2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)
2017年“华罗庚杯”数学邀请赛初赛试卷(小学中高年级组)
2017年“华罗庚杯”数学邀请赛初赛试卷(小学中高年级
组)
华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念和学习我国杰出的数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。
华杯赛的报考
时间:初赛在每年12月;复赛在每年3月的第二个星期六。
总决赛两年一次,在7月进行。
那么对于2017年的华杯赛小学试题,作为小学生的你,你觉得如何呢?
针对“华杯赛”,小编为大家总结2018年复赛中,应注意的知识点,需要不断的去加强练习。
小学中年级组:
小学高年级组:。
2017年第22届华杯赛初赛试题
总分第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间2016年12月10日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取值.(A )16(B )17(C )18(D )19解析:设这两个有限小数为A 、B ,则7×10=70<AB<8×11=88,很明显,积的整数部分可以是70-87的整数,所以这两个有限小数的积的整数部分有87-70+1=18种。
答案选C 。
2.小明家距学校,乘地铁需要 30 分钟,乘公交车需要 50 分钟.某天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了( )分钟.(A )6(B )8(C )10(D )12解析:方法一:单位“1”和假设法,设小明家距学校的路程为“1”,乘地铁的速度为301,乘公交车速度为501,40-6=34分钟,假设全程都做地铁,能走301×34=1517,所以坐公交车用了(1517-1)÷(301-501)=10分钟。
方法二:设数法和假设法,设小明家距学校的路程为[30,50]=150m ,乘地铁的速度为150÷50=3m/min ,乘公交车速度为150÷30=5m/min ,40-6=34分钟,假设全程都做地铁,能走5301×34=170m ,所以坐公交车用了(170-150)÷(5-3)=10分钟。
方法三:时间比和比例。
同一段路程,乘地铁和乘公交车时间比为3:5,全程乘地铁需要30分钟,有一段乘公交车则用40-6=34分钟,所以乘公交车的那段路比乘地铁多用34-30=4分钟,所以坐公交车用了4÷(5-3)×5=10分钟。
2017年第22届华杯总决赛小高组一试及详解
么甲第 10 次到达山顶前,有 2 次(第 3 次和第 9 次)当甲到达山顶时,乙正爬向
山顶,且距离山脚 5 处(小于 1 ).
18
3
(法 2): v甲上 : v乙上 : v甲下 : v乙下 6 : 5 : 6 1.5 : 5 1.5 =12 :10 :18 :15
易求: t甲上 : t乙上 : t甲下 : t乙下 15 :18 :10 :12
20174 20172 12 2 20162 2
20174 20174 2 20172 1 20162 2
2 20172 20162 1
2 2017 2016 2017 2016 1
2 4033 1 8065
2017kb b 2016kb 2016k kb b 2016k
k 1b 2016k
匠人之心 精致教学 5
当
k
1 时,无解.当
k
1
时,
b
2016k
k 1
.
k 1,k 1 , b 是整数,所以 k 1 是 2016 的因数.
2016 25 32 7
20174 20162 20172 2 2017 3 20174 20162 20172 2 2017 12 2
20174 20162 2017 12 20162 2 20174 2017 1 2017 12 20162 2
即 a 与 b 有 36 种不同的数值. 综上所述,有 36 种不同的方法.
6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.己知甲、 乙下山速度都是上山速度的 1.5 倍,甲的速度与乙的速度之比是 6 : 5 .两人同时从山脚 开始爬山,经过一段时间后,甲第 10 次到达山顶.问:在此之前,甲在山顶上有多少 次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?
第二十二届华罗庚金杯少年数学邀请赛决赛试题B参考答案(小学高年级组)
第二十二届华罗庚金杯少年数学邀请赛决赛试题B 参考答案 (小学高年级组)一、填空题(每小题 10 分, 共80分)二、解答下列各题(每小题 10 分, 共40分, 要求写出简要过程)9. 【答案】9【解答】若每两条直线有1个交点, 则5条直线最多有4+3+2+1=10个交点.最少有0个交点. 其中2个交点、3个交点的情况是不存在的.五条直线考虑多线共点与多线平行, 有以下9种可能情况:10. 【答案】201311311111个【解答】最大正整数是201311311111个。
既然是寻求最大的正整数,从极端情况考虑20171111111个,但是,20171111111个不是7的倍数, 又2016个奇数的和是偶数,不等于2017. 所以,需考虑2015位数, 且各位数字是奇数,和等于2017, 由于7111111, 2015=305×6+5,只需判断最高的5位数能否被7整除即可, 7不整除31111, 整除13111, 所以, 所求最大正整数为201311311111个.11. 【答案】66【解答】共有奇数五个, 偶数四个要得和是偶数, 则有:偶数+偶数+偶数+偶数;或者:偶数+偶数+奇数+奇数; 或者:奇数+奇数+奇数+奇数;从四个偶数中取4个有1种选法; 从四个偶数中取2个偶数, 从五个奇数中取二个奇数有: 4×3÷[2×1]×5×4÷[2×1]=60种 , 从五个奇数中取4个奇数有5种 , 所以共有:1+60+5=66种 12. 【答案】70950【解答】设d 是3n+2和5n+1的最大公约数, 则 由辗转相除知)7,4()3,4()3,12()23,12()23,15(-=+-=+-=+-=++=n n n n n n n n n d ,若7d =, 则原式不为最简分数, 即有,2,1,0,74==-k k nn 为三位数时, 即 999100≤≤n , 则有142.k 14 ,99947100≤≤≤+≤k其和=.70950129414215147=⨯++++)(三、解答下列各题(每题 15 分, 共30分, 要求写出详细过程)13. 【答案】:不可以【解答】证明:如右图,7个顶点标上字母A, B, C, D, E, F, G 代表所填的整数。
2017年第22届华杯赛(小高组)决赛模拟试题(1)-T版
2017年第22届华杯赛决赛模拟试题(1)(小学高年级组)(时间:90分钟,满分:150分)一、填空题。
(每小题10分,共80分)1.2016年1月24日,“华罗庚金杯中外少年数学精英趣味对抗赛”在美国开赛,2016年7月18日,“华罗庚金杯少年数学邀请赛30周年纪念大会”召开,已知2016年1月24日是星期日,2016年7月18日是星期 。
【难度】★★【考点】周期问题【答案】一【解析】注意2016年是闰年。
1月25日至1月31日共31-25+1=7(天);2月至6月共29+31+30+31+30=151(天);7月1日至7月18日共18天。
故20166年1月25至7月18日共7+151+18=176(天)。
176÷7=25……1,故2016年1月24日之后第176天为星期一。
2.计算:=⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛+⨯⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛--1541212322211%2532394475.0 。
【难度】★★【考点】计算 【答案】92 【解析】原式 = ⎥⎦⎤⎢⎣⎡--÷⎪⎭⎫ ⎝⎛+⨯⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛--+-15412123212124196394443 = ⎪⎭⎫ ⎝⎛--÷+⨯⎪⎭⎫ ⎝⎛⨯-154125351419743 = ⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-1543241973 =15641920⨯⨯ = 923.如图,将侧面积是314平方厘米的圆柱体,切拼成一个近似长方体,表面积比原来增加厘米。
(π取3.14)【难度】★★【考点】几何【答案】100【解析】设圆柱体高为h,底面积的半径为r.则2πrh=314,rh=50.增加面积为2rh=100(平方厘米)。
4.仅使用加、减、乘、除、括弧,可由4个4运算得到3。
例如(4 + 4 + 4)÷4 = 3。
请你另给一种运算算式。
【难度】★★【考点】巧填运算符号【答案】(4×4 - 4)÷4 = 3【解析】三个4很容易得到3,即4-4÷4=3.将除以4看成乘以1/4,利用乘法分配率可将3个4变成4个4,即4-4÷4=(4×4-4)除以4.5.将自然数从1开始,按图所表示的规律排列。
2017年全国小学华罗庚数学5套竞赛试题,家有小学生的值得收藏!
2017年全国⼩学华罗庚数学5套竞赛试题,家有⼩学⽣的值得收藏!分享4套2017年华罗庚⾦杯的⼩学初赛竞赛
试题和决赛试题。
其中2套,是2016年12⽉10⽇举⾏的第22届⼩学华杯赛的初赛试题。
另外3套,是2017年3⽉11⽇举⾏的第22届⼩学华杯赛的决赛试题。
推荐理由
题⽬有些难度,需要学⽣有⼀定的基础才能尝试,可以增加眼界,提升积累。
很多中学已经开始有⾃主招⽣的考试了,有想参加⾃招的学⽣,可以先⽤华杯赛试题练练⼿
距离2017年12⽉10⽇左右举⾏的⼩学第23届华罗庚⾦杯数学竞赛的初赛,也快开始了,有想参
加华杯赛的同学,可以提前做准备,熟悉往年试题,做到“袋中有⽶,⼼中不慌”的境地。
还有⼀件事
想要获取,本次华杯赛每道题的视频教程,可以在微信栏搜索:
Coco趣味数学
每⽇更新1-2道题⽬讲解视频教程,每天花15分钟,和你⼀起陪伴孩⼦学习。
2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)
2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每小题10分,共80分)1.(10分)++…+=.2.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了分钟.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)小于1000的自然数中,有个数的数字组成中最多有两个不同的数字.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M 为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为厘米.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有个.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12.(10分)使不为最简分数的三位数n之和等于多少.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.14.(15分)7×7的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m+n的最大值.2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)++…+=2034144.【分析】观察一下,首先把分子的两个分数变换一下形式,变成两个分数的乘积,恰好能和分母约分,这样就把原来的繁杂的分数变成简单的整数加减运算.【解答】解:===2×(2+4+6+8+ (2016)=2×=2018×1008=2034144【点评】本题考查了分数的拆项运算知识,本题突破点:把分子拆分成两个分数的乘积形式,从而和分母约分2.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了52分钟.【分析】首先分析后半程冲中点到A的过程,求出两人的速度比就可知道路程比,找到爆胎位置.然后再根据原来的速度比求出正常行驶的时间减去爆胎前的时间.最后根据甲前后两次的速度比求出时间比做差即可.【解答】解:依题意可知:甲乙两车的后来速度比:5(1+20%):4=3:2,甲回来走3份乙走两份路程.得知甲车爆胎的位置是AC的处.如果不爆胎的甲行驶的时间和速度成反比:设甲行驶的时间为x则有:4:5=x:3,x=甲在行驶AC的爆胎位置到中点的正常时间为:×==(小时);甲乙爆胎前后的速度比为:5:5(1+20%)=5:6;路程一定时间和速度成反比:设爆胎后到中点的时间为y则有:6:5=:y,y=;修车时间为:3﹣×=(小时)=52(分)故答案为:52分【点评】本题考查对比例应用题的理解和运用,关键是根据不变量判断正反比,找到甲原来不受影响的时间,再和后面的进行比较做差即可,问题解决.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)小于1000的自然数中,有352个数的数字组成中最多有两个不同的数字.【分析】可以先求出有三个同数字的数的个数,再用总数1000减去后就是符合题意“数字组成中最多有两个不同的数字”的个数.【解答】解:根据分析,小于1000的自然数中,有三个不同数字的数有:9×9×8=648个,则最多有两个不同数字的数有:1000﹣648=352个.故答案是:352.【点评】本题考查了数的问题,突破点是:先求有三个不同数字的数的个数,用总数减去即可.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M 为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出△ABC、△ABD的高,而已知AB=20厘米,再利用MH的中位线性质求出MH的长度.【解答】解:根据分析,过D,C分别作DE⊥AB交AB于E,CF⊥AB交AB于F,如图:△ABD的面积=72=,∴DE=7.2厘米,△ABC的面积=100=,∴CF=10厘米;又∵MH==×(7.2+10)=8.6厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH的长.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于10.【分析】首先要分析清楚S(a i)的含义,即a i是一个自然数,S(a i)表示a i的数字和,再根据a n的递推式列出数据并找出规律.【解答】解:S(a i)表示自然数a i的数字和,又a n=S(a n﹣1)+S(a n﹣2),在下表中列出n=1,2,3,4,…时的a n和S(a n),由上表可以得出:a4=a28=9,S(a4)=S(a28)=9;a5=a29=14,S(a5)=S(a29)=5;…可以得到规律:当i≥4时,a i=a i+24,S(a i)=S(a i+24),2017﹣3=2014,2014÷24=83…22,所以:a2017=a3+22=a25=10.【点评】本题重点是弄清楚S(a i)的含义,通过地推找到规律,再进行求解.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有19个.【分析】首先看所有的10的倍数都是满足条件的,再找出尾数不为0的满足条件的数字即可,数字不多枚举法解决.【解答】解:枚举法:(1)尾数为0的有:10,20,30,40,50,60,70,80,90.(2)尾数不为0 的有:12,21,24,36,42,45,48,54,63,84.故答案为:19【点评】本题是考察因数和倍数的关系,同时关键是在枚举过程中按照顺序,可以是数字和也可以是首位数字的大小,问题解决.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有4种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?【分析】分情况讨论m的值,有5条直线平行、4条直线平行,三条直线平行,两条直线平行,0条直线平行,五条直线交于一点,四条直线共点,三条直线共点,分别求得m的数值.【解答】解:根据分析,①若5条直线互相平行,则形成的交点为0,故m为0;②若有4条直线互相平行,则交点个数m=4;③若有三条直线互相平行,则m=5,6,7;④若有两条直线互相平行,则m=5,6,7,8,9;⑤若没有直线平行,则m=1,5,6,7,8,9,10.综上,m的可能取值有:0、1、4、5、6、7、8、9、10共9种不同的数值.故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定m的取值的种类.10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.【分析】要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1;据此分析解答即可.【解答】解:要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1.根据能被7整除的数的特征可得,111111是每个数位均为1且能被7整除的最小数.又有:2017=6×336+1=6×335+7当有336个111111组成时,因为所有数字之和要是2017,首位数字只能是1,不能被7整除;当有335个111111组成时,前面还需要加上一个正整数,使得它各位数字之和等于7,且这个数最大.满足这个条件的最大整数是13111.说明:我们可以用以下方法,构造一个能被7整除且除了首位数之外,其余数字均为1的数列如下:21,490+21=511,700+511=1211,5600+511=6111,7000+6111=13111,35000+6111=41111,70000+41111=111111,70000+41111=111111,我们注意到,7000+6111=13111是能被7整除且各位数字之和等于7 的最大正整数.所以,各位数字和为2017 的最大正整数13111…11,其中1的个数是335×6+4=2014,即.答:能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数是.【点评】本题关键是根据能被7整除的数的特征得到由数字“1”组成的最小数是111111;难点是寻找同时满足数字和是7的最大整数是13111.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.【分析】首先分析如果结果是偶数可以分为0,2,4个奇数,把每一种结果加起来即可.【解答】解:依题意可知:根据四个数的结果是偶数.那么必定是0个奇数,2个奇数或者是4个奇数.在1001,1002,1003,1004,1005,1006,1007,1008,1009奇数的个数为5个,偶数的个数为4个.当0个奇数时有一种情况.当是2个奇数2个偶数时是=60种.当选择4个奇数时有5种.60+5+1=66(种)答:共有66种选择方法.【点评】本题考查对奇偶性的理解和综合运用,同时关键是分类中的排列组合.问题解决.12.(10分)使不为最简分数的三位数n之和等于多少.【分析】不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,我们可以用5n+1尝试来锁定答案,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102+109+116+…+998=(102+998)×129÷2=70950答:使不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.【分析】首先分析最小数字的位置,可以放在圆心出也可以放在外边,两种情况分析即可.【解答】解:依题意可知:分两种情况讨论:假设将最小数放在中心位置,我们只能在外圈顺时针依次从小到达放数字.但是只能满足五个三角形,最后一个三角形无法满足条件.假设将最小的数字放在外圈,然后在周边顺时针依次从小到大放数字,如果想要五个三角形都满足条件,则中心位置必须放大数字,但这样的话,最后一个又不能满足条件.综上所述:不能找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列.【点评】本题是对凑数谜的理解和运用,关键问题是找最小数字的位置.问题解决.14.(15分)7×7的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m+n的最大值.【分析】在m取最大值的条件下n尽量取最大值可使m+n的值最大.【解答】解:根据分析,1≤黑格和白格的行数≤7;1≤列数≤7,当m=7时,可以设7列之中黑格个数为3,则黑格总数为:3×7=21.然后,可以把21个黑格在1﹣5行之中每行放4个,第6行放1个,第7行不放.这样就有5行中黑格数量超过白格,所以n=5,从而使得m+n=12为最大.如下图1所示:当m=6时,可以设6列之中黑格个数均为3,其余一列黑格个数为7,这样黑格总数为3×6+7=25.然后,我们使得1﹣6行黑格个数为4个,最后一行只有1个.这样就有6行中黑格数列超过白格,所以n=6,从而使得m+n=12,如图2所示:当m≤5时,m+n≤12.综上,m+n的最大值为12.故答案是:12.【点评】本题考查了最大与最小,本题突破点是:在行数和列数的最小与最大的范围内,确定最大值.。
(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)
2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A 卷)一、填空题(每小题10分,共80分)1.(10分)用[]x 表示不超过x 的最大整数,例如[3.14]3=,则 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 . 2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、2103和193,则原来给定的4个整数的和为 . 3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B 地去了C 地,甲已离开A 地2小时,于是,甲以原来的速度的2倍去C 地.又经过了2小时后,甲乙两人同时到达C 地,则乙的速度是 千米/小时.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的27,是只参加朗诵小组人数的15,那么书法小组与朗诵小组的人数比是 .6.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 厘米.7.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 .8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n有多少个不同的数值?10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月2I日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A 卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)用[]x 表示不超过x 的最大整数,例如[3.14]3=,则 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 6048 . 【分析】可以先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和. 【解答】解:根据分析,原式为: 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++ 1592610[550][733][916][1100][1283][1466]111111111111=+++++ 550733916110012831466=+++++6048=.故答案是6048.【点评】本题考查了高斯取整,本题突破点是:先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、2103和193,则原来给定的4个整数的和为 20 . 【分析】根据题意,设原来给定的4个整数分别是a 、b 、c 、d ,则83a b cd +++=(1),123a b d c +++=(2),21033a c d b +++=(3),1933b c d a +++=(4),据此求出原来给定的4个整数的和是多少即可.【解答】解:设原来给定的4个整数分别是a 、b 、c 、d , 83a b cd +++=(1), 123a b dc +++=(2), 21033a c db +++=(3),1933b c d a +++=(4), (1)+(2)+(3)+(4),可得 212()81210933a b c d +++=+++,所以20a b c d +++=,所以原来给定的4个整数的和为20. 故答案为:20.【点评】此题主要考查了平均数问题,要熟练掌握,解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数. 3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 10 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法. 【解答】解:根据分析,份三种情况:①当正中间即E 处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE 、BE ;②当两颗棋子都不在正中间E 处时,而其中有一颗在顶点处时,有4种不同摆法,即AB 、AF 、AH 、AD ;③当两颗棋子都在顶点处时,有2种不同摆法,即AC 、AI ;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD 、BH .综上,共有:242210+++=种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是64千米/小时.【分析】首先知道甲在2小时的路程是80千米,那么甲现在的速度和后来的速度都是可求的,再根据甲的时间和速度可求从B到C的路程,用路程除以乙的时间即是速度.【解答】解:甲在2小时走80千米,甲速为:80240÷=(千米/时);甲速度加速变成40280⨯=(千米/时);甲再经过2小时路程为:280160⨯=(千米/时)乙路程共是160千米,时间是2.5小时,乙速为:160 2.564÷=(千米/时)故答案为:64【点评】本题考查对追及问题的理解和运用,同时关键在求出BC之间的路程,隐含中知道乙的时间是2.5小时.问题解决.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的27,是只参加朗诵小组人数的15,那么书法小组与朗诵小组的人数比是3:4.【分析】把两个小组都参加的人数看作单位“1”,则只参加书法小组人数的分率是27172÷=,只参加朗诵小组人数的分率是1155÷=,则参加书法小组人数的分率是79122+=,参加朗诵小组人数的分率是156+=,然后根据比的意义解答即可.【解答】解:把两个小组都参加的人数看作单位“1”,21(11):(11)75+÷+÷9:62=3:4=答:书法小组与朗诵小组的人数比是3:4.故答案为:3:4.【点评】本题关键是把中间量两个小组都参加的人数看作单位“1”,然后都统一到这个单位“1”就容易解答了.6.(10分)如图,ABC∆的面积为100平方厘米,ABD∆的面积为72平方厘米.M为CD 边的中点,90MHB∠=︒,已知20AB=厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出ABC ∆、ABD ∆的高,而已知20AB =厘米,再利用MH 的中位线性质求出MH 的长度.【解答】解:根据分析,过D ,C 分别作DE AB ⊥交AB 于E ,CF AB ⊥交AB 于F ,如图:ABD ∆的面积11722022DE AB DE ==⨯⨯=⨯⨯,7.2DE ∴=厘米,ABC ∆的面积111002022CF AB CF ==⨯⨯=⨯⨯,10CF ∴=厘米;又11()(7.210)8.622MH DE CF =⨯+=⨯+=厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH 的长.7.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 10 .【分析】首先要分析清楚()i S a 的含义,即i a 是一个自然数,()i S a 表示i a 的数字和,再根据n a 的递推式列出数据并找出规律.【解答】解:()i S a 表示自然数i a 的数字和,又12()()n n n a S a S a --=+,在下表中列出1n =,2,3,4,⋯时的n a 和()n S a ,nn a ()n S a1 2017 10 222430 14 5 31 10 1 3266由上表可以得出:4289a a ==,428()()9S a S a ==; 52914a a ==,529()()5S a S a ==;⋯可以得到规律:当4i 时,24i i a a +=,24()()i i S a S a +=, 201732014-=,2014248322÷=⋯,所以:20173222510a a a +===.【点评】本题重点是弄清楚()i S a 的含义,通过地推找到规律,再进行求解.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法. 【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法. 综上,共有:1124++=种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n有多少个不同的数值?【分析】按题意,可以分类讨论,最后确定n的取值.【解答】解:根据分析,0n=,即5条直线互相平行;n=,即五条直线交于一点;1n=,3,不存在;2n=,5,6,7,8,9,10的情况分别如下图:4n的取值共有9种不同的数,故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定n 的取值. 10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?【分析】将所有学生分成四种,即三种水果都选的人数a 、同时选苹果和香蕉的人数b 、同时选梨和苹果的人数c 、同时选香蕉和梨的人数d ,再根据选每种水果的人数列关系式,270403010040a b c d +++=++-=,再利用各个取值范围求出三种水果都选的人数最大值.【解答】解:根据分析,设学生总数为100人,故70人的学生选择苹果,40人的学生选择了香蕉.30人的学生选了梨,三种水果都选的学生人数有a 人,同时选了苹果和香蕉的人数有b 人,同时选了梨和苹果的人数有c 人, 同时选了香蕉和梨的人数有d人,则:40()2704030100402b c d a b c d a -+++++=++-=⇒=,又b c d ++,400202a-∴=, 故当0b c d ++=时,a 取最大值20,即占总数的20% 故答案是20%.【点评】本题考查了分数和百分数的应用,本题突破点是:根据容斥原理列出三种水果都选的人数与总数及两种都选的人数的关系式,再求解.11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.【分析】按题意,可以设每个重量的数量为未知数,19克的珠子有x 个,17克的珠子有y 个,再列出关系式,根据正整数的范围逐步取值,最后找出符合题意的值. 【解答】解:根据分析,设有x 个19克的珠子,y 个17克的珠子,则有: 19172017x y +=,又x ,y 均为正整数 2017171200011061919x-⨯∴=<,2017191199611181717y -⨯=<;2017171917201719yx y x -+=⇒=,由余数定理,要使x 为正整数,201717y -必须能被19整除,即余数为0,而2017被9除余数为3,故17y被19除余数也为3,在所有被19除余数为3既小于2017又能被17整除的数只有:①136,即171368y y=⇒=,20171789919x-⨯==,998107x y+=+=;②459,即1745927y y=⇒=,20174598219x-==,8227109x y+=+=;③782,即1778246y y=⇒=,20177826519x-==,6546111x y+=+=;④1105,即17110565y y=⇒=,201711054819x-==,4865113x y+=+=;⑤1428,即17142884y y=⇒=,201714283119x-==,3184115x y+=+=;⑥1751,即171751103y y=⇒=,201717511419x-==,14103117x y+=+=.综上,两种珠子的数量和即x y+所有可能的值是:107、109、111、113、115、117.故答案是:107、109、111、113、115、117.【点评】本题考查了不定方程的分析求解,本题突破点是:通过列出关系式,再根据未知数的范围确定取值.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.【分析】3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,我们可以用51n+尝试来锁定答案,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102109116998+++⋯+(102998)1292=+⨯÷70950 =答:使3251nn++不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月2I日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?【分析】同月份和同号数的回答取遍0到14,即同月份和同号数的人数取遍1到15,进而分析求解.【解答】解:回答中包含了由0到14的所有整数,也就是说每种回答包含的学生数量是1到15.由于12315120260+++⋯+==⨯,因此不论是回答同月,还是回答同号,同月份和同号数的人数的数字不会重复(比如说,某一月份生日的人有3个,就不会出现生日号数为某一号的人数有3个),因此统计同月份或同号数的人数时,1~15这15个数字每个数字都只出现一次.要使同月同日的人尽量少,则可以使月份情况或者号数情况尽量分散,例如可以将60拆分成:60123457891011=+++++++++这一种分散情况,不妨设这是同月份的人数,和另一种情况:60612131415=++++,这是同号数的人数,分析最大数字15,将15个同号数的人,分配到上面10个月份中,可知,同月同日最少会有两人.所以:该班生日相同的人数至少有2人.【点评】本题难点是分析出同月份和同号数的人数的数字不会重复,难度较大.14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?【分析】按题意,1至9的数字中,填入4和5之外,只剩下7个数,可以先求出7个数的和,即为36,中间的x只可能是3,6,9,故一一检验,即可得知x的值.【解答】解:根据分析,123678936++++++=,填入的x是其它五个数的因数,故x只能是3、6、9,若9x=,则,不能每个数的周围的数字之和是该格子中所填数字的整数倍;x=时,如图所示,易知6x=符合题意.6故答案是:6.【点评】本题考查最大与最小,突破点是:可以先求出7个数的和,再求最大值.。
a2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)
篇章专练
Work seriously
it is 3 most important thing for an animal to be good at getting food.Some animals like to eat 4 their right hand, but some animals just use their left hand instead.That’s 5 the animals are left-handed or right-handed.The scientists have discovered that the male cats and dogs are almost left-handed, while the female cats and dogs are right-handed 6 they work differently in their daily lives.Of course,
句子专练
Work seriously
5.如果是那样的话,我就不去参加聚会了。 _I_n_t_h_a_t_c_a_s_e_,__I_w__o_n_’t__g_o_t_o_t_h_e__p_a_rt_y_._____
目录 contents
4 篇章专练
篇章专练
Work seriously
四、篇章专练 Passage 1
话题19 自然
动物和植物
目录 contents
词汇专练 短语专练 句子专练 篇章专练
目录 contents
词汇专练
词汇专练
Work seriously
一、词汇专练 (pet, different, animal, smart, habit) ●用括号里的单词的适当形式填空,每词只能用 一次。 1.I think I should read more because it will make me__s_m_a_r_t_e_r___. 2.The best way is to change your eating__h_a_b_it_(__s_)__ to a low- sugar and highfibre diet.
a2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)
2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)一、填空题1.计算:2017÷2019+=.2.如图,圆周上有12个点,将圆周12等分.以这些等分点为四个顶点的矩形共有个.3.如图,已知ABCDEFGHI为正九边形,那么∠DIG=度.4.在黑板上按照从小到大的顺序写出所有能被17或20整除的非零自然数;17,20,34,40,51,60,…那么这列数中排在第289位的数是.5.甲农场有鸡、鸭共625只,乙农场有鸡、鸭共748只.其中乙农场的鸡比甲农场多24%,甲农场的鸭比乙农场少15%,那么乙农场有鸡只.6.已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有个约数.7.甲乙两人进行10公里赛跑,甲跑完全程用了50分钟,此时乙离终点还差500米.为了给乙一次机会,两人约定,第二次赛跑时甲退后500米起跑.假设两次跑步两人速度都不变,则第二次跑步第一个人到达终点时,另一人离终点还差米.8.对于两位数n,A、B、C、D四人有以下的对话:A:“n能被24整除.”B:“n能被33整除.”C:“n能被62整除.”D:“n的各位数字之和为15.”其中只有2人的话是正确的,那么n的取值为.二、解答下列各题9.一个四位数,它本身是一个完全平方数,由它前两位数字及后两位数字组成的两个两位数也都是完全平方数.那么这个四位数是多少?10.盒子里有4枚白色棋子和2枚黑色棋子,菲菲分若干次拿走所有棋子,每次至少拿走一枚,共有多少种不同拿法?11.熙熙军团的胸章是如图所示的正八边形图案,已知正八边形的边长为18,那么阴影部分的面积是多少?12.一个机关锁如图所示,锁上共有八卦和太极共九个按键,依次按下其中四个按键后(按键按下便不可再按),若与正确按法一致则开锁,若不一致则机关重置至初始状态.已知在太极按下之前不可连续按下正对的两个卦象键(例如图中的乾、坤或兑、艮),且正确按法只有一种,那么打开这个机关锁至多需要试多少次?三、解答下列各题13.(15分)已知一个长方体的长、宽、高的比为4:3:2,用平面切割,切割面为六边形(如图所示),已知所有这样的六边形的周长最小为36,求这个长方体的表面积.14.(15分)如图,A、B、C分别是某学校的北门、西门和东门,从测量地图上看,线段AD、AE、DE均为公路,B、C分别在AD、AE上,DC、BE交于P点,△PBC、△PBD、△PCE的面积分别为73000平方米、163000平方米和694000平方米,小叶和小峰步行速度相同.一日,他们放学后同时从北门出发,小叶先跑后走,小峰一直步行,当小叶用3分钟跑到西门时,小峰恰好步行到东门,小叶继续用8分钟跑到D处,然后沿DE 步行与从东门到E再往D走的小峰会合,第二天按相同出行方式,如果小峰想在DE路段的中点处于小叶会合,需要比小叶提前多少分钟出发?2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)参考答案与试题解析一、填空题1.计算:2017÷2019+=1.【分析】先把带分数化成假分数,然后把分子变形进行简算即可.【解答】解:2017÷2019+=÷+=÷+=÷+=+=1故答案为:1.2.如图,圆周上有12个点,将圆周12等分.以这些等分点为四个顶点的矩形共有15个.【分析】12个等分点是6条直径的端点,以这些等分点为顶点的矩形,一定以其中两条直径为对角线,所以共有=15个矩形,据此解答即可.【解答】解:12个等分点是6条直径的端点,共有:==15(个)答:以这些等分点为四个顶点的矩形共有15个.故答案为:15.3.如图,已知ABCDEFGHI为正九边形,那么∠DIG=60°度.【分析】可以利用九边形的内角和,以及三角形的内角和,作辅助线,连接正九边形的中心,则OI=OD=OG,从而可以求得∠DIG的度数.【解答】解:根据分析,如图,O为正九边形中心,则OI=OD=OG,∠DIG=∠DIO+∠OIG==∠DOG=×(360°÷9×3)=60°故答案是:60°.4.在黑板上按照从小到大的顺序写出所有能被17或20整除的非零自然数;17,20,34,40,51,60,…那么这列数中排在第289位的数是2737.【分析】先根据17和20的公倍数,算出数列的周期,再算出每个周期有多少个数,即可求出第289位数是多少【解答】解:根据分析,17和20的倍数交替出现,17和20的最小公倍数为340,易知,1~340为一个周期,每个周期中列出了17+20﹣1个数,289=36×8+1∴数列中第289个数是:340×8+17=2737故答案为:27375.甲农场有鸡、鸭共625只,乙农场有鸡、鸭共748只.其中乙农场的鸡比甲农场多24%,甲农场的鸭比乙农场少15%,那么乙农场有鸡248只.【分析】根据“乙农场的鸡比甲农场多24%,”可得:甲农场的鸡是乙农场的鸡的1÷(1+24%)=;根据“甲农场的鸭比乙农场少15%”可得:甲农场的鸭是乙农场的鸭的1﹣15%=;假设甲农场的鸡鸭都是乙农场的鸡鸭的,则多算了(748×﹣625),对应着分率也多了鸡的(﹣),由此用除法解答即可求出乙农场的鸡的只数.【解答】解:1÷(1+24%)=1﹣15%=(748×﹣625)÷(﹣)=10.8÷=248(只)答:乙农场有鸡248只.故答案为:248.6.已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有30个约数.【分析】n有10个约数,而2n有20个约数,按约数和定理,得知n的分解式中不含有2,3n有15个约数,假设3n的分解式中不含有3,则3n的约数应该是(1+1)×10=20个,则n的分解式中含有一个3,6n分成2×3×n,再根据约数和定理,可以求得约数的个数.【解答】解:根据分析,n有10个约数,2n有20个约数,按约数和定理,又∵,∴n的质因数分解式中含有0个2;设n=3a m x,又∵,∴n的质因数分解式中含有一个3,根据约数和定理,得n的约数和为:(a+1)(x+1)=10,解得:a=1,x=4,此时n=3×m4;故6n=2×3×n=2×3×3×m4=2×32×m4,其约数和为:(1+1)×(2+1)(4+1)=2×3×5=30,故答案是:30.7.甲乙两人进行10公里赛跑,甲跑完全程用了50分钟,此时乙离终点还差500米.为了给乙一次机会,两人约定,第二次赛跑时甲退后500米起跑.假设两次跑步两人速度都不变,则第二次跑步第一个人到达终点时,另一人离终点还差25米.【分析】首先找到不变量是时间,两人两次赛跑的时间是相同的,路程是成比例关系.【解答】解:依题意可知:当甲跑全程10公里时即10000米,乙跑全程的10000﹣500=9500米,两人跑的时间相同,路程成比例关系.即10000:9500=20:19=(10000+500):9975.当甲跑完10500米时,乙跑9975米.还差10000﹣9975=25(米)故答案为:258.对于两位数n,A、B、C、D四人有以下的对话:A:“n能被24整除.”B:“n能被33整除.”C:“n能被62整除.”D:“n的各位数字之和为15.”其中只有2人的话是正确的,那么n的取值为96.【分析】四个人只有两个人的话是正确的,B、C的话都要求n的数字和是9的倍数,与的D的话矛盾,从四个人的话中找到共同点和不同的,以及矛盾的点,即可判断谁的话是正确的.【解答】解:根据分析,B、C的话都要求n的数字和是9的倍数,而C要求n的数字之和为15,若D正确,则B、C错误,所以A正确,n=24×3=96若D错误,则24和33、62和33、24和62的最小公倍数均大于100,矛盾综上所述,n的取值为96故答案为:96.二、解答下列各题9.一个四位数,它本身是一个完全平方数,由它前两位数字及后两位数字组成的两个两位数也都是完全平方数.那么这个四位数是多少?【分析】可以先假设这个四位数为,分两半,前两位和后两位,再根据完全平方数的性质,可以在两位数里缩小范围,最后分别确定这两个两位数.【解答】解:根据分析,设这个四位数为=n2,∵前两位是完全平方数,故≥16,∴n≥41,又∵,均为完全平方数,∴后两位≥2n﹣1≥2×41﹣1=81,∴=81,=16,此四位数为1681,故答案是:1681.10.盒子里有4枚白色棋子和2枚黑色棋子,菲菲分若干次拿走所有棋子,每次至少拿走一枚,共有多少种不同拿法?【分析】可以将将白棋看作列,黑棋看作行,则每次拿走若干棋子后,转化为左、下某一个点的情况,然后构造图,最后求得不同的拿法.【解答】解:根据分析,如图将白棋看作列,黑棋看作行,则每次拿走若干棋子后,转化为左、下某一个点的情况,所以构造如图:每个格点上标的数等于这点左、下所有格点各数之和,所以4枚白棋2枚黑棋共有208种不同拿法.故答案是:208.11.熙熙军团的胸章是如图所示的正八边形图案,已知正八边形的边长为18,那么阴影部分的面积是多少?【分析】按题意,将图等积变形,将阴影部分的面积转化为求其它三角形的面积,最后转化为S阴影=4S△ABO==182=324.【解答】解:根据分析,如图,S阴影=2S△ABO+2S△COD,显然S△COE=S△COD=S△BOA,故:S阴影=4S△ABO==182=324故答案是:324.12.一个机关锁如图所示,锁上共有八卦和太极共九个按键,依次按下其中四个按键后(按键按下便不可再按),若与正确按法一致则开锁,若不一致则机关重置至初始状态.已知在太极按下之前不可连续按下正对的两个卦象键(例如图中的乾、坤或兑、艮),且正确按法只有一种,那么打开这个机关锁至多需要试多少次?【分析】从九个按键中依此按4个,有9×8×7=3024(种),其中前两次相对的有8×1×7×6=336(种),中间两次相对且第一步不是太极的有8×6×1×6=288(种),末两次相对,前两部不相对且部署太极的有8×6×4×1=192(种),最后求和.【解答】解:根据分析,从九个按键中依此按4个,有9×8×7=3024(种);其中前两次相对的有8×1×7×6=336(种);中间两次相对且第一步不是太极的有8×6×1×6=288(种);末两次相对,前两步不相对且不是太极的有8×6×4×1=192(种);所以所有可以按的方法有:3024﹣336﹣288﹣192=2208(种).即至多需要试2208次.故答案是:2208.三、解答下列各题13.(15分)已知一个长方体的长、宽、高的比为4:3:2,用平面切割,切割面为六边形(如图所示),已知所有这样的六边形的周长最小为36,求这个长方体的表面积.【分析】按题意,长方体的长、宽、高的比为4:3:2,而六边形周长最小,则六边形的六条边在展开图上应构成一条线段,此时可以求出长方体的长、宽、高,表面积也即可求得.【解答】解:根据分析,长方体展开图如下图:(AB与CE是同一条棱,P与Q是同一点)所以周长最小时,六边形的六条边在展开图上应构成一条线段,所以长方体表面积为:2×(长×宽+长×高+宽×高)=2×(2×3+3×4+4×2)×[()2÷2]=416,故答案是:416.14.(15分)如图,A、B、C分别是某学校的北门、西门和东门,从测量地图上看,线段AD、AE、DE均为公路,B、C分别在AD、AE上,DC、BE交于P点,△PBC、△PBD、△PCE的面积分别为73000平方米、163000平方米和694000平方米,小叶和小峰步行速度相同.一日,他们放学后同时从北门出发,小叶先跑后走,小峰一直步行,当小叶用3分钟跑到西门时,小峰恰好步行到东门,小叶继续用8分钟跑到D处,然后沿DE 步行与从东门到E再往D走的小峰会合,第二天按相同出行方式,如果小峰想在DE路段的中点处于小叶会合,需要比小叶提前多少分钟出发?【分析】首先分析各个线段之间的比例关系,找到两段距离的路程之间的关系,做差即可.【解答】解:依题意可知:=,==•=×=;所以小峰走CE需要26分钟,如果小峰想在DE路段的中点处和小叶会和,此时需要小叶提前26﹣8=18(分).答:如果小峰想在DE路段的中点处于小叶会合,需要比小叶提前18分钟.。
(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组b卷)
2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B 卷)一、填空题(每小题10分,共80分)1.(10分)1111113352015201711111111123345201520162017---++⋯+=⨯⨯⨯⨯⨯⨯ . 2.(10分)甲、乙两车分别从A 、B 两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB 两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A 地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了 分钟.3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)小于1000的自然数中,有 个数的数字组成中最多有两个不同的数字. 5.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 厘米.6.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 .7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有 个.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.14.(15分)77⨯的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m n+的最大值.2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B 卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)1111113352015201711111111123345201520162017---++⋯+=⨯⨯⨯⨯⨯⨯ 2034144 . 【分析】观察一下,首先把分子的两个分数变换一下形式,变成两个分数的乘积,恰好能和分母约分,这样就把原来的繁杂的分数变成简单的整数加减运算.【解答】解:1111113352015201711111111123345201520162017---++⋯+⨯⨯⨯⨯⨯⨯ 31532017201513352015201711111111123345201520162017---⨯⨯⨯=++⋯+⨯⨯⨯⨯⨯⨯111122221335572015201711111111132354576201520172016⨯⨯⨯⨯⨯⨯⨯⨯=+++⋯+⨯⨯⨯⨯⨯⨯⨯⨯ 2(24682016)=⨯++++⋯+ (22016)2016222+=⨯⨯20181008=⨯ 2034144=【点评】本题考查了分数的拆项运算知识,本题突破点:把分子拆分成两个分数的乘积形式,从而和分母约分2.(10分)甲、乙两车分别从A 、B 两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB 两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A 地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了 52 分钟.【分析】首先分析后半程冲中点到A的过程,求出两人的速度比就可知道路程比,找到爆胎位置.然后再根据原来的速度比求出正常行驶的时间减去爆胎前的时间.最后根据甲前后两次的速度比求出时间比做差即可.【解答】解:依题意可知:甲乙两车的后来速度比:5(120%):43:2+=,甲回来走3份乙走两份路程.得知甲车爆胎的位置是AC的13处.如果不爆胎的甲行驶的时间和速度成反比:设甲行驶的时间为x则有:4:5:3x=,125 x=甲在行驶AC的爆胎位置到中点的正常时间为:121248(1)53155⨯-==(小时);甲乙爆胎前后的速度比为:5:5(120%)5:6+=;路程一定时间和速度成反比:设爆胎后到中点的时间为y则有:86:5:5y=,43y=;修车时间为:121413353315-⨯-=(小时)13605215⨯=(分)故答案为:52分【点评】本题考查对比例应用题的理解和运用,关键是根据不变量判断正反比,找到甲原来不受影响的时间,再和后面的进行比较做差即可,问题解决.3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE 、BE ;②当两颗棋子都不在正中间E 处时,而其中有一颗在顶点处时,有4种不同摆法,即AB 、AF 、AH 、AD ;③当两颗棋子都在顶点处时,有2种不同摆法,即AC 、AI ;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD 、BH .综上,共有:242210+++=种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)小于1000的自然数中,有 352 个数的数字组成中最多有两个不同的数字. 【分析】可以先求出有三个同数字的数的个数,再用总数1000减去后就是符合题意“数字组成中最多有两个不同的数字”的个数.【解答】解:根据分析,小于1000的自然数中,有三个不同数字的数有:998648⨯⨯=个, 则最多有两个不同数字的数有:1000648352-=个. 故答案是:352.【点评】本题考查了数的问题,突破点是:先求有三个不同数字的数的个数,用总数减去即可.5.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 8.6 厘米.【分析】可以利用面积公式分别求出ABC ∆、ABD ∆的高,而已知20AB =厘米,再利用MH 的中位线性质求出MH 的长度.【解答】解:根据分析,过D ,C 分别作DE AB ⊥交AB 于E ,CF AB ⊥交AB 于F ,如图:ABD ∆的面积11722022DE AB DE ==⨯⨯=⨯⨯,7.2DE ∴=厘米,ABC ∆的面积111002022CF AB CF ==⨯⨯=⨯⨯,10CF ∴=厘米;又11()(7.210)8.622MH DE CF =⨯+=⨯+=厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH 的长.6.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 10 .【分析】首先要分析清楚()i S a 的含义,即i a 是一个自然数,()i S a 表示i a 的数字和,再根据n a 的递推式列出数据并找出规律.【解答】解:()i S a 表示自然数i a 的数字和,又12()()n n n a S a S a --=+,在下表中列出1n =,2,3,4,⋯时的n a 和()n S a ,nn a ()n S a1 2017 102 22 43 145 4 9 9 5 14 56 14 57 10 1 866由上表可以得出:4289a a ==,428()()9S a S a ==;52914a a ==,529()()5S a S a ==;⋯可以得到规律:当4i 时,24i i a a +=,24()()i i S a S a +=, 201732014-=,2014248322÷=⋯,所以:20173222510a a a +===.【点评】本题重点是弄清楚()i S a 的含义,通过地推找到规律,再进行求解.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有 19 个.【分析】首先看所有的10的倍数都是满足条件的,再找出尾数不为0的满足条件的数字即可,数字不多枚举法解决. 【解答】解:枚举法:(1)尾数为0的有:10,20,30,40,50,60,70,80,90. (2)尾数不为0 的有:12,21,24,36,42,45,48,54,63,84. 故答案为:19【点评】本题是考察因数和倍数的关系,同时关键是在枚举过程中按照顺序,可以是数字和也可以是首位数字的大小,问题解决.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法. 【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1124++=种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?【分析】分情况讨论m的值,有5条直线平行、4条直线平行,三条直线平行,两条直线平行,0条直线平行,五条直线交于一点,四条直线共点,三条直线共点,分别求得m的数值.【解答】解:根据分析,①若5条直线互相平行,则形成的交点为0,故m为0;②若有4条直线互相平行,则交点个数4m=;③若有三条直线互相平行,则5m=,6,7;④若有两条直线互相平行,则5m=,6,7,8,9;⑤若没有直线平行,则1m=,5,6,7,8,9,10.综上,m的可能取值有:0、1、4、5、6、7、8、9、10共9种不同的数值.故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定m的取值的种类.10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.【分析】要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1;据此分析解答即可.【解答】解:要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1.根据能被7整除的数的特征可得,111111是每个数位均为1且能被7整除的最小数. 又有:20176336163357=⨯+=⨯+当有336个111111组成时,因为所有数字之和要是2017,首位数字只能是1,不能被7整除;当有335个111111组成时,前面还需要加上一个正整数,使得它各位数字之和等于7,且这个数最大.满足这个条件的最大整数是13111.说明:我们可以用以下方法,构造一个能被7整除且除了首位数之外,其余数字均为1的数列如下: 21,49021511+=, 7005111211+=, 56005116111+=, 7000611113111+=, 35000611141111+=, 7000041111111111+=, 7000041111111111+=,我们注意到,7000611113111+=是能被7整除且各位数字之和等于7 的最大正整数. 所以,各位数字和为 2017 的最大正整数1311111⋯,其中1的个数是335642014⨯+=,即201311311111⋯个.答:能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数是201311311111⋯个.【点评】本题关键是根据能被7整除的数的特征得到由数字“1”组成的最小数是111111;难点是寻找同时满足数字和是7的最大整数是13111.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.【分析】首先分析如果结果是偶数可以分为0,2,4个奇数,把每一种结果加起来即可. 【解答】解:依题意可知:根据四个数的结果是偶数.那么必定是0个奇数,2个奇数或者是4个奇数.在1001,1002,1003,1004,1005,1006,1007,1008,1009奇数的个数为5个,偶数的个数为4个.当0个奇数时有一种情况.当是2个奇数2个偶数时是225460C C=种.当选择4个奇数时有5种.605166++=(种)答:共有66种选择方法.【点评】本题考查对奇偶性的理解和综合运用,同时关键是分类中的排列组合.问题解决.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.【分析】3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,我们可以用51n+尝试来锁定答案,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102109116998+++⋯+(102998)1292=+⨯÷70950=答:使3251nn++不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.【分析】首先分析最小数字的位置,可以放在圆心出也可以放在外边,两种情况分析即可.【解答】解:依题意可知:分两种情况讨论:假设将最小数放在中心位置,我们只能在外圈顺时针依次从小到达放数字.但是只能满足五个三角形,最后一个三角形无法满足条件.假设将最小的数字放在外圈,然后在周边顺时针依次从小到大放数字,如果想要五个三角形都满足条件,则中心位置必须放大数字,但这样的话,最后一个又不能满足条件.综上所述:不能找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列.【点评】本题是对凑数谜的理解和运用,关键问题是找最小数字的位置.问题解决.14.(15分)77⨯的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的+的最大值.行的个数为n,求m n+的值最大.【分析】在m取最大值的条件下n尽量取最大值可使m n【解答】解:根据分析,1黑格和白格的行数7;1列数7,当7⨯=.然后,可以把21个m=时,可以设7列之中黑格个数为3,则黑格总数为:3721黑格在15-行之中每行放4个,第6行放1个,第7行不放.这样就有5行中黑格数量超过白格,所以5+=为最大.如下图1所示:m nn=,从而使得12当6m =时,可以设6列之中黑格个数均为3,其余一列黑格个数为7,这样黑格总数为36725⨯+=.然后,我们使得16-行黑格个数为4个,最后一行只有1个.这样就有6行中黑格数列超过白格,所以6n =,从而使得12m n +=,如图2所示:当5m 时,12m n +.综上,m n +的最大值为12.故答案是:12.【点评】本题考查了最大与最小,本题突破点是:在行数和列数的最小与最大的范围内,确定最大值.。
第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)
2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)一、填空题(每小题10分,共80分)1.(10分)用[x]表示不超过x的最大整数,例如[3.14]=3,则[]+[]+[]+[]+[]+[]的值为.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、10和9,则原来给定的4个整数的和为.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)甲从A地出发去找乙,走了80千米后到达B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是千米/小时.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的,是只参加朗诵小组人数的,那么书法小组与朗诵小组的人数比是.6.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为厘米.7.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S (22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n 有多少个不同的数值?10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.12.(10分)使不为最简分数的三位数n之和等于多少.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月I2日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)用[x]表示不超过x的最大整数,例如[3.14]=3,则[]+[]+[]+[]+[]+[]的值为6048 .【分析】可以先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和.【解答】解:根据分析,原式为:[]+[]+[]+[]+[]+[]=[]+[]+[]+[]+[]+[]=550+733+916+1100+1283+1466=6048.故答案是6048.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、10和9,则原来给定的4个整数的和为20 .【分析】根据题意,设原来给定的4个整数分别是a、b、c、d,则+d =8(1),+c=12(2),+b=10(3),+a=9(4),据此求出原来给定的4个整数的和是多少即可.【解答】解:设原来给定的4个整数分别是a、b、c、d,+d=8(1),+c=12(2),+b=10(3),+a=9(4),(1)+(2)+(3)+(4),可得2(a+b+c+d)=8+12+10+9,所以a+b+c+d=20,所以原来给定的4个整数的和为20.故答案为:20.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.4.(10分)甲从A地出发去找乙,走了80千米后到达B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是64 千米/小时.【分析】首先知道甲在2小时的路程是80千米,那么甲现在的速度和后来的速度都是可求的,再根据甲的时间和速度可求从B到C的路程,用路程除以乙的时间即是速度.【解答】解:甲在2小时走80千米,甲速为:80÷2=40(千米/时);甲速度加速变成40×2=80(千米/时);甲再经过2小时路程为:2×80=160(千米/时)乙路程共是160千米,时间是2.5小时,乙速为:160÷2.5=64(千米/时)故答案为:645.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的,是只参加朗诵小组人数的,那么书法小组与朗诵小组的人数比是3:4 .【分析】把两个小组都参加的人数看作单位“1”,则只参加书法小组人数的分率是1÷=,只参加朗诵小组人数的分率是1÷=5,则参加书法小组人数的分率是1+=,参加朗诵小组人数的分率是1+5=6,然后根据比的意义解答即可.【解答】解:把两个小组都参加的人数看作单位“1”,(1+1÷):(1+1÷)=:6=3:4答:书法小组与朗诵小组的人数比是3:4.故答案为:3:4.6.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为8.6 厘米.【分析】可以利用面积公式分别求出△ABC、△ABD的高,而已知AB=20厘米,再利用MH的中位线性质求出MH的长度.【解答】解:根据分析,过D,C分别作DE⊥AB交AB于E,CF⊥AB交AB 于F,如图:△ABD的面积=72=,∴DE=7.2厘米,△ABC的面积=100=,∴CF=10厘米;又∵MH==×(7.2+10)=8.6厘米.故答案是:8.6.7.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S (22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于10 .【分析】首先要分析清楚S(a i)的含义,即a i是一个自然数,S(a i)表示a i的数字和,再根据a n的递推式列出数据并找出规律.【解答】解:S(a i)表示自然数a i的数字和,又a n=S(a n﹣1)+S(a n﹣2),在下表中列出n=1,2,3,4,…时的a n和S(a n),n a n S(a n)1 2017 102 22 43 14 54 9 95 14 56 14 57 10 18 6 69 7 710 13 411 11 212 6 613 8 814 14 515 13 416 9 917 13 418 13 419 8 820 12 321 11 222 5 523 7 724 12 325 10 126 4 427 5 528 9 929 14 530 14 531 10 132 6 6 由上表可以得出:a4=a28=9,S(a4)=S(a28)=9;a5=a29=14,S(a5)=S(a29)=5;…可以得到规律:当i≥4时,a i=a i+24,S(a i)=S(a i+24),2017﹣3=2014,2014÷24=83…22,所以:a2017=a3+22=a25=10.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n 有多少个不同的数值?【分析】按题意,可以分类讨论,最后确定n的取值.【解答】解:根据分析,n=0,即5条直线互相平行;n=1,即五条直线交于一点;n=2,3,不存在;n=4,5,6,7,8,9,10的情况分别如下图:n的取值共有9种不同的数,故答案是:9.10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?【分析】将所有学生分成四种,即三种水果都选的人数a、同时选苹果和香蕉的人数b、同时选梨和苹果的人数c、同时选香蕉和梨的人数d,再根据选每种水果的人数列关系式,2a+b+c+d=70+40+30﹣100=40,再利用各个取值范围求出三种水果都选的人数最大值.【解答】解:根据分析,设学生总数为100人,故70人的学生选择苹果,40人的学生选择了香蕉.30人的学生选了梨,三种水果都选的学生人数有a人,同时选了苹果和香蕉的人数有b人,同时选了梨和苹果的人数有c人,同时选了香蕉和梨的人数有d人,则:2a+b+c+d=70+40+30﹣100=40⇒a =,又∵b+c+d≥0,∴a≤=20,故当b+c+d=0时,a取最大值20,即占总数的20%故答案是20%.11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.【分析】按题意,可以设每个重量的数量为未知数,19克的珠子有x个,17克的珠子有y个,再列出关系式,根据正整数的范围逐步取值,最后找出符合题意的值.【解答】解:根据分析,设有x个19克的珠子,y个17克的珠子,则有:19x+17y=2017,又∵x,y均为正整数∴1≤x≤<106,1≤y≤<118;19x+17y=2017⇒x=,由余数定理,要使x为正整数,2017﹣17y 必须能被19整除,即余数为0,而2017被9除余数为3,故17y被19除余数也为3,在所有被19除余数为3既小于2017又能被17整除的数只有:①136,即17y=136⇒y=8,x==99,x+y=99+8=107;②459,即17y=459⇒y=27,x==82,x+y=82+27=109;③782,即17y=782⇒y=46,x==65,x+y=65+46=111;④1105,即17y=1105⇒y=65,x==48,x+y=48+65=113;⑤1428,即17y=1428⇒y=84,x==31,x+y=31+84=115;⑥1751,即17y=1751⇒y=103,x==14,x+y=14+103=117.综上,两种珠子的数量和即x+y所有可能的值是:107、109、111、113、115、117.故答案是:107、109、111、113、115、117.12.(10分)使不为最简分数的三位数n之和等于多少.【分析】不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,我们可以用5n+1尝试来锁定答案,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102+109+116+…+998=(102+998)×129÷2=70950答:使不为最简分数的三位数n之和等于70950.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月I2日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?【分析】同月份和同号数的回答取遍0到14,即同月份和同号数的人数取遍1到15,进而分析求解.【解答】解:回答中包含了由0到14的所有整数,也就是说每种回答包含的学生数量是1到15.由于1+2+3+…+15=120=2×60,因此不论是回答同月,还是回答同号,同月份和同号数的人数的数字不会重复(比如说,某一月份生日的人有3个,就不会出现生日号数为某一号的人数有3个),因此统计同月份或同号数的人数时,1~15这15个数字每个数字都只出现一次.要使同月同日的人尽量少,则可以使月份情况或者号数情况尽量分散,例如可以将60拆分成:60=1+2+3+4+5+7+8+9+10+11这一种分散情况,不妨设这是同月份的人数,和另一种情况:60=6+12+13+14+15,这是同号数的人数,分析最大数字15,将15个同号数的人,分配到上面10个月份中,可知,同月同日最少会有两人.所以:该班生日相同的人数至少有2人.14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?【分析】按题意,1至9的数字中,填入4和5之外,只剩下7个数,可以先求出7个数的和,即为36,中间的x只可能是3,6,9,故一一检验,即可得知x的值.【解答】解:根据分析,1+2+3+6+7+8+9=36,填入的x是其它五个数的因数,故x只能是3、6、9,若x=9,则,不能每个数的周围的数字之和是该格子中所填数字的整数倍;x=6时,如图所示,易知x=6符合题意.故答案是:6.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:03:00;用户:小学奥数;邮箱:****************;学号:20913800。
第二十二届“华杯赛”决赛小高组试题A详细解答
第二十二届华罗庚金杯少年数学邀请赛决赛试题A(小学高年级组)详细解答【解】:∵201711=183+411∴[201711×3] = [183×3+411×3]= 183×3+1类似地,可知:[201711×4]= 183×4+1;[201711×5]= 183×5+1[201711×6]= 183×6+2;[201711×7]= 183×7+2;[201711×8]= 183×8+2∴原式= 183×[3+4+5+6+7+8]+1+1+1+2+2+2=6048【答】:所求值为6048。
【解】:假设原来四个整数分别为a,b,c,d,则按照题意所求的四个数的表达式分别为:a+b+c3+d,a+b+d3+ca+c+d3+b,b+c+d3+a∵a+b+c3+d+a+b+d3+c+a+c+d3+b+b+c+d3+a=3(a+b+c+d)3+(a+b+c+d)=2(a+b+c+d)∴a+b+c+d=12×(8+12+1023+913)=12×(20+20) =20【答】:原来给定的4个整数的和为20。
【解】:分三种情形,共有10种不同摆法,如下图:(1)两个点都在第一行;(2)两个点不在同一行但相邻;(3)两个点不在同一行且不相邻;【答】:共有10种不同的摆放方法。
【解】:设甲的速度为V甲,乙的速度为V乙,AB两地距离为SAB,BC两地距离为SBC 根据题意可知:V甲=80÷2=40 (千米/小时) ,甲原来的速度的2倍为80(千米/小时) 所以,BC两地距离:SBC=2×80=160 (千米)又,乙从B地到C地花了2.5小时,所以,乙的速度为:V乙=SBC÷2.5=160÷2.5=64(千米/小时)【答】:乙的速度为64 千米/小时。
2017年第22届华杯赛(小高组)决赛模拟试题(1)-T版综述
2017年第22届华杯赛决赛模拟试题(1)(小学高年级组)(时间:90分钟,满分:150分)一、填空题。
(每小题10分,共80分)1.2016年1月24日,“华罗庚金杯中外少年数学精英趣味对抗赛”在美国开赛,2016年7月18日,“华罗庚金杯少年数学邀请赛30周年纪念大会”召开,已知2016年1月24日是星期日,2016年7月18日是星期 。
【难度】★★【考点】周期问题【答案】一【解析】注意2016年是闰年。
1月25日至1月31日共31-25+1=7(天);2月至6月共29+31+30+31+30=151(天);7月1日至7月18日共18天。
故20166年1月25至7月18日共7+151+18=176(天)。
176÷7=25……1,故2016年1月24日之后第176天为星期一。
2.计算:=⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛+⨯⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛--1541212322211%2532394475.0 。
【难度】★★【考点】计算 【答案】92 【解析】原式 = ⎥⎦⎤⎢⎣⎡--÷⎪⎭⎫ ⎝⎛+⨯⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛--+-15412123212124196394443 = ⎪⎭⎫ ⎝⎛--÷+⨯⎪⎭⎫ ⎝⎛⨯-154125351419743 = ⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-1543241973 =15641920⨯⨯ = 92 3.如图,将侧面积是314平方厘米的圆柱体,切拼成一个近似长方体,表面积比原来增加 厘米。
(π取3.14)【难度】★★【考点】几何【答案】100【解析】设圆柱体高为h,底面积的半径为r.则2πrh=314,rh=50.增加面积为2rh=100(平方厘米)。
4.仅使用加、减、乘、除、括弧,可由4个4运算得到3。
例如(4 + 4 + 4)÷4 = 3。
请你另给一种运算算式。
【难度】★★【考点】巧填运算符号【答案】(4×4 - 4)÷4 = 3【解析】三个4很容易得到3,即4-4÷4=3.将除以4看成乘以1/4,利用乘法分配率可将3个4变成4个4,即4-4÷4=(4×4-4)除以4.5.将自然数从1开始,按图所表示的规律排列。
a2017年第22届华杯赛初赛试题
总分第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间2016年12月10日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取值.(A )16 (B )17(C )18(D )192.小明家距学校,乘地铁需要 30 分钟,乘公交车需要 50 分钟.某天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了( )分钟.(A )6 (B )8(C )10(D )123.将长方形 ABCD 对角线平均分成 12 段,连接成右图,长方形 ABCD 内部空白部分面积总和是 10 平方厘米,那么阴影部分面积总和是( )平方厘米.(A )14 (B )16(C )18(D )204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是( ).(A )2986 (B )2858(C )2672(D )27545.在序列 20170……中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是( ).(A )8615 (B )2016(C )4023(D )20176.从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4.(A )1(B )2(C )3(D )4ABDC二、填空题(每小题 10 分, 满分40分) 7.若425.2433275239524151=+÷⨯-+)(A,那么A 的值是 。
8.右图中,“华罗庚金杯”五个汉字分别代表 1—5 这五个不同的数字.将各线段两端点的数字相加得到五个和,共有________种情况使得这五个和恰为五个连续自然数.9.右图中,ABCD 是平行四边形,E 为 CD 的中点,AE 和 BD 的交点为 F ,AC 和 BE 的交点为 H ,AC 和 BD 的交点为 G ,四边形 EHGF 的面积是 15 平方厘米,则 ABCD 的面积是__________平方厘米.10.若2017,1029与725除以d 的余数均为 r ,那么d-r 的最大值是________.第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间2016年12月10日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)
2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形2.(10分)从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4 B.5 C.6 D.73.(10分)小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9 B.8 C.7 D.64.(10分)猎豹跑一步长为2米,狐狸跑一步长为1米.猎豹跑2步的时间狐狸跑3步.猎豹距离狐狸30米,则猎豹跑动()米可追上狐狸.A.90 B.105 C.120 D.1355.(10分)图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4 B.3 C.5 D.106.(10分)一个数串219…,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有()个不出现在该数串中.A.1 B.2 C.3 D.4二、填空题(每小题10分,满分40分.)7.(10分)计算1000﹣257﹣84﹣43﹣16=.8.(10分)已知动车的时速是普快的两倍,动车的时速提高25%即达到高铁的时速,高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,则高铁和普快列车的时速分别是千米/小时和千米/小时.9.(10分)《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援.马克的居住舱内留有每名航天员的5天食品和50千克非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要浇灌4千克的水,马克每天需要吃1.875千克土豆,才可以维持生存,则食品和土豆可供马克最多可以支撑多少天?10.(10分)如图五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字,不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”,则“华”代表的数字是或.2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形【分析】因为平角是180°,拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,所以两个角的和必须等于平角,据此解答即可.【解答】解:因为拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,A、因为两个锐角的和小于180度,所以,两个锐角三角形不可能拼成一个大三角形;B、因为90°+90°=180°,所以两个直角三角形能拼成一个大三角形;C、因为钝角+锐角有可能等于180°,所以两个钝角三角形可能拼成一个大三角形;D、因为钝角+锐角有可能等于180°,所以两个钝角三角形可能拼成一个大三角形;故选:A.【点评】本题考查了图形的拼组,难点是把所求问题转化为哪两种角能拼成平角.2.(10分)从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4 B.5 C.6 D.7【分析】10个自然数有:1、2、3、4、5、6、7、8、9、10;和是10的有(1,9)、(2、8);(3、7);(4、6);这四组数据中的两个数相加的和是10,根据抽屉原理,考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,据此即可解答.【解答】解:从1至10这10个整数中,和等于10的有:(1,9)、(2、8);(3、7);(4、6);考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,即6+1=7(个),答:至少取7个数,才能保证其中有两个数的和等于10.故选:D.【点评】完成本题首先要确定在前10个自然数中,相加为10的两个数有几组.3.(10分)小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9 B.8 C.7 D.6【分析】三位数□□□,三个位置,考虑两种情况:(1)有1个5,2个8,则5的位置有3种;(2)有2个5,1个8,则8的位置有3种,所以共有3+3=6种,据此解答即可.【解答】解:根据分析可得3+3=6(次)答:他最少要试6次,才能确保打开箱子.故选:D.【点评】本题考查了排列组合知识,首先分类清楚然后根据加法原理解答即可.4.(10分)猎豹跑一步长为2米,狐狸跑一步长为1米.猎豹跑2步的时间狐狸跑3步.猎豹距离狐狸30米,则猎豹跑动()米可追上狐狸.A.90 B.105 C.120 D.135【分析】猎豹跑2步的时间狐狸跑3步,即猎豹跑2×2=4米的时间狐狸跑1×3=3米.因为时间一定,速度比等于时间的反比,所以设这段时间为1秒,则猎豹的速度为4米/秒,狐狸的速度为3米/秒,然后用追及距离30米除以速度和就是追及时间,然后再乘猎豹的速度4米/秒即为所求.【解答】解:设猎豹的速度为:2×2=4(米/秒),狐狸的速度为:1×3=3(米/秒),30÷(4﹣3)=30÷1=30(秒)4×30=120(米)答:猎豹跑动120米可追上狐狸.故选:C.【点评】本题考查了复杂的追及问题,关键是得到猎豹和狐狸的速度.5.(10分)图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4 B.3 C.5 D.10【分析】把线段①平移到②的位置可以组成一个大长方形,这样就可以确定计算出这个八边形的周长需要知道几条线段的长度.【解答】解:如上图,把线段①平移到②的位置可以组成一个大长方形,大长方形的4条边,对边相等,所以只需知道相邻两条边的长度,③=④,所以只需知道1条线段的长度,所以求八边形的周长需要知道:2+1=3条线段的长度.故选:B.【点评】本题考查了巧算图形的周长,关键是通过线段的平移,使图形变成易于解答的规则图形.6.(10分)一个数串219…,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有()个不出现在该数串中.A.1 B.2 C.3 D.4【分析】根据题意可知219的数字和为2+1+9=12,那么下一个数字是结果的个位就是2,变成2192.接下来就按照枚举法找数字规律即可.【解答】解:枚举法219的数字和是12,接下来就是2192数字和是12,接下来就是2922的数字和是13,接下来就是3223的数字和为7,接下来就是7237的数字和为12,接下来的数2以此类推数字为:2192237221584790651281102…规律总结数字和的尾数呈现两奇数两个偶数的周期规律.故选:C.【点评】本题的关键是用枚举法找到数字规两奇数两偶数周期循环.枚举法应用于情况比较少的特殊情况.简单明了直接易懂问题解决.二、填空题(每小题10分,满分40分.)7.(10分)计算1000﹣257﹣84﹣43﹣16=600.【分析】根据减法的性质简算即可,a﹣b﹣c=a﹣(b+c).【解答】解:1000﹣257﹣84﹣43﹣16=1000﹣(257+43)﹣(84+16 )=1000﹣300﹣100=700﹣100=600故答案为:600.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.8.(10分)已知动车的时速是普快的两倍,动车的时速提高25%即达到高铁的时速,高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,则高铁和普快列车的时速分别是250千米/小时和100千米/小时.【分析】设普快的时速是x千米/小时,则动车的时速是2x千米/小时,高铁的时速是(1+25%)×2x=2.5x千米/小时,根据等量关系:高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,即高铁与普快的平均时速比动车与普快的平均时速快25千米/小时,列出方程求解即可.【解答】解:设普快的时速是x千米/小时,则动车的时速是2x千米/小时,高铁的时速是(1+25%)×2x=2.5x千米/小时,则﹣=15+10,1.75x﹣1.5x=250.25x=250.25x÷0.25=25÷0.25x=1002.5x=2.5×100=250答:高铁和普快列车的时速分别是250千米/小时和100千米/小时.故答案为:250,100.【点评】考查了百分数的实际应用,本难度较大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,再求解.9.(10分)《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援.马克的居住舱内留有每名航天员的5天食品和50千克非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要浇灌4千克的水,马克每天需要吃1.875千克土豆,才可以维持生存,则食品和土豆可供马克最多可以支撑多少天?【分析】首先根据没有土豆的时候能够生存多少天,然后根据水的存储量计算出共能够有多少土豆,除以每天的吃的土豆就是天数.【解答】解:6人的食物储备一个人可以生活5×6=30天.非饮用水储存50×6=300千克.共可以收获的土豆300÷4×2.5=187.5(千克).共可以生存187.5÷1.875=100(天)100+30=130(天)答:可以供马克生活130天.【点评】本题的关键是不要忘记把原来的30天,土豆能够生活100天,原来的食物可以生存30天.突破口就是非饮用水的量.问题解决.10.(10分)如图五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字,不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”,则“华”代表的数字是3或4.【分析】根据“每条线段两端点上的数字和恰为5个连续自然数”可以看出这5个和比原来1、2、3、4、5要大些;五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;然后结合最小和最大的自然数即可解决问题.【解答】解:五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;观察这新的5个连续自然数,最小的自然数4只能是4=1+3,最大的自然数8只能是5+3,根据这点可知,和“杯”在一条线段上的“华”可能是3或4,(2与1的和不在新的和内,5必须与3组合).答:“华”代表的数字是3或4.故答案为:3;4.【点评】此题考查了数字分析推理能力,难点是确定新的5个连续自然数比原来5个连续自然数多多少.。
2017年第22届华杯赛初赛模拟试题(1)(小高组)(唐涛)-T版
名师堂学校“阶梯数学”出品2017年第22届华罗庚金杯少年数学邀请赛初赛模拟试题(1)(小学高年级组)一、选择题。
(每小题10分,四个选项仅有一个结论正确,请将正确答案的字母填在圆括号内)1.把一个正方形纸片如图所示折叠,然后剪去黑色部分,最后展开后的图案如图( )所示。
【考点】图形的展开与折叠【难度】★【答案】B【解析】解法1:实际操作即可;解法2:倒推。
2.由两根8厘米、一根5厘米的小棒可以搭成一个三角形,这个三角形是( )三角形。
A.等腰锐角B.等腰直角C.等腰钝角D.等边【考点】三角形分类【难度】★【答案】A【解析】三根8厘米的小棒可以搭成一个等边三角形,是一个锐角三角形;把其中一根8厘米的小棒换成5厘米后是一个等腰三角形,顶角由60度变小,还是锐角,所以是等腰锐角三角形。
(D)(C)(B)(A)3.已知下面4个图中的正方形边长都是1,那么图中阴影部分的面积最大的是( )。
【考点】圆与组合图形面积【难度】★★【答案】A【解析】图A 的面积:41×π×12×2 – 12 = 21π – 1 ≈ 0.57; 图B 的面积:12 -(21π - 1)= 2 - 21π ≈ 0.43; 图C 的面积:12 – π×221⎪⎭⎫ ⎝⎛ = 1 - 41π ≈ 0.215; 图D 的面积:12 – π×221⎪⎭⎫ ⎝⎛ = 1 - 41π ≈ 0.215; 所以,图A 的面积最大。
4.用红和黄两种颜色给立方体的6个面染色,要求每个表面必须染色,且染色后经过适当旋转或翻滚着色相同则认为是相同的染色方式,那么共有( )种不同的染色方式。
A.6B.8C.9D.10【考点】染色计数【难度】★★★【答案】D【解析】用1种颜色染色,有红、黄2种方式;用2种颜色染色,再分类统计:(1)仅1个面是红色,有1种;(2)仅2个面是红色,有相对和相邻,2种;(3)仅3个面是红色,有共边和共顶点,2种;(4)仅4个面是红色,即有2个面是黄色,黄色有相对和相邻,2种;(5)仅5个面是红色,即有1个面是黄色,1种;一共:2 +(1 + 2 + 2 + 2 + 1)= 10(种)5.将1—9填入如图所示的六边形网格中,每个格子填一个数,要求每个格子周围格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍,中间的格子填的数是6,它周围格子里的数字之和是( )。
第22届华杯赛小学高年级组初赛试题及答案解析
第22届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题10分,共60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1、两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值。
A、16B、17C、18D、192、小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟。
某天小明因故先乘地铁,再乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟。
A、6B、8C、10D、123、将长方形ABCD对角线平均分成12段,连接成下图,长方形ABCD内部空白部分的面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米。
A、14B、16C、18D、204、请在上图中每个方框中填入适当的数字,使得乘法竖式成立,那么乘积是()。
A、2986B、2858C、2672D、27545、在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去,那么从第5个数字开始,该序列中一定不会出现的数组是()。
A、8615B、2016C、4023D、20176、从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的。
A、1B、2C、3D、4二、填空题(每小题10分,满分40分)7、若1532÷ 2.254553923741A⎛⎫⎪⎪⎪⨯⎪⎪⎪⎝⎭—+=+,那么A的值是。
8、下图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字,将各线段两端点的数字相加得到五个和,共有种情况使得这五个和恰为五个连续自然数。
9、上图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE 的交点为H,四边形EFGH的面积是15平方厘米,则ABCD的面积是平方厘米。
10、若2017,1029和725除以d的余数均为r,那么d—r的最大值是。
2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)
2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.A.16 B.17 C.18 D.192.(10分)小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.A.6 B.8 C.10 D.123.(10分)将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD 内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14 B.16 C.18 D.204.(10分)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.27545.(10分)在序列20170…中,从第5 个数字开始,每个数字都是前面4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是()A.8615 B.2016 C.4023 D.20176.(10分)从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.A.1 B.2 C.3 D.4二、填空题(每小题10分,共40分)7.(10分)若[﹣]×÷+2.25=4,那么A 的值是.8.(10分)如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有种情况使得这五个和恰为五个连续自然数.9.(10分)如图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE的交点为H,AC和BD的交点为G,四边形EHGF的面积是15平方厘米,则ABCD的面积是平方厘米.10.(10分)若2017,1029与725除以d的余数均为r,那么d﹣r的最大值是.2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.A.16 B.17 C.18 D.19【分析】两个小数的整数部分分别是7和10,那么这两个小数的积的整数部分最小是7×10=70;这两个小数的积的整数部分最大不超过8×11=88,所以,这两个小数的积的整数部分在70与88之间,包括70,单不包括88,共有18种可能,据此解答.【解答】解:根据题意与分析:这两个小数的积的整数部分最小是7×10=70;这两个小数的积的整数部分最大不超过8×11=88;所以,这两个小数的积的整数部分在70与88之间,包括70,但不包括88,共有:88﹣70=18种可能;答:这两个有限小数的积的整数部分有18种可能的取值.故选:C.【点评】本题关键是求出这两个小数的积的整数部分的取值范围,然后再进一步解答.2.(10分)小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.A.6 B.8 C.10 D.12【分析】总共用时是40,去掉换乘6分钟.40﹣6=34分钟.地铁是30分钟,客车是50分钟,实际是34分钟,根据时间差,比例份数法即可.【解答】解:乘车时间是40﹣6=34分,假设全是地铁是30分钟,时间差是34﹣30=4分钟,需要调整到公交推迟4分钟,地铁和公交的时间比是3:5,设地铁时间是3份,公交是5份时间,4÷(5﹣3)=2,公交时间为5×2=10分钟.故选:C.【点评】工程问题结合比例关系是常见的典型问题,份数法是奥数中常见的思想,很多题型都可以用.求出单位份数量即可解决问题.3.(10分)将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD 内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14 B.16 C.18 D.20【分析】设把中间最小的空白长方形的面积看作单位1=ab,那么与它相邻的阴影部分的面积就是2a×2b﹣ab=3ab=3,同理,相邻的空白部分的面积就是5ab=5,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是1+5+9=15,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是10÷15=(平方厘米);同理,那么阴影部分面积总和是:3+7+11=21,然后进一步解答即可.【解答】解:设把中间最小的空白长方形的面积看作单位1=ab,那么与它相邻的阴影部分的面积就是2a×2b﹣ab=3ab=3,同理,相邻的空白部分的面积就是5ab=5,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是1+5+9=15,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是10÷15=(平方厘米);那么阴影部分面积总和是:3+7+11=21,则实际面积是:21×=14(平方厘米);答:阴影部分面积总和是14平方厘米.故选:A.【点评】本题考查了矩形的性质,关键是通过方程思想,确定一个标准,然后把要求的量统一到这个标准下再解答.4.(10分)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.2754【分析】根据特殊情况入手,结果中的数字2如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾,那么就是没有进位.根据已知数字进行分析没有矛盾的就是符合题意的.【解答】解:首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102×27=2754.故选:D.【点评】根据特殊情况来分析,竖式的问题多用于排除法,有多种情况的枚举出来根据已知数字进行推理,同时不要忘记有进位的情况,问题解决.5.(10分)在序列20170…中,从第5 个数字开始,每个数字都是前面4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是()A.8615 B.2016 C.4023 D.2017【分析】分析结果中的奇数偶数的性质,如果四个数字中出现一个奇数,那么下一个数字的结果一定是奇数,则2个奇数加两个偶数结果就是偶数.分析枚举找到规律即可.【解答】解:枚举法0170的数字和是8下一个数字就是8.1708的数字和是16下一个数字就是6.7086的数字和是21下一个数字就是1.0861的数字和是15下一个数字是5.8615的数字和是20下一个数字是0.6150的数字和为12下一个数字就是2.20170861502…规律总结:查看数字中奇数的个数,奇数一出现就是2个.故选:B【点评】本题的考点也是数字问题中的奇数偶数连接的问题,数字中有一个奇数那么数字和一定是奇数,所以数字和一定是两个奇数连在一起的,B选项中只有1个奇数两边都是偶数不符合题意.C选项中奇数在后可以再接一个奇数.问题解决.6.(10分)从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.A.1 B.2 C.3 D.4【分析】首先考虑共4个空的数字不相同而且还有1,2,3,4一共是8个数字,如果有0和1,那么至少大于1的数字还有5个,大于4的数字最多是4个,最少是1个,根据这些条件进行枚举筛选.【解答】解:依题意可知:设有a个数是大于1的,有b个数是大于2的,有c个数是大于3的,有d个数是大于4的.因为1,2,3,4各有一个,还有4个空,那么有a>b>c>d.且a≥5,1≤d ≤4①若d=4,那么在这8个数字中需要有4个数字大于4,目前只有a,b,c是大于4的不满足条件.②若d=3时,那么在这8个数中需要有3个数是大于4的,a,b,c都是大于4的满足条件.则大于3的数字共个4.与c>4矛盾③若d=2时,则a,b大于4,c不大于4,c则是取3或者4,分析a,b,c,d 依次是7,5,3,2或者7,5,4,2④若d=1时,则a是大于4的,b,c是不大于4的,由3,4,a都是大于2的,所以b≥3,则大于2的数共4个,所以b=4,此时大于3的数有a,b,4此时c ≥3,那么大于2的数字共5个,矛盾故选:B【点评】本题的突破口首先是a,d的范围,缩小了枚举的范围,根据题意枚举出来进行筛选,找出矛盾的即可排除,问题解决.二、填空题(每小题10分,共40分)7.(10分)若[﹣]×÷+2.25=4,那么A 的值是4.【分析】先把繁分数化简,求出关于未知数A的方程,然后根据等式的性质解方程即可.【解答】解:[﹣]×÷+2.25=4[﹣]×÷+2.25=4[﹣]×÷=[﹣]×=﹣=×﹣==+=24=6AA=4故答案为:4.【点评】本题考查了繁分数的化简和解方程的综合应用,注意计算要准确,否则容易出错.8.(10分)如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有10种情况使得这五个和恰为五个连续自然数.【分析】根据“每条线段两端点上的数字和恰为5个连续自然数”可以看出这5个和比原来1、2、3、4、5要大些;五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;然后结合最小和最大的自然数即可确定每个顶点处有几种选值,再确定共有几种情况.【解答】解:五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;观察这新的5个连续自然数,最小的自然数4只能是4=1+3,最大的自然数8只能是5+3,并且2与1,4与5不能组合,这样就有如下组合:因为每个顶点有2种不同的选值,所以共有2×5=10种;答:共有10种情况使得这五个和恰为五个连续自然数.故答案为:10.【点评】此题重点考查学生的数字分析与组合能力,关键是确定一个顶点有几种选值.9.(10分)如图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE的交点为H,AC和BD的交点为G,四边形EHGF的面积是15平方厘米,则ABCD的面积是180平方厘米.【分析】如图,连接EG,,根据三角形的面积和底的正比关系,判断出S△BDE 、S△DEF、S△BGH与S四边形ABCD的关系,推出S四边形EHGF与S四边形ABCD的关系,再根据四边形EHGF的面积是15平方厘米,求出ABCD的面积是多少即可.【解答】解:如图,连接EG,,因为E为CD的中点,所以DE=CD,所以S△BDE =S△ADE=S四边形ABCD;因为AC和BD的交点为G,所以G为AC的中点,因为E为CD的中点,所以EG∥AD,且=,所以==,所以S△DEF =S△ADE=S四边形ABCD;因为EG∥AD,且AD∥BC,所以EG∥BC,=,所以==,所以S △BGH =S △BCG =S 四边形ABCD ;所以S 四边形EHGF =S △BDE ﹣S △DEF ﹣S △BGH =S 四边形ABCD , 所以S 四边形ABCD =S 四边形EHGF ×12=15×12=180(平方厘米)答:ABCD 的面积是180平方厘米.故答案为:180.【点评】此题主要考查了三角形的面积和底的正比关系,要熟练掌握,解答此题的关键是判断出S △BDE 、S △DEF 、S △BGH 与S 四边形ABCD 的关系.10.(10分)若2017,1029与725除以d 的余数均为r ,那么d ﹣r 的最大值是 35 .【分析】根据题意可得,2017﹣r ,1029﹣r ,725﹣r ,均能被d 整除,则(2017﹣r )﹣(1029﹣r ),(2017﹣r )﹣(725﹣r ),(1029﹣r )﹣(725﹣r ),这三个数也能被d 整除,即988,1292,304均能被d 整除,不难得出,三个数的最大公因数是76,即d 的值可能是:76,38,19,4,2,1(被1除余数可看成0);然后分别用725除以d 的可能值,求出d ﹣r 的值,选取d ﹣r 的最大值即可.【解答】解:根据题意可得,2017﹣r ,1029﹣r ,725﹣r ,均能被d 整除,则(2017﹣r )﹣(1029﹣r ),(2017﹣r )﹣(725﹣r ),(1029﹣r )﹣(725﹣r ),这三个数也能被d 整除,即988,1292,304均能被d 整除,988=2×2×19×131292=2×2×19×17304=2×2×2×2×19所以三个数的最大公因数是:2×2×19=76,d 为76的因数,即d 的值可能是:76,38,19,4,2,1(被1除余数可看成0), 当d=76时,此时:725÷76=9…41,即r=41,即此时d ﹣r=76﹣41=35;当d=38时,此时:725÷38=19…3,即r=3,即此时d ﹣r=38﹣3=35;当d=19时,此时:725÷19=38…3,即r=3,即此时d ﹣r=19﹣3=16;当d=4时,此时:725÷4=182…1,即r=1,即此时d ﹣r=4﹣1=3;当d=2时,此时:725÷2=362…1,即r=1,即此时d ﹣r=2﹣1=1;当d=1时,此时:725÷1=725,即r=0,即此时d ﹣r=1﹣0=1;则,d﹣r的最大值是35.故答案为:35.【点评】本题考查了同余定理的灵活应用,关键是求出除数d的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.A.16 B.17 C.18 D.192.(10分)小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.A.6 B.8 C.10 D.123.(10分)将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD 内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14 B.16 C.18 D.204.(10分)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.27545.(10分)在序列20170…中,从第5 个数字开始,每个数字都是前面4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是()A.8615 B.2016 C.4023 D.20176.(10分)从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.A.1 B.2 C.3 D.4二、填空题(每小题10分,共40分)7.(10分)若[﹣]×÷+2.25=4,那么A 的值是.8.(10分)如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有种情况使得这五个和恰为五个连续自然数.9.(10分)如图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE的交点为H,AC和BD的交点为G,四边形EHGF的面积是15平方厘米,则ABCD的面积是平方厘米.10.(10分)若2017,1029与725除以d的余数均为r,那么d﹣r的最大值是.2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.A.16 B.17 C.18 D.19【分析】两个小数的整数部分分别是7和10,那么这两个小数的积的整数部分最小是7×10=70;这两个小数的积的整数部分最大不超过8×11=88,所以,这两个小数的积的整数部分在70与88之间,包括70,单不包括88,共有18种可能,据此解答.【解答】解:根据题意与分析:这两个小数的积的整数部分最小是7×10=70;这两个小数的积的整数部分最大不超过8×11=88;所以,这两个小数的积的整数部分在70与88之间,包括70,但不包括88,共有:88﹣70=18种可能;答:这两个有限小数的积的整数部分有18种可能的取值.故选:C.【点评】本题关键是求出这两个小数的积的整数部分的取值范围,然后再进一步解答.2.(10分)小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.A.6 B.8 C.10 D.12【分析】总共用时是40,去掉换乘6分钟.40﹣6=34分钟.地铁是30分钟,客车是50分钟,实际是34分钟,根据时间差,比例份数法即可.【解答】解:乘车时间是40﹣6=34分,假设全是地铁是30分钟,时间差是34﹣30=4分钟,需要调整到公交推迟4分钟,地铁和公交的时间比是3:5,设地铁时间是3份,公交是5份时间,4÷(5﹣3)=2,公交时间为5×2=10分钟.故选:C.【点评】工程问题结合比例关系是常见的典型问题,份数法是奥数中常见的思想,很多题型都可以用.求出单位份数量即可解决问题.3.(10分)将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD 内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14 B.16 C.18 D.20【分析】设把中间最小的空白长方形的面积看作单位1=ab,那么与它相邻的阴影部分的面积就是2a×2b﹣ab=3ab=3,同理,相邻的空白部分的面积就是5ab=5,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是1+5+9=15,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是10÷15=(平方厘米);同理,那么阴影部分面积总和是:3+7+11=21,然后进一步解答即可.【解答】解:设把中间最小的空白长方形的面积看作单位1=ab,那么与它相邻的阴影部分的面积就是2a×2b﹣ab=3ab=3,同理,相邻的空白部分的面积就是5ab=5,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是1+5+9=15,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是10÷15=(平方厘米);那么阴影部分面积总和是:3+7+11=21,则实际面积是:21×=14(平方厘米);答:阴影部分面积总和是14平方厘米.故选:A.【点评】本题考查了矩形的性质,关键是通过方程思想,确定一个标准,然后把要求的量统一到这个标准下再解答.4.(10分)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.2754【分析】根据特殊情况入手,结果中的数字2如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾,那么就是没有进位.根据已知数字进行分析没有矛盾的就是符合题意的.【解答】解:首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102×27=2754.故选:D.【点评】根据特殊情况来分析,竖式的问题多用于排除法,有多种情况的枚举出来根据已知数字进行推理,同时不要忘记有进位的情况,问题解决.5.(10分)在序列20170…中,从第5 个数字开始,每个数字都是前面4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是()A.8615 B.2016 C.4023 D.2017【分析】分析结果中的奇数偶数的性质,如果四个数字中出现一个奇数,那么下一个数字的结果一定是奇数,则2个奇数加两个偶数结果就是偶数.分析枚举找到规律即可.【解答】解:枚举法0170的数字和是8下一个数字就是8.1708的数字和是16下一个数字就是6.7086的数字和是21下一个数字就是1.0861的数字和是15下一个数字是5.8615的数字和是20下一个数字是0.6150的数字和为12下一个数字就是2.20170861502…规律总结:查看数字中奇数的个数,奇数一出现就是2个.故选:B【点评】本题的考点也是数字问题中的奇数偶数连接的问题,数字中有一个奇数那么数字和一定是奇数,所以数字和一定是两个奇数连在一起的,B选项中只有1个奇数两边都是偶数不符合题意.C选项中奇数在后可以再接一个奇数.问题解决.6.(10分)从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.A.1 B.2 C.3 D.4【分析】首先考虑共4个空的数字不相同而且还有1,2,3,4一共是8个数字,如果有0和1,那么至少大于1的数字还有5个,大于4的数字最多是4个,最少是1个,根据这些条件进行枚举筛选.【解答】解:依题意可知:设有a个数是大于1的,有b个数是大于2的,有c个数是大于3的,有d个数是大于4的.因为1,2,3,4各有一个,还有4个空,那么有a>b>c>d.且a≥5,1≤d ≤4①若d=4,那么在这8个数字中需要有4个数字大于4,目前只有a,b,c是大于4的不满足条件.②若d=3时,那么在这8个数中需要有3个数是大于4的,a,b,c都是大于4的满足条件.则大于3的数字共个4.与c>4矛盾③若d=2时,则a,b大于4,c不大于4,c则是取3或者4,分析a,b,c,d 依次是7,5,3,2或者7,5,4,2④若d=1时,则a是大于4的,b,c是不大于4的,由3,4,a都是大于2的,所以b≥3,则大于2的数共4个,所以b=4,此时大于3的数有a,b,4此时c ≥3,那么大于2的数字共5个,矛盾故选:B【点评】本题的突破口首先是a,d的范围,缩小了枚举的范围,根据题意枚举出来进行筛选,找出矛盾的即可排除,问题解决.二、填空题(每小题10分,共40分)7.(10分)若[﹣]×÷+2.25=4,那么A 的值是4.【分析】先把繁分数化简,求出关于未知数A的方程,然后根据等式的性质解方程即可.【解答】解:[﹣]×÷+2.25=4[﹣]×÷+2.25=4[﹣]×÷=[﹣]×=﹣=×﹣==+=24=6AA=4故答案为:4.【点评】本题考查了繁分数的化简和解方程的综合应用,注意计算要准确,否则容易出错.8.(10分)如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有10种情况使得这五个和恰为五个连续自然数.【分析】根据“每条线段两端点上的数字和恰为5个连续自然数”可以看出这5个和比原来1、2、3、4、5要大些;五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;然后结合最小和最大的自然数即可确定每个顶点处有几种选值,再确定共有几种情况.【解答】解:五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;观察这新的5个连续自然数,最小的自然数4只能是4=1+3,最大的自然数8只能是5+3,并且2与1,4与5不能组合,这样就有如下组合:因为每个顶点有2种不同的选值,所以共有2×5=10种;答:共有10种情况使得这五个和恰为五个连续自然数.故答案为:10.【点评】此题重点考查学生的数字分析与组合能力,关键是确定一个顶点有几种选值.9.(10分)如图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE的交点为H,AC和BD的交点为G,四边形EHGF的面积是15平方厘米,则ABCD的面积是180平方厘米.【分析】如图,连接EG,,根据三角形的面积和底的正比关系,判断出S△BDE 、S△DEF、S△BGH与S四边形ABCD的关系,推出S四边形EHGF与S四边形ABCD的关系,再根据四边形EHGF的面积是15平方厘米,求出ABCD的面积是多少即可.【解答】解:如图,连接EG,,因为E为CD的中点,所以DE=CD,所以S△BDE =S△ADE=S四边形ABCD;因为AC和BD的交点为G,所以G为AC的中点,因为E为CD的中点,所以EG∥AD,且=,所以==,所以S△DEF =S△ADE=S四边形ABCD;因为EG∥AD,且AD∥BC,所以EG∥BC,=,所以==,所以S △BGH =S △BCG =S 四边形ABCD ;所以S 四边形EHGF =S △BDE ﹣S △DEF ﹣S △BGH =S 四边形ABCD , 所以S 四边形ABCD =S 四边形EHGF ×12=15×12=180(平方厘米)答:ABCD 的面积是180平方厘米.故答案为:180.【点评】此题主要考查了三角形的面积和底的正比关系,要熟练掌握,解答此题的关键是判断出S △BDE 、S △DEF 、S △BGH 与S 四边形ABCD 的关系.10.(10分)若2017,1029与725除以d 的余数均为r ,那么d ﹣r 的最大值是 35 .【分析】根据题意可得,2017﹣r ,1029﹣r ,725﹣r ,均能被d 整除,则(2017﹣r )﹣(1029﹣r ),(2017﹣r )﹣(725﹣r ),(1029﹣r )﹣(725﹣r ),这三个数也能被d 整除,即988,1292,304均能被d 整除,不难得出,三个数的最大公因数是76,即d 的值可能是:76,38,19,4,2,1(被1除余数可看成0);然后分别用725除以d 的可能值,求出d ﹣r 的值,选取d ﹣r 的最大值即可.【解答】解:根据题意可得,2017﹣r ,1029﹣r ,725﹣r ,均能被d 整除,则(2017﹣r )﹣(1029﹣r ),(2017﹣r )﹣(725﹣r ),(1029﹣r )﹣(725﹣r ),这三个数也能被d 整除,即988,1292,304均能被d 整除,988=2×2×19×131292=2×2×19×17304=2×2×2×2×19所以三个数的最大公因数是:2×2×19=76,d 为76的因数,即d 的值可能是:76,38,19,4,2,1(被1除余数可看成0), 当d=76时,此时:725÷76=9…41,即r=41,即此时d ﹣r=76﹣41=35; 当d=38时,此时:725÷38=19…3,即r=3,即此时d ﹣r=38﹣3=35; 当d=19时,此时:725÷19=38…3,即r=3,即此时d ﹣r=19﹣3=16; 当d=4时,此时:725÷4=182…1,即r=1,即此时d ﹣r=4﹣1=3;当d=2时,此时:725÷2=362…1,即r=1,即此时d ﹣r=2﹣1=1;当d=1时,此时:725÷1=725,即r=0,即此时d ﹣r=1﹣0=1;则,d﹣r的最大值是35.故答案为:35.【点评】本题考查了同余定理的灵活应用,关键是求出除数d的取值范围.。