810 .0 .2 3 800 .6 .286 1.9 0 30.8085
①查e : ②求X、Y:
f0Fa1/C0 =14.7×1606/29200 = 0.8085 →e1在0.26~0.28之间,插值得 e1 = 0.27

机械设计-滚动轴承寿命计算

机械设计-滚动轴承寿命计算
滚动轴承的寿命计算


1
失效形式
2
轴承寿命
3
当量动载荷计算
滚动轴承的寿命计算
失效形式
失效形式疲劳破坏主要发生永久变形很少发生
早期磨损
润滑不到位
(胶合)
可避免
内外圈和保持架
破裂
滚动轴承的寿命计算
轴承寿命
定 义:轴承在一定转速下,其中任何零件出现疲劳扩展迹象之前的工作小时数称为轴承寿命。
基本额定寿命(L或Lh):一组同一型号轴承,在同一运转条件下,其可靠度R为90%时,能达到或超过
Z=15
只承受径向载荷时:P=Fr,故P=Fr=1250N
106
根据公式:Lh=
60

,代入数值得:C=12645N
轴承61909的Cr=14100N>12645N,故选取合适




的寿命。L(Lh)单位为106 r,或h。
基本额定动载荷(C):当一套轴承运转达到一百万转时,轴承所能承受
公式一:
C
L
P
1/

6
10 r
f P P 60n
或:C
公式二:
6 Lh
f t 10

N
滚动轴承的寿命计算
轴承寿命
温度系数
轴承工作 温度℃
100
125
4000~8000
间断使用,中断时会引起严重后果
8000~12000
每天8h工作的机械
12000~20000
每天24h连续工作的机械
40000~60000
滚动轴承的寿命计算
当量动载荷计算
定 义:当量动载荷是一种考虑径向载荷与轴向载荷双重影响,经换算后的假想载荷。其效果

滚动轴承的寿命计算..

滚动轴承的寿命计算..
第35讲
• 滚动轴承的寿命计算
§17—5
滚动轴承尺寸的选择
一 轴承工作时元件上的载荷分布
⑴ 当轴承承受径向力Fr时, 上半圈不受载下半圈受载 ⑵ 滚动体受力不均匀→受力变 化:小→大→小
二 轴承元件上的载荷及应力变化
固定圈:滚动体滚过便受力,大小 不变→稳定的脉动循环载荷 图13—7 b 滚动体 }在承载区,载荷零逐渐增大到最大,再 动圈 逐渐减少到零 图13—7 a 承载区
五. 轴承的轴向载荷Fa
1.径向轴承- (6 、 1 、 2类)
┌ 两端固定→ Fae指向者受力 Fa1= Fae , Fa2=0 └ 一端固定、一端游动 →固定端受力 Fa 1=0 , Fa 2= Fae
1 1
Fae Fae
2 2

2.角接触轴承 (3、7类) (1)派生轴向力F d
∵ >0,∴在R作用下→Fd →内外圈分离→ ∴成对使用 Fd的大小→查表(13-7)
右边压紧
Fae Fd1 Fd2
Fd
(2)安装型式(成对使用)
角接触轴承应成对使用→以抵消派生轴向力和避 免轴产生轴向窜动 Fd1 F
d2
①正安装( X 型、面对面)→ 两轴承外圈的窄边相对→Fd面对面 跨距减少 Fd1
②反安装( O型、背对背)→ 两轴承外圈的宽边相对→Fd背对背 跨距增大 说明:轴承支点(压力中心)偏移,但为方便计
90%,失效率为有10%
滚动轴承的预期寿命
表13—3
二. 滚动轴承的基本额定动载荷
基本额定动载荷: 当轴承基本额定寿命为106转时, 轴承能承受的最大载荷,用C表示。
C ={ Cr——径向载荷或分量
失效率不 同寿命不同
Ca——轴向载荷

滚动轴承寿命计算

滚动轴承寿命计算

滚动轴承寿命计算
滚动轴承寿命计算需要考虑以下几个因素:
1. 轴承载荷:轴承的寿命与轴承的承受载荷有关。

载荷越大,寿命越短。

2. 转速:轴承的转速也是影响轴承寿命的重要因素。

转速越高,寿命也越短。

3. 温度:轴承的工作温度也是影响轴承寿命的重要因素。


度越高,寿命也越短。

4. 润滑方式:润滑方式的不同也会影响轴承的寿命。

适当的
润滑可以减少轴承的磨损,延长轴承的使用寿命。

考虑以上因素后,可以通过以下公式计算轴承寿命:
L10 = (C/P)^3 x(10/3)x(60/n)x(10^6)
其中L10表示轴承10%会失效的寿命,C为普通轴承的基本
额定动载荷,P为轴承的实际载荷,n为转速(rpm)。

另外,需要注意的是,轴承寿命的计算只是提供一种估计值,实际寿命还要考虑到交替载荷、转向载荷、振动、工作环境等其他因素的影响。

所以,在实际使用中,还应该进行轴承的定期检查和维修,以确保其安全可靠地运转。

滚动轴承的寿命计算

滚动轴承的寿命计算

滚动轴承的寿命计算一、基本额定寿命和基本额定动载荷1、基本额定寿命L10轴承寿命:单个滚动轴承中任一元件出现疲劳点蚀前运转的总转数或在一定转速下的工作小时数称轴承寿命。

由于材料、加工精度、热处理与装配质量不可能相同,同一批轴承在同样的工作条件下,各个轴承的寿命有很大的离散性,所以,用数理统计的办法来处理。

基本额定寿命L10——同一批轴承在相同工作条件下工作,其中90%的轴承在产生疲劳点蚀前所能运转的总转数(以106为单位)或一定转速下的工作时数。

(失效概率10%)。

2、基本额定动载荷C轴承的基本额定寿命L10=1(106转)时,轴承所能承受的载荷称基本额定动载荷C。

在基本额定动载荷作用下,轴承可以转106转而不发生点蚀失效的可靠度为90%。

基本额定动载荷C(1)向心轴承的C是纯径向载荷;(2)推力轴承的C是纯轴向载荷;(3)角接触球轴承和圆锥滚子轴承的C是指引起套圈间产生相对径向位移时载荷的径向分量。

二、滚动轴承的当量动载荷P定义:将实际载荷转换为作用效果相当并与确定基本额定动载荷的载荷条件相一致的假想载荷,该假想载荷称为当量动载荷P,在当量动载荷P作用下的轴承寿命与实际联合载荷作用下的轴承寿命相同。

1.对只能承受径向载荷R的轴承(N、滚针轴承)P=F r2.对只能承受轴向载荷A的轴承(推力球(5)和推力滚子(8))P= F a3.同时受径向载荷R和轴向载荷A的轴承P=X F r+Y F aX——径向载荷系数,Y——轴向载荷系数,X、Y——见下表。

径向动载荷系数X和轴向动载荷系数表12-3考虑冲击、振动等动载荷的影响,使轴承寿命降低,引入载荷系数fp—见下表。

载荷系数fp表12-4三、滚动轴承的寿命计算公式图12-9 载荷与寿命的关系曲线载荷与寿命的关系曲线方程为:=常数(12-3)3 球轴承ε——寿命指数10/3——滚子轴承根据定义:P=C,轴承所能承受的载荷为基本额定功载荷时,∴∴(106r) (12-2)按小时计的轴承寿命:(h)(12-3)考虑当工作t>120℃时,因金属组织硬度和润滑条件等的变化,轴承的基本额定动载荷C有所下降,∴引入温度系数f t——下表——对C修正表 12-5(106r)(12-4)(h)(12-5)当P、n已知,预期寿命为L h′,则要求选取的轴承的额定动载荷C为N ——选轴承型号和尺寸!(12-6)不同的机械上要求的轴承寿命推荐使用期见下表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滚动轴承的寿命计算
1 基本额定寿命和基本额定动载荷
轴承中任一元件出现疲劳点蚀前的总转数或一定转速下工作的小时数称为轴承寿命。

大量实验证明,在一批轴承中结构尺寸、材料及热处理、加工方法、使用条件完全相同的轴承寿命是相当离散的(图1是一组20套轴承寿命实验的结果),最长寿命是最短寿命的数十倍。

对一具体轴承很难确切预知其寿命,但对一批轴承用数理统计方法可以求出其寿命概率分布规律。

轴承的寿命不能以一批中最长或最短的寿命做基准,标准中规定对于一般使用的机器,以90%的轴承不发生破坏的寿命作为基准。

(1)基本额定寿命 一批相同的轴承中90%的轴承在疲劳点蚀前能够达到或
超过的总转数r L (610转为单位)或在一定转速下工作的小时数()h h L 。

图1 轴承寿命试验结果
可靠度要求超过90%,或改变轴承材料性能和运转条件时,可以对基本额定寿命进行修正。

(2)基本额定动载荷 滚动轴承标准中规定,基本额定寿命为一百万转时,
轴承所能承受的载荷称为基本额定动载荷,用字母C 表示,即在基本额定动载荷作用下,轴承可以工作一百万转而不发生点蚀失效的概率为90%。

基本额定动载荷是衡量轴承抵抗点蚀能力的一个表征值,其值越大,轴承抗疲劳点蚀能力越强。

基本额定动载荷又有径向基本额定动载荷(r C )和轴向基本额定动载荷(a C )
之分。

径向基本动载荷对向心轴承(角接触轴承除外)是指径向载荷,对角接触轴承指轴承套圈间产生相对径向位移的载荷的径向分量。

对推力轴承指中心轴向载荷。

轴承的基本额定动载荷的大小与轴承的类型、结构、尺寸大小及材料等有关,可以从手册或轴承产品样本中直接查出数值。

2 当量动载荷
轴承的基本额定动载荷C (r C 和a C )是在一定条件下确定的。

对同时承受径向载荷和轴向载荷作用的轴承进行寿命计算时,需要把实际载荷折算为与基本额定动载荷条件相一致的一种假想载荷,此假想载荷称为当量动载荷,用字母P 表示。

当量动载荷P 的计算方法如下:
同时承受径向载荷r F 和轴向载荷a F 的轴承
()P r a P f XF YF =+
(1)
受纯径向载荷r F 的轴承(如N 、NA 类轴承)
P r P f F =
(2)
受纯轴向载荷a F 的轴承(如5类、8类轴承)
P a P f F =
(3)
式中:X ——径向动载荷系数,查表1; Y ——轴向动载荷系数,查表1; P f 冲击载荷系数,见表2。

载荷系数P f 是考虑了机械工作时轴承上的载荷由于机器的惯性、零件的误差、轴或轴承座变形而产生的附加力和冲击力,考虑这些影响因素,对理论当量动载荷加以修正。

表中e 是判断系数。

0/a r F C 为相对轴向载荷,它反映轴向载荷的相对大小,其中0r C 是轴承的径向基本额定载荷。

表中未列出0/a r F C 的中间值,可按线性插值法求出相对应的e 、Y 值。

表2 载荷系数P f 的值
3 额定寿命计算
(1)基本额定寿命计算
计算滚动轴承寿命的传统方法是建立在瑞典科学家伦德贝格()和帕姆格伦
()的滚动接触疲劳理论基础上的。

国际标准化组织把伦德贝格-帕姆格伦(L-P 理论)确定为计算轴承寿命的基础并编入现行的ISO281-1997标准中。

方法规定,轴承或轴承组的基本额定寿命为可靠度90%时的寿命,它以轴承工作表面出现疲劳剥落之前所完成的工作转数,或一定转速下的工作小时数来计算。

基本额定动载荷为C (Cr 或Ca )值的轴承,当其当量动载荷P=C 时,则该轴承的基本额定寿命110=L ,其单位为610转;若C P ≠时,其额定寿命将随载荷增大而降低,寿命与载荷之间的关系可以用疲劳曲线表示(图2为6211轴承的载荷L-P 的曲线图)。

图2轴承的L-P 曲线
图中曲线方程为:
εεC L P =10=常数

ε)(10P C L = )10(6r (4)
式中:ε——寿命指数,球轴承3=ε,滚子轴承310=ε。

计算轴承寿命,用小时表示寿命有时更方便,令n 为转速(m in r ),轴承每小时旋转次数为60n ,则
ε
⎪⎭
⎫ ⎝⎛==P C n L n L h
16670601010610 (h ) (5) 式中:h L 10的单位为h 。

L-P 方程以材料强度具有组织敏感性为前提,同时考虑外载荷引发材料内部最大应力的交变应力幅及该应力在材料应力体积内的影响。

这种立足与材料破坏原则的观点至今有效。

L-P 理论建立在源于次表面的疲劳裂纹的基础上,其认识实践受到当时轴承技术和制造水平的限制,因此其适用性有限。

如仅适用90%可靠度的寿命评估和淬火硬度至少为58HRC 的普通轴承钢,并假定内、外圈为刚性支承;其轴承相互平行;运转时轴承游隙正常;轴承工作中不考虑摩擦、滑动的影响;轴承接触处于最佳状态而不会出现应力集中等。

但是,这并不意味着L-P 理论不再适用了,相反,经验表明对大多数轴承寿命评估而言,L-P 理论仍具有足够的精度要求。

公式中的基本额定动载荷C ,一般指轴承外圈测量处的工作温度低于120℃时的轴承承载能力。

若温度超过120℃,则滚动体与滚道接触处的温度超过轴承元件的回火温度,元件将丧失原有尺寸的稳定性,此时应选用经过特殊热处理,或用特殊材料制造的高温轴承。

若仍使用样本中查出的C 值,需加以修正,即
C f C t t = (6)
式中:t C ——高温轴承的基本额定动载荷; t f ——温度系数,见表3。

当已知轴承转速n (r/min)、当量动载荷P(N)及预寿命)('h L h 时,可将公式(5)变换为:
εε16670
1060'
6h h nL P nL P C == (7)
式中C 的单位为N ,'h L 为轴承的预期使用寿命(见表4),应取'10h h L L >。

表3 温度系数t f
表4 轴承预期寿命'
h L 推荐值
(2)修正额定寿命方程
然而,滚动轴承的应用实践证实,实验所确定的轴承实际寿命与计算寿命出入很大。

这是因为,轴承生产中已采用组织均匀、非金属夹杂物含量极少的优质钢[1];通过轴承可靠性统计数据的积累,能将轴承寿命与其破坏概率(%)联系起来;接触-流体动力学润滑理论有了发展,而该理论能够分析评价润滑材料性能对轴承寿命的影响。

因此,ISO 提出了以L 10为基础的修正滚动轴承寿命计算方程:
ε)/(10321P C L a a a L na =
(8)
式中:na L ——任意使用条件下的寿命,n 表示失效概率数; 1a ——可靠性系数;见表5;
2a ——材料性能修正系数,包括材料、设计和制造等影响因素; 3a ——工作条件修正系数,包括润滑剂、润滑剂清洁度、逆向温度和装配条件等影响因素。

表5 可靠度与修正系数1a 的对应值
材料特征修正系数2a 没有恒定的值,只有参考值1。

2a 主要考虑材料和制造质量(如材料成分、冶炼方法、毛坯成形方法等)的影响。

通常夹杂物含量很低或经特殊冶炼过的高质量钢材可取12>a ,经热处理、材料硬度下降、硬度值低于标准值的材料取12<a ,并由制造厂给出。

在大量的研究工作基础上,美国STLE 给出了2a 一些可供参考用的推荐值。

使用条件修正系数3a 主要考虑在指定转速和温度条件下润滑情况的影响,其次也要考虑轴心的偏斜或不同心。

内、外圈得支承情况和安装间隙的影响。

一般使用条件取13=a ,润滑特别良好取13>a ,转速特别低(410<n D Pw )应取13<a 。

3a 值由理论分析和实验研究确定,由制造厂提供。

Pw D 为滚动轴承平均大径,2/)(d D D Pw +=。

值得注意的是,2a 和3a 是相互关联的,不能通过简单提高某一系数的方法来弥补另一系数的不足,一个合理的解释是,只有工作条件合适时,轴承特性的优点才能充分发挥。

在一般工作条件和90%可靠性时,ANSI 方程与L-P 方程计算出的轴承寿命相同。

但一项新的研究表明:不仅在持久疲劳寿命方面,而且在轴承结构设计方面,L-P 理论与实际测定的结果都出现了较大的差异。

例题 某齿轮轴上用一对深沟球轴承作支承,轴承径向载荷F r = 4500N ,轴向载荷F a = 918N ,转速n = 1500r/min ,运转时有轻微冲击,轴颈直径≥d 60mm ,预期寿命h L h 16000'=,试选择轴承型号。

解 轴承型号未确定前,有关参数X 、Y 、e 、C 0r 都无法确定,可以根据已知条件,预选轴承6212、6213进行试算,计算步骤和结果列于下表6:
表6。

相关文档
最新文档