平面几何直线与圆圆与圆的位置关系

合集下载

直线圆的位置关系1直线与圆的位置关系

直线圆的位置关系1直线与圆的位置关系

返回目录
温故知新
要点探究
典例探究
法二:直线 l 的方程为 y=k(x-4),即 kx-y-4k=0.
圆心 O 到直线 l 的距离 d= | 4k | ,圆 O 的半径 r=2 2 . k2 1
(1)当 d= | 4k | <2 2 ,即-1<k<1 时,直线 l 与圆 O 相交. k2 1
(2)当 d= | 4k | =2 2 ,即 k=±1 时,直线 l 与圆 O 相切. k2 1
返回目录
温故知新
要点探究
典例探究
1.直线与圆有三种位置关系: (1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点. 2.直线与圆的位置关系的判定方法: (1)代数法:直线与圆的方程联立消去 y(或 x)得到关于 x(或 y)的一元二次方程,此方程的判别式为 Δ,则
温故知新
要点探究
典例探究
返回目录
温故知新
要点探究
典例探究
探究要点一:直线与圆相交 1.直线与圆相交求交点坐标,只需联立两方程求解二元二次方程组即可. 2.直线与圆相交时弦长的求法 (1)求出交点坐标,利用两点间距离公式,求出弦长; (2)利用弦长公式求:
d=|x1-x2| 1 k 2 = (1 k 2 ) (x1 x2 )2 4x1x2
返回目录
温故知新
要点探究
典例探究
变式训练 1-1:已知圆 O:x2+y2=8,过 P(4,0)的直线 l 的斜率 k 在什么范围内取值时,直线 l 与圆 O: (1)相交?(2)相切?(3)相离?
解:法一:设直线 l 的方程为 y=k(x-4),
y k(x 4)

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系一、直线与圆的位置关系:1、直线与圆的位置关系有三种:如图所示. (1)直线与圆相交:有两个公共点; (2)直线与圆相切:有一个公共点; (3)直线与圆相离:没有公共点.2、直线与圆的位置关系的判定的两种方法:直线l 和圆C 的方程分别为:Ax+By+C=0,x 2+y 2+Dx+Ey+F=0. 1)代数法判断直线与圆的位置关系:由l 和C 的方程联立方程组220Ax By C x y Dx Ey F ++=⎧⎨++++=⎩, ①若方程有两个不相等的实数根(△>0),则直线与圆相交; ②若方程有两个相等的实数根(△=0),则直线与圆相切; ③若方程无实数根(△<0),则直线与圆相离.2)几何法判断直线与圆的位置关系:圆心C(a ,b)到直线的距离d=22||Aa Bb C A B+++与半径r 作比较①若d<r 时,直线l 和圆C 相交;②若d=r 时,直线l 和圆C 相切;③若d>r 时,直线l 和圆C 相离. 3、圆的切线的求法:(1)当点(x 0,y 0)在圆x 2+y 2=r 2上时,切线方程为x 0x+y 0y=r 2;(2)若点(x 0,y 0)在圆(x -a)2+(y -b)2=r 2上时,切线方程为(x 0-a)(x -a)+(y 0-b)(y -b)=r 2; (3)斜率为k 且与圆x 2+y 2=r 2相切的切线方程为21y kx k =±+;斜率为k 且与圆(x -a)2+(y -b)2=r 2相切的切线方程的求法:先设切线方程为y=kx+m ,然后变成一般 式kx -y+m=0,利用圆心到切线的距离等于半径来列出方程求m ;(4)点(x 0,y 0)在圆外面,则切线方程为y -y 0=k(x -x 0),再变成一般式,因为与圆相切,利用圆心到直线距离 等于半径,解出k ,注意若此方程只有一个实根,则还有一条斜率不存在的直线,务必要补上. 4、直线与圆相交的弦长公式1)平面几何法求弦长公式:如图所示,直线l 与圆相交于两点A 、B ,线段AB 的长 即为直线l 与圆相交的弦长.设弦心距为d ,圆的半径为r ,弦长为AB ,则有 222()2AB d r +=,即AB=222r d - . 2)解析法求弦长公式:如图所示,直线l 与圆相交于两点A(x 1,y 1),B(x 2,y 2),当直线AB 的倾斜角存在时,联 立方程组,消元得到一个关于x 的一元二次方程,求得x 1+x 2和x 1x 2.于是2121212||()4x x x x x x -=+-,这样就求得2121221||1||1||AB k x x y y k=+-=+-。

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

辅导讲义――直线和圆、圆与圆的位置关系圆的切线方程设法:(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为200r y y x x =+.(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为200))(())((r b y b y a x a x =--+--. (3)过圆222r y x =+外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200r y y x x =+.(4)过圆222)()(r b y a x =-+-外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200))(())((r b y b y a x a x =--+--.[例]经过点M (2,-1)作圆522=+y x 的切线,则切线方程为_________________. 2x-y-5=0[巩固] 过点P (3,1)作曲线C :0222=-+x y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为____________. 2x+y-3=01.若两圆的半径分别为r 1,r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:位置 关系 外离外切相交内切内含图示d 与r 1,r 2 的关系d >r 1+r 2 d =r 1+r 2 |r 1-r 2|< d < r 1+r 2d =|r 1-r 2|d <|r 1-r 2|两圆的公共点个数0个 1个 2个 1个 0个2.两圆的共切线:(1)当两圆内含时,没有公切线; (2)当两圆内切时有一条公切线; (3)当两圆相交时,有两条外公切线;知识模块4圆与圆的位置关系 精典例题透析知识模块3切线及弦所在直线的方程设法∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.[巩固] (2013·江苏)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围. (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2), 于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为 (x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为|MA |=2|MO |,所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1, 即1≤a 2+(2a -3)2≤3. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.题型三:直线与圆相交的问题[例]已知直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为8,求k 的值.设直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为AB ,其中点为C ,则△OCB 为直角三角形.因为圆的半径为|OB |=5,半弦长为|AB |2=|BC |=4,所以圆心到直线kx -y +6=0的距离为3,由点到直线的距离公式得6k 2+1=3,解之得k =±3.[巩固] 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点),所以OM =|0-0+23|12+(-3)2=3,所以AB =2AM =2OA 2-OM 2=222-(3)2=2.圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为___________. 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ).化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2013·山东)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为____________.解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2, ∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.已知直线y =kx +b 与圆O :x 2+y 2=1相交于A ,B 两点,当b =1+k 2时,OA →·OB →等于___________.设A (x 1,y 1),B (x 2,y 2),将y =kx +b 代入x 2+y 2=1得(1+k 2)x 2+2kbx +b 2-1=0,故x 1+x 2=-2kb 1+k 2,x 1x 2=b 2-11+k 2, 从而·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=b 2-1-2k 2b 21+k 2+b 2=2b 21+k 2-1=1. 6.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是______________.由y =3-4x -x 2,得(x -2)2+(y -3)2=4(1≤y ≤3).∴曲线y =3-4x -x 2是半圆,如图中实线所示.当直线y =x +b 与圆相切时,|2-3+b |2=2.∴b =1±2 2. 由图可知b =1-2 2.∴b 的取值范围是[]1-22,3.7.(2014·上海)已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的Q 使得AP →+AO→=0,则m 的取值范围为________.曲线C :x =-4-y 2,是以原点为圆心,2为半径的圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的Q 使得+=0,(1)求矩形ABCD 的外接圆的方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l 的方程.(1)∵l AB :x -3y -6=0且AD ⊥AB ,点(-1,1)在边AD 所在的直线上,∴AD 所在直线的方程是y -1=-3(x +1),即3x +y +2=0.由⎩⎪⎨⎪⎧x -3y -6=0,3x +y +2=0,得A (0,-2). ∴|AP |=4+4=22, ∴矩形ABCD 的外接圆的方程是(x -2)2+y 2=8.(2)直线l 的方程可化为k (-2x +y +4)+x +y -5=0,l 可看作是过直线-2x +y +4=0和x +y -5=0的交点(3,2)的直线系,即l 恒过定点Q (3,2),由(3-2)2+22=5<8知点Q 在圆P 内,∴l 与圆P 恒相交.设l 与圆P 的交点为M ,N ,则|MN |=28-d 2(d 为P 到l 的距离),设PQ 与l 的夹角为θ,则d =|PQ |·sin θ=5sin θ,当θ=90°时,d 最大,|MN |最短.此时l 的斜率为PQ 的斜率的负倒数,即-12, 故l 的方程为y -2=-12(x -3),即x +2y -7=0.11.若直线l :y =kx +1 (k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是_________. 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交. 12.设曲线C 的方程为(x -2)2+(y +1)2=9,直线l 的方程为x -3y +2=0,则曲线上的点到直线l 的距离为71010的点的个数为____________.B解析 由(x -2)2+(y +1)2=9,得圆心坐标为(2,-1),半径r =3,圆心到直线l 的距离d =|2+3+2|1+(-3)2=710=71010. 能力提升训练要使曲线上的点到直线l 的距离为71010, 此时对应的点在直径上,故有两个点.13.(2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于____________.∵S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ≤12. 当∠AOB =π2时, △AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 14.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2,即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 15.(2014·重庆)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.。

直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习
, 到直线: − − = 的距离 =


≤ + ,解得−


≤≤

.

−−
+
=

+
≤ ,即
考点二 直线与圆位置关系的应用
角度1 圆的切线问题(链接高考)
例2 (2023·新课标Ⅰ卷)过点 , − 与圆 + − − = 相切的两条直
(2)过圆 + = 外一点 , 作圆的两条切线,则两切点所在
直线方程为 + = .
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线 + + = 与圆 + + + + = 交点的圆系方
(其中不含圆 ,所以注意检验 是否满足题意,以防丢解).
1.若经过点 −, − 的直线与圆 + = 相切,则该直线在轴上的截
距为(

A.

)


C.−

B.5
解析:选C.因为 −

+ −

D.−
= ,所以点在圆上,
所以切线方程为− − = ,令 = 得 =
+ − − = 相交.
方法三:圆的方程可化为 −

+ = ,
所以圆的圆心为 , ,半径为3.
圆心到直线 − + − = 的距离为
+−
+
=

+
≤ < ,所以直线与圆相交.故选C.

直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

(-4-0)2+(0-2)2=2 5,即公共弦长为 2 5.
规律方法
圆与圆的位置关系的求解策略 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离 与两圆半径之间的关系,一般不采用代数法. 2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差 消去x2,y2项得到.
对点练2.(1)圆x2-4x+y2=0与圆x2+y2+4x+3=0的公切线共有
4.(用结论)过点(2,2)作圆(x-1)2+y2=5的切线,则切线方程为
A.x-2y+2=0
B.3x+2y-10=0
√C.x+2y-6=0
D.x=2或x+2y-6=0
显然点(2,2)在圆上,由结论1可得切线方程为(2-1)·(x-1)+(2-0)y=5, 即x+2y-6=0.故选C.
5 . ( 用 结 论 ) 圆 x2 + y2 - 4 = 0 与 圆 x2 + y2 - 4x + 4y - 12 = 0 的 公 共 弦 长 为 _2__2_____.
(2)过两圆x2+y2-2y-4=0与x2+y2-4x+2y=0的交点,且圆心在直线l: 2x+4y-1=0上的圆的方程为__x_2+__y_2_-__3_x_+__y_-__1_=__0___.
设所求圆的方程为x2+y2-4x+2y+λ(x2+y2-2y-4)=0(λ≠-1),则(1 +λ)x2-4x+(1+λ)y2+(2-2λ)y-4λ=0,把圆心坐标 1+2 λ,λ1-+1λ 代入 直线l,可得λ= 1 ,故所求圆的方程为x2+y2-3x+y-1=0.
(2)直线kx-y+2-k=0与圆x2+y2-2x-8=0的位置关系为
A.相交、相切或相离
B.相交或相切
√C.相交
D.相切
法一:直线kx-y+2-k=0的方程可化为k(x-1)-(y-2)=0,该直线恒

直线与圆的位置关系及性质和判定

直线与圆的位置关系及性质和判定

直线与圆的位置关系及性质和判定
直线与圆是在平面几何中常见的两种基本图形,它们的位置关系及性质有很多种,下面我们来一一介绍。

1. 直线与圆的位置关系有三种情况:
(1)直线与圆相交;
(3)直线与圆内含。

2. 直线与圆的位置关系具有对称性质,即交换直线和圆的位置仍然成立,特别地,直线可以看成是以半径为无限大的圆。

3. 直线与圆的位置关系决定了它们之间的交点数目,以及交点的性质。

(1)交点数目:一条直线与一个圆最多有两个交点,最少有一个交点,如果切线重合,则只有一个交点。

(2)交点的位置:
① 两交点的连线经过圆心;
② 被交点的角度相等,且互为补角;
③ 两条切线垂直于径,且互相垂直;
④ 两条切线在点处的切线垂直于过该点的直径。

(3)判定方法:
① 如果直线与圆的方程可通过联立求解得到交点,则两者相交;
③ 如果扫描线经过圆时出现奇数个交点,则该直线与圆相交(扫描线法)。

① 交点在切线上;
① 确定圆心和半径,然后根据切线的判定条件求出切点;
② 针对某一求交点的定点,使各定点到圆心的距离相等,然后根据勾股定理求出交点。

(1)交点数目:一条直线与一个圆内含时,无交点。

① 切线内含于圆;
(3)判定方法:只需要判断过直线的所有圆的半径与直线的距离之差是否有大于零的情况即可。

总结:
在解决直线与圆的位置关系问题时,需要熟练掌握判定条件和数学技巧,才能快速判断它们的位置关系,从而有效地解决问题。

同时,本文的介绍也只是直线与圆位置关系的一些基本性质,实际问题中还可能存在更加复杂的情况和解决方法。

直线与圆、圆与圆的位置关系知识点及题型归纳

直线与圆、圆与圆的位置关系知识点及题型归纳

直线与圆、圆与圆的位置关系知识点及题型归纳知识点精讲一、 直线与圆的位置关系直线与圆的位置关系有3种,相离,相切和相交 二、 直线与圆的位置关系判断1. 几何法(圆心到直线的距离和半径关系) 圆心(,)a b 到直线0Ax By C ++=的距离,则d =则d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离2. 代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数) 由2220()()Ax By C x a y b r++=⎧⎨-+-=⎩ ,消元得到一元二次方程20px qx t ++=,20px qx t ++=判别式为∆,则: 则0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.三、 两圆位置关系的判断是用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则: 则d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r -<<+⇔两圆相离 d R r =-⇔两圆内切;0d R r ≤<-⇔两圆内含(0d =时两圆为同心圆) 四、 关于圆的切线的几个重要结论(1) 过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=.(2) 过圆222()()x a y b r -+-=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r --+--=(3) 过圆220x y Dx Ey F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4) 求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解: ①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x -=-,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.题型讲解题型1 直线与圆的相交关系 思路提示研究直线与圆的相交问题,应牢牢记住三长关系,即半径长2l、弦心距d 和半径r 之间形成的数量关系222()2l d r +=.例9.28 已知圆O :225x y +=,直线l :cos sin 1(0)2x y πθθθ+=<<,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =___________. 分析 先求出圆心到直线的距离,在进行判断解析 因为圆心(0,0)到直线l 的距离为1,又因为圆O 4个点符合条件. 评注 若圆O 上到直线l 的距离等于2的点的个数为k ,则2k =;若3k =,则圆O 上到直线l 的距离等于1变式1已知圆O :224x y +=,直线l :1x ya b+=,设圆O 上到直线l 的距离等于1的点的个数有两个,则2211a b +的取值范围___________. 例9.29 已知圆C :228120x y y +-+=,直线l :20ax y a ++=, (1) 当直线l 与圆C 相交时,求实数a 的取值范围;(2) 当直线l 与圆C 相交于,A B 两点,且AB =l 的方程.分析 根据点到直线距离等于半径来度量直线与圆相切问题;根据三长关系解决直线与圆相交问题. 解析 (1)圆C :22(4)4x y +-=,故圆心为(0,4)C ,因为直线l 与圆C 相交,所以圆心为(0,4)C 到直线l 的距离2d =<,解得34a <-,故实数a 的取值范围是3(,)4-∞-(2)由题意,直线l 与圆C 相交于,A B 两点,且AB =224+=,化简可得2870a a ++=,即1a =-或7a =-,故所求直线的方程为20x y -+=或7140x y -+=.评注 在处理直线与圆的相交问题时经常用到三长关系,即半弦长,弦心距,半径长构成直角三角形的三边.变式1 对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是( ) A .相离 B. 相切 C.相交但直线不过圆心 D.相交且直线过圆心变式 2 过点(1,2)--的直线l 被圆222210x y x y +--+=截得的弦长为,则直线l 的斜率为__________.变式3 已知直线l 经过点(1,3)P -且与圆224x y +=相交,截得弦长为l 的方程.例9.30 过点(1,1)P 的直线l 与圆22:(2)(3)9C x y -+-=相交于,A B 两点,则||AB 的最小值为( )A.解析 设圆心(2,3)C 到直线l 的距离d ,由弦长公式||AB ==可知当距离最大d 时,弦长||AB 最小.又||d CP ≤==,当直线l CP ⊥时取等号,故max d =.所以max ||4AB ===.故选B评注 过圆内一定点的所有弦中,过此点的直径为最长弦,过此点且垂直于该直径的弦为最短弦. 变式1 过点(11,2)A 做圆22241640x y x y ++--=的弦,其中弦长为整数的共有( ) A. 16 条 B. 17条 C. 32条 D. 34条例9.31 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A. 解析 22680x y x y +--=可化为22(3)(4)25x y -+-=,故圆心坐标(3,4),半径为5,点(3,5)在圆内,因为AC 最长,所以AC 为直径,即||10AC =,BD 最短,且BD 过点(3,5),所以||BD ==,所以1||||2S AC BD == B变式1 如图所示,已知AC ,BD 为圆O :224x y +=的两条相互垂直的弦,垂足为M ,则四边形ABCD 的面积的最大值为__________.例9.32 (2012北京海淀高三期末理13改编)已知圆22:(1)2C x y -+=,过点(1,0)M -的直线l 交圆C 于,A B 两点,若0CA CB ⋅=(C 为圆心),则直线l 的方程为__________. 解析 设直线:(1)l y k x =+,即:l 0kx y k -+= 则圆心到直线l 的距离为d =又0CA CB ⋅=,故CA CB ⊥,即△ABC 是等腰三角形,2C π∠=.所以sin142d r π====即k =±,故直线l :10x +=或10x ++= 变式 1 已知O 为平面直角坐标系的原点,过点(2,0)M -的直线l 与圆221x y +=交于,P Q 两点.若12OP OQ ⋅=-,求直线l 的方程.变式2 已知圆C :22(1)(6)25x y ++-=上的两点,P Q 关于直线l :8y kx =+对称,且0OP OQ ⋅=(O 为坐标原点),求直线PQ 的方程题型2 直线与圆的相切关系 思路提示若直线与圆相切,则圆心到直线的距离等于半径,切线的几何性质为:圆心和切点的连线垂直于切线. 例9.33 求经过点(1,7)-与圆2225x y +=相切的直线方程.分析 将点(1,7)-代入圆方程得221(7)5025+-=>,知点(1,7)-是圆外一点,故只需求切线的斜率或再求切线上另一点坐标.解析 解法一:依题意,直线的斜率存在,设所求切线斜率为k ,则所求直线方程为7(1)y k x +=-,整理成一般式为70kx y k ---=.由圆的切线的性质,5=,化简得3127120k k --=,解得43k =或34k =-. 故所求切线方程为:43250x y --=或34250x y ++=.解法二:依题意,直线的斜率存在,设所求切线方程为0025x x y y +=(00(,)x y 是切点),将坐标(1,7)-代入后得00725x y -=,由00002272525x y x y -=⎧⎪⎨+=⎪⎩,解得0043x y =⎧⎨=-⎩或0034x y =-⎧⎨=-⎩. 故所求切线方程为:43250x y --=或34250x y ++=.评注 已知圆外一点,求圆的切线方程一般有三种方法:①设切点,用切线公式法;②设切线斜率,用判别式法:③设切线斜率,用圆心到切线距离等于圆半径.一般地,过圆外一点可向圆作两条切线,在后两种方法中,应注意斜率不存在的情况.变式1 已知圆22:(1)(2)4C x y -+-=,求过点(1,5)P -的圆的切线方程.变式2 直线l (2)2y k x =-+与圆22:220C x y x y +--=相切,则的一个方向向量为( ) A. (2,2)- B. (1,1) C. (3,2)- D. 1(1,)2例9.34 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆224470x y x y +--+=相切,求入射光线l 所在直线的方程.分析 利用对称性解决此类反射问题.根据光学特征,对称性的使用既可以使用点的对称,也可以使用圆的对称.解析 已知圆22(2)(2)1x y -+-=关于x 轴的对称圆'C 的方程为22(2)(2)1x y -++=,可设光线所在直线方程为3(3)y k x -=+,所以直线l 与圆'C 相切,圆心'(2,2)C -到直线l 的距离1d ==,解得43k =-或34k =-. 所以光线所在的直线l 方程为4330x y ++=或3430x y +-=.变式 1 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线'l 所在直线与圆224470x y x y +--+=相切,求反射光线'l 所在直线的方程.题型3 直线与圆的相离关系 思路提示关于直线与圆的相离问题的题目大多是最值问题,即直线上的点与圆上的点的最近或最远距离问题,这样的题目往往要转化为直线上的点与圆心距离的最近和最远距离再加减半径长的问题.例9.35 (1)直线:1l y x =-的点到圆22:4240C x y x y ++-+=上的点的距离最小值是____________. (2)由直线1y x =+上的点向圆22(3)(2)1x y -++=引切线,则切线长的最小值为( )分析 过直线1y x =+上任意一点向圆22(3)(2)1x y -++=引切线PQ ,即可得到1||PQ O Q PQ ⊥==,那么,当切线长PQ 取最小值时,即1O P 取最小值.解析 (1)圆C 可化为22(2)(1)1x y ++-=,故圆心(2,1)C -到直线1y x =-的距离d ==1d r -=(3) 过1O 作1O H 垂直于直线1y x =+于点H ,过H 作HR 相切圆1O 与R ,连接1O R ,则切线长的最小值为||HR ,圆心(3,2)-到直线10x y -+=的距离d ==,||HR =,故选A.变式1 已知点P 是直线40(0)kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两切线,,A B 是切点,若四边形PACB 的最小面积是2,则k 的值为( )A. 3B.2C. 变式 2 已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足||||PQ PA =.(1)求实数,a b 间满足的等量关系; (2)求线段PQ 长的最小值.题型4 圆与圆的位置关系 思路提示已知两圆半径分别为12,r r ,两圆的圆心距为d ,则: (1) 两圆外离12r r d ⇔+<; (2)两圆外切12r r d ⇔+=; (3)两圆相交1212||r r d r r ⇔-<<+; (4)两圆内切12||r r d ⇔-=; (5)两圆内含12||r r d ⇔->;两圆外切和内切较为重要,这两种位置关系常与椭圆和双曲线的定义综合考查.例9.36 圆221:20O x y +-=和圆222:40O x y y +-=的位置关系是( )A. 外离B. 相交C. 外切D. 内切 分析 判断圆心距与两圆半径的关系解析 由圆221:20O x y +-=得1(0,0)O ,1r圆222:40O x y y +-=得2(0,2)O ,22r =,121212||||2r r O O r r -<=<+,两圆相交,故选B.变式1 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.变式2 在平面直角坐标系xOy 中,点(0,3)A ,直线l :24y x =-,设圆C 的半径为1,圆心在l 上, (1) 若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2) 使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.例9.37 已知两圆222610x y x y +---=和2210120x y x y m ++-+= (1)m 取何值时两圆外切.(2)m 取何值时两圆外切,此时公切线方程是什么?(3)求45m =时两圆的公共弦所在直线的方程和公共弦的长度.分析 把两圆的一般方程化为标准方程,求两圆的圆心距d ,判断d 与R r +,R r -的关系,再用圆的几何性质分别解决(2)(3)问. 解析 两圆的标准方程分别为22(1)(3)11x y -+-=,22(5)(6)61,(61)x y m m -+-=-<,圆心分别为(1,3),(5,6)M N(1) =25m =+(2) 小于两圆圆心距55=, 解得,两圆方程222610x y x y +---=与2210120x y x y m ++-+=,相减得861250x y +--+=代入,得43130x y +-+=.(3) 两圆的公共弦所在直线方程为2222(261)(101245)0x y x y x y x y +----+--+=,即43230x y +-=,所以公共弦长为=评注 应注意两圆位置关系由圆心距和两圆半径的和与差的大小关系来确定.变式1 若圆224x y +=与圆22260(0)x y ay a ++-=>,公共弦的长为a =___________.变式2 设两圆12,C C 都和两坐标轴相切,且都过点(4,1),则两圆的圆心距离12||C C =( )A. 4B. 有效训练题1. 已知点(,)P a b 在圆C :224x y +=内(异于圆心),则直线10ax by ++=与圆C 的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 不能确定 2.已知a b ≠,且2sin cos 04a a πθθ+-=,2sin cos 04b b πθθ+-=,则连接2(,)a a ,2(,)b b 两点的直线与单位圆的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定3.设,m n R ∈,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A. 1⎡-⎣B. (),11⎡-∞⋃+∞⎣C. 2⎡-+⎣D. (),22⎡-∞-⋃++∞⎣4.若直线1x ya b+=经过点(cos ,sin )M αα,则( )A. 221a b +≤B. 221a b +≥ C.22111a b +≤ D. 22111a b +≥5.过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分两部分,使得这两部分的面积之差最大,该直线的方程为( )A. 20x y +-=B. 10y -=C. 0x y -=D. 340x y +-=6.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( ) A. []3,1-- B. []1,3- C. []3,1- D. (][),31,-∞-⋃+∞7. 设,m n R ∈,若直线10mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则△ABC 面积的最小值为___________8.过点(4,0)-作直线l 与圆2224200x y x y ++--=交于,A B 两点,如果||8AB =,则l 的方程为__________.9.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则的最大值是_______. 10.已知点(3,1)M ,直线40ax y -+=及圆22(1)(2)4x y -+-=. (1)求过点M 的圆的切线方程;(2)若直线40ax y -+=与圆相切,求a 的值(3)若直线40ax y -+=与圆相交于,A B 两点,且AB 弦的长为a 的值11.已知圆M 的方程为22(2)1x y +-=(M 为圆心),直线的方程为20x y -=,点P 在直线l 上,,过点P 作圆M 的切线,PA PB ,切点为,A B . (1)若060APB ∠=,试求点的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于,C D 两点,当CD =CD 的方程;(3)求证:经过,,A P M 三点的圆必过定点,并求出所有定点的坐标.12. 已知圆C 过点(1,1)P ,且与圆222:(2)(2)(0)M x y r r +++=>关于直线20x y ++=对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值.(M 为圆M 的圆心);(3)过点P 作两条相异直线分别与圆C 相交于,A B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系

考点三 圆与圆的位置关系
(2)如果C1与C2内含,则有
(m + 1)2 + (m + 2)2 < 3 - 2.
∴(m+1)2+(m+2)2<1,∴m2+3m+2<0, 得-2<m<-1, ∴当m=-5或m=2时,圆C1与圆C2外切; 当-2<m<-1时,圆C1与圆C2内含.
考点四 直线与圆相交的有关问题
外切
内切 外离 内含
; ; ; .
考点一 直线与圆的位置关系
例1 已知圆x2+y2=8,定点P(4,0),问过P点直线的斜 率在什么范围内取值时 ,这条直线与已知圆
(1)相切(2)相交(3)相离?并写出过P点的切线方程.
解法一:设过P点的直线的斜率为k(由题意知k存在), 则其方程为y=k(x-4). 由
半径的平方r2=2,由平面几何知识得
4 |AB|= 2 r - d = 2 2 = 10 . 10 5
2 2
4
考点三 圆与圆的位置关系
例3 a为何值时,两圆
x2+y2-2ax+4y+a2-5=0和x2+y2+2x-2ay+a2-3=0,
(1)相切;(2)相交;(3)相离.
【分析】用两圆的圆心距d和两圆半径的和及差的 绝对值比较大小.
2=16,圆心C(-2,6),半径r=4,
故AC=4,在Rt△ACD中,可得 CD=2. 设所求直线的斜率为k,则直线的方程为y-5=kx, 即kx-y+5=0.由点C到直线AB的距离公式:
考点四 直线与圆相交的有关问题
| -2k - 6 + 5 | k 2 + (-1) 2 此时直线l的方程为3x-4y+20=0.

平面解析几何直线与圆的位置关系

平面解析几何直线与圆的位置关系

平面解析几何直线与圆的位置关系在平面解析几何中,直线和圆是两个基本的几何概念。

它们之间存在着不同的位置关系,这些位置关系在几何学中有着重要的应用。

本文将介绍直线与圆的七种位置关系,并探讨其几何特征和判别方法。

一、直线与圆相离直线与圆相离是指直线与圆不相交,且它们的最短距离大于圆的半径。

这种情况下,直线上的每个点到圆的距离都大于圆的半径。

图1是直线与圆相离的示意图。

判别方法:通过求直线到圆心的距离来判断,若距离大于半径,则直线与圆相离。

二、直线与圆相切直线与圆相切是指直线与圆有且只有一个公共的切点。

这个切点既在直线上,也在圆上。

图2是直线与圆相切的示意图。

判别方法:通过求直线到圆心的距离来判断,若距离等于半径,则直线与圆相切。

三、直线穿过圆直线穿过圆是指直线与圆有两个交点。

这种情况下,直线分为两部分,一部分在圆内,一部分在圆外。

图3是直线穿过圆的示意图。

判别方法:通过求直线到圆心的距离来判断,若距离小于半径,则直线穿过圆。

四、直线与圆相交但不穿过圆直线与圆相交但不穿过圆是指直线与圆有两个交点,但直线的一部分在圆的外部,另一部分在圆的内部。

图4是直线与圆相交但不穿过圆的示意图。

判别方法:通过求直线到圆心的距离来判断,若直线与圆相交但距离大于半径,则直线与圆相交但不穿过圆。

五、直线与圆内切直线与圆内切是指直线与圆有且只有一个公共切点,并且这个切点在直线的一侧。

图5是直线与圆内切的示意图。

判别方法:通过求直线到圆心的距离来判断,若直线与圆相切且距离小于半径,则直线与圆内切。

六、直线与圆外切直线与圆外切是指直线与圆有且只有一个公共切点,并且这个切点在直线的另一侧。

图6是直线与圆外切的示意图。

判别方法:通过求直线到圆心的距离来判断,若直线与圆相切且距离大于半径,则直线与圆外切。

七、直线在圆内直线在圆内是指直线的所有点都在圆的内部。

图7是直线在圆内的示意图。

判别方法:通过求直线到圆心的距离来判断,若直线到圆心的距离小于圆的半径,则直线在圆内。

平面几何中的圆与直线的位置关系

平面几何中的圆与直线的位置关系

平面几何中的圆与直线的位置关系在平面几何中,圆与直线是两种常见的几何元素,它们之间的位置关系是几何学中的一个重要研究内容。

本文将讨论圆与直线在平面上的不同位置关系,以及对应的性质和定理。

一、圆与直线的位置关系之相离当一个直线与一个圆没有任何交点时,我们称这两者为相离的关系。

具体而言,相离有以下三种情况:1. 直线在圆的外部:当直线的位置离开圆,且没有与圆相交时,我们说直线在圆的外部。

在这种情况下,直线与圆之间的最短距离等于两者的半径之差。

2. 直线与圆相切:当直线恰好与圆相切于一点时,我们称这两者为相切的关系。

在这种情况下,直线与圆的切点即为其唯一的交点。

此时,直线与圆的切点到圆心的距离等于圆的半径。

3. 圆在直线的外部:当圆完全在直线的一侧,且没有与直线相交时,我们说圆在直线的外部。

此时,直线与圆之间的最短距离等于两者的半径之和。

二、圆与直线的位置关系之相交当一个直线与一个圆相交于两个不同的交点时,我们称这两者为相交的关系。

具体而言,相交有以下两种情况:1. 直线通过圆:当一条直线正好经过圆心时,这条直线被称为直线通过圆。

在这种情况下,直线与圆有无数个交点,且直线与圆的切点到圆心的距离等于圆的半径。

2. 直线与圆相交于两点:当直线与圆相交于两个不同的交点时,我们称这两者为相交于两点的关系。

在这种情况下,直线与圆的交点满足以下性质:- 直线与圆的交点到圆心的距离等于圆的半径。

- 直线与圆的交点所在的弦垂直于直线,并且两者的交点处于弦的中垂线上。

三、圆与直线的位置关系之相切当一个直线与一个圆仅在一点处相切时,我们称这两者为相切的关系。

相切有以下两种情况:1. 直线外切圆:当直线与圆只在圆的外切点相切时,我们说直线外切圆。

在这种情况下,直线与圆的切点到圆心的距离等于圆的半径。

2. 直线内切圆:当直线与圆在圆的内切点相切时,我们说直线内切圆。

在这种情况下,直线与圆的切点到圆心的距离等于圆的半径。

四、圆与直线的位置关系之包含当一个圆完全包含在直线的内部时,我们称圆被直线包含。

平面几何中的圆与直线的位置关系

平面几何中的圆与直线的位置关系

平面几何中的圆与直线的位置关系在平面几何中,圆和直线是两种最基本的几何元素。

它们的相互位置关系是几何学中一个重要且常见的研究课题。

本文将就圆与直线的位置关系展开讨论,分析并总结它们之间的几种典型关系。

1. 直线与圆相离:当一条直线与一个圆没有任何公共点时,它们被称为相离。

在这种情况下,直线既不穿过圆,也不与圆相切。

这种位置关系在平面几何中经常出现。

例如,当直线的距离大于圆的半径时,直线与圆相离。

2. 直线与圆相切:直线与圆相切是指直线与圆只有一个公共点,并且这个公共点在直线上。

当直线与圆相切时,可以根据公共切点的位置关系进一步分类:a. 外切:当直线与圆相切,且直线在圆的外部时,称为外切。

此时,切点位于圆的外部,且直线与圆的切点处垂直于半径。

b. 内切:当直线与圆相切,且直线在圆的内部时,称为内切。

此时,切点位于圆的内部,且直线与圆的切点处垂直于半径。

3. 直线穿过圆:直线与圆相交于两个不同的交点,这种情况被称为直线穿过圆。

直线穿过圆的位置关系可以进一步分类:a. 两交点:当直线与圆相交于两个不同的交点时,称为两交点。

b. 一内一外:当直线与圆相交于一个交点,且直线一部分在圆的内部,一部分在圆的外部时,称为一内一外。

c. 两内:当直线与圆相交于两个交点,且直线完全在圆的内部时,称为两内。

4. 直线包围圆:当一条直线把一个圆完全包围在内时,称为直线包围圆。

这种情况下,直线将圆分成两个半圆。

直线包围圆是直线与圆的一种特殊位置关系,也称为割圆。

根据以上分析,我们可以看出圆与直线的位置关系种类丰富多样。

在解决实际问题时,对于圆与直线的位置关系的准确理解和判断是非常重要的。

这些位置关系在几何证明、物理问题以及工程应用等方面都有着广泛的应用。

因此,我们需要通过学习和实践,熟练掌握这些位置关系的判断方法和应用技巧,以便能够灵活运用于实际问题的解决中。

在平面几何中,圆与直线的位置关系是一个博大精深的领域。

本文只对圆与直线的几种典型关系进行了简要介绍,实际上还有更多更复杂的情况和结论等待我们去探索和研究。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )方程观点 Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)图形量的|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D. 2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案: 6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24C .±2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a=±24.6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34 B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。

第四讲+直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

第四讲+直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

(3)由(x2+y2-2x-6y+1)-(x2+y2-10x-12y+45)=0,得两 圆的公共弦所在直线的方程为 4x+3y-22=0.
故两圆的公共弦的长为
2
32-|4+34×2+3-3222|2=254.
【题后反思】 (1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间 的距离与两圆半径之间的关系,一般不采用代数法. (2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方 程作差消去 x2,y2 项得到.
解析:由 x2+y2-2x-2y+1=0 得(x-1)2+(y-1)2=1, 因为直线 x+my=2+m 与圆 x2+y2-2x-2y+1=0 相交,
所以|1+m1-+2m-2 m|<1,即 1+m2>1,
所以 m≠0,即 m∈(-∞,0)∪(0,+∞). 答案:D
【题后反思】判断直线与圆的位置关系的常见方法 (1)几何法:利用 d 与 r 的关系判断. (2)代数法:联立方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可 判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于 动直线问题.
解:由题意得圆心 C(1,2),半径 r=2. (1)∵( 2+1-1)2+(2- 2-2)2=4, ∴点 P 在圆 C 上. 又 kPC=2-2+12- -12=-1,
∴切线的斜率 k=-k1PC=1. ∴过点 P 的圆 C 的切线方程是 y-(2- 2)=x-( 2+1), 即 x-y+1-2 2=0.
如图 D72,设 P(0,-2),PA,PB 分别切圆 C 于 A,B 两点, PC= 22+22=2 2,θ=∠APB,α=π-θ.
图 D72
在 Rt△PAC 中,sin 2θ=PrC= 410, 所以 cos 2θ= 1-sin22θ= 46. 所以 sinθ=2sin 2θcos 2θ=2× 410× 46= 415,sin α=sin (π-θ) = 415.故选 B. 答案:B

直线与圆的位置关系(课件)-2022-2023学年数学人教A版选择性必修第一册

直线与圆的位置关系(课件)-2022-2023学年数学人教A版选择性必修第一册

O
轮船
港直线的方程,利用方程判断直线与圆的
位置关系 , 进而确定轮船是否有触礁危险.
例4 一个小岛的周围有环岛暗礁,暗礁分布在以小岛中
心为圆心,半径为20 km的圆形区域内. 已知小岛中心位于轮
船正西40 km处, 港口位于小岛中心正北30 km处. 如果轮船沿
直线返港,那么它是否会有触礁危险?
解:以小岛的中心为原点O, 东西方
直线与圆相离 直线与圆相切
△>0
直线与圆相交
思考?与初中的方法比较,你认为用方程判断直线与圆 的位置关系有什么优点?例1中两种解法的差异是什么?
直线l:Ax+By+C=0 (A, B不同时为零) 圆 C: (x-a)2+(y-b)2=r2(r>0) 利用圆心到直线的距离 d 与半径 r 的大小关系判断:
例3图是某圆拱形桥一孔圆拱的示意图.圆拱跨度AB 20 m, 拱高OP 4 m, 建造时每间隔4 m需要一根支柱支撑, 求支柱A2P2的高度.(精确到0.01 m)
圆的方程是x2 ( y 10.5)2 14.52. 把点P2的横坐标x 2代入圆 的方程, 得(2)2 ( y 10.5)2 14.52 ,
解法2:设切线l的斜率为k, 则切线l
y
的方程为y 1 k( x 2),
P
因为直线l与圆相切, 所以方程组
y x
1 2
y2
k(
x 1
2)
只有一组解.
O
x
消元, 得(k2 1)x2 (2k 4k 2 )x 4k 2 4k 0 ①
因为方程①只有一组解, 所以 Δ 4k2(1 2k)2 16k(k2 1)(k
心为圆心,半径为20 km的圆形区域内. 已知小岛中心位于轮

圆与直线的位置关系

圆与直线的位置关系

圆与直线的位置关系圆与直线是几何学中常见的图形,它们之间的位置关系有多种情况。

本文将从相离、相切和相交三个方面来探讨圆与直线的位置关系。

相离当一条直线与圆没有任何交点时,称它们为相离的关系。

在平面几何中,一条直线可以在圆的内部或外部相离。

以O为圆心、r为半径的圆和直线l为例,如果直线l与圆交点数为0,则可断定圆与直线相离。

相切当一条直线与圆只有一个交点时,称它们为相切的关系。

圆与直线相切的位置关系有内切和外切两种情况。

当直线l与圆内部相切时,交点位于圆的内部且只有一个。

直线l与圆内切于点P,此时直线l是P点的切线。

切线的特点是在交点处与圆的曲线相切且与切点的切线垂直。

当直线l与圆外部相切时,交点位于圆的外部且只有一个。

直线l与圆外切于点T,此时直线l是从点T出发与圆相切的切线。

同样的,切线也是在交点处与圆的曲线相切且与切点的切线垂直。

相交当一条直线与圆有两个交点时,称它们为相交的关系。

圆与直线相交有两种情况,一是直线穿过圆,二是直线与圆的一部分相交。

当直线l穿过圆时,直线l与圆有两个交点。

如图所示,直线l与圆相交于点A和点B。

这种情况下,直线l被称为圆的弦,而弦的中点则位于圆心O上。

当直线l与圆的一部分相交时,直线l与圆有两个交点,且这两个交点不在直线l上。

直线l与圆相交于点C和点D,C点和D点分别位于圆的曲线上。

总结圆与直线的位置关系可以通过相离、相切和相交三个方面来描述。

相离表示没有任何交点,相切表示只有一个交点,而相交表示有两个交点。

通过研究这些位置关系,我们可以深入理解几何形体之间的相互作用,丰富我们的几何知识。

以上是对圆与直线位置关系的简要介绍,希望能够对读者有所帮助。

当然,对于更复杂的情况和具体应用,我们还可以进一步探讨,深入研究几何学的奥妙。

几何学是数学的一门重要分支,通过学习和研究几何学,我们可以培养自己的逻辑思维和分析问题的能力。

第三讲 直线与圆、圆与圆的位置关系

第三讲 直线与圆、圆与圆的位置关系

第三讲 直线与圆、圆与圆的位置关系一、定义理解1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac ⎩⎨⎧>0⇔相交=0⇔相切<0⇔相离圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【常用结论】(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.(×)(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×)(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×)(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(×)(5)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(√)(6)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.(√)二、自测练习1.圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离2.(2013·安徽)直线x+2y-5+5=0被圆x2+y2-2x-4y=0截得的弦长为() A.1 B.2 C.4 D.4 63.两圆交于点A(1,3)和B(m,1),两圆的圆心都在直线x-y+c2=0上,则m+c的值等于________.4.(2014·重庆)已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交高一数学直线与圆、圆与圆于A,B两点,且AC⊥BC,则实数a的值为________.三、考点题型【题型一】直线与圆的位置关系例1已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.训练:(1)若直线ax+by=1与圆x2+y2=1相交,则P(a,b)()A.在圆上B.在圆外C.在圆内D.以上都有可能(2)(2014·江苏)在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为______.【题型二】圆的切线问题例2(1)过点P(2,4)引圆(x-1)2+(y-1)2=1的切线,则切线方程为__________;(2)已知圆C:(x-1)2+(y+2)2=10,求满足下列条件的圆的切线方程.①与直线l1:x+y-4=0平行;②与直线l2:x-2y+4=0垂直;③过切点A(4,-1).训练:(2013·江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.【题型三】圆与圆的位置关系例3(1)已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0,则两圆公共弦所在的直线方程是________________________.(2)两圆x2+y2-6x+6y-48=0与x2+y2+4x-8y-44=0公切线的条数是________.(3)已知⊙O的方程是x2+y2-2=0,⊙O′的方程是x2+y2-8x+10=0,若由动点P向⊙O和⊙O′所引的切线长相等,则动点P的轨迹方程是________.训练:(1)圆C1:x2+y2-2y=0,C2:x2+y2-23x-6=0的位置关系为()A.外离B.外切C.相交D.内切(2)设M={(x,y)|y=2a2-x2,a>0},N={(x,y)|(x-1)2+(y-3)2=a2,a>0},且M∩N≠∅,求a的最大值和最小值.高考中与圆交汇问题的求解一、与圆有关的最值问题典例:(1)(2014·江西)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45πB.34π C .(6-25)πD.54π(2)(2014·北京)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A .7 B .6 C .5 D .4二、圆与不等式的交汇问题典例:(3)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( ) A .[1-3,1+3]B .(-∞,1-3]∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞)(4)(2014·安徽)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,π6 B.⎝ ⎛⎦⎥⎤0,π3 C.⎣⎢⎡⎦⎥⎤0,π6 D.⎣⎢⎡⎦⎥⎤0,π3方法与技巧:1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形. 3.圆的弦长的常用求法(1)几何法:求圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2;(2)代数方法:运用根与系数的关系及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2].失误与防范1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解A 组 专项基础训练 (时间:45分钟)1.(2014·湖南)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( )A .21B .19C .9D .-112.(2013·福建)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y +2=0 C .x +y -3=0D .x -y +3=03.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为( ) A. 2 B .2 C .4 D .2 24.(2013·山东)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0D .4x +y -3=05.已知直线y =kx +b 与圆O :x 2+y 2=1相交于A ,B 两点,当b =1+k 2时,OA →·OB →等于( )A .1B .2C .3D .46.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是______________.7.(2014·上海)已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的Q 使得AP→+AO →=0,则m 的取值范围为________. 8.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0 (a >0)的公共弦长为23,则a =________.9.已知以点C(t,2t)(t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.10.已知矩形ABCD的对角线交于点P(2,0),边AB所在直线的方程为x-3y-6=0,点(-1,1)在边AD所在的直线上.(1)求矩形ABCD的外接圆的方程;(2)已知直线l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求证:直线l与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l的方程.B组专项能力提升(时间:25分钟)11.若直线l:y=kx+1 (k<0)与圆C:x2+4x+y2-2y+3=0相切,则直线l与圆D:(x-2)2+y2=3的位置关系是()A.相交B.相切C.相离D.不确定12.设曲线C的方程为(x-2)2+(y+1)2=9,直线l的方程为x-3y+2=0,则曲线上的点到直线l的距离为71010的点的个数为()A.1 B.2C.3 D.413.(2013·江西)过点(2,0)引直线l与曲线y=1-x2相交于A、B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A.33B.-33C.±33D.- 314.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k 的最大值是________.15.(2014·重庆)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=________.16.已知圆O:x2+y2=4和点M(1,a).(1)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程;(2)若a=2,过点M的圆的两条弦AC,BD互相垂直,求|AC|+|BD|的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

且仅当 a=b 时取等号,即 ab 的最大值是94。
答案
9 4
微考点 ·大课堂
考点一 直线与圆的位置关系
【典例 1】 (1)“a=3”是“直线 y=x+4 与圆(x-a)2+(y-3)2=8 相
答案 B
4.若直线 3x-4y+5=0 与圆 x2+y2=r2(r>0)相交于 A,B 两点,且∠ AOB=120°(O 为坐标原点),则 r=_____________ 。
解析 如图,过 O 点作 OD⊥AB 于 D 点,在 Rt △DOB 中,∠DOB=60°,所以∠DBO=30°,又|OD| =|3×0-45×0+5|=1,所以 r=2|OD|=2。
答案 1
二、小题查验
1.圆(x-1)2+(y+2)2=6 与直线 2x+y-5=0 的位置关系是( )
A.相切
B.相交但直线不过圆心
C.相交过圆心
D.相离
解析 由题意知圆心 (1 ,- 2) 到直线 2x+ y- 5 = 0 的距离 d = |2×12-2+2-1 5|= 5< 6且 2×1+(-2)-5≠0,所以直线与圆相交但不过圆 心。故选 B。
无解
3.两圆公切线的条数
位置关系 内含
内切
相交
外切
外离
公切线条数 ___0_____ ___1_____ ____2____ ____3____ ____4____
重点微提醒 1.关注一个直角三角形 当直线与圆相交时,由弦心距(圆心到直线的距离)、弦长的一半及半径构 成一个直角三角形。 2.两圆相交时公共弦的方程 设圆 C1:x2+y2+D1x+E1y+F1=0,① 圆 C2:x2+y2+D2x+E2y+F2=0,② 若两圆相交,则有一条公共弦,其公共弦所在直线方程由①-②所得, 即:(D1-D2)x+(E1-E2)y+(F1-F2)=0。
2015·全国卷Ⅱ·T7(5
2.能用直线和圆的方程解决 分)(弦长问题)
2.圆的弦长与切线 问题
一些简单的问题
2016·江苏高考·T18(16 3.圆与圆的位置关
3.初步了解用代数方法处理 分)(圆的综合问题) 系
几何问题的思想
微知识 ·小题练
自|主|全|排|查
1.直线与圆的位置关系与判断方法
方法
答案 10
2.(必修 2P133A 组 T9 改编)若圆 x2+y2=4 与圆 x2+y2+2ay-6=0(a>0) 的公共弦长为 2 3,则 a=_____________ 。
解析 方程 x2+y2+2ay-6=0 与 x2+y2=4。两式相减得: 2ay=2, 则 y=1a。由已知条件,知 22-? 3?2=1a,即 a=1。
答案 B
2.圆 x2+y2-4x=0 在点 P(1, 3)处的切线方程为 ( )
A.x+ 3y-2=0
B.x+ 3y-4=0
C.x- 2y+4=0
D.x- 3y+2=0
解析 圆的方程为 (x-2)2+y2=4,圆心坐标为 (2,0),半径为 2,点 P
在圆上,设切线方程为 y- 3= k(x- 1),即 kx- y- k+ 3= 0,所以
__无______解
外切
_d_=__r 1_+__r_2______
_一__组_____实数解
相交
____|r_1-__r_2_|<__d_<__r_1_+__r_2_
__两__组__不__同__的____实数解
内切
d=___|_r_1-__r_2_| _____(r1≠r2)
一组实数解
内含
0_≤___d_<____|r1-r2|(r1≠r2)
相交 相切 相离
2.圆与圆的位置关系
设圆 O1:(x-a1)2+(y-b1)2=r21(r1>0),
圆 O2:(x-a2)2+(y-b2)2=r22(r2>0)。
方法 几何法:圆心距 d 与 r1,r2 代数法:两圆方程联立组
位置关系 的关系
成方程组的解的情况
外离
__d_>__r_1_+__r_2____
答案 2
5.已知圆 C1:(x-a)2+(y+2)2=4 与圆 C2:(x+b)2+(y+2)2=1 外切, 则 ab 的最大值为_____________。
解析 由两圆外切可得圆心(a,-2),(-b,-2)之间的距离等于两圆
半径之和,即 (a+b)2=(2+1)2,即 9=a2+b2+2ab≥4ab,所以 ab≤94,当
小|题|快|速|练 一、回归教材 1.(必修 2P132A 组 T5 改编)直线 l:3x-y-6=0 与圆 x2+y2-2x-4y= 0 相交于 A,B 两点,则|AB|=_____________ 。
解析 由 x2+y2-2x-4y=0,得(x-1)2+(y-2)2=5,所以该圆的圆心 坐标为(1,2),半径 r= 5,又圆心(1,2)到直线 3x-y-6=0 的距离为 d= |3-92+-16|= 210,由????|A2B|????2=r2-d2,得|AB|2=4????5-52????=10,即|AB|= 10。
过程
依据
代数 法
联立方程组消去 x(或 y)得 一元二次方程,计算 Δ=b2 -4ac
Δ>0 Δ d 与半径 r 的关系。相 交时弦长为 2 r2-d2
d__<____r d__=____r d__>____r
结论 _相__交_____ _相__切_____ _相__离_____
|2k-k+ k2+1
3|=2,解得
k=
33。所以切线方程为
y-
3= 33(x-1),即 x-
3
y+2=0。故选 D。
答案 D
3.两圆 x2+y2-2y=0 与 x2+y2-4=0 的位置关系是 ( )
A.相交
B.内切
C.外切
D.内含
解析 两圆方程可化为 x2+(y-1)2=1,x2+y2=4。两圆圆心分别为 O1(0,1),O2(0,0),半径分别为 r1=1,r2=2。因为|O1O2|=1=r2-r1。故选 B。
第八章 平面解析几何 第四节 直线与圆、圆与圆的位置关系
微知识·小题练 微考点·大课堂
★★★2018 考纲考题考情★★★
考纲要求
真题举例
命题角度
1.能根据给定直线、圆的方
程,判断直线与圆的位置关 2016·全国卷Ⅲ·T16(5 1.直线与圆的位置
系;能根据给定两个圆的方程 分)(弦长问题)
关系
判断圆与圆的位置关系
相关文档
最新文档