算术平方根的双重非负性
算术平方根的双重非负性
算术平方根的双重非负性
算术平方根√a(a≥0)具有双重非负性,一是被开方数具有非负性,即a≥0;二是算平方根本身具有非负性,即√a≥0。
算术平方根的双重非负性还有两个特征,一是兼容性,二是隐含性。
算术平方根的性质
双重非负性
如果x=√a
那么:1.a≥0(若小于0,则为虚数)
2.x≥0
与平方根的关系
正数的平方根有两个,它们为相反数,其中非负的平方根,就是这个数的算术平方根。
负数没有算术平方根。
算术平方根的产生
根号(即算术平方根)的产生源于正方形的对角线长度“根号二”,这个“根号二”的发现一度引起了毕达哥拉斯学派的恐慌。
因为按当时的权威解释(也就是毕达哥拉斯学派的学说),万物皆数(也就是说世界上所有的事物都可以用有理数来表示)。
对于这个无理数“根号二”,最终人们选取了用根号来表示。
算术平方根、平方根知识点辅差
知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.例2.求下列各数的平方根和算术平方根:(1)0.0009 (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )A.2B.-1C.1D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.162.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是()26-的算术平方根 D.0没有算术平方根 3.下列整数中,与 最接近的是( )A.4B.5C.6D.74.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间5.81的平方根是( )A.3±B.3C.9±D.96.下列语句正确的是( )A.-2是-4的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )A.-8B.8±C.2±D.8±或2±二、填空题1.化简:(1)412= ; (2) = . 2.大于2且小于5的整数是 .3.使式子11=-x 成立的未知数x 的值是 。
第三章 实数 考点2 算术平方根(解析版)
第三章实数(解析板)2、算术平方根知识点梳理算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.同步练习一.选择题(共14小题)1.4的算术平方根是()A.B.±2C.2D.±【考点】算术平方根.【分析】依据算术平方根的定义解答即可.【解答】解:4的算术平方根是2.故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根.2.的算术平方根是()A.B.C.±2D.2【考点】算术平方根.【分析】直接利用算术平方根的定义得出即可.【解答】解:=2,2的算术平方根是.故选:B.【点评】此题主要考查了算术平方根的定义,利用算术平方根即为正平方根求出是解题关键.3.的算术平方根是()A.2B.4C.±2D.±4【考点】算术平方根.【分析】利用算术平方根定义计算即可得到结果.【解答】解:=4,4的算术平方根是2,故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.4.下列等式正确的是()A.B.C.D.【考点】算术平方根.【分析】A、根据算术平方根的定义即可判定;B、根据负数没有平方根即可判定;C、根据立方根的定义即可判定;D、根据算术平方根的定义算术平方根为非负数,负数没有平方根.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、,故选项C错误;D、,故选项正确.故选:D.【点评】本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.5.的算术平方根为()A.9B.±9C.3D.±3【考点】算术平方根.【分析】直接根据算术平方根的定义进行解答即可.【解答】解:∵=9,32=9∴的算术平方根为3.故选:C.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.6.已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【考点】算术平方根.【分析】根据正方体的表面积公式:s=6a2,解答即可.【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选:B.【点评】此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.7.的算术平方根是()A.±B.C.±D.5【考点】平方根;算术平方根.【分析】直接根据算术平方根的定义计算即可.【解答】解:因为=5,所以的算术平方根是,故选:B.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.下列计算正确的是()A.=2B.=±2C.=2D.=±2【考点】算术平方根.【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.【点评】此题主要考查了算术平方根,关键是掌握一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.9.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【考点】算术平方根.【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选:D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.10.9的算术平方根是()A.3B.﹣3C.±3D.【考点】算术平方根.【分析】根据算术平方根的定义解答.【解答】解:∵32=9,∴9的算术平方根是3.故选:A.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.11.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【考点】算术平方根.【分析】首先分别根据绝对值的和算术平方根的定义可求出a,b的值,然后把a,b的值代入|a+b|=a+b中,最终确定a,b的值,然后求解.【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.【点评】此题主要考查了绝对值的意义:即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.也利用了算术平方根的定义.12.289的平方根是±17的数学表达式是()A.=17B.=±17C.±=±17D.±=17【考点】平方根;算术平方根.【分析】根据平方根的定义求解可得.【解答】解:289的平方根是±17的数学表达式是±=±17,故选:C.【点评】此题主要考查了平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.13.16的算术平方根是()A.4B.﹣4C.±4D.8【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选:A.【点评】此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.14.的值等于()A.B.﹣C.±D.【考点】算术平方根.【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.二.填空题(共5小题)15.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.16.的算术平方根是3.【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.17.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.【点评】本题考查了数的算术平方根,解题的关键是牢记算术平方根为非负.18.的算术平方根是.【考点】算术平方根.【分析】根据平方根、算术平方根的定义即可求解.【解答】解:∵=3,∴的算术平方根是:.故答案是:.【点评】本题考查平方根及算术平方根的知识,难度不大,关键是掌握平方根及算术平方根的定义.19.的算术平方根是.【考点】算术平方根.【分析】根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.【解答】解:∵52=25,∴=5,∴的算术平方根是.故答案为:.【点评】本题考查了算术平方根的定义,先把化简是解题的关键.三.解答题(共8小题)20.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.【考点】平方根;算术平方根.【分析】根据平方根的定义列式求出a的值,再根据算术平方根的定义列式求出b的值,然后代入代数式进行计算即可得解.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.【点评】本题考查了算术平方根与平方根的定义,是基础题,熟记概念是解题的关键.21.已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求3a﹣4b的平方根.【考点】平方根;算术平方根.【分析】根据平方根和算术平方根的定义列方程求出a、b的值,然后求出3a﹣4b的值,再根据平方根的定义解答.【解答】解:∵2a+1的平方根是±3,∴2a+1=9,解得a=4,∵5a+2b﹣2的算术平方根是4,∴5a+2b﹣2=16,解得b=﹣1,∴3a﹣4b=3×4﹣4×(﹣1)=12+4=16,∴3a﹣4b的平方根是±4.【点评】本题考查了平方根的定义,算术平方根的定义,是基础题,熟记概念是解题的关键.22.已知=x,=2,z是9的算术平方根,求:2x+y﹣z的平方根.【考点】平方根;算术平方根.【分析】根据=x,=2,z是9的算术平方根,可以求得x、y、z的值,从而可以解答本题.【解答】解:∵=x,=2,z是9的算术平方根,∴x=5,y=4,z=3,∴=,即2x+y﹣z的平方根是.【点评】本题考查算术平方根、平方根,解答本题的关键是明确它们各自的含义和计算方法.23.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.【考点】平方根;算术平方根.【分析】先根据2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4求出ab的值,再求出a+2b的值,由平方根的定义进行解答即可.【解答】解:∵2a﹣1的平方根为±3,∴2a﹣1=9,解得,2a=10,∵3a+b﹣1的算术平方根为4,∴3a+b﹣1=16,即15+b﹣1=16,解得b=2,∴a+2b=5+4=9,∴a+2b的平方根为:±3.【点评】本题考查的是平方根及算术平方根的定义,熟知一个数的平方根有两个,这两个数互为相反数是解答此题的关键.24.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:≈1.414,≈1.732)【考点】算术平方根.【分析】(1)求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,得出方程4a•3a=24,求出a=,求出长方形的长和宽和6比较即可.【解答】解:(1)正方形工料的边长为=6分米;(2)设长方形的长为4a分米,则宽为3a分米.则4a•3a=24,解得:a=,∴长为4a≈5.656<6,宽为3a≈4.242<6.满足要求.【点评】本题考查了算术平方根,长方形,正方形的性质的应用,用了转化思想,即把实际问题转化成数学问题.25.喜欢探索数学知识的小明遇到一个新的定义:对于三个正整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“和谐组合”,其结果中最小的整数称为“最小算术平方根”,最大的整数称为“最大算术平方根”.例:1,4,9这三个数,=2,=3,=6,其结果分别为2,3,6,都是整数,所以1,4,9三个数称为“和谐组合”,其中最小算术平方根是2,最大算术平方根是6.(1)请证明2,18,8这三个数是“和谐组合”,并求出最小算术平方根和最大算术平方(2)已知9,a,25三个数是“和谐组合”,且最大算术平方根是最小算术平方根的3倍,求a的值.【考点】算术平方根.【分析】(1)对于三个正整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“和谐组合”,其结果中最小的整数称为“最小算术平方根”,最大的整数称为“最大算术平方根”;(2)分三种情况讨论:①当9≤a≤25时,②当a≤9<25时,③当9<25≤a时,分别依据“和谐组合”的定义进行计算即可.【解答】解:(1)∵=6,=4,=12,∴2,18,8这三个数是“和谐组合”,∴最小算术平方根是4,最大算术平方根是12.(2)分三种情况讨论:①当9≤a≤25时,=3,解得a=0(不合题意);②当a≤9<25时,=3,解得a=(不合题意);③当9<25≤a时,=3,解得a=81,综上所述,a的值为81.【点评】本题主要考查了算术平方根,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.26.某地气象资料表明:某地雷雨持续的时间t(h)可以用下面的公式来估计:,其中d(km)是雷雨区域的直径.(1)雷雨区域的直径为8km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了2h,那么这场雷雨区域的直径大约是多少?【考点】算术平方根.【分析】(1)根据,其中d=8(km)是雷雨区域的直径,开平方的意义,可得答案;(2)根据,其中t=2h是雷雨区域的直径,开平方的意义,可得答案.【解答】解:(1)根据,其中d=8(km),∴t2=,∵t>0,∴t=(h),答:这场雷雨大约能持续h;(2)根据,其中t=2h,∴d2=3600,∵d>0,∴d=60(km),答:这场雷雨区域的直径大约是60km.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.27.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.【考点】算术平方根.【分析】(1)直接利用算术平方根的定义正方形纸片的边长,进而得出答案;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【解答】解:(1)设面积为400cm2的正方形纸片的边长为a cm,∴a2=400,又∵a>0,∴a=20,又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)∵长方形纸片的长宽之比为3:2,∴设长方形纸片的长为3xcm,则宽为2xcm,∴6x2=300,∴x2=50,又∵x>0,∴x=,∴长方形纸片的长为,又∵>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片.【点评】此题主要考查了算术平方根,正确开平方是解题关键。
八年级上册数学平方根的知识点归纳
八年级上册数学平方根的知识点归纳八年级上册数学平方根的知识点归纳学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。
下面店铺为大家整理了八年级上册数学平方根的知识点归纳,快来看看吧。
【八年级上册数学平方根的知识点归纳】平方根表示法:一个非负数a的平方根记作,读作正负根号a。
a叫被开方数。
中被开方数的取值范围:被开方数a≥0平方根性质:①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方:求一个数的平方根的运算,叫做开平方。
平方根与算术平方根区别:1、定义不同。
2表示方法不同。
3、个数不同。
4、取值范围不同。
联系1、二者之间存在着从属关系。
2、存在条件相同。
3、0的算术平方根与平方根都是0含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
求正数a的算术平方根的方法:完全平方数类型①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示。
求正数a的算术平方根,只需找出平方后等于a的正数。
三个重要的非负数:求正数a的平方根的方法;完全平方数类型①想谁的平方是数a。
②所以a的平方根是多少。
③用式子表示=。
公式:(a≥0)∣a∣=平方根的知识点一个正数如果有平方根,那么必定有两个,它们互为相反数。
显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
如果一个数的平方等于a,那么这个数叫做a的平方根。
0的平方根是0。
负数在实数范围内不能开平方,只有在正数范围内,才可以开平方根。
例如:-1的平方根为i,-9的平方根为3i。
平方根包含了算术平方根,算术平方根是平方根中的一种。
平方根和算术平方根都只有非负数才有。
被开方数是乘方运算里的'幂。
求平方根可通过逆运算平方来求。
开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
总结:一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。
数学人教版七年级下册算术平方根之双重非负性(二)
太湖港中学五环生态教学PPT
自学检测(3分钟)
平方 绝对值 算术平方根 正负性
太湖港中学五环生态教学PPT
交流小结(18分钟)
讨论一 根据上表,关于平方、绝对值、算术平方根的非负性 你得到什么结论? 一个数的平方、绝对值、算术平方根都是非负数, 也就是它们都具有非负性。这也是算术平方的第二 重非负性。
太湖港中学五环生态教学PPT
交流小结(18分钟)
讨论四
根据几个非负数的和为0, 这几个非负数就都等于0
根据几个非负数的和为0, 这几个非负数就都等于0
太湖港中学五环生态教学PPT
太湖港中学五环生态教学PPT
注意:被开方数也要是非负数!
太湖港中学五环生态教学PPT
交流小结(18分钟)
讨论二 如果两个非负相加,它们的结果是什么数(正负 性)?三个非负数相加呢? 两个非负数的和一定是非负数,三个非负数的和也是 非负数,不管多少个非负数的和都一定是非负数。 讨论三
如果两个非负数的和为0,那么这两个非负数必须满足 什么条件?你可以用相反数的性质去进行解释吗? 如果两个非负数的和为0,那么这两个非负数都必须等于0. 因为两个数相加为0,那么这两个数就应该是相反数,所 以要么是一正一负,要么两个数都是0,根据它们都是非 负数,所以只能都等于0.
算术平方根之双重 非负性(二)
太湖港中学七(3)班:张翠丽
太湖港中学五环生态教学PPT
学习目标(2分钟解读)
太湖港中学五环生态教学PPT
指导自学(5分钟)
大于等于0的数叫非负数。 一定是非负数的数就具有非负性 回想以前学习的知识中还学过类似的非负性吗? 两个相反数具备什么性质? 还有平方和绝对值具有非负性,两个相反数的和为0.
二次根式的双重非负性在解题中的运用
二次根式的双重非负性在解题中的运用式子a表示非负数a的算术平方根,它是一个非负数,而a是被开方数,它也是一个非负数,这就是二次根式的双重非负性。
它在初、高中数学中占有重要的位置,所以在解题中一定要注意这两个隐含条件。
现列举出这一性质在中考解题中的运用归类如下,以供大家参考,不对之处敬请指正。
类型一:确定自变量的取值范围例:若下列式子有意义,试确定x的取值范围。
评析:纵览《数学课程标准》(2011年版)(以下简称《标准》)及现行初中教材,可以归纳出在初中阶段对字母的取值有要求的只有三种情况:①分式中的分母不能为零。
②二次根式中被开方数要大于等于零。
③零指数幂的底数不能为零。
抓住这三点就能准确地求出自变量的取值范围,通过这样训练,就能使其条件从隐含形态转变为显形形态而成为一种数学思想,从而促成学生模型思想的生成。
类型二:求代数式的值评析:解决此类题用到了“几个非负数的和为零,那么每一个加数一定为零”和“如果被开方数互为相反数,要使得两个被开方数同时有意义,那么这两个被开方数一定同时为零”这种模型思想。
而依据《标准》,初中阶段涉及的非负数有绝对值、偶次方和二次根式。
这也正符合《标准》增加的提高学生的运算能力的要求。
有了这些理念,学生就能明白算理,做到运算正确、有据、合理、简洁,学生的数学思想就能自然生成。
类型三:化简对于利用二次根式的双重非负性在化简中又包含以下几种情形:1.默认条件。
例: 18a3b2c=3ab2ac。
这类题目如果没有注明条件,在解题中就认为所有的字母都是非负数。
2.给定条件。
评析:由于思维定势的影响,学生见惯了被开方数是没有带负号正数的情况,而对于被开方数是-a这种形式的正数不习惯,这就需要教师注重发挥学生想象力,不断积累经验。
解决这类问题关键一定要抓住二次根式的双重非负性质,就能找到突破口,从而化难为易。
这体现了《标准》中“读懂学生的基础,读懂学生的思路,读懂学生的错误,读懂学生的情感”的要求。
数学:2.2《平方根》同步课件(北师大版八年级)
这个正数是__________ . 9
注意区分平方根与算术平方根
【例题】求下列各数的平方根.
7 4 (1)0.49;(2)19;(3) ;(4)-(-22)3. 3
2
思路点拨:根据平方与开平方互逆关系求解.
3.开平方:求一个数 a 的平方根的运算,叫做开平方,其
中 a 叫做被开方数.
课堂小练 4.下列说法正确的是( C ) A.0.09 是 0.3 的平方根
4 2 B.425的平方根是± 25
C.0.3 是 0.09 的算术平方根 D.32 的平方根是 3
±4 ,算术平方根是________ 4 5.16 的平方根是________ .
平方根和开平方(重难点)
1.平方根的概念:一般地,如果一个数 x 的平方等于 a,
平方根 也叫二次方根). 即 x2=a,那么这个数 x 就叫做 a 的________(
2.平方根的性质:
两ห้องสมุดไป่ตู้(1)一个正数有________ 个平方根,且它们互为相反数.
(2)0 只有一个平方根,它是 0 本身.
(3)负数没有平方根.
解:(1)∵(± 0.7)2=0.49,∴± 0.49=± 0.7. 7 16 4 16 (2)∵19= 9 , = 9 ,∴± 3
2 2 2
7 4 19=± 3.
2
4 4 4 16 4 16 (3)∵ = 9 , = 9 ,∴± =± . 3 3 3 3 (4)∵-(-22)3=64,(± 8)2=64,∴± --223=± 8.
2
平方根
人教版七年级数学第六章实数6.1平方根
a
-a
表示的 a 的算术平方 a 的算术平方
意义
根
根的相反数
±a a 的平方根
感悟新知
特别解读 平方与开平方是互逆运算,平方的结果叫做幂,
而开平方的结果叫做平方根.
感悟新知
例6 求下列各数的平方根和算术平方根:
(1)121;(2)2 7 ;(3)-(-4)3;(4)
9
49 .
解题秘方:先根据平方运算找出平方等于这个数的
数,然后根据平方根和算术平方根的定义确定.
感悟新知
解:(1)因为(±11)2=121,
所以121 的平方根是±11,算术平方根是11.
(2)
27 9
25 9
,因为
5 3
2
25 , 9
所以2
7
的平方根是±
5
,算术平方根是
5
.
9
3
3
感悟新知
(3) -( -4)3=64,因为( ±8)2=64, 所以- (-4)3 的平方根是±8,算术平方根是8.
感悟新知
解:(1)因为1< 3<2,所以0< 3-1<1.
所以 3-1< 1 . 22
(2)因为 401> 400=20,
所以 401-5> 400-5 20-5 3.75.
4
4
4
感悟新知
4-1. 比较下列各组数的大小.
(1)- 10与-3.2;
(2) 6-1 与 2+1;
2
2
(3) 99-7 与 8 . 25
1. 定义:一般地,如果一个数的平方等于 a,那么这个数 叫做a 的平方根或二次方根 . 这就是说,如果x2=a,那 么x 叫做a的平方根. 表示方法:非负数a 的平方根记为± a ,读作“正、 负根号a”.
2.2算术平方根
11 121 121 11 (2) 因为 ( ) 2 ,所以 的算术平方根是 , 12 144 144 12
即
121 11 ; 144 12
(3) 15的算术平方根是 15 ; (4) 因为0.82=0.64 ,所以0.64的算术平方根是0.8 , 即 0.64 0.8 ; 2 2 4 (5) 因为 (10 ) 10 ,所以10-4的算术平方根是10-2 , 即 104 102 ; (6) 因为 225 15 ,所以 225 的算术平方根是 15 ;
有
A
a2 = 144 , 所以
E D
a = 144 =12,
所以 AB = AE =EF=CD= 12.
又因为 SABFE=2SCDEF ,
设FC=x ,
所以 144=2×12x , B F
C x=6. 所以BC=BF+FC=12+6=18(cm). 所以长方形的长为18cm,宽为12cm.
A
三、如图,从帐篷支撑竿 AB的顶部A向地面拉一根 绳子AC固定帐篷.若绳子 的长度为5.5米,地面固定 点C到帐篷支撑竿底部B的 距离是4.5米,则帐篷支撑 竿的高是多少米?
AB AC 2 BC 2 5 .5 4 .5
2 2
10 (米).
所以帐篷支撑竿的高是 10 米.
探究
a: a ≧0
双重非负性:a≧0,
也就是说,非负数的“算术”平方根是非负数。负数 不存在算术平方根,即当 a<0时, 无意义。 a 一个非负数的算术平方根永远是非负数,即
a ≧0
2
2
7 ,即 9
49 7 = 81 9
③∵0.6 2=0.36,∴0.36的算术平方根是0.6,即 0.36=0.6 2 ④∵0 =0,∴0的算术平方根是0,即 0=0
平方根和算术平方根
§12、1平方根与算术平方根一、知识点=2,则x叫做1、如果一个数的平方等于a,那么这个数叫做a的平方根,即x aa的平方根=2,则x=2、平方根的表示方法若x a3、平方根的性质:正数平方根有两个个,它们互为相反数即相加得0 ,0的平方根是0 ,负数没有平方根。
4、算术平方根是指正的平方根(1)a≥≥05、注意:平方根即开平方是平方的逆运算。
6、会背1~20各个数的平方,会背1~10各个数的立方例1 求下列各数的平方根(1)81 (2)0.16 (3)(-3)2 (4)7例2 一个数的平方根为a+2和3a-10,求这个数例3例 4 一个自然数的算术平方根为m,则和这个自然数相邻的下一个自然数的算术平方根为______例5,①a ,2a都是一个大于等于0的数②他们之中任意两个或两个以上的和等于0时,即a +2b =0,a+ =0 2a=0时,只有他们同时满足a=0.,b=0才成立根据上述材料,解下列问题1 2x +,求2x y2已知实数a满足2012a a -=,求22012a -的值3已知x ,y,都是有理数3y =,则3x-2y=例647923<<<<∴<<∴在两个连续的整数2和3之间,它的整数部分为2-2例7解方程49(x-1)2 -225=0一、选择题二、填空题1、2的平方根是 4的算术平方根是2、972的平方根是 1691的算术平方根是 3、22的平方根是22-)(的平方根是 4、3±表示 的平方根,11的算术平方根是 5是 的算术平方根5、16的算术平方根是 196的平方根是6、若m -2与12+m 是同一个数的平方根,则这个数是7、15在两个连续整数a 与b 之间,则a= ,b= 。
8、求下列各式中x 的值:9、已知3-2±的平方根是b a ,1-2b a +的算术平方根是4,,求3b -2a 的值10、若6+-b a 与8-+b a 互为相反数,求4a+3b的算术平方跟。
湘教版八上数学-活用二次根式的非负性
活用二次根式的非负性
吴育弟 二次根式a 表示非负数a 的算术平方根,它具有双重非负性:(1)a ≥0; (2)a ≥0.这两个“非负性”是二次根式的隐含条件,经常从以下角度来命题考查.
一、确定取值范围
例1(2015年南京)若式子x +1在实数范围内有意义,则x 的取值范围是 . 解析:根据题意,得x+1≥0,解得x ≥﹣1.
故填x ≥﹣1.
二、化简
例2(2015年黄冈模拟)已知a <0,化简二次根式b a 3-的结果是 .
解析:因为a <0,所以ab a b a --=-3. 故填ab a --.
三、求值
例3(2015年荆门)当1<a <2时,代数式a a -+-1)2(2的值是( )
A .1-
B .1
C .23a -
D .32a -
解析:当1<a <2时,a – 2<0,1– a <0,所以1121)2(2=-+-=-+-a a a a . 故选B .
跟踪练习:
1.(2015年莱芜)要使二次根式x 23-有意义,则x 的取值范围是( )
A .23≥x
B .23≤x
C .32≥x
D .3
2≤x 2. 当ab <0时,化简2ab ,得( )
A .b a -
B .b a
C .b a -
D .b a --
3. 已知5260x y x -+++=,则31x y ++=______.
答案:1. B 2. A 3. 0。
算术平方根的定义平方根和算术平方根的区别算术平方根是它本身的数有哪些
一、平方根和算术平方根的区别于联系它们之间的区别:(1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
(2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
(3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为。
(4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
它们之间的联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
(2)存在条件相同:只有非负数才有平方根和算术平方根。
(3)0的平方根,算术平方根均为0。
开平方:求一个数的平方根的运算,叫做开平方。
注:(1)平方和开平方的关系是互为逆运算;(2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;(3)开方的方式是根号形式。
二、算术平方根概念:若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
规定:0的算术平方根是0。
表示:a的算术平方根记为,读作“根号a”。
注:只有非负数有算术平方根,而且只有一个算术平方根。
三、算术平方根的定义平方根与算术平方根存在从属关系,是初中数学中的两个重要概念,算术平方根具有双重非负性,是指若一个正数x的平方等于a,即x^2=a,则这个正数x为a的算术平方根,a的算术平方根记作√ ̄a,读作“根号a”,a叫做被开方数。
四、算术平方根等于它本身的数算术平方根等于它本身的数是0和1。
五、算术平方根怎么算一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根。
计算a的算术平方根可记为√a,读作“根号a”,a叫做被开方数。
六、算术平方根的性质(1)双重非负性在x=√a中的a①a≥0(若小于0,则为虚数)②x≥0(2)与平方根的关系正数的平方根有两个,它们为相反数,其中非负的平方根,就是这个数的算术平方根。
典例精析类题典例_巧用算术平方根的两个“非负性”
【例2-3】 如果y= x2 4 4 x2 +2 013成立, x2
求x²+y-3的值. 分析:由算术平方根被开方数的非负性知, x²-4≥0,4-x²≥0, 因此,x²-4=0,即x=±2; 又x+2≠0,即x≠-2, 所以x=2,y=2 013,于是得解.
解:由题可知x²-4≥0,且4-x²≥0, ∴x²-4=0,即x=±2. 又∵x+2≠0, 即x≠-2, ∴x=2.
【例2-1】 若 x2 +y=6,则x=____0______, y=_____6_____.
解析:由 x2有意义得x=0,故y=6. 【例2-2】 若|m-1|+ n 5 =0,则m=_____1_____, n=____5______. 解析:根据题意,得m-1=0,n-5=0, 所以m=1,n=5. 注:若几个非负数的和为0,则每个数都为0.
将x=2代入y= x2 4 4 x2 +2 013, x2
可得y=2 013. ∴x²+y-3=2²+2 013-3=2 014.
【小结】由于初中阶段学习的非负数有三类,即一 个数的绝对值,一个数的平方(偶次方)和非负数的算术平 方根.关于算术平方根和平方数的非负性相关的求值问 题,一般情况下都是它们的和等于0的形式.
2.巧用算术平方根的两个“非负性” 众所周知,算术平方根 a 具有双重非负性: (1)被开方数具有非负性,即a≥0. (2) a 本身具有非负性,即 a ≥0.这两个非负性形象、 全面地反映了算术平方根的本质属性.在解决与此相关的问 题时,若能仔细观察、认真地分析题目中的已知条件,并挖 掘出题目中隐含的这两个非负性,就可避免用常规方法造成 的繁杂运算或误解,从而收到事半功倍的效果.
此类问题可以分成以下几种形式: (1)算术平方根、平方数、绝对值三种中的任意两 种组成一题〔| |时出现这三个内容〔| | + ( ) ²+ =0〕. (2)题目中没有直接给出平方数,而是需要先利用 完全平方公式把题目中的某些内容进行变形,然后再利 用非负数的性质进行计算.
湘教版八上数学-巧用二次根式的非负性解题
巧用二次根式的非负性解题
曹经富 二次根式a 表示非负数a 的算术平方根,它具有双重非负性:(1)a ≥0;(2)a ≥0.这两个“非负性”是二次根式的隐含条件,经常从以下角度来命题考查.
一、求解字母的取值范围
例1 使式子211
x x +-有意义的x 取值范围是( ) A. 12x ≥-,且1x ≠ B. 1x ≠ C. 12x ≥- D. 12
x >-,且1x ≠ 解析:由题意知210,10,
x x +≥⎧⎨-≠⎩解得12x ≥-,且1x ≠.故选A . 点评:本题考查了二次根式、分式有意义的理解与运用.一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,进而构建不等式(组)求解.
二、求解相关字母的值 例2 已知实数x ,y ,m 满足 2x ++|3x+y+m|=0,且y 为负数,则m 的取值范围是( )
A .m >6
B .m <6
C .m >-6
D .m <-6
解析:根据题意,结合非负数的性质,得2x +=0,|3x+y+m|=0.
所以x 203x y m 0.+=⎧⎨++=⎩,解得26.x y m =-⎧⎨=-⎩
, 所以6-m <0,解得m >6.故选A. 点评:两个或多个非负数之和等于0,则每个非负数都等于0,本质上是解方程(不等式)与代数式求值. 这类题型一般有如下形式:,0||,0=+=+b a b a 0||,022=++=+c b a b a 等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算术平方根的双重非负性
算术平方根的定义:
一般地,如果一个正数x的平方等于a,即a
x=
2,那么这个正数x就叫做a 的算术平方根,记为“a”,读作“根号a”.特别地,我们规定0的算术平方根是0,即0
0=.
算术平方根定义中的两层含义:
a中的a是一个非负数,即0
a≥,a的算术平方根a也是一个非负数,
≥.这就是算术平方根的双重非负性.
例题:已知x,y为有理数,且x-1+3(y-2)2=0,求x-y的值.解析:算术平方根和完全平方式都具有非负性,即
≥,a2≥0,
由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y的值,进而求得答案.
()2
0,20
y
≥-≥,且x-1+3(y-2)2=0
∴x-1=0,y-2=0.
∴x=1,y=2
∴x-y=1-2=-1.
方法总结:算术平方根、绝对值和完全平方式都具有非负性,即
≥,|a|≥0,a2≥0,当几个非负数的和为0时,各数均为0.巩固练习:
1.若|x-2|+3
-
y=0,则xy=______.
2.已知()0
2
3
2
2
12
=
+
+
+
+
-z
y
x,求x+y+z的值.
3. △ABC 的三边长分别为a ,b ,c ,且a ,b 满足04412=+-+-b b a ,求c 的取值范
围.
参考答案:
1. xy =6
2. 解:因为21-x ≥0,()22+y ≥0,2
3+z ≥0,且()0232212=++++-z y x , 所以21-
x =0,()22+y =0,23+z =0, 解得21=x ,2-=y ,2
3-=z , 所以x +y +z = 3-.
3. 解:由04412=+-+-b b a ,可得0)2(12=-+-b a ,
因为 1-a ≥0,2)2(-b ≥0, 所以1-a =0,2)2(-b =0,
所以a = 1,b = 2,
由三角形三边关系定理有:b- a < c < b +a ,即1 < c < 3.。