最新初中数学命题与证明的易错题汇编附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学命题与证明的易错题汇编附答案
一、选择题
1.下列命题中,正确的命题是()
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等
【答案】C
【解析】
【分析】
根据等弧或垂径定理,正多边形的性质一一判断即可;
【详解】
A、完全重合的两条弧是等弧,错误;
B、正五边形不是中心对称图形,错误;
C、垂直于弦的直径平分弦,正确;
D、三角形的外心到三个顶点的距离相等,错误;
故选:C.
【点睛】
此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
2.下列命题是真命题的是()
A.若两个数的平方相等,则这两个数相等B.同位角相等
C.同一平面内,垂直于同一直线的两条直线平行D.相等的角是对顶角
【答案】C
【解析】
【分析】
根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】
A.若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A选项错误;
B.只有两直线平行的情况下,才有同位角相等,故B选项错误;
C.同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;
D.相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D选项错误,
故选C.
【点睛】
本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.
3.下列命题是假命题的是()
A.同角(或等角)的余角相等
B.三角形的任意两边之和大于第三边
C.三角形的内角和为180°
D.两直线平行,同旁内角相等
【答案】D
【解析】
【分析】
利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确定正确的选项.
【详解】
A、同角(或等角)的余角相等,正确,是真命题;
B、三角形的任意两边之和大于第三边,正确,是真命题;
C、三角形的内角和为180°,正确,是真命题;
D、两直线平行,同旁内角互补,故错误,是假命题,
故选D.
【点睛】
考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.
4.下列命题中逆命题是假命题的是()
A.如果两个三角形的三条边都对应相等,那么这两个三角形全等
B.如果a2=9,那么a=3
C.对顶角相等
D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
【答案】C
【解析】
【分析】
首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.
【详解】
解:A 、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;
B 、逆命题为:如果a=3,那么a 2=9.是真命题;
C 、逆命题为:相等的角是对顶角.是假命题;
D 、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题. 故选C .
【点睛】
此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.
5.下列语句正确的个数是( )
①两个五次单项式的和是五次多项式
②两点之间,线段最短
③两点之间的距离是连接两点的线段
④延长射线AB ,交直线CD 于点P
⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】
根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.
【详解】
①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;
②两点之间,线段最短,正确;
③两点之间的距离是连接两点的线段的长度,错误;
④延长射线AB ,交直线CD 于点P ,正确;
⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确; 故语句正确的个数有3个
故答案为:C .
【点睛】
本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.
6.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命
题的四个步骤:
①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )
A .③④②①
B .③④①②
C .①②③④
D .④③①②
【答案】B
【解析】
【分析】
根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.
【详解】
题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:
应该为:(1)假设∠B ≥90°,
(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,
(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,
(4)因此假设不成立.∴∠B <90°,
原题正确顺序为:③④①②,
故选B .
【点睛】
本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.
7.下列命题中是真命题的是( )
A .多边形的内角和为180°
B .矩形的对角线平分每一组对角
C .全等三角形的对应边相等
D .两条直线被第三条直线所截,同位角相等
【答案】C
【解析】
【分析】
根据多边形内角和公式可对A 进行判定;根据矩形的性质可对B 进行判定;根据全等三角形的性质可对C 进行判定;根据平行线的性质可对D 进行判定.
【详解】
A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,
B.矩形的对角线不一定平分每一组对角,故该选项是假命题,
C.全等三角形的对应边相等,故该选项是真命题,
D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,
故选:C .
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的
性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.
8.下列命题是真命题的个数是( ).
①64的平方根是8±;
②22a b =,则a b =;
③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;
④三角形三边的垂直平分线交于一点.
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】
【分析】
分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.
【详解】
①64的平方根是8±,正确,是真命题;
②22a b =,则不一定a b =,可能=-a b ;故错误;
③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;
④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;
故选:C
【点睛】
考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.
9.下列命题是真命题的是( )
A .中位数就是一组数据中最中间的一个数
B .一组数据的众数可以不唯一
C .一组数据的标准差就是这组数据的方差的平方根
D .已知a 、b 、c 是Rt △ABC 的三条边,则a 2+b 2=c 2
【答案】B
【解析】
【分析】
正确的命题是真命题,根据定义判断即可.
【详解】
解:A 、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误; B 、一组数据的众数可以不唯一,故正确;
C 、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;
D 、已知a 、b 、c 是Rt △ABC 的三条边,当∠C =90°时,则a 2+b 2=c 2,故此选项错误; 故选:B .
【点睛】
此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.
10.下列命题正确的是( )
A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的. B.两个全等的图形之间必有平移关系.
C.三角形经过旋转,对应线段平行且相等.
D.将一个封闭图形旋转,旋转中心只能在图形内部.
【答案】A
【解析】
【分析】
根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】
解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;
B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;
C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;
D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.
故选:A.
【点睛】
本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
11.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②内错角相等;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以
是无理数也可以是有理数,进行判断即可.
【详解】
①正确;
②在两直线平行的条件下,内错角相等,②错误;
③正确;
④反例:两个无理数π和-π,和是0,④错误;
⑤坐标平面内的点与有序数对是一一对应的,正确;
故选:B.
【点睛】
本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.
12.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
【答案】B
【解析】
【分析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
故选B.
【点睛】
考查了反证法,解此题关键要懂得反证法的意义及步骤
.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
13.下列命题中,是真命题的是()
A.将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x
B.若一个数的平方根等于其本身,则这个数是0和1
C.对函数y=2
x
,其函数值y随自变量x的增大而增大
D.直线y=3x+1与直线y=﹣3x+2一定互相平行【答案】A
【解析】
【分析】
利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.
【详解】
解:A、将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x,正确,符合题
意;
B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;
C、对函数y=2
x
,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命
题,不符合题意;
D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,
故选:A.
【点睛】
本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.
14.下列命题中真命题是()
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
【答案】B
【解析】
【分析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】
A、若a2=b2,则a=±b,错误,是假命题;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
15.下列说法正确的是( )
A.相等的角是对顶角
B.在平面内,经过一点有且只有一条直线与已知直线平行
C.两条直线被第三条直线所截,内错角相等
D .在平面内,经过一点有且只有一条直线与已知直线垂直
【答案】D
【解析】
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解:相等的角不一定是对顶角,故A 错误;
在平面内,经过直线外一点有且只有一条直线与已知直线平行,故B 错误;
两直线平行,内错角相等,故C 错误;
在平面内,经过一点有且只有一条直线与已知直线垂直,故D 正确;
故答案为D.
【点睛】
此题主要考查了命题的真假判断,掌握定理并灵活运用是解题的关键.
16.下列命题中,真命题的是( )
A .两条直线被第三条直线,同位角相等
B .若a ⊥b ,b ⊥c ,则a ⊥c
C .点p (x ,y ),若y =0,则点P 在x 轴上
D a ,则a =﹣l
【答案】C
【解析】
【分析】
根据平行线的性质对A 进行判断;根据平行线的判定方法对B 进行判断;根据x 轴上点的坐标特征对C 进行判断;根据二次根式的性质对D 进行判断.
【详解】
A 、两条平行直线被第三条直线,同位角相等,所以A 选项为假命题;
B 、在同一平面内,若a ⊥b ,b ⊥c ,则a ∥c ,所以B 选项为假命题;
C 、点p (x ,y ),若y =0,则点P 在x 轴上,所以C 选项为真命题;
D a ,则a =0或a =1,所以D 选项为假命题.
故选:C .
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即
假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
17.下列命题的逆命题是真命题的是( )
A .若a b =,则a b =
B .AB
C ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆
C .若0a =,则0ab =
D .四边相等的四边形是菱形
【答案】D
【解析】
【分析】
先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.
【详解】
解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;
B 、该命题的逆命题为:若△AB
C 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;
C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;
D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;
故选:D .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
18.39.下列命题中,是假命题的是( )
A .同旁内角互补
B .对顶角相等
C .直角的补角仍然是直角
D .两点之间,线段最短
【答案】A
【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.
19.下列命题中,是真命题的是( )
A .同位角相等
B .若两直线被第三条直线所截,同旁内角互补
C .同旁内角相等,两直线平行
D .平行于同一直线的两直线互相平行 【答案】D
【解析】
【分析】
根据平行线的判定、平行线的性质判断即可.
【详解】
A 、两直线平行,同位角相等,是假命题;
B 、若两条平行线被第三条直线所截,同旁内角互补,是假命题;
C 、同旁内角互补,两直线平行,是假命题;
D 、平行于同一直线的两条直线互相平行,是真命题;
故选:D .
【点睛】
此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
20.下列命题正确的是( )
A .矩形的对角线互相垂直平分
B .一组对角相等,一组对边平行的四边形一定是平行四边形
C .正八边形每个内角都是145o
D .三角形三边垂直平分线交点到三角形三边距离相等
【答案】B
【解析】
【分析】
根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.
【详解】
A.矩形的对角线相等且互相平分,故原命题错误;
B.已知如图:A C ∠=∠,//AB CD ,求证:四边形ABCD 是平行四边形.
证明:∵//AB CD ,
∴180A D +=︒∠∠,
∵A C ∠=∠,
∴180C D ∠+∠=︒,
∴//AD BC ,
又∵//AB CD ,
∴四边形ABCD 是平行四边形,
∴一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;
C.正八边形每个内角都是:()180821358
︒⨯-=︒,故原命题错误; D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误. 故选:B .
【点睛】
本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.。

相关文档
最新文档