《金融资产定价》(2008)提纲
08资本资产定价模型TheCapitalAssetPricingModel
证券市场线与资本市场线
• 资本市场线刻画的是有效资产组合的风险溢 价。有效资产组合是有市场资产组合与无风 险资产构成的资产组合,其收益是资产组合 标准差的函数。
• 证券市场线是刻画单个资产风险溢价的函数 。单个资产的收益是该证券对市场资产组合 方差的贡献度,即beta。
• 所以证券市场线即适用于单个资产也适用于 有效资产组合。
• CAPM仍然被认为是证券定价的最佳选择, 并且在现实投资中,广泛运用。
资产定价与流动性
• 流动性:资产转化为现金时所需要的费用和便 捷程度。研究表明,缺乏流动性会降低资产的 价格
• 非流动性溢价:投资者愿意选择那些流动性强 ,并且交易费用低的资产,相对流动性差的资 产交易价格更低,所以相对收益会更高。
•
防火比救火更重要。13:55:5413:55:541 3:5511/14/202 0 1:55:54 PM
•
违章违纪不狠抓,害人害已害大家。2 0.11.14 13:55:5 413:55 Nov-20 14-Nov -20
•
质量——企业亘古不变的制胜之道。1 3:55:54 13:55:5 413:55 Saturday , November 14, 2020
• 研究支持非流动性溢价
– Amihud and Mendelson – Acharya and Pedersen
• 研究表明,大公司如IBM的流动性价差占到 股票价格的1%,更多的公司占到4~5%。最大 的价差出现在小公司、低价格的股票中。
• 还表明,20年为周期,流动性差的股票收益 率高于流动性好的股票8.5个百分点。纽交所 的情况是价差增加一个百分点,收益要高出 2.5个百分点。
•
安全就是节约,安全保障生命。20.11. 1420.1 1.1413:55:5413 :55:54 November 14, 2020
资产定价理论文献综述
金融资产定价理论的发展李忠071014030本文对金融资产定价理论的发展历程与其方法论、主要成果和前沿问题进行了总结,主要综述了有关资产定价理论的内在发展思路及理论的局限性及其现实性的一些文献,按时间的先后顺序,整理了不同时期的金融资产定价理论的主流学说。
下面将有关的资产定价理论进行一个比较详尽的总结。
1. 现金流贴现模型20 世纪50 年代之前的金融学,被Haugen (1999) 称为金融理论的发展的“旧时代金融”(old Finance) ,是经济学中非常不起眼的一个领域,典范著作是本杰明·格雷厄姆和大卫·多德的《证券分析》以及亚瑟. 斯通. 丢寅的《公司金融政策》,其基本的析范式就是用会计和法律工具来分析公司的财务报表以及金融要求权的性质。
格雷厄姆和多德在1934 年《证券分析》一书中认为股票价格的波动是建立在股票“内在价值”基础上的,股票的“内在价值”取决于公司未来盈利能力。
很多学者如希尔法登、格莱姆、沃尔特、戈登与威廉姆斯等都对股票“内在价值”的确定有过深入的研究, 威廉姆斯1938 年给出的股票“内在价值”公式为:P =D1(1 + r1) +D2(1 + r2) 2 + ⋯+Dn(1 + r n) n +pn(1 + rt) n其中, P = 普通股的公平价值或理论价值。
D. 表示第t 年的预期股利,Pt = n 年时的预期售价(或最终价格) ,n = 水平年数,rt 表示第t 年的适当贴现率或资本化比率。
通过内在价值法的计算似乎可以得出股票的精确值,但根据国外长期的实证研究结果表明,它存在以下几个致命的弱点: 首先,要确定股票的“内在价值”,最关键的就是要确定其未来的现金流,在大多数情况下,未来现金流的确定涉及到整个市场的预期,通常很难确定。
为此,关于金融资产定价的早期研究集中在确定公司未来收益的现金流。
另外,第t 年的适当贴现率或资本化比率r ,也是难以确定的,从经济学的角度讲,贴现率应该等于资金使用的机会成本或投资者要求的回报率,贴现率构成要素如下: (1) 无风险回报率; (2) 风险补偿率。
金融学中的资产定价模型解析
金融学中的资产定价模型解析资产定价模型(Asset Pricing Model,简称APM)是金融学中一种理论模型,旨在解释与预测资产价格的变动。
在金融市场中,资产的价格通常是由多种因素共同决定的,资产定价模型通过收集、分析这些因素,为投资者提供了一种衡量资产价值的方法。
本文将对金融学中几种常见的资产定价模型进行解析,并探讨其在实践中的应用。
第一部分:单因素资产定价模型单因素资产定价模型是资产定价研究的起点,其核心理念是认为资产的价格变动仅受市场因素的影响。
最著名的单因素资产定价模型是资本资产定价模型(Capital Asset Pricing Model,简称CAPM)。
CAPM假设投资者追求在给定风险水平下的最大利益,并以无风险利率和市场风险溢价作为资产定价的基础。
这一模型可以用下面的公式表示:E(Ri) = Rf + βi * (E(Rm) - Rf)其中,E(Ri)是资产i的期望收益率,Rf是无风险利率,βi是资产i的β系数,E(Rm)是市场组合的期望收益率。
通过计算β系数,投资者可以根据市场的整体风险水平来合理评估资产的定价水平。
第二部分:多因素资产定价模型多因素资产定价模型是对单因素模型的扩展,它认为资产的价格变动受多种因素的影响。
著名的多因素资产定价模型有三因素模型和套利定价理论(Arbitrage Pricing Theory,简称APT)。
三因素模型认为,除了市场因素之外,还存在着规模因素和价值因素对资产价格的影响。
该模型可以用下面的公式表示:E(Ri) = Rf + βi1 * (E(Rm) - Rf) + βi2 * SMB + βi3 * HML其中,SMB代表规模因素(小市值股相对于大市值股的超额回报),HML代表价值因素(高价值股相对于低价值股的超额回报)。
通过引入这些额外因素,多因素资产定价模型提供了更全面、准确的资产估值方法。
套利定价理论(APT)是另一种多因素资产定价模型,它与CAPM有着不同的假设框架。
金融资产定价_四川大学中国大学mooc课后章节答案期末考试题库2023年
金融资产定价_四川大学中国大学mooc课后章节答案期末考试题库2023年1.无论投资者对风险的态度如何,他都会选择公平游戏参考答案:错误2.债券面临的利率风险主要包括:参考答案:价格风险_再投资风险3.以下风险衡量方法中,对可赎回债券风险的衡量最合适的是()参考答案:有效久期4.浮动利率债券不具有利率风险参考答案:错误5.下列要素中不属于债券内含选择权的是:参考答案:反抵押权6.债券的价值指的是债券的市场价格参考答案:错误7.债券的期限越长,其利率风险参考答案:越大8.以下哪一种技术不属于内部信用增级?参考答案:担保9.金融债券按发行条件分为()参考答案:累进利息金融债券_贴现金融债券_普通金融债券10.资本证券化产品的基础资产可拥有不同的到期日结构期限参考答案:错误11.一般形式的套利定价理论(APT)相对于简单CAPM的优势在于前者使用了多个因子、而非单一的市场指数来解释风险-收益率关系。
参考答案:正确12.贝塔为0的资产组合一定是无风险资产。
参考答案:错误13.组合A的期望收益率为20%,贝塔为1.4;组合B的期望收益率为25%,贝塔为1.2。
如果简单的CAPM是有效的,那么这两个组合是可能同时存在的。
参考答案:错误14.组合A的期望收益率为30%,标准差为35%;组合B的期望收益率为40%,标准差为25%。
如果简单的CAPM是有效的,那么这两个组合是可能同时存在的。
参考答案:正确15.无风险利率为10%;市场期望收益率为18%,贝塔为1.0;组合A的期望收益率为20%,贝塔为1.5。
在简单CAPM的背景下,这些组合是可能同时存在的。
参考答案:错误16.证券市场线描述了完整的资产组合是市场组合和无风险资产的组合。
参考答案:错误17.假设无风险利率是4%,市场期望收益率为15%,一只股票的贝塔小于零,那么这只股票的期望收益率低于4%。
参考答案:正确18.当持有分散化的投资组合时,单个证券对投资组合风险的影响取决于它的方差参考答案:错误19.以下属于债券投资者主要面临的风险的是:参考答案:通货膨胀风险_信用风险_提前偿还风险_利率风险20.以下属于债券或有要素的是:参考答案:可转换权_回售权_赎回权21.以下属于到期收益率所隐含的假设条件的是:参考答案:持有至到期_不存在违约风险_不存在再投资风险22.债券收益率主要包括如下类型:参考答案:当期收益率_赎回收益率_到期收益率23.以下属于免疫策略局限性的是:参考答案:无法精确衡量利率变化导致的债券价格变化_随利率变化,资产负债的久期不匹配_随时间变化,资产负债久期会按不同速度变化,债券组合不在具有免疫能力24.下列关于流动性偏好理论的说法中正确的是参考答案:投资者是风险厌恶者25.采用积极的债券管理策略成功的前期是,债券组合管理者认为债券市场是:参考答案:弱式有效或无效26.以下关于或有免疫策略说法正确的是:参考答案:或有免疫策略介于消极策略和积极策略之间27.采用何种债券投资组合策略主要取决于投资者对什么的判断:参考答案:市场有效性28.某美国公司债券的面值为10000美元,票面利率为8%,按半年支付利息。
金融市场的资产定价模型
金融市场的资产定价模型一、引言金融市场中的资产定价模型是理解和分析资产价值的重要工具。
它们通过对资产价格的决定因素进行建模和分析,帮助投资者和分析师进行投资决策。
本文将介绍几种常见的金融市场资产定价模型,包括CAPM模型、APT模型和Black-Scholes期权定价模型。
二、CAPM模型CAPM(Capital Asset Pricing Model)模型是一种广泛使用的资产定价模型。
该模型基于市场组合的收益率与风险溢价之间的关系,通过计算个别资产的预期收益率,确定资产的合理价格。
CAPM模型的核心公式为:E(Ri) = Rf + βi (Rm - Rf)其中,E(Ri)为资产i的预期收益率,Rf为无风险收益率,βi为资产i与市场组合的相关系数,Rm为市场组合的预期收益率。
根据CAPM模型,投资者可以通过比较资产的预期收益率与风险来判断其价值。
三、APT模型APT(Arbitrage Pricing Theory)模型是另一种常用的资产定价模型。
与CAPM模型不同,APT模型认为资产价格受到多个因素的共同影响。
APT模型的核心思想是通过建立一个多元线性回归模型,将资产收益率与一系列因子(如市场风险、利率水平和宏观经济指标等)相关联。
通过寻找最佳回归系数,可以确定资产的预期收益率和价格。
四、Black-Scholes期权定价模型Black-Scholes期权定价模型是用于衡量和定价期权合约的工具。
该模型基于一系列假设,包括市场无摩擦、无风险利率恒定、资产价格服从几何布朗运动等。
根据Black-Scholes模型,期权的价格由五个主要因素决定:标的资产价格、行权价格、时间剩余期限、无风险利率和波动率。
通过计算这些因素之间的关系,可以得出期权的合理价格。
五、总结金融市场的资产定价模型是投资决策不可或缺的工具。
CAPM模型通过对市场组合的收益率和风险溢价进行建模,确定资产的预期收益率。
APT模型则将资产收益率与多个因素相关联,以寻求最佳回归系数来确定资产价格。
大学金融资产定价教案
大学金融资产定价大学金融:资产定价教案教学目标本课程旨在介绍资产定价的基本概念,讲解资产定价模型的应用与分析,并帮助学生掌握各种资产定价方法的理论基础和实际应用。
教学内容第1章资产定价基础1.1 资产定价基本概念资产定价是指确定资产价格的过程,资产价格是指能在市场上交易的资产相对于货币的价格。
1.2 贴现现值法贴现现值法是一种资产估值方法,它通过计算未来现金流的现值来确定资产价格。
1.3 股票估价模型股票估价模型是一种用于估算股票的内在价值的模型,它可以用于计算未来股票价格,并以此预测股票在未来的涨跌。
第2章资产定价模型2.1 资本资产定价模型资本资产定价模型(CAPM)是一种常用的资产定价模型,它基于股票的系统性风险和市场风险的关系来确定资产价格。
2.2 线性风险模型线性风险模型是一种用于估计资产价格风险与回报之间关系的模型。
它基于线性回归分析方法来描述资产的回报与风险之间的关系。
第3章资产定价应用3.1 股票价格预测基于资产定价模型,我们可以预测股票价格的涨跌,帮助投资者做出理性的投资决策。
同时,我们也可以通过对估算的股票价值进行比较,较为准确地诊断股票的估值水平,提高投资决策的成功率。
3.2 债券估价和风险管理债券估价和风险管理是从资产定价理论和方法中引申出来的。
债券的定价和交易涉及到本金和利息现金流量的计算和折现,利息率的估算以及风险的管理,因此债券投资的收益率和风险的管理非常重要。
教学方法本课程采用讲授与案例分析相结合的教学方法,既注重理论基础的掌握,也注重实践应用的分析。
鼓励学生参加讨论,分享自己的观点和见解。
评价方法1. 课堂表现2. 作业和论文3. 期末考试参考书目1. Investments, by Zvi Bodie, Alex Kane and Alan J. Marcus, McGraw-Hill Irwin, 2019.2. Asset Pricing and Portfolio Theory, by Kerry E. Jordan, Oxford University Press, 2018.3. Valuation: Measuring and Managing the Value of Companies, by McKinsey & Company, Wiley, 2010.。
资产定价概述
资产定价概述资产定价是金融领域中的重要概念,用于确定资产的合理价格。
资产可以是股票、债券、商品、房地产等各种投资工具。
资产定价是投资者和市场参与者在进行交易时所依据的基础,也是金融市场的核心机制之一。
资产定价的基本原理是通过分析资产的风险和预期收益来决定其价格。
根据有效市场假说,所有的市场参与者都可以充分获取和分析相关信息,并且在交易时会将这些信息充分反映在资产价格中。
因此,资产定价是建立在市场参与者理性行为和信息有效性的基础上进行的。
资产定价的方法主要包括两类:基本分析和技术分析。
基本分析是通过研究资产所属企业或经济基本面的变化来判断其未来的预期收益和风险。
技术分析则是通过分析历史价格和交易量的走势来预测未来的价格趋势。
基本分析和技术分析可以结合使用,形成综合的资产定价模型。
除了基本分析和技术分析,还有其他一些常见的资产定价模型。
其中最著名的是资本资产定价模型(CAPM),它通过计算资产的风险和预期收益之间的关系,来决定资产的合理价格。
除了CAPM,还有其他一些衍生的模型,例如多因素模型和期权定价模型等。
资产定价的目的是为投资者提供合理的投资决策依据。
通过准确地估计资产的价格,投资者可以找到低估和高估的资产,从而在交易中获利。
此外,资产定价还可以帮助投资者分散风险,从而降低投资组合的波动性。
总之,资产定价是金融市场中不可或缺的环节。
通过合理的资产定价,投资者可以找到价值洼地,实现收益最大化。
因此,了解资产定价的基本原理和方法对于投资者来说是至关重要的。
资产定价是金融领域中的重要概念,用于决定投资资产的合理价格。
投资者和市场参与者依照资产定价来做出交易决策,并在金融市场中进行买卖。
资产定价的目的是为了获得预期的收益,并最大限度地避免投资风险。
本文将进一步探讨资产定价的相关内容,包括有效市场假设、资产定价模型和资产定价过程的要素。
首先,有效市场假设是资产定价的基础,它认为所有市场参与者都能够充分获取和分析市场中的相关信息,并能在交易过程中将这些信息充分地反映在资产的价格上。
金融市场的资产定价
金融市场的资产定价在金融领域中,资产定价是一项重要的活动,用于确定金融市场上各类资产的真实价值。
这涉及到投资者在决定购买或出售资产时,对其期望回报率的估计和对风险的评估。
资产定价理论和模型的发展,为投资者提供了有效的工具和方法来评估和决策。
本文将介绍一些常见的资产定价理论和方法。
一、资产定价理论概述资产定价理论是通过建立数学模型,从经济学和金融学的角度解释资产价格形成的原理。
其中最基本的理论是资本资产定价模型(Capital Asset Pricing Model, CAPM)。
根据CAPM,资产的期望回报率是其系统风险与市场风险溢价的加权和。
该模型假设市场处于均衡状态,并认为投资者在决策时考虑了风险和回报的权衡。
此外,还有其他一些资产定价理论,例如效用理论、期权定价模型等。
这些理论提供了不同的视角和方法,用于解释特定类型的资产价格形成机制。
二、资本资产定价模型(CAPM)CAPM是一种广泛应用于金融市场的资产定价模型,它通过系统风险和市场风险溢价来确定资产的期望回报率。
CAPM模型的核心公式如下:E(Ri) = Rf + βi * (E(Rm) - Rf)其中,E(Ri)表示资产的期望回报率,Rf是无风险利率,βi是资产的β系数,E(Rm)是市场的期望回报率。
根据CAPM模型,资产的β系数反映了该资产相对于市场的风险暴露程度。
当资产的β系数大于1时,说明该资产的风险高于市场平均水平;反之,当资产的β系数小于1时,说明该资产的风险低于市场平均水平。
投资者可以通过计算资产的β系数来评估其风险水平,并决策是否购买或持有该资产。
三、效用理论效用理论是一种关注投资者决策时偏好的理论,它认为投资者在决策时会考虑实用效用最大化。
效用函数可以通过投资者的风险偏好和回报期望来构建。
在效用理论中,投资者的效用函数是关于投资组合的函数,用于衡量该投资组合所带来的效用。
投资者在选择投资组合时,会根据效用函数的值来进行决策。
金融市场的资产定价模型
金融市场的资产定价模型在金融市场中,资产定价模型是一种用来确定各种金融资产价格的理论框架。
它通过考虑各种因素,如风险、预期收益等来确定资产的合理价格。
在本文中,我们将介绍几种常见的资产定价模型,并分析它们的特点和适用范围。
一、资本资产定价模型(CAPM)资本资产定价模型是一种简化的资产定价模型,它假设资产的风险与市场风险直接相关。
根据CAPM模型,资产的预期收益率与市场风险之间存在正比关系。
该模型的基本公式为:$$E(R_i) = R_f + \beta_i \times (E(R_m) - R_f)$$其中,$E(R_i)$是资产i的预期收益率,$R_f$是无风险收益率,$E(R_m)$是市场的预期收益率,$\beta_i$是资产i的贝塔系数。
CAPM模型的优点在于简单易用,但它也有一些假设,如市场完全有效、投资者具有理性等,可能在实际应用中存在一定局限性。
二、套利定价理论(APT)套利定价理论是一种多因素的资产定价模型,它认为资产的预期收益率不仅仅与市场因素有关,还受到其他因素的影响。
根据APT模型,资产的预期收益率可以通过多个因子的线性组合来解释。
该模型的基本公式为:$$E(R_i) = R_f + \beta_{i1} \times F_1 + \beta_{i2} \times F_2 + \ldots + \beta_{in} \times F_n$$其中,$F_1$、$F_2$、$\ldots$、$F_n$为影响资产收益率的因子,$\beta_{i1}$、$\beta_{i2}$、$\ldots$、$\beta_{in}$为资产i对应各因子的敏感度。
与CAPM相比,APT模型的优势在于可以考虑更多因素的影响,但需要寻找合适的因子并进行有效的估计。
三、Black-Scholes期权定价模型Black-Scholes期权定价模型是一种用来确定期权价格的数学模型。
它基于假设市场完全有效、不存在套利机会等,并通过考虑风险中性条件来计算期权的合理价格。
论金融市场中的资产定价理论
论金融市场中的资产定价理论金融市场是指各种金融工具在其中进行交易的场所。
在这个市场中,资产的价格是由供求关系决定的。
而资产定价理论就是研究资产价格的形成规律和影响因素,从而使投资者更好地把握市场趋势和变化,进行正确的投资决策。
一、资产定价理论的基本内容资产定价理论是指为了确定资产价值而从历史数据、未来预期、市场风险等多方面因素出发,对资产价格进行科学的量化分析。
目前,应用最广泛的资产定价理论是现代资产定价理论(Capital Asset Pricing Model,简称CAPM)。
CAPM理论认为,资产的风险可以分成系统风险和非系统风险,系统风险是整个市场风险的一部分,而非系统风险是公司自身的风险。
在资产价格的形成过程中,市场行情对风险价格的影响远远大于公司自身的风险,因此CAPM将资产的风险测度以市场风险的波动率为代表,将资本市场上所受系统风险的报酬率看作与市场风险波动率之比等于所受风险溢价的预期收益率。
CAPM是一种相对定价理论,在资产价格中,市场风险是决定性因素,而公司自身的风险是次要因素。
二、资产定价理论的应用资产定价理论不仅是投资者进行正确投资决策的基础,还是金融机构制定风险控制策略的基础工具。
在投资领域,定价模型可以用于计算股票、债券、保险以及其他衍生品等资产的内在价值;在金融风险管理方面,定价模型可以用于确定各种金融工具的合理价格和最优投资组合的构建。
例如,在证券交易中,股票风险可以通过检验股票收益率的波动幅度来进行测量。
一般而言,波动幅度越大,风险越高。
根据CAPM理论可以推导出一个投资组合组合中所有股票的比重,使投资组合在降低风险的同时,实现最优收益。
三、资产定价理论的争议尽管 CAPM 理论是现代金融定价理论的代表作之一,但至今仍有一些缺陷和争议,其主要包括以下几点:1. 不考虑公司内部的风险:CAPM理论中,公司内部风险被视为次要因素,而相对于市场风险受到较小的关注。
但是,在实际投资过程中,公司自身的风险也是需要考虑的因素。
金融市场中的资产定价与投资组合
金融市场中的资产定价与投资组合在金融领域,资产定价与投资组合是两个重要的概念。
资产定价是指确定金融资产的价格或者价值,而投资组合则是指投资者在金融市场中选择不同的资产组合以达到风险管理和收益最大化的目标。
本文将探讨金融市场中的资产定价和投资组合的相关内容,包括资产定价模型、投资组合理论以及它们在金融市场中的应用。
一、资产定价模型资产定价模型是用来衡量金融资产的价值或者价格的数学模型。
其中最著名的资产定价模型是资本资产定价模型(Capital Asset Pricing Model,简称CAPM)。
根据CAPM,一个金融资产的预期回报应该与市场风险有关,由该资产与市场整体风险的相关性所决定。
具体来说,CAPM模型通过以下公式计算资产的预期回报:E(Ri) = Rf + βi * (E(Rm) - Rf)其中,E(Ri)代表资产的预期回报,Rf代表无风险资产的回报率,βi 表示资产与市场风险的相关性,E(Rm)表示市场整体的预期回报。
通过计算资产的β值,我们可以确定该资产预期回报与市场整体回报的关系。
除了CAPM模型,还有其他的资产定价模型,例如即期理论模型和期限结构模型。
这些模型通过不同的方法和假设,帮助投资者评估和计算金融资产的价值。
二、投资组合理论投资组合理论是用来研究如何选择和配置不同资产构成投资组合以达到预期风险和收益的目标。
其中最著名的投资组合理论是现代投资组合理论(Modern Portfolio Theory,简称MPT)。
MPT理论认为,投资者可以通过将不同的资产以一定比例组合在一起,来降低投资组合的整体风险,并最大化收益。
具体来说,MPT理论认为投资者不应该只关注单个资产的预期回报和风险,而应该将整个投资组合的风险和回报考虑在内。
MPT理论也提供了一种方法来衡量资产对投资组合的贡献,即通过计算资产的方差、协方差和相关系数来评估资产的风险和相关性。
投资者可以利用这些指标来选择最佳的投资组合,以达到在给定风险下最大化收益或者在给定收益下最小化风险的目标。
金融资产理论定价(完整版)
金融资产定价理论(FinancialAssetPricingTheory)目录1金融资产定价理论的概述2金融资产定价理论方法的概述3几种金融资产定价理论方法的比较4金融资产定价理论在我国的运用和发展分析金融资产定价理论的概述金融学主要研究人们在不确定环境中进行资潦的最优配置,资产时间价值,资产定价理论(资源配置系统)和风险管理理论是现代金融经济学的核心内容,资源配置系统中核心问题就是资产的价格,而金融资产的最大特点就是结果的不确定性,因此金融资产的定价也就是金融理论中最重要的问题之一。
目前,金融资产的定价主要包括以股票、债券、期权等为代表的单一产品定价以及采用风险收益作为研究基础的资产组合定价理论、套利理论和多因素理论等。
不同的定价理论和方法是随着时间发展,统计方法、计算机技术的进步而不断修正改进的,使其逐步与现实要求接近。
金融资产定价理论方法的概述金融资产定价是当代金融理论的核心,资金的时间价值和风险的量化是金融资产定价的基础。
金融资产价格是有资金时间价值和风险共同决定的。
(一)现金流贴现方法资金的时间价值是指资金随着时间的推移会发生增值,因而不同时点的现金流难以比较其价值。
要对未来现金流贴现,关键的是折现率的确定。
而贴现率不是任意选择的,应该是由市场决定的资金使用的机会成本,也就是同一笔资金用于除考察的用途之外所有其他用途中最好的用途所能得到的收益率。
机会成本是市场反映的金融资产的收益率,而资产的收益率(资本成本)一定与该资产的风险水平对应。
一般来说,较高风险的资产一般对应较高的收益率。
在金融实践中,折现率往往用一个无风险利率再加上一个风险补偿率表示。
无风险利率是指货币资金不冒任何风险可取得的收益率,常用国库券的短期利率为代表;风险补偿率取决于金融资产风险的大小,风险越大需要的风险补偿率越高,因此折现率的确定需要解决两个问题,无风险利率和风险补偿率。
理论上,不同期间使用不同的贴观率进行贴现,因为资本的机会成本在不同时期会随着市场条件的变化而变化。
研究所专业知识金融市场的资产定价理论
研究所专业知识金融市场的资产定价理论金融市场的资产定价理论是研究所专业知识中的重要内容之一。
该理论主要是通过一系列的定量模型和方法,对金融市场中不同类型的资产(包括股票、债券、期权等)进行合理定价和估值。
本文将从资产定价的基本原理、资产定价模型以及资产定价的实践等角度进行探讨。
一、资产定价的基本原理资产定价的基本原理主要包括市场效率假设、资产收益率与风险之间的关系、信息的价值等。
市场效率假设指的是金融市场是高度有效的,即资产价格可以充分反映市场的信息和预期。
资产收益率与风险之间的关系是指,在无风险利率存在的情况下,投资者对高风险资产要求获得更高的回报率。
信息的价值是指持有资产的投资者会根据自己所掌握的信息对资产进行定价。
二、资产定价模型资产定价模型是资产定价的重要工具,常见的资产定价模型有CAPM模型、APT模型和Black-Scholes期权定价模型等。
1. CAPM模型CAPM模型(Capital Asset Pricing Model,资本资产定价模型)是由Sharpe、Lintner和Mossin等学者提出的一种资产定价模型。
该模型假设了市场是完全有效的,投资者是理性的,且具有相同的投资目标。
根据CAPM模型,资产的预期收益率等于无风险利率加上资产风险溢价,即:E(Ri) = Rf + βi(E(Rm) - Rf)其中,E(Ri)为资产i的预期收益率,Rf为无风险利率,E(Rm)为市场组合的预期收益率,βi为资产i的贝塔系数。
2. APT模型APT模型(Arbitrage Pricing Theory,套利定价模型)是由Ross等学者提出的一种资产定价模型。
该模型基于套利的原理,认为投资者可以通过组合投资的方式进行风险套利。
根据APT模型,资产的预期收益率可以表示为各个因子的线性组合,即:E(Ri) = Rf + β1F1 + β2F2 + ... + βnFn其中,E(Ri)表示资产i的预期收益率,Rf为无风险利率,F1、F2...Fn表示各个因子,β1、β2...βn表示资产i对于各个因子的敏感度。
金融市场与资产定价股票与债券定价模型
金融市场与资产定价股票与债券定价模型金融市场与资产定价股票与债券定价模型在金融市场中,资产定价是一个重要的问题。
股票和债券是两种常见的金融工具,在进行资产定价时,需要使用相应的定价模型。
本文将介绍股票和债券的定价模型,并探讨它们在金融市场中的应用。
一、股票定价模型股票的定价模型主要有两种:股利折现模型和资本资产定价模型(CAPM)。
1. 股利折现模型股利折现模型是最常用的股票定价模型之一。
这个模型基于股票的现金流量,假设股票的价格等于未来股利的现值之和。
股利折现模型的公式为:P0 = D1/(1+r) + D2/(1+r)^2 + ... + Dn/(1+r)^n其中,P0为股票的价格,D为未来的股利,r为期望收益率。
通过计算未来的股利,结合期望收益率,可以得出股票的合理价格。
2. 资本资产定价模型(CAPM)CAPM是一种衡量风险与收益之间关系的模型。
它认为,投资者的回报应该与风险有关,在衡量风险时考虑市场的整体风险水平。
CAPM的公式为:ri = rf + βi × (rm - rf)其中,ri为股票的期望回报率,rf为无风险回报率,βi为股票的系统性风险,rm为市场的期望回报率。
通过计算股票的期望回报率,可以得出股票的合理价格。
二、债券定价模型债券的定价模型主要有两种:名义利率模型和期限结构理论。
1. 名义利率模型名义利率模型基于债券的现金流量,假设债券的价格等于未来现金流量的现值之和。
名义利率模型的公式为:P0 = C/(1+r) + C/(1+r)^2 + ... + (C+M)/(1+r)^n其中,P0为债券的价格,C为每期的利息支付,M为到期时的本金,r为期望收益率。
通过计算债券的现金流量,结合期望收益率,可以得出债券的合理价格。
2. 期限结构理论期限结构理论认为,不同期限的债券之间存在利率互换的关系。
债券的定价与债券的期限息息相关。
期限结构理论的公式为:r = r* + IP + RP其中,r为债券的收益率,r*为无风险利率,IP为利差溢价,RP为剩余期限溢价。
第四章-金融资产定价理论
第四章金融资产定价理论本章概述金融资产视为未来不确定现金流的载体,因此金融工程的核心是资产定价,资产定价理论可以分为绝对定价和相对定价两种思路。
绝对定价的思路是在效用上寻找与不确定现金流无差异的确定性现金流,本章在学习期望效用的基础上,给出了绝对定价的基本框架。
而相对定价的思路则是给出金融资产相互之间价格的关系。
在无套利均衡意义下,绝对定价和相对定价可以统一在一起。
进一步,本章还讨论了在动态环境下的金融市场,初步介绍了如何将两期环境的金融问题扩展到动态环境。
第一节定价的一般框架与绝对定价1.1 效用与定价一、期望效用未来有N种状态,金融资产L未来的不确定现金流及其相应的客观发生概率为:。
则该金融资产带来的效用可用期望形式表达为:其中为von Neumann-Morgenstern效用函数。
一般的,我们假设具有单调递增的性质,也即对待财富是一种“多多益善”的态度。
二、确定性等值与价格如果存在某个确定性的现金流W使得其带来的效用与金融资产L的期望效用相等,即,则称W为L的确定性等值。
如果考虑效用在时间上的贴现,则确定性等值就是当前为了得到未来的不确定现金流而支付的价格,也即其中为效用的贴现率。
1.2 风险溢价一、对待风险的态度与效用函数凹性面对一个不确定性现金流,投资者如果更加偏好其期望值,也即投资者接受公平赌博的结果,那么称其为风险规避的,也即,其中。
在图4-1中,我们以为例,可以看出,效用函数为凹函数时,投资者是风险规避的。
此外,如果,则称其为严格风险规避,对应效用函数为严格凹函数;如果,则称其为风险喜好,对应效用函数为凸函数;如果,则称其为风险中性,对应效用函数为仿射函数,即。
图4-1 函数的凹性和对待风险的态度二、风险溢价风险溢价就是金融资产未来现金流的期望值减去其确定性等值,用以补偿投资者承担风险应该得到的回报,也即:。
对于单调上升的vN-M函数:当时,称为风险规避;当时,称为风险中性;当时,称为风险喜好。
资产定价理论讲义(中文版-上海财经大学)
显然: F0 ⊂ F1, F1 ⊂ F2
F ={F0, F1, F2}表示信息结构; F0 , F1 , F2 都是σ 域。
期望迭代法则:如果 F1 ⊂ F2 ,则 E[E(X F1) F2] = E(X F1)
14. 多元正态分布
若 为 元正态分布 ε = εε21 n
N(a, B)
5
《资产定价理论∀x1, x2 ∈ S ,α x1 + (1−α)x2 ∈ S , 0 ≤ α ≤ 1,则 S 为凸集。
若 X ,Y 为凸集,则αX +βY 为凸集,其中:α,β ∈ R
3. 开集和闭集 S 是一个集合,如果∀x∈ S ,∃ε (x) > 0,使得 K(x,ε ) ⊂ S ,则 S 为开集,S 的补集为闭
注:对于连续性偏好而言,公理 3 意味着{a ∈C : a c}是凸集。 并非所有的二元关系都是偏好关系,比如:石头、剪刀、布游戏。
定17理. 效1用:对函于数定的义存在在闭性凸集C 的偏好关系,满足公理 2,则存在一个定义在C 上的连续效用 函数 使得 , U : C → R ∀a,b ∈ C a b ⇔ U (a) ≥U (b)
上海财经大学金融学院
Ω = {'(正,正)', '(正,反)', '(反,正) ', '(反,反) '}
0 时刻的信息: F0 ={∅,Ω}
时刻的信息: 1
F1 = {∅,Ω,{'(正,正)', '(正,反) '},{'(反,正) ', '(反,反) '}}
时刻的信息: 2
F2 = P(Ω) = {∅,Ω,{'(正,正)'},{'(正,反) '},{'(反,正) '},{'(反,反) '},...}
资产定价文献综述
1、理想经济状态下的资产定价模型——CAPM
•Sharpe首先提出了风险条件下单个投资者行为理论。投资者的效用函数可以表 示为,
•其中
表示未来财富的期望值; 表示未来实际财富偏离EW的标准差。
X
I
II
B
III
F A
ER
1、理想经济状态下的资产定价模型——CAPM
•Sharpe认为,投资者的选择可以分成两个阶段,即先找到有效投资机 会集,然后从有效投资机会集中选择最优的投资机会。 •有效地投资机会是指找不到任何其他的投资机会与该投资机会相比, 具有相同的ER和较小的或者相等的和较高的ER,或较高的ER和较低的。 •由此得出投资机会曲线。
据估算;
期权定价理论 的优缺
1、虽然假设条件相 对较弱,与现实市 场条件仍有出入;
缺
2、假设股票价格 服从对数正态分布 ,而实际上并非严
格的正态分布;
3、用在其他期权 或类似期权上的定 价方法的通用性。
3、股票价格波动 率只能用过去的数
据进行估算。
B-S提出能够控制风险的期权,为创立 更多控制风险和规避风险的工具开辟道路。
•为了推导出资本市场均衡的条件,Sharpe做出两个假设:(1)假定投 资者借入和贷出无风险资产的纯粹利率相同,(2)假定投资者具有相 同的预期,包括期望值、标准差和相关系数。 •由此得出了资本市场均衡条件下的资本市场线。
1、理想经济状态下的资产定价模型——CAPM
•Sharpe用回归来分析资产i和投资组合g的收益率之间的关系,资产i的收 益率分散在其期望值附近,该种分散描述了该资产的总风险,Big表示 资产i的收益率变化对组合g的收益率变化的敏感性程度,衡量的是单个 资产与整个市场经济活动之间的关系。 •投资者不能通过分散化来消除系统风险,但可以消除非系统风险。所 以证券市场线的含义是,资产的价格应对投资者所承担的系统风险给 予补偿,系统风险越高,预期收益越高。
第三章 资产定价理论及其发展
第二节 20世纪50年代至80年代的资产定价理论
1. 基础资产定价理论
• 1952年马科维茨发表的《现代资产组合理论》 为资产定价理论的发展奠定了基础。
• 马科维茨的资产组合理论否定了古典定价理论 中关于投资者的单一预期假设,即期望收益最大 化假设,因为该假设要求投资者只投资所有证券 中期望收益最大的证券或者证券组合,而与现实 中投资者的分散化投资组合相违背。资产组合 理论在现实的基础上,提出了资产组合均值—方 差理论。
股利折现模型
资产组合理论
CAPM
ICAPM
CCAPM 期货定价理论 期权定价理论 B-S 模型
市场异象 前景理论 行为金融资产定价模型
• 二、简答题 • 1.现代资产定价理论从哪些方面对传统资产
定价理论进行了改进和突破? • 2.资本定价模型与资产组合理论的联系是什
么? • 3.套利定价理论的思想是什么?它与资本资
第一节 20世纪50年代以前的资产定价理论
• 关于资产定价理论的起源目前具有代表性的说法是 1738年丹尼尔·伯努利的论文《关于风险衡量的新理 论》和1900年路易丝·巴彻利尔的论文《投机理论》。 巴彻利尔用新方法对法国股票市场进行了研究,奠定 了资产定价理论的基础。
• 20世纪30年代,经济学家威廉姆斯证明了股票价格是 由其未来股利决定的,提出了股利折现模型。后来的 研究者在此基础上提出了现金流贴现模型。
• 期货定价理论主要包括持有成本理论、延 期交割费用理论和基于对冲压力的期货定 价理论。
第三节 20世纪80年代以后兴起的行为金融学
1. 市场异象与行为金融学的兴起 格罗斯曼-斯蒂格利茨悖论;收益长期反转与中期惯性现 象;期间效应;孪生股票价格差异之谜;收益率的过度波 动;股权溢价;封闭式基金折价;投机性泡沫。
金融市场中的资产定价模型与投资组合优化
金融市场中的资产定价模型与投资组合优化在金融市场中,资产的定价和投资组合优化是两个非常重要的主题。
资产定价模型是帮助投资者确定资产价值的数学模型,而投资组合优化则是在给定一系列资产的情况下,通过优化方法寻找最佳的投资组合。
一、资产定价模型资产定价模型是金融学中的重要理论之一,通过建立数学模型来确定资产的合理价值。
其中最著名的模型是资本资产定价模型(Capital Asset Pricing Model,CAPM)和套利定价理论(Arbitrage Pricing Theory,APT)。
1. 资本资产定价模型(CAPM)CAPM模型是由美国学者威廉·夏普(William Sharpe)、约翰·林特纳(John Lintner)和雅各·特里奇(Jack Treynor)于1960年提出的。
该模型通过把资产收益看作是市场收益和无风险利率的线性组合,给出了资产的预期回报与风险之间的关系。
CAPM模型的基本假设是投资者偏好均衡和市场的均衡性。
根据该模型,资产的预期回报与市场风险有关,可以用下式描述:E(Ri) = Rf + βi * (E(Rm) - Rf)其中,E(Ri)表示资产i的预期回报,Rf表示无风险利率,E(Rm)表示市场整体的预期回报,βi表示资产i相对于市场的风险敞口。
CAPM模型为投资者提供了判断资产价值的方法,通过计算预期回报与风险之间的关系,投资者可以判断资产是否被低估或高估。
2. 套利定价理论(APT)与CAPM模型相比,APT模型更加灵活,能够解释资产回报的更多变异性。
APT模型是由美国学者斯蒂芬·罗斯(Stephen Ross)于1976年提出的。
该模型通过认为市场上的各种因素(如通货膨胀率、利率、市场情绪等)会对资产回报产生影响,从而构建了一个多因素的线性回归模型。
APT模型的基本假设是市场是高效的,所有的风险因素会被充分考虑。
根据该模型,资产的回报可以用下式描述:Ri = αi + βi1 * F1 + βi2 * F2 + ... + βin * Fn其中,Ri表示资产i的回报,αi表示特定于资产i的超额回报,βij 表示资产i对因素j的敏感性,Fj表示因素j的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《金融资产定价》(2008)提纲
Section I 基础知识
第一、二讲导言课程说明什么是资产定价影响资产定价的因素资产定价的发展历史
第三讲金融资产收益的典型特征
Section II 线性因子定价模型
第四五讲 CAPM模型、扩展、应用、推广 SIM模型
第六七讲 APT、扩展、检验与应用
Section III 主流资产定价理论
第八九十讲 SDF与CCAPM模型
Section III 具体的金融资产定价:主流资产定价理论的引用
第十五讲远期和期货定价
第十六、十七讲债券定价及利率期限结构
第十八、十九讲债券定价
Section V 行为资产定价
第十一讲金融异象
第十二讲心理偏差及其对资产定价的影响
第十三讲行为资产定价
第十四讲 SDF框架与行为资产定价欢迎您的下载,资料仅供参考!。