集合 第一课时

合集下载

高中数学新人教A版必修1课件:第一章集合与函数概念1.1.3集合的基本运算(第1课时)并集和交集

高中数学新人教A版必修1课件:第一章集合与函数概念1.1.3集合的基本运算(第1课时)并集和交集

集合运算时忽略空集致错
• 典例 4 集合A={x|x2-3x+2=0},B={x|x2-2x+a- 1=0},A∩B=B,求a的取值范围.
• [错解] 由题意,得A={1,2}.∵A∩B=B,∴1∈B,或者 2∈B,∴a=2或a=1.
• [错因分析] A∩B=B⇔A⊇B.而B是二次方程的解集,它
可能为空集,如果B不为空集,它可能是A的真子集,也可
B.{x|-4<x<-2}
• C.{x|-2<x<2} D.{x|2<x<3}
• [解析] N={x|x2-x-6<0}={x|(x-3)(x+2)<0}={x|- 2<x<3},
• ∴M∩N={x|-4<x<2}∩{x|-2<x<3}
• ={x|-2<x<2},故选C.
• 4.(202X·江苏,1)已知集合A={-1,0,1,6},B={x|x>0, x∈R},则A∩B=___{_1,_6_} ______.
• 2.并集和交集的性质并集
简单 性质
A∪A=___A___; A∪∅=___A___
常用 结论
A∪B=B∪A; A⊆(A∪B); B⊆(A∪B);
A∪B=B⇔A⊆B
交集
A∩A=___A___; A∩∅=___∅___
A∩B=B∩A; (A∩B)⊆A; (A∩B)⊆B;
A∩B=B⇔B⊆A
• 1.(202X·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B= {x|x2≤1},则A∩B= ( A )
• 将x=-2代入x2-px-2=0,得p=-1,∴A={1,-2},
• ∵A∪B={-2,1,5},A∩B={-2},∴B={-2,5},

第1章 1.1 1.1.1 第1课时 集合的含义

第1章  1.1  1.1.1  第1课时 集合的含义

集合1.1.1 集合的含义与表示第一课时集合的含义[新知初探]1.元素与集合的概念(1)元素:一般地,把研究对象统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.(4)元素的特性:确定性、无序性、互异性.[点睛] 集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是点,也可以是一些人或一些物.2.元素与集合的关系[点睛] 对元素和集合之间关系的两点说明(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a ∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.3.常用的数集及其记法[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)你班所有的姓氏能组成集合.( )(2)新课标数学人教A版必修1课本上的所有难题.( )(3)一个集合中可以找到两个相同的元素. ( )答案:(1)√(2)×(3)×2.下列元素与集合的关系判断正确的是( )A.0∈N B.π∈QC.2∈Q D.-1∉Z答案:A3.已知集合A中含有两个元素1,x2,且x∈A,则x的值是( )A.0 B.1C.-1 D.0或1答案:A4.方程x2-1=0与方程x+1=0所有解组成的集合中共有________个元素.答案:2集合的基本概[例1] 考查下列每组对象,能构成一个集合的是( )①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④[解析] ①中“成绩优秀”没有明确的标准,所以不能构成一个集合;②③④中的对象都满足确定性,所以能构成集合.[答案] B1.给出下列说法:①中国的所有直辖市可以构成一个集合; ②高一(1)班较胖的同学可以构成一个集合; ③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合. 其中正确的有________.(填序号)解析:②中由于“较胖”的标准不明确,不满足集合元素的确定性,所以②错误;④中的所有整数能构成集合,所以④错误.答案:①③[例2] (1)下列关系中,正确的有( ) ①12∈R ;② 2∉Q ;③|-3|∈N ;④|-3|∈Q. A .1个 B .2个 C .3个D .4个(2)集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________.[解析] (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)由题意可得:3-x 可以为1,2,3,6,且x 为自然数,因此x 的值为2,1,0.因此A 中元素有2,1,0. [答案] (1)C (2)0,1,2元素与集合的关系[活学活用]2.已知集合A 中有四个元素0,1,2,3,集合B 中有三个元素0,1,2,且元素a ∈A ,a ∉B ,则a 的值为( ) A .0 B .1 C .2D .3解析:选D ∵a ∈A ,a ∉B ,∴由元素与集合之间的关系知,a =3. 3.用适当的符号填空:已知A ={x|x =3k +2,k ∈Z},B ={x|x =6m -1,m ∈Z},则有:17________A ;-5________A ;17________B.解析:令3k +2=17得,k =5∈Z. 所以17∈A.令3k +2=-5得,k =-73∉Z.所以-5∉A.令6m -1=17得,m =3∈Z , 所以17∈B. 答案:∈ ∉ ∈[例3] 已知集合A 含有两个元素a 和a 2,若1∈A ,则实数a 的值为________.集合中元素的特性及应用[解析] 若1∈A,则a=1或a2=1,即a=±1.当a=1时,集合A有重复元素,不符合元素的互异性,∴a≠1;当a=-1时,集合A含有两个元素1,-1,符合元素的互异性.∴a=-1.[答案] -1[一题多变]1.[变条件]本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.解:因2∈A,则a=2或a2=2即a=2,或a=2,或a=- 2.2.[变条件]本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?解:因A中有两个元素a和a2,则由a≠a2解得a≠0且a≠1.3.[变条件]已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值.解:由a∈A可知,当a=1时,此时a2=1,与集合元素的互异性矛盾,所以a≠1.当a=a2时,a=0或1(舍去).综上可知,a=0.根据集合中元素的特性求解字母取值(范围)的3个步骤层级一学业水平达标1.下列说法正确的是( )A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素解析:选C A项中元素不确定.B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等.D项中方程的解分别是x1=1,x2=x3=-1.由互异性知,构成的集合含2个元素.2.已知集合A由x<1的数构成,则有( )A.3∈A B.1∈AC.0∈A D.-1∉A解析:选C 很明显3,1不满足不等式,而0,-1满足不等式.3.下面几个命题中正确命题的个数是( )①集合N*中最小的数是1;②若-a∉N*,则a∈N*;③若a∈N*,b∈N*,则a+b最小值是2;④x2+4=4x的解集是{2,2}.A.0 B.1 C.2 D.3解析:选C N*是正整数集,最小的正整数是1,故①正确;当a=0时,-a∉N*,且a∉N*,故②错;若a∈N*,则a的最小值是1,又b∈N*,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确.4.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为( )A.2 B.2或4C .4D .0解析:选B 若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A.故选B.5.由实数-a ,a ,|a|,a 2所组成的集合最多含有的元素个数是( ) A .1 B .2 C .3 D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a≠0时,a 2=|a|=⎩⎪⎨⎪⎧a ,a>0,-a ,a<0,所以一定与a 或-a 中的一个一致.故组成的集合中有两个元素,故选B.6.下列说法中:①集合N 与集合N +是同一个集合; ②集合N 中的元素都是集合Z 中的元素; ③集合Q 中的元素都是集合Z 中的元素; ④集合Q 中的元素都是集合R 中的元素. 其中正确的有________(填序号).解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b________A ,ab________A .(填∈或∉).解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A. 答案:∉ ∈8.已知集合P 中元素x 满足:x ∈N ,且2<x<a ,又集合P 中恰有三个元素,则整数a =________. 解析:∵x ∈N,2<x<a ,且集合P 中恰有三个元素, ∴结合数轴知a =6. 答案:69.设A 是由满足不等式x<6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 解:∵a ∈A 且3a ∈A ,∴⎩⎪⎨⎪⎧a<6,3a<6,解得a<2.又a ∈N ,∴a =0或1.10.已知集合A 中含有两个元素x ,y ,集合B 中含有两个元素0,x 2,若A =B ,求实数x ,y 的值. 解:因为集合A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.层级二 应试能力达标1.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而B 、C 、D 中元素不相同,所以P 与Q 不能表示同一个集合.故选A.2.若以集合A 的四个元素a ,b ,c ,d 为边长构成一个四边形,则这个四边形可能是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选A 由于a ,b ,c ,d 四个元素互不相同,故它们组成的四边形的四条边都不相等. 3.若集合A 中有三个元素1,a +b ,a ;集合B 中有三个元素0,ba ,b.若集合A 与集合B 相等,则b-a =( )A .1B .-1C .2D .-2解析:选C 由题意可知a +b =0且a≠0,∴a =-b , ∴ba=-1.∴a =-1,b =1,故b -a =2. 4.已知a ,b 是非零实数,代数式|a|a +|b|b +|ab|ab 的值组成的集合是M ,则下列判断正确的是( )A .0∈MB .-1∈MC .3∉MD .1∈M解析:选B 当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.5.不等式x -a≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 解析:因为3∉A ,所以3是不等式x -a<0的解,所以3-a<0,解得a>3. 答案:a>36.若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:(1)若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.(2)若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.(3)若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由(2)知不合题意.综上可知:a=0或a=1.答案:0或17.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,现知9∈A且集合B中再没有其他元素属于A,能否根据上述条件求出实数a的值?若能,则求出a的值,若不能,则说明理由.解:∵9∈A,∴2a-1=9或a2=9,若2a-1=9,则a=5,此时A中的元素为-4,9,25;B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.若a2=9,则a=±3,当a=3时,A中的元素为-4,5,9;B中的元素为9,-2,-2,B中有两个-2,与集合中元素的互异性矛盾,故舍去.当a=-3时,A中的元素为-4,-7,9;B中的元素为9,-8,4,符合题意.综上所述,满足条件的a存在,且a=-3.8.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.11 又∵2∈A ,∴11-2=-1∈A.∵-1∈A ,∴11--1=12∈A.∵12∈A ,∴11-12=2∈A.∴A 中必还有另外两个元素,且为-1,12.(2)若A 为单元素集,则a =11-a ,即a 2-a +1=0,方程无解. ∴a≠11-a ,∴集合A 不可能是单元素集.。

集合的基本运算(第一课时课件)-高一数学备课精选课件(人教A版2019必修第一册)

集合的基本运算(第一课时课件)-高一数学备课精选课件(人教A版2019必修第一册)
C={x│x是等腰直角三角形}
集合C的元素既属于A,又属于B,则称C为A与B的交集.
3 交集
交 由两个集合A、B的公共部分组成的集合,叫这两个

的 集合的交集,记作A∩B

文字语言
念 即 A∩B={ x| x∈A 且 x∈B }
读作 A交B
符号语言
图 示
Venn图
A
B
A∩B
图形语言
练一练 已知A={2,4,6,8,10},B={3,5,8,12}, C={6,8}. 求:(1)A∩B ; (2)A∩(B∩C)
2. (1)已知A={x| x2-6x+8=0},B={x |x2-mx+4=0}, 且A∩B=B,



素 养


则实数m的取值范围是
.
(2)已知A={x|x2-6x+8<0}, B={x|(x-2a)(x-a-2)<0},且A∩B=B,
则实数a的取值范围是
.
数 据 分
(1)A={2, 4};由A∩B=B知B⊆A.
④A∪B=A
B⊆A .
练一练
已知A={ x | x2 > 1 },B={ x | x < a},若A∪B =A,
则实数a的取值范围是 a≤-1
.
3 交集
观察下列集合,A、B与C之间有什么关系? (1)A={ 4,3,5 }、 B={ 2,4,6 }与 C={ 4 }. (2)A={x│x是等腰三角形}、B={x│x是直角三角形}与
第一章 集合与常用逻辑用语
1.3.1 并集和交集
高中数学/人教A版/必修一
1.3.1 并集和交集
思维篇 素养篇

集合第一课时教案数学必修第一章集合与函数概念11人教A版

集合第一课时教案数学必修第一章集合与函数概念11人教A版

第一章集合与函数的概念1.1 集合第一课时 1.1.1 集合的含义与表示1 教学目标[1]通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法[2]使学生体会元素与集合的“属于”关系[3]能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2 教学重点/难点教学重点:集合的基本概念与表示方法理解元素与集合之间的从属关系教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合掌握集合中元素的特性的应用3 专家建议这是高中数学的第一节课。

虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。

在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。

要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。

在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。

本节课要记的东西多,可让学生自己阅读,然后在老师的引导下思考问题,进一步解决问题。

在本节课的学习过程中,教师一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点4 教学方法启发式讲授法5 教学过程5.1 复习引入【师】我们初中学过的实数自然数都还记得吗?它们之间有什么关系呢?【板演/PPT】5.2 实例引入【师】我们来看下下面这些实例【板演/PPT】⑴ 1~20以内的所有整数;⑵我国从1991~2015的25年内所发射的所有人造卫星;⑶某汽车厂2015年生产的所有汽车;⑷所有的正方形;⑸某中学2015年9月入学的高一学生全体.5.3 新知介绍[1]元素与集合的相关概念【师】我们试着总结下这些事例它们有什么共同点?【生】思考交流【师】我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,能给出集合的含义吗【板书\PPT】一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d…表示[2]元素与集合的关系【师】如果用A表示我们学校全体高一学生组成的集合,用a表示高一学生中的一位同学,b 是高二年级的一位同学,那么a、b与集合A分别有什么关系?由此可见元素与集合之间有什么关系?我们怎样才能简单明了地表示它们的关系呢?【生】讨论交流【板书\PPT】如果a是集合A的元素,就说a属于集合A,记作a∈A如果b不是集合A的元素,就说b属于集合A,记作b?A[3]集合的表示方法【师】我们用什么方法来表示我们的集合呢【生】讨论与理解【师】归纳总结【板书/PPT】列举法:把集合中的元素一个一个地写在一对大括号内表示集合的方法描述法:把集合中元素共有的,也只有该集合中元素才有的属性描述出来,已确定集合的方法【师】同学们请看题【板书\PPT】用适当的方法表示下列集合(1)方程 -4=0的解组成的集合{-2,2}或{x| -4=0}(2)大于3小于9的实数组成的集合{x|3<x<9,x∈R}(3)所有奇数组成的集合{y|y=2n-1,n∈Z}[4]集合元素的性质【师】我们观察一下实例中的数据它们能不能构成组合它们都有什么特征呢?【生】理解与交流【师】总结【板书/PPT】(1)确定性:集合中的元素必须是确定的,任何一个元素都能明确它是或不是某个集合的元素(2)互异性:集合中的元素必须是互不相同的(3)无序性:集合中的元素是无先后顺序的。

第一课时1.1.1集合的含义与表示I

第一课时1.1.1集合的含义与表示I

知识要 点
一般地,我们把研究对象统称为元素 (element); 把一些元素组成的总体叫做集合(set) (简称为集). 集合的三要素: 1.确定性:给定的集合,他的元素必须是确 定的,也就是说给定一个集合,那么任何一 个元素在不在这个集合中就确定了.
2.互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同. 3.无序性:集合中的元素是无先后顺序的,即 集合里的任何两个元素可以交换位置.
1.1.1 集合的含义 与表示
大写拉丁字母
A,B,C
A={1,2,3,…..} B={a,b,c,d,e}
学习目标: 1、集合的概念及表示, 2、集合的三要素 3,常用数集的表示 4、集合的表示方法
初中接触过的集合,还有印象吗? (1)正分数的集合; (2) x2-4=0的解集为2,-2 ;
那么集合的含义 (3)不等式 3x-2<4的解的集合; 是什么呢?接下来再 看一些例子. (4)到定点的距离等于定长的点的集合(即圆);
课堂小结
1.集合的有关概念
(集合、元素、属于、不属于、集合的三要 素、等集). 2.集合的三种表示方法 (列举法、描述法、文氏图共三种).
3.常用数集的定义及记法.
练习: P5 习题:若a,b为非零实数,那 |a| |b| 么 a b 的值组成的集合为— ——— 作业 : P11习题1.1 : 1,2, 3

(5)北京所有的麦当劳餐厅;
√ (8)函数y=x+1图像上的所有点; √
(7)不等式2x-3>0的所有解; (9)线段AB的垂直平分线上的所有点.



练习2 用符号“∊”或∉”填空:
∉ (1)3.14____Q;(2) π)0____N;

高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修14

高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修14
解:(1)因为A={x|x2-2x-15=0}={-3,5}, B={x|x2+x-6=0}={-3,2}. 所以A∩B={-3},A∪B={-3,2,5}.
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B,A∩B.
解:(2)将x≤-2或x>5及1<x≤7在数轴上表示出来, 据并集的定义,图中所有阴影部分即为A∪B, 所以A∪B={x|x≤-2,或x>1}. 据交集定义,图中公共阴影部分即为A∩B, 所以A∩B={x|5<x≤7}.
(2)并集的运算性质
性质 A∪B=B∪A (A∪B)∪C=A∪(B∪C)
A∪A=A A∪ = ∪A=A 如果 A⊆ B,则 A∪B=B A⊆ (A∪B),B⊆ (A∪B)
说明 并集运算满足交换律 并集运算满足结合律 集合与本身的并集仍为集合本身 任何集合与空集的并集仍为集合本身 任何集合与它子集的并集都是它本身 任何集合都是该集合与另一个集合的并集的子集
解:(2)①因为9∈(A∩B),所以9∈B且9∈A,所以2a-1=9或a2=9,所以 a=5或a=±3.检验知a=5或a=-3. ②因为{9}=A∩B,所以9∈(A∩B),所以a=5或a=-3.当a=5时,A={-4,9, 25},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去;当a=-3 时,A={-4,-7,9},B={-8,4,9},A∩B={9},满足题意. 综上可知a=-3.
解:如图,要使 S∪T=R,
则只需
a a
7 4, 1 2,
即-3≤a≤-1.
故 a 的取值范围为{a|-3≤a≤-1}.
一题多变2:本题(2)中,将集合A变为A={x|a-2≤x≤2a},其他条件不变, 求a的范围.

高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时课件

高中一年级数学必修1第一章 集合与函数的概念1.1 集合第一课时课件
集合中的元素是 互异的!
课堂探究
探究点2:集合中元素的性质.
(3)高一(4)班的全体同学组成一个集合,调 整座位后,这个集合有没有变化?
集合中的元素是 无序的!
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
在现代数学中,集合是一种简洁、高雅的数学语言,“一 切数学成果可建立在集合论基础上”这一发现使数学家们为 之陶醉.那么,我们怎样理解数学中的“集合”?
回顾旧知
在小学和初中,我们已经接触过一些集合: (1)自然数的集合; (2)有理数的集合;
(3)不等式 x 7 3的解的集合;
(4)到一个定点的距离等于定长的点的集合; (5)到一条线段的两个端点距离相等的点的集合 .................
数集的扩充过程
N*
或 N
正整数 集
N
自然数 集
Z
整数集
实数集
R
有理数 集
Q
练习1.下列指定的对象,能构成一个集合
的是
()
①很小的数 ②不超过 30的非负实数
③直角坐标平面的横坐标与纵坐标相等的点
④的近似值 ⑤高一年级很帅的男生
⑥所有无理数 ⑦大于2的整数
⑧全体正三角形
A. ②③④⑥⑦⑧ B. ②③⑥⑦⑧
4.集合元素的性质:
⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一.
⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}.
⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.

集合的概念

集合的概念

第一章集合与函数概念1.1 集合第一课时集合的含义与表示一、元素与集合1.定义:(1)元素:一般地,把所研究的____统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:一些元素组成的总体,简称为__,常用大写拉丁字母A,B,C,…表示.2.集合相等:指构成两个集合的元素是____的.*对集合相关概念的理解(1)集合的含义:集合是数学中不加定义的原始概念,我们只对它进行描述性说明,其本质是某些确定元素组成的总体.(2)元素:集合中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、所触摸到的、所能想到的各种各样的事物或一些抽象符号等,都可以看作集合的元素(3)整体:集合是一个整体,已暗含“所有”“全部”“全体”的含义,因此一些对象一旦组成集合,那么这个集合就是这些对象的全体,而并非个别对象.3.集合中元素的特性:______、______和_______.确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.说明:(1)根据集合中元素的确定性可知,对任何元素a和集合A,在a∈A和a∉A两种情况中有且只有一种成立.(2)符号“∈”和“∉”只是表示元素与集合之间的关系.4.元素与集合之间的关系(1)如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)如果a不是集合A的元素,就说a不属于集合A,记作a A【跟踪】(1)在一个集合中可以找到两个相同的元素.( )(2)漂亮的花组成集合.( )(3)本班所有的姓氏组成集合.( )(4)由3个不同的元素进行排序可以构成6个不同的集合.( )二、常用的数集及其记法非负整数集(即自然数集)记作:N正整数集:N*或 N+整数集Z有理数集Q实数集R例1:1.下列说法中正确的序号是 .①高一(四)班学习成绩较好的同学组成一个集合;②中国海洋大学2013级大一新生组成一个集合;③参加2012年伦敦奥运会的所有国家组成一个集合;④未来世界的高科技产品组成一个集合.2.判断下列说法是否正确,并说明理由.(1)1,0.5,31,52组成的集合含有四个元素.(2)方程x2+2x+1=0的解集中有两个元素.(3)组成单词china的字母组成一个集合.【变式训练】1.下列对象能组成集合的是( )A.充分小的负数全体B.爱好音乐的一些人C.某班本学期视力较差的同学D.某校某班某一天所有课程2.指出下列集合中的元素:(1)young中的字母组成的集合.(2)book中的字母组成的集合. 例2.元素与集合的关系1.下列所给关系中正确的个数是( )①π∈R;②∉Q;③0∈N*;④|-4|∉N*.A.1B.2C.3D.42.设直线y=2x+3上的点集为P,点(2,7)与点集P的关系为(2,7)_________P(填“∈”或“∉”).【变式训练】A中的元素集合A是由形如m∈Z,n∈Z)例3.集合中元素互异性的简单应用1.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为( )A.2B.3C.0或3D.0,2,3均可2.设由2,4,6构成的集合为A,若实数a满足a∈A时,6-a∈A,则a=_____________.【变式训练】1.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是( )A.1B.-2C.6D.22.已知集合A中含有两个元素a和a2,若1∈A,则实数a的值为( )A.1B.-1C.1或-1D.以上都不对3.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为( )A.0B.1C.-1D.1或-1课堂练习:1.下列各组对象中不能组成集合的是( )A.某科教文化股份有限公司的全体员工B.文化书店的所有书刊C.2013年考入清华大学的全体学生D.美国NBA的篮球明星2.设集合A只含一个元素a,则下列表示正确的是( )A.{a}≠AB.a∉AC.a∈AD.a=A3.若以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合为M,则M中元素的个数为( )A.1B.2C.3D.44.设A表示“中国所有省会城市”组成的集合,则:深圳_____A,广州_____A (填“∈”或“∉”).5.由实数x,-x所组成的集合中元素最多有 ________个.6.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.第2课时集合的表示集合的常用表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内。

第一课时:集合1

第一课时:集合1

§1.1集合的概念性质一.集合的有关概念⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。

2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3.集合相等:构成两个集合的元素完全一样。

4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P附近的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑴大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷方程x2+1=0的解;⑸某校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a 是集合A 中的元素,则称a 属于集合A ,记作a ∈A ;⑵若a 不是集合A 的元素,则称a 不属于集合A ,记作a ∉A 。

例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A ,4∉A ,等等。

集合的概念(第一课时,集合的含义)课件-2024-2025学年高一上学期数学人教A版必修第一册

集合的概念(第一课时,集合的含义)课件-2024-2025学年高一上学期数学人教A版必修第一册

【方法总结】求解此类问题必须要做到以下两点: ①熟记常见的数集的符号; ②正确理解元素与集合之间的“属于”关系.
知识总结
元素的特性:确定性、互异性、无序性.
元素与集合关系: 或 .
常见数集记其记法:
探究新知
问题2.由1,2,0,5,︱-2 ︳这些数组成的一个集合中有5个 元素,这种说法正确吗?
不正确.集合中只有4个不同元素1,2,0,5 .
集合中的元素是 互异的
集合中的元素是独一无二的,也就是说任意两个 元素都是互不相同的,所以可以得到集合中的元 素是互异的.
探究新知
问题3.高一(7)班的全体同学组成一个集合,调整座位后 这个集合有没有变化?
集合:一些 元素 组成的总体,简称集,常
用大写拉丁字母 A, B,C, 表示.
探究新知
问题1. 所有的高个子能否构成一个集合?
不能. 其中的元素不确定
集合中的元 素是确定的
高个子是一个含糊不清的概念,具有相对性,多 高才算高?没有明确的标准,也就是说,是一些 不能够确定的对象.因此,不能构成集合.
探究新知
已知下面的两个实例: (1)用A表示高一(7)班全体学生组成的集合.
(2)用a表示高一(7)班的一位同学,b 表示高一(5)
班的一位同学.
思考:那么 a,b 与集合A分别有什么关系?
a是集合A中的元素,
b不是集合A中的元素.
探究新知
元素a与集合A的关系
如果a是集合A的元素,就说a属于集合A,记作 a A ; 如果a不是集合A中的元素,就说a不属于集合A,记作a A.
例如:“1 10之间的所有偶数”组成的集合用A来表示,
则有4 A,3 A,等等.
探究新知

1.3 集合的基本运算(第一课时) 课件(共15张PPT)

1.3 集合的基本运算(第一课时)  课件(共15张PPT)

课堂小结
并集的概念: 一般地,由所有属于集合A或属于集合B的元素所组成的 集合,称为集合A与B的并集.记作:A∪B(读作:“A并B”)即: A∪B ={x|x∈A,或x∈ B}.
并集的性质:(1)A∪A=A; (2)A∪ =A; (3)若A⊆(A∪B),B⊆(A∪B); (4)若A⊆B,则A∪B=B,反之也成立
交集的概念:一般地,由所有属于集合A且属于集合B的元素组成的集合, 称为集合A与B的交集.记作:A∩B(读作:“A交B”) 即: A∩B ={ x | x ∈ A ,且 x ∈ B}.
交集的性质:(1)A∩A=A; (2)A∩ = ; (3)(A∩B)⊆B,(A∩B)⊆A; (4)若A⊆B,则A∩B=A,反之也成立.
解:A∩B就是立德中学高一年级中那些既参加百米赛跑又参加跳高 比赛的同学组成的集合.所以,
A∩B={x|x是立德中学高一年级既参加百米赛跑又参加跳高比赛的 同学}.
例题精讲
【例4】设平面内直线l1上的点的集合为L1, 直示线l1,l2上l2的点位的置集关合系为.L2,试用集合的运算表
解:(1)直线l1与直线l2相交于一点P可表示为:L1∩L2={P};
上述两个问题中,集合A、B和C之间都具有这样一种关系:集合C是 由所有属于A或属于集合B的元素组成的.
并集
一般地,由所有属于集合A或属于集合B的元素所
组成的集合,称为集合A与B的并集。
记作:A∪B(读作:“A并B”)
即:
A∪B ={ x | x ∈ A ,或 x ∈ B}
这说明:两个集合求并集,结果还是一个集合,是由集合A与B 的所有 元素组成的集合(由集合的互异性,重复元素只看成一个元素,不能重复写出).
思考
下列关系式成立吗? (1)A∪A=A;(2)A∪ =A

人教版高中数学必修一《1.3 第一课时 并集与交集》课件

人教版高中数学必修一《1.3 第一课时 并集与交集》课件

[典例1] (1)设集合A={1,2,3,4},B={y|y=2x-1,x∈A},则A∪B等于
()
A.{1,3}
B.{2,4}
C.{2,4,5,7}
D.{1,2,3,4,5,7}
(2)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q等于
()
A.{x|-1<x<2}
B.{x|0<x<1}
B={x||x|>1,x∈Z}={x|x>1或x<-1,x∈Z},所以A∩B={-2,2},故选D. 法二:A∩B={x|1<|x|<3, x∈Z}={x|-3<x<-1或1<x<3,x∈Z}={-2,2}. (2)在数轴上表示出集合M,N,如图所示,
由图知M∩N={x|-1<x<1}. [答案] (1)D (2)B
【课堂思维激活】 一、综合性——强调融会贯通 1.以下是甲、乙两位同学分别解“已知集合 A=y|y=x2-2x-3,x∈R,B=
{y|y=-x2+2x+13,x∈R },求 A∩B”的过程:
甲:解方程组
所以 A∩B=4,5,-2,5.
乙:解方程组
所以 A∩B={5}. 分析以上解题过程,请判断两位同学解答是否正确.若不正确,请给出正确的 解题过程.
所以

无解,所以 k∈∅.
所以实数 k 的取值范围为∅.
答案:∅
3 . 已 知 M = {1,2 , a2 - 3a - 1} , N = { - 1 , a,3} , M∩N = {3} , 则 实 数 a = ________. 解析:∵M∩N={3},∴3∈M,∴a2-3a-1=3,解得a=-1或4,当a=- 1时,N={-1,-1,3},与集合中元素的互异性矛盾,舍去.∴a=4. 答案:4

集合第一课时教案

集合第一课时教案

集合第一课时教案教学目标:(1)了解集合、元素的概念,以及集合中元素的三个特征;(2)理解元素与集合的关系;(3)掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:(一)集合的概念1.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

2.思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210x+=的解;(5)某校2007级新生;3.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),所以,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

4.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。

7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:例1.用“∈”或“∉”符号填空:(1)9 N;(2)0 N;(3)-3 Z;(4);(5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A 。

例2.已知集合P 的元素为21,,33m m m --, 若3∈P 且-1∉P ,求实数m 的值。

(三)课堂练习:课本P 5练习1;归纳小结:本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。

高一数学集合第一课时教案

高一数学集合第一课时教案

第一课时集合的概念及其表示方法教学目标:I.知识与技能:(1)通过实例,了解集合的含义。

(2)理解集合的确定性,互异性和无序性。

(3)体会元素与集合的“属于”关系。

II.过程与方法:通过讲练结合让学生在实践中突破重点和难点,让学生从现实意义上理解集合的作用。

III.情感态度与价值观:让学生重新审视数学的意义,进入高中阶段的数学思维中,并初步理解集合论的概念。

重点与难点:I.重点:(1)理解集合的性质与分类。

(2)辨别集合与元素之间的关系。

(3)了解特殊集合(4)列举法表示集合。

(5)描述法表示集合。

(6)图示法思维方式。

II.难点:(1)集合与不等式知识点的混合题型。

(2)∅与{}∅不同,∅∈{}∅(3)无限集的描述。

(4)Venn图读图。

教学过程:I.复习引入:(1)回顾数学学习的历程:从数域拓展到算法拓展。

(2)自行定义范围——引入集合概念。

II.集合元素的性质:(1)集合的定义。

一般地,研究对象统称为元素(element),我们通常用小写的拉丁字母a,b,c,d,……表示,这些元素组成的总体叫集合(set),也简称集,通常用大些的拉丁字母A,B,C,D,……表示。

(2)确定性。

对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(3)互异性。

任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(4)无序性。

集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

例1、判断下列一组对象是否属于一个集合(1)小于10的质数是(2)中国的小河流否(3)“maths”中的字母是(4)所有的偶数是 (5)满足3x-2>x+3的全体实数是 (6)方程210x x ++=的实数解 是III . 集合的分类:(1)按元素类型分——数集,点集,直线集……(2)按元素个数分——有限集,无限集,空集。

北师大版高中数学必修一《集合》第一课时课件

北师大版高中数学必修一《集合》第一课时课件
第一章 预备知识
§1 集合
第1课时 集合的含义
学习目标
1.通过实例理解集合的有关概念. 2.初步理解集合中元素的三个特性. 3.体会元素与集合的属于关系. 4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.
新课引入
“集合”是日常生活中的一个常用词,现代汉语解释为:许多的 人或物聚在一起.
集合中的元素没有前后顺序.
B.我市跑得快的汽车 确定性是判断一组对象能否构成集合的标准.
某单位所有的“帅哥”能否构成一个集合? 某单位所有的“帅哥”能否构成一个集合?
“快”的标准不确定
(6)新华中学2014年9月入学的所有的高一学生.
C.上海市所有的中学生 用小写拉丁字母a,b,c,…表示集合中的元素.
共同特点:都指“所有的”,即研究对象的全体.
探究点1 集合定义
集合定义 一般地,我们把研究对象统称为元素,把一些元素组成的总体
叫做集合(简称集).
探究点2 集合中元素的特征
【问题】任意一组对象是否都能组成一个集合?集合中的元素有什么 特征?请思考下列问题:
1. 某单位所有的“帅哥”能否构成一个集合? 不能
下列指定的对象,能构成一个集合的是( )
在一个给定的集合中能否有相同的元素?
(2){(1,2),(2,1)}={(2,1),(1,2)}
C.
重复元素只可算1个
个元素.
探究点4 集合的表示、常用数集
集合与元素的表示 通常用大写拉丁字母A,B,C,…表示集合, 用小写拉丁字母a,b,c,…表示集合中的元素.
C.
9月2日上午8时,高一年级的学生在
D.香港的高楼 ⑤所有无理数
(5)到直线l的距离等于定长d的所有的点. 此时集合A中含有两个元素3、1,符合题意;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合(第一课时)
➢教学重点:
1.集合的概念.
2.集合元素的三个特征.
➢教学难点:集合的概念和数集与数集关系.
➢教学方法:指导法
学生依集合的要求、集合元素的特征,在教师指导下,能自己举出符合要求的实例,加深对概念的理解、特征的掌握.
➢教学过程:
一、观察实例,进行讨论
⑴数组 1,3,5,7.
⑵到两定点距离的和等于两定点间距离的点.
⑶满足的全体实数3x-2> x+3.
⑷所有直角三角形.
⑸高一(3)班全体男同学.
⑹所有绝对值等于6的数的集合.
⑺所有绝对值小于3的整数的集合..
⑻中国足球男队的队员.
⑼参加2008年奥运会的中国代表团成员.
⑽参与中国加入WTO谈判的中方成员.
二、讨论完毕,教师归纳总结:
1、集合的定义
一般地,某些指定对象集在一起就成为一个集合(集)。

集合中每个对象叫做这个集合的元素.
上述集合的元素是什么?
例⑴的元素为1,3,5,7.
例⑵的元素为到两定点距离的和等于两定点间距离的点.
例⑶的元素为满足不等式3x-2> x+3的实数x.
例⑷的元素为所有直角三角形.
例⑸的元素为高一(3)班全体男同学.
例⑹的元素为-6,6.
例⑺的元素为-2,-1,0,1,2.
例⑻的元素为中国足球男队的队员.
例⑼的元素为参加2008年奥运会的中国代表团成员.
例⑽的元素为参与WTO谈判的中方成员.
请同学们举出三个例子,并指出其元素.
一般地来讲,用大括号表示集合.
例⑴{1,3,5,7}.
例⑵{到两定点距离的和等于两定点间距离的点}.
例⑶{3x-2> x+3的实解}.
例⑷{直角三角形}.
例⑸{高一(3)班全体男同学}.
例⑹{-6,6}.
例⑺{-2,-1,0,1,2}.
例⑻{中国足球男队的队员}.
例⑼{参加2008年奥运会的中国代表团成员}.
例⑽{参与中国加入WTO谈判的中方成员}.
2、集合元素的三个特征
问题及解释
⑴A={1,3}问3,5哪个是A的元素?
⑵A={所有素质好的人}能否表示为集合?
⑶A={2,2,4}表示是否准确?
⑷A={太平洋,大西洋},B={大西洋,太平洋}是否表示为同一集合?
教师指导
例⑴3是集合A的元素,5不是集合A的元素.例⑵由于素质好的人标准不可量化,故A 不能表示为集合.例⑶的表示不准确,应表示为A={2,4}.例⑷的A与B表示同一集合,因
其元素相同.
由此可知,集合元素具有以下三个特征:
⑴确定性
集合中的元素必须是确定的,也就是说,对于一个给定的集合,其元素的意义是明确的.
⑵互异性
集合中的元素必须是互异的,也就是说,对于一个给定的集合,它的任何两个元素都是不同的.
⑶无序性
集合中的元素是无先后顺序,也就是说,对于一个给定集合,它的任何两个元素都是可以交换的.
如上例⑴
元素与集合的关系有“属于∈”及“不属于∈”(∈也可表示为∈)两种.
如A={2,4,8,16} 4∈A 8∈A 32∈A.
请同学们考虑:A={2,4},B={{1,2},{2,3},{2,4},{3,5}}.
A与B的关系如何?
虽然A本身是一个集合.
但相对B来讲,A是B的一个元素.
故A∈B.
3、常见数集的专用符号
N:非负整数集(或自然数集)(全体非负整数的集合)
N*或N+:正整数集(非负整数集N内排除0的集合)
Z:整数集(全体整数的集合)
Q:有理数集(全体有理数的集合)
R:实数集(全体实数的集合)
请同学们熟记上述符号及其意义.
三、课堂练习
1、(口答)说出下面集合中的元素.
⑴ {大于3小于11的偶数}
其元素为4,6,8,10
⑵{平方等于1的数}
其元素为-1,1
⑶{15的正约数}
其元素为1,3,5,15
2、用符号∈或∈填空
1∈N0∈N-3∈N
1∈Z0∈Z-3∈Z 0.5∈Z
1∈Q0∈Q-3∈Q 0.5∈Q
1∈R0∈R-3∈R 0.5∈R 2∈R
四、本课小结
1.集合的概念中,“某些指定的对象”可以是任意的具体确定的事物,例如数、式、
点、形、物等.
2.集合元素的三个特征:确定性、互异性、无序性,要做到熟练运用.
五、课后预习
预习提纲:
1.集合的表示方法有几种?怎样表示?
2.集合如何分类?依据是什么?。

相关文档
最新文档