第三章-各向异性弹性力学基础
第三章 各向异性弹性力学基础
W 为 i 的正定二次型的充要条件是矩阵 S
的所有主要主子式大于零,即:
S11 0,
S11
S12
S 21 S 22
0, , det Sij 0
即:
S11 S 21 S 21 0 0 0
S12 S 22 S 23 0 0 0
S12 S 23 S 22 0 0 0
0 0 0 S 44 0 0
0 0 0 0 S 66 0
0 0 0 0 0 S 66
由工程应变形式的展开式为:2 12 4而 1 4 在x3变向时要变号,为保证W相同, 则有
S14 0
同理: S14 S 24 S 34 S 46 0
S15 S 25 S 35 S 56 0
独立常数减少为13个,即
S11 S12 S 22 S13 S 23 S 33 对 称 0 0 0 S 44 0 0 0 S 45 S 55 S16 S 26 S 36 0 0 S 66
Cij C ji 刚度矩阵 Sij S ji 柔度矩阵
*
各向异性体的弹性应变能为:
1 1 W C ij i j S ij i j 2 2
拉-拉耦合 (泊桑效 应)
拉剪耦 合
C11
C22
C33 C44 C55
二、有一弹性对称面(13个弹性常数)
弹性对称面:沿这些平面的对称方向弹性性 能是相同的。 材料主轴(或弹性主轴):垂直于弹性对称 面的轴。
Ch3各向异性弹性力学基础.
可以求解了吗?
定解还需边界条件!
给定力的边界条件(3)
xl xy m xz n X ,已知 yx l y m yz n Y ,已知 l m n Z ,已知 zy z zx
给定位移的边界条件(3)
u u ,已知 v v ,已知 w w,已知
之间的关系
各向异性弹性力学问题需满足的基 本方程
• 与各向同性弹性力学一样,各向异性弹性力 学有15个未知量
3个位移分量,u,v,w 6个应变分量, x , y , z , yz , xz , yx 6个应力分量, x , y , z , yz , xz , yx
• 15个场方程 静力平衡方程(3)+几何关系(6)+本构方程(6)
复合材料宏观力学分析的基本假设
• 1)所研究的各向异性弹性体为均质连续固体.
• 2)线弹性范围内,服从广义虎克定律. • 3)小变形
各向异性与各向同性弹性力学的基本方程的差别
• 差别在于:本构方程
• 其它平衡方程,几何方程,协调方程,和边界条件等 则完全相同. • 即用各向异性胡克定律代替各向同性胡克定律,这 一代换将使力学计算及反映的现象十分复杂.
柔度矩阵
刚度矩阵的性质一
1 C11 C 2 21 3 C31 4 C41 5 C51 C61 6 C12 C22 C32 C42 C52 C62 C13 C23 C33 C43 C53 C63 C14 C24 C34 C44 C54 C64 C15 C25 C35 C45 C55 C65 C16 1 C26 2 C36 3 C46 4 C56 5 C66 6
各向异性弹性力学(课堂PPT)
17
有的文献中定义应力“列矢量”为
1 11
2 22
3 33
4 23
5 31
6 12
应变“列矢量”为
1 11
4 223
2 22
5 231
3 33
6 212
注意: 4 , 5 , 6 就是剪切角 2 3 , 3 1 , 1 2 。 18
于是可以把弹性本构关系写成:
i Cij j
量,L理解为弹性刚度张量;也可以理解为矩阵等式, ,
理解为应力列矢量和应变列矢量,[L]理解为弹性刚度矩
阵。L与M具有Voigt对称性,因此矩阵L与M为9列9行的
对称矩阵。
15
由于应力张量与应变张量都是对称张量。(2-2)式
中的列矢量 与 的第4行与第5行相同,第6行与第7行 相同,第8行与第9行相同。弹性刚度矩阵 L 与柔度矩阵 M
L1133 L2233 L3333 L2333 L3133 L1233
L1123 L2223 L3323 L2323 L3123 L1223
L1131 L2231 L3331 L2331 L3131 L1231
L1112
L2212
L3312 L2312
L3112
L1212
M1111
M2211
图2-1 25
斜面BCD的外法线为N,令N的方向余弦为:
则有
cos(N , x) 1
c
o
s
(
N
,
y)
m
c o s ( N , z ) n
(dF)x ldF (dF)y mdF (dF)z ndF
式中,( d F ) 、( d F ) x 、( d F ) y 、( d F ) z 依次为三角形BCD、ACD、 ABD、ABC的面积。令四面体微元的体积为dV,斜面 BCD上应力向量在坐标方向上的分量为P N x 、P N y 、P N z ,则
复合材料力学-各向异性弹性力学基础
复合材料的弹性模量取决于增强相和基体相的弹性模量以及它们之 间的界面结合强度。
强度和韧性
复合材料的强度和韧性取决于增强相的分布、数量和尺寸,以及它 们与基体相之间的界面结合强度。
04
复合材料的各向异性弹性力学分析
复合材料的弹性常数
弹性常数是复合材料在受到外力作用时表现出的刚 度特性,描述了复合材料的应力与应变之间的关系 。
与单一材料的应力-应变关系不 同,复合材料的应力-应变关系 通常是非线性的,因为它们由 多种材料组成,且各组分材料 的性质和排列方式可能不同。
复合材料的应力-应变关系需要 通过实验测定,因为它们的数 值取决于复合材料的微观结构 和组成。
复合材料的本构方程
本构方程是描述复合材料在受到外力作用时如何响应的数学模型,即描述 了复合材料在不同外力作用下的应力和应变的变化关系。
各向异性材料的分类
按来源分类
天然各向异性材料(如木材、 骨骼等)、人造各向异性材料 (如复合材料、玻璃纤维增强 塑料等)。
按结构分类
晶体各向异性材料、纤维增强 各向异性材料、织物增强各向 异性材料等。
按对称性分类
单轴各向异性材料、正交各向 异性材料、各项同性材料等。
各向异性弹性力学的基本方程
01
汽车零部件
复合材料还用于制造汽车中的各种 零部件,如刹车片、气瓶和油箱等, 以提高其耐久性和安全性。
汽车轻量化
复合材料的轻质特性使其成为汽车 轻量化的理想选择,有助于提高车 辆的燃油效率和动力性能。
建筑领域的应用
建筑结构加固
复合材料可以用于加固建 筑结构,提高其承载能力 和耐久性,如桥梁、大坝 和高层建筑等。
未来研究方向
进一步深入研究复合材料的各向异性性质,探索 其在不同环境和载荷条件下的行为和性能。
第2章 各向异性材料弹性力学基础_2017_19990
The basic questions of lamina macromechanics are: (1) what are the characteristics of a lamina? and (2) how does a lamina respond to applied stresses as in Figure 2-1?
• 平衡方程 σ ij , j + fi = 0 i, j = 1,2,3
展开一个方程:
∂σ x ∂x
+
∂τ xy ∂y
+
∂τ xz ∂z
+
f
= 0x
• 运动方程:
σ ij , j +
fi = ρ
∂ 2u ∂t 2
惯性力
指标重复服从加法约定
平衡方程
⎧ ⎪ ⎪
∂σ x ∂x
+
∂τ xy ∂y
+
∂τ xz ∂z
线性弹性力学中的六个应变分量εij之 间必须满足的微分方程。 六个应变分 量εij是由三个位移分量导出的,它们 彼此之间存在一定的内在联系,这些 联系就是应变协调方程。
• (i, j 交换)共有六个方程,六个应变分量应该 满足的一个关系,即:
ε ε ε ε + = + ij,kl
kl,ij
ik, jl
几何关系方程
εx
=
∂u ∂x
,
εy
=
∂v ∂y
,
εz
=
∂w ∂z ,
γ yz
=
∂w ∂y
+
∂v ∂z
;
γ zx
=
复合材料及其结构的工程力学-课后习题
G12 GPa
98.07 38.60
8.83 8.27
5.20 4.14
试分别求应力分量为 1 =400Mpa, 2 =30Mpa, 12 =15Mpa 时的应变分量。
6. 一单层板受力情况, x = -3.5Mpa, y =7Mpa, xy = -1.4Mpa,该单层板弹性
别用最大应力理论、Tsai-Hill 强度理论和 Tsai-Wu 强度理论校核该单层的强度。
9. 有一单向板,其强度特性为 X t =500Mpa, X c =350Mpa, Yt =5Mpa, Yc =75Mpa,
S =35Mpa, 其受力特性为 x = y =0 , xy = 。试问在偏轴 45o 时,材料满足
复合材料及其结构力学
课后习题及作业题
第 1 章 绪论
1.复合材料的优缺点及其分类。 2.相关基本概念。
第 2 章 各向异性弹性力学基础
H2A-书上习题 1. P44 T2-2 试证明 12 的界限不等式成立。
2. P44 T2-3 试由下不等式证明各向同性材料的泊松比满足
1 。 (已知 1 ) 2
常数为 E1 =14Gpa,Байду номын сангаасE2 =3.5Gpa, G12 =4.2Gp, 21 =0.4, =60o,求弹性主轴上的应 力、应变,以及偏轴应变。
7. 一单层板受力情况, x = -3.5Mpa, y =7Mpa, xy = -1.4Mpa,该单层板强度
X t =250Mpa, X c =200Mpa, Yt =0.5Mpa, Yc =10Mpa, S =8Mpa, =60o ,分别按
2. 有一单向复合材料薄壁管,平均直径 R0 =25mm,壁厚 t =2mm,管端作用轴向
弹性力学基础(程尧舜_同济大学出版社)课后习题解答(完整资料).doc
【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】习题解答第二章2.1计算:(1)piiqqjjkδδδδ,(2)pqi ijkjke e A ,(3)ijp klpkilje e B B 。
解:(1)piiqqjjkpqqjjkpjjkpkδδδδδδδδδδ===;(2)()pqi ijk jk pj qk pk qj jk pq qpe e A A A A δδδδ=-=-;(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ije e B B B B B B B B δδδδ=-=-。
2.2证明:若ij ji a a =,则0ijk jke a =。
证:20ijk jk jk jk ikj kj ijk jk ijk kj ijk jk ijk jki e a e a e a e a e a e a e a ==-=-=+。
2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
2.4设a 、b 、c 和d 是四个矢量,证明:()()()()()()⨯⋅⨯=⋅⋅-⋅⋅a b c d a c b d a d b c证:()()ij ijkk l m lmn n i j l m ijk lmk a b ec d e a b c d e e ⨯⋅⨯=⋅=a b c d e e【最新整理,下载后即可编辑】图2.4)(jmim jl δδ-=()()()()=⋅⋅-⋅⋅a c b d a d b c 。
Ch3各向异性弹性力学基础解读
各向异性弹性力学问题需满足的基 本方程
• 与各向同性弹性力学一样,各向异性弹性力 学有15个未知量
3个位移分量,u,v,w 6个应变分量, x , y , z , yz , xz , yx 6个应力分量, x , y , z , yz , xz , yx
• 15个场方程 静力平衡方程(3)+几何关系(6)+本构方程(6)
可以求解了吗?
定解还需边界条件!
给定力的边界条件(3)
xl xy m xz n X ,已知 yx l y m yz n Y ,已知 l m n Z ,已知 zy z zx
给定位移的边界条件(3)
u u ,已知 v v ,已知 w w,已知
1 C11 C 2 21 3 C31 4 C41 5 C51 C61 6 C12 C22 C32 C42 C52 C62 C13 C23 C33 C43 C53 C63
36个 刚度矩阵
w v zy y z
w u zx x z
yx
u v y x
本构方程(6)
反映出材料 的性质!
6个应变分量, x , y , z , yz , xz , yx
与
6个应力分量, x , y , z , yz , xz , yx
S12 S22 S32 S42 S52 S62
S13 S23 S33 S43 S53 S63
S14 S24 S34 S44 S54 S64
S15 S25 S35 S45 S55 S65
S16 1 S26 2 S36 3 S46 4 S56 5 S66 6
各向异性弹性力学课件
开发更先进的实验设备和方法,提高测 试精度和效率
深入研究各向异性材料的微观结构和性 能关系
在实际工程中考虑各向异性材料的性能 特点,确保结构安全和稳定性
06
各向异性弹性力学的案例 分析
案例一:高层建筑结构的各向异性分析
总结词
高层建筑结构的各向异性分析是各向异性弹性力学的重要应用之一,主要研究高层建筑在不同方向上的刚度和强 度表现。
03 02
实验设备与实验方法
01
将样本固定在测试仪上
02
通过计算机控制系统施加不同方向的应力
实时采集数据并进行分析
03
实验结果与分析
实验结果
1
2
不同方向上的弹性模量存在差异
3
应变分布不均匀,与方向相关
实验结果与分析
01
泊松比随方向变化而变化
02
结果分析
03
各向异性材料的弹性性质与晶体结构密切相关
。
各向异性弹性力学的发展历程
03
早期研究
理论发展
应用领域拓展
各向异性弹性力学的研究始于19世纪中 叶,当时主要关注天然材料的各向异性性 质。
20世纪初,随着复合材料和金属材料的 广泛应用,各向异性弹性力学的理论得到 进一步发展和完善。
随着科技的进步,各向异性弹性力学在航 空航天、土木工程、机械制造等领域得到 广泛应用,为解决复杂问题提供了重要的 理论支持。
复杂材料行为
各向异性弹性材料在不同方向上 表现出不同的弹性性质,导致其 力学行为非常复杂,难以用传统
弹性力学理论描述。
缺乏统一理论框架
目前缺乏一个统一的数学理论框 架来描述各向异性弹性材料的本 构关系、边界条件和应力分析。
弹性力学基础知识
整理课件
29
静力(面力)边界条件
➢ 静力边界条件:结构在边界上所受的面力与应力分量之间 的关系 。
➢ 由于物体表面受到表面力,如压力和接触力等的作用, 设
单位面积上的面力分量为Fsx、Fsy和Fsz ,物体外表面法线n 的方向余弦为l,m,n。参考应力矢量与应力分量的关系,
可得
整理课件
19
微分体的应力分量和应变分量
整理课件
20
位移
弹性体变形实际上是弹性体内质点的位置变化,质点位置 的改变称为位移(displacement)。位移可分解为x、y、z 三个坐标轴上的投影,称为位移分量。沿坐标轴正方向的 位移分量为正,反之为负。
位移的矩阵表示为
弹性体发生变形时,各质点的位移不一定相同,因此位移 也是x、y、z的函数。
σy
应力
应力分量
符号规定: 图示单元体面的法线为y,称为y面,应力分量垂直于单元 体面的应力称为正应力。 正应力记为 ,沿y轴的正向为正,其下标表示所沿坐标轴 的方向。
平行于单元体面的应力称为切应力,用τyx 、τyz表示,其
第一下标y表示所在的平面,第二下标x、y分别表示沿坐
标轴的方向。如图示的τyx、τyz
整理课件
14
应力
其中一部分对另一部分的作用,表现为内力,它们是分布在 截面上分布力的合力。
取截面的一部分,它的面积为ΔA,
ΔQ
作用于其上的内力为ΔQ,
ΔA
平均集度为ΔQ/ΔA,其极限
S lim Q A
为物体在该截面上ΔA点的应力。
整理课件
15
应力
通常将应力沿垂直于截面和平行于截面两个方向分解为
整理课件
第3章 弹性力学基础知识-1弹性力学的平衡
3.2 弹性力学的几个基本概念
3.2.3 一点的应力状态 1.概念 . 把经过物体内任意一点各个截面上的应力状况叫做一点的应力状 态。 2.一点的应力状态 . 假设已知弹性体内任意一点P的 假设已知弹性体内任意一点 的 6个应力分量 σ 6个应力分量: x , σ y , σ z , τ xy , τ yz , τ xz , 个应力分量: 则可以确定经过P点的任一斜面上的 则可以确定经过 点的任一斜面上的 应力。 应力。 如图3.3所示 所示, 如图 所示,在P点附近取一平 点附近取一平 图3.3 斜面应力 与给定斜面平行, 面ABC与给定斜面平行,且该平面 与给定斜面平行 与经过P点而垂直于坐标轴的三个平面形成微小的四面体 点而垂直于坐标轴的三个平面形成微小的四面体PABC, 当ABC 与经过 点而垂直于坐标轴的三个平面形成微小的四面体 无限接近于P点时,平面 上的应力无限接近于斜面上的应力。 无限接近于 点时,平面ABC上的应力无限接近于斜面上的应力。 点时 上的应力无限接近于斜面上的应力
各向异性弹性力学
THANKS
感谢您的观看
泊松比等。
各向异性弹性力学广泛应用于工程领域,如建筑、机械、航空
03
航天等。
研究背景和意义
随着科技的发展,各向异性材料在工程中的应用越来越广泛,如复合材料、功能材 料等。
各向异性材料的复杂力学行为需要精确的数学模型来描述,因此研究各向异性弹性 力学具有重要的理论意义和应用价值。
各向异性弹性力学的研究有助于深入理解材料的力学行为,为工程设计和优化提供 理论支持。
建筑结构的各向异性分析
总结词
建筑结构的各向异性分析是利用各向异性弹性力学理论,对 建筑结构在不同方向上的受力特性进行详细分析和评估的过 程。
详细描述
在建筑结构设计中,由于材料、结构和构造等因素的影响, 结构在不同方向上可能会表现出不同的力学特性。各向异性 弹性力学提供了对这种复杂行为的数学描述,帮助工程师更 准确地预测和评估建筑结构的性能。
各向异性弹性力学与其他领域的交叉研究
各向异性材料与生物医学 工程
研究各向异性材料在生物医学工程中的应用 ,如组织工程和再生医学,为个性化医疗和 人体植入物的发展提供理论和技术支持。
各向异性材料与环境工程
探讨各向异性材料在环境工程中的应用,如 土壤和地下水污染修复、生态修复和防洪减 灾等,以提高环境工程的效率和可持续性。
05
各向异性弹性力学 的未来研究方向
高性能各向异性材料的开发
高强度各向异性复合材料
利用先进的制备技术,开发具有高强度 、高刚度和优异耐久性的各向异性复合 材料,以满足航空航天、汽车和体育器 材等领域对高性能材料的需求。
VS
多功能各向异性材料
探索新型的多功能各向异性材料,如具有 电磁、热学和光学等多功能的材料,为未 来智能设备和新能源领域的发展提供有力 支持。
第三章-各向异性弹性力学基础
6个独立等式:
2 x 2 y 2 xy
y 2 x2 xy
2 y 2 z 2 yz
z2 y2 yz
2 z
x 2
2 x
z 2
2 zx
zx
( zx xy yz ) 2 2 x
x y z x yz
( xy yz zx ) 2 2 y
y z x y zx
( yz zx xy ) 2 2 z
2(1 23 )
故只有5个独立常数:
E1, E2 , 21(或 12), G12 , G(23 或 23)
即:
S11 S12 S12 0 0 0
S21 S 22 S 23
0
0
0
S021
S 23 0
S 22 0
0 S 44
0 0
0
0
0
0
0
0
S 66
0
0 0 0 0 0 S66
由工程应变形式的展开式为:
1轴沿纤维方向,并有 ij ji ,而是
ij ji 即 ij 没有对称性。
E j Ei
Sij 可展开为:
四、横观同性(5个弹性常数)
纤维在横截面内随机排列的,宏观而言, 其在横向的所有方向的弹性性能相同,则称为 横向同性。由于横向同性,则在2-3平面内应为 各向同性,则有
G23
E2
1 S13 3; 2 S23 3; 3 S33 3;
4 23 0 5 31 0 6 12 S36 3
此公式说明:当沿弹性主轴拉伸时,除纵向伸 长、横向收缩外,还会引起与主轴垂直的面内 剪应变,且弹性主轴方向不变。
三、正交各向异性(9个弹性常数)
正交各向异性是指有三个互相正交的弹性主轴 的情况。(有三个互相正交的弹性对称面) 取 x1, x2 , x3 为三个正交弹性主轴,如图所示:
PPT-1.各向异性体弹性力学基础
τyz B
C
O
σz
y
x
二.平衡微分方程
平衡微分方程
x yx zx X 0 x y z xy y zy Y 0 x y z xz yz z Z 0 x y z
m 2 m3 m3 m1 m1 m2
n 2 n3 n3 n1 n1 n2
x ' T x
x 2l 2 m2 y 2l3 m3 z l 2 m3 l3 m2 yz l3 m1 l1 m3 zx l1 m2 l 2 m1 xy 2l1 m1
2 m2 2 m3
n12
2 n2 2 n3
2m1 n1 2m 2 n 2 2 m3 n 3 m 2 n 3 m3 n 2 m3 n1 m1 n3 m1 n2 m2 n1
2n1l1 2n 2 l 2 2 n3 l 3 n 2 l 3 n3 l 2 n3 l1 n1l3 n1l 2 n2 l1
第1章
各向异性体弹性力学基础
I. 弹性力学的基本假设
假设 内容 数理应用 应力、应变和位 移是连续的,可 表示成坐标的连 续函数,可运用 连续和极限的概 念。 适用条件 与复材性质 矛盾的处理
连续性
组成物体的质点间 不存在任何空隙。
微粒尺寸及各 微粒间距远小于 物体的几何尺寸。
均匀性
所研究的物体由同 一类型的均匀材料 组成,故各部分的 物性相同,不随坐 标位置而变化。
IV. 应力和应变的关系
一.广义虎克定律
以应力表示应变
x S11 y S 21 z S 31 yz S 41 zx S 51 xy S 61 S12 S 22 S 32 S 42 S 52 S 62 S13 S 23 S 33 S 43 S 53 S 63 S14 S 24 S 34 S 44 S 54 S 64 S15 S 25 S 35 S 45 S 55 S 65 S16 x S 26 y S 36 z S 46 yz S 56 zx S 66 xy
复合材料力学课件第02章-各向异性弹性力学基础
通过研究复合材料的损伤演化机制和 破坏准则,可以预测和防止在使用过 程中出现的损伤和破坏,提高复合材 料的安全性和可靠性。
优化设计
利用各向异性弹性力学理论,可以对 复合材料的铺层角度、厚度等进行优 化设计,以实现最佳的力学性能和功 能特性。
各向异性弹性力学在其他领域的应用
生物医学工程
在人工关节、牙科植入物等生物医学 工程领域,各向异性弹性力学理论被 用于模拟和预测材料的生物相容性和 力学性能。
边界条件和载荷的复杂性
由于各向异性材料的特性,其边界条件和所受的 载荷也相对复杂,需要细致考虑。
3
数值模拟的困难性
由于各向异性材料的复杂性,数值模拟方法需要 更高的精度和稳定性,以准确模拟其力学行为。
各向异性弹性力学的发展趋势与展望
发展更高效的数值分析方法
针对各向异性材料的特性,发展更高效、精确的数值分析方法, 如有限元法、边界元法等。
详细描述
边界条件和初始条件是确定弹性力学问题解的重要因素。边界条件描述了材料边 界上的应力分布,而初始条件描述了材料在初始时刻的应力状态。这些条件对于 确定材料的响应至关重要。
各向异性弹性常数及其物理意义
总结词
描述各向异性弹性材料的五个独立弹 性常数及其物理意义。
详细描述
各向异性弹性材料的五个独立弹性常数包括三 个主剪切模量G1、G2、G3,一个主压剪切模 量G12,以及一个主压模量K1。这些弹性常数 分别描述了材料在各个方向上的剪切和压缩行 为,对于理解材料的力学性能和预测其响应具 有重要意义。
平衡方程
总结词
描述各向异性弹性材料在受到外力作用时内部应力和应变之间的平衡关系。
详细描述
平衡方程是描述材料内部应力分布的微分方程,它基于连续介质力学原理,即 在一个封闭的体积中,应力矢量的散度为零。平衡方程是建立各向异性弹性力 学方程的基础。
第3章 弹性力学基础知识
平衡方程:
3.3 弹性力学的基本方程之平衡方程
三维问题微元体的平衡: 平衡方程:
xy yx , xz zx , zy yz
弹性力学基本方程
平 衡 方 程
yx s x zx fx 0 x y z xy s y zy fy 0 x y z yz xz s z fz 0 x y z
工程材料的特点
• 金属材料——晶体材料,是由许多原子,离子 按一定规则排列起来的空间格子构成,其中间 经常会有缺陷存在。 • 高分子材料——非晶体材料,由许多分子的集 合组成的分子化合物。 • 工程材料内部的缺陷、夹杂和孔洞等构成了固 体材料微观结构的复杂性。
弹性力学的基本假定
五个基本假定: 1、连续性(Continuity) 2、线弹性(Linear elastic) 3、均匀性(Homogeneity) 4、各向同性(Isotropy) 5、小变形假定(Small deformation)
x 0 x y 0 z xy y yz zx 0 z 0 y 0 x z 0 0 0 u z v 0 w y x
弹性力学的基本假定
1、连续性(Continuity)
整个物体的体积都被组成这个物体的介质所填 满, 不留任何空隙.即,各个质点之间不存在任何 空隙 好处:物体内的物理量,例如应力形变和应变, 才可能是连续的, 才可以用连续函数来表示;
——宏观假设
弹性力学的基本假定
2、线弹性(Linear elastic)
L:微分算子
Lu
Ch3各向异性弹性力学基础
从宏观力学分析角度看,复合材料可被视作均质各向 异性材料。(没有绝对的均质材料,如离散原子在空 间的密度就不均匀,可以视作连续和均质是因为所研 究系统的尺度远大于材料不均匀变化波长。)
各向异性是复合材料宏观力学的最重要特征!
复合材料的各向异性可能来源于两个方面 • 增强相排布的方向性 • 增强相和基体相本身的各向异性
12
E2
13
E3
0 0 0 1 G23 0 0
0 0 0 0 1 G31 0
1 E2
23
E3
32
E2 0 0 0
1 E3 0 0 0
0 0 0 0 0 1 G12
当只在j方向作用正应力时 i i ij Sij E j j j / Ej
第三章
各向异性弹性力学基础
第一节
简介
以往所学的材料力学与弹性力学的研究对象主要 是均质、各向同性材料 什么是均质材料? • 均质材料是指材料内部各个不同物质点(或空间坐 标)的性质相同,如弹性模量 什么是各向同性材料?
•各向同性材料是指材料沿不同方向的性质相同(图)
从细观上看,复合材料是异质材料,因为材料中的增 强相和基体相的材料性质不同,所以复合材料细观力 学要反映出这种非均质性。
x2
正交各向异性(三个互相正交的弹性对称面) (9个 弹性常数)(13-4)
没有拉压 剪切耦合 现象
1 S11 S12 S13 S22 S23 2 3 S33 4 5 对称 6
对于各向异性材料的柔度矩阵或刚度矩阵, 其分量是和坐标方向选取有关!!! 可以从两方面理解:1 张量的分量、2 以单 拉为例
第三章各向异性弹性力学基础
Sij 可展开为:
四、横观同性(5个弹性常数)
纤维在横截面内随机排列的,宏观而言, 其在横向的所有方向的弹性性能相同,则称为 横向同性。由于横向同性,则在2-3平面内应为 各向同性,则有 E2 G23 2(1 23 )
故只有5个独立常数:
E1 , E2 , 21(或 12), 23) G12 , G (或 23
纤 维 在 横截 面 内 按矩形排列的单向纤 维复合材料,宏观而 言则是一正交异性体。 共有9个弹性常数:
E1 , E2 , E3 , 12 , 31 , 23 , G23 , G31 , G12
1轴沿纤维方向,并有
ij ji
,而是
ij
Ej
ji
Ei
即 ij 没有对称性。
共有81个方程,但只有6个是不同的,其余的 不是恒等式就是由于 ij 的对称性而都是重复 的。 6个独立等式: 2 2 2 xy x y
y
2
z 2 2 z y yz
2
y 2 yz
2
x
2
xy
2 2
z x zx 2 2 x z zx
S16 S 26 S 36 S 45 0
即: S11 S12 S13
S 22 S 23 S 33 对 称 0 0 0 S 44 0 0 0 0 S 55 0 0 0 0 0 S 66
由此可得:1)当采用材料主轴来描述正交异性 体时,没有任何拉剪耦合现象;2)在非材料主 轴系里,正交异性材料仍有耦合现象。
如果 3 0 ,其余应力分量为零,则有:
1 S13 3 ; 2 S 23 3 ; S ; 33 3 3
复合材料力学_各向异性弹性力学基础
为保证W值不变,将含有xz和yz(4与 5)一次项的Cij置为零,只剩下13个独立 变量。
C 11 C 12 C 13 C 0 0 C 16 C 12 C 13 C 22 C 23 C 23 C 33 0 0 0 0 0 0 0 0 0 0 C 16 C 26 C 36 0 0 C 66
横观各向同性材料
0 C 11 C 12 C 13 0 C C C 0 0 12 11 13 C 13 C 13 C 33 0 0 C 0 0 C 44 0 0 0 0 0 0 C 44 0 0 0 0 0 1 C11 C12 2 0 0 0 0 0
完全各向异性 具有一个弹性对称面的材料 正交各向异性材料 横观各向同性材料 各向同性材料
§2.2
x 1 y 2 z 3 应力 yz 4 zx 5 xy 6
应变
yz zx xy
x 1 y 2 z 3 2 yz 4 2 zx 5 2 xy 6
C 44 C 45 C 45 C 55 0 0
C 26 C 36
有一个弹性对称面的材料
同理:
S11 S 12 S13 s 0 0 S16 S12 S 22 S 23 0 0 S 26 S13 S 23 S 33 0 0 S 36 0 0 0 S 44 S 45 0 0 0 0 S 45 S 55 0 S16 S 26 S 36 0 0 S 66
2.2.4各向同性材料
C11 C12 C12 C12 C11 C12 C12 C12 C11 C 0 0 0 0 0 0 0 0 0 0 0 0 1 C11 C12 2 0 0 0 0 0 0 1 C11 C12 2 0 0 0 0 0 1 C11 C12 2 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W 为 i 的正定二次型的充要条件是矩阵 S
的所有主要主子式大于零,即:
S11 0,
S11
S12
S 21 S 22
0, , det Sij 0
五、各向同性(2个弹性常数) E G E, 2(1 )
S11 S 12 S12 0 0 0 S12 S11 S12 0 0 0 S12 S12 S11 0 0 0 0 0 0 2( S11 S12 ) 0 0 0 2( S11 S12 ) 0 0 0 2( S11 S12 ) 0 0 0 0 0 0
Sij 可展开为:
四、横观同性(5个弹性常数)
纤维在横截面内随机排列的,宏观而言, 其在横向的所有方向的弹性性能相同,则称为 横向同性。由于横向同性,则在2-3平面内应为 各向同性,则有 E2 G23 2(1 23 )
故只有5个独立常数:
E1 , E2 , 21(或 12), G12 ,G23 (或 23)
三、正交各向异性(9个弹性常数)
正交各向异性是指有三个互相正交的弹性主轴 的情况。(有三个互相正交的弹性对称面)
取 x1 , x2 , x3 为三个正交弹性主轴,如图所示:
由a)、b)两坐标系中计算的应变能应该 相同,而在两坐标系下:
31 , 12 , 31 , 12(即 5 , 6 , 5 , 6 )变号,可得:
xy
yz
前三个分别是xy,yz,zx平面内的3个应变量间 的协调关系;而后三者则分别是正应变和3个切 应变之间的协调关系。
3、边界条件 * 力边界条件: ij ni Ti (在S )
位移边界条件: ui ui (在Su )
*
4、各向异性本构方程(小变形) (i, j 1,2,,6) i Cij j 及 i Sij j
E1 E 2 E 3 , 12 G G G 23 12 1 1 [ 1 ( 2 3 )] E 2 2 3 1 3 1 2 3 1 23 23 31 G 31 12 12
六、弹性常数的取值范围
S16 S 26 S36 S 45 0
即: S11 S12 S13
S 22 S 23 S 33 对 称 0 0 0 S 44 0 0 0 0 S 55 0 0 0 0 0 S 66
由此可得:1)当采用材料主轴来描述正交异性 体时,没有任何拉剪耦合现象;2)在非材料主 轴系里,正交异性材料仍有耦合现象。
C66
剪-剪耦 合
§3-2 各向异性弹性力学的本构方程
一、完全各向异性(21个弹性常数)
1 S11 1 S12 2 S13 3 S14 4 S15 5 S16 6
其中Sij为柔度系数,4、5和6即为剪应 力23、31和12。可见各向异性体一般具有耦 合现象:正应力引起剪应变,剪应力也可以 引起正应变;反之亦然。
ij, j f i 0
分量形式为:
(i, j 1,2,3)源自 x xy xz X 0 x y z yx x y y yz z Y 0
zx zy z Z 0 x y z
2、几何关系(小变形)
即:
S11 S 21 S 21 0 0 0
S12 S 22 S 23 0 0 0
S12 S 23 S 22 0 0 0
0 0 0 S 44 0 0
0 0 0 0 S 66 0
0 0 0 0 0 S 66
由工程应变形式的展开式为:
第三章 各向异性弹性力学基础
§3-1 各向异性弹性力学基本方程
基本未知量: 位移分量:u, v, w
应变分量: x , y , z , yz , zx , xy 应力分量: x , y , z , yz , zx , xy
基本方程: 1、平衡方程
1、对于各向同性,可推得: 1 1 E0 2 1 实际上一般为: 0 2 2、对于正交各向异性,有:
E1 , E2 , E3 , G23 , G31 , G12 0
1 E1 对称
12
E2 0 1 E2
,…… 等等
作业:
1.推导正交各向异性材料柔度矩阵为 零的分量; 2.推导正交各向异性材料中各个常数 的取值范围。
共有81个方程,但只有6个是不同的,其余的 不是恒等式就是由于 ij 的对称性而都是重复 的。 6个独立等式: 2 2 y 2 xy x
y
2
x
2
xy
2 2
y
2
z 2 2 z y yz
2 2
yz
z x zx 2 2 x z zx
纤 维 在 横截 面 内 按矩形排列的单向纤 维复合材料,宏观而 言则是一正交异性体。 共有9个弹性常数:
E1 , E2 , E3 , 12 , 31 , 23 , G23 , G31 , G12
1轴沿纤维方向,并有
ij ji
,而是
ij
Ej
ji
Ei
即 ij 没有对称性。
2
x zx ( )2 x y z x yz xy yz zx 2 y ( )2 y z x y zx yz zx xy 2 z ( )2 z x y z xy
2
2 1
2 4
而 1 4 在x3变向时要变号,为保证W相同, 则有
S14 0
同理: S14 S 24 S 34 S 46 0
S15 S 25 S 35 S 56 0
独立常数减少为13个,即
S11 S12 S 22 S13 S 23 S 33 对 称 0 0 0 S 44 0 0 0 S 45 S 55 S16 S 26 S 36 0 0 S 66
如果 3 0 ,其余应力分量为零,则有:
1 S13 3 ; 2 S 23 3 ; S ; 33 3 3
4 23 0 5 31 0 6 12 S36 3
此公式说明:当沿弹性主轴拉伸时,除纵向 伸长、横向收缩外,还会引起与主轴垂直的 面内剪应变,且弹性主轴方向不变。
1 ij (u i , j u j ,i ) 2
分量形式为:
u x x
yz
zx
w v y z
u w z x
v y y
w z z
xy
v u x y
变形协调方程:六个应变分量应该满足的一 个关系,即 ij,kl kl,ij lj,ki ki,lj 0 (i, j, k , l 1,2,3)
二、有一弹性对称面(13个弹性常数)
弹性对称面:沿这些平面的对称方向弹性性 能是相同的。 材料主轴(或弹性主轴):垂直于弹性对称 面的轴。
利用两个方向下材料的应变能密度表达式 应保持不变(即利用两个坐标系计算得到的单 位体积应变能的结果是相同的)可以推得: 设仅有 1 , 4 ,即有
W S11 2S14 1 4
Cij C ji 刚度矩阵 Sij S ji 柔度矩阵
各向异性体的弹性应变能为:
1 1 W C ij i j S ij i j 2 2
拉-拉耦合 (泊桑效 应)
拉剪耦 合
C11
C22
C33 C44 C55