平面向量例题讲解

合集下载

第13讲 平面向量十大题型总结(解析版)-2024高考数学常考题型

第13讲 平面向量十大题型总结(解析版)-2024高考数学常考题型

第13讲平面向量十大题型总结【题型目录】题型一:平面向量线性运算题型二:平面向量共线问题题型三:平面向量垂直问题题型四:平面向量的夹角问题题型五:平面向量数量积的计算题型六:平面向量的模问题题型七:平面向量的投影问题题型八:万能建系法解决向量问题题型九:平面向量中的最值范围问题题型十:平面向量中多选题【典型例题】题型一:平面向量线性运算【例1】在ABC △中,D 是AB 边上的中点,则CB =()A .2CD CA+ B .2CD CA- C .2CD CA- D .2CD CA+ 【答案】C【解析】:CA CD AC CD CD AC CD AD CD DB CD CB -=+=++=+=+=22【例2】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC-B .1344AB AC-C .3144+AB AC D .1344+AB AC 【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++ 1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【例3】在ABC 中,点P 为AC 中点,点D 在BC 上,且3BD DC = ,则DP =()A .1144AB AC+B .1144AB AC--C .1144AB AC-D .1144AB AC-+【答案】B【解析】∵点P 为AC 中点,∴12AP AC = ,∵3BD DC =,()3AD AB AC AD ∴-=- ,∴1344AD AB AC =+ ,∴113244DP AP AD AC AB AC =-=-- =1144AB AC --,故选:B.【例4】在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,且EB AB AC λμ=+,则λ=________,μ=_________.【答案】3414-【解析】如下图所示:D Q 为BC 的中点,则()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,E 为AD 的中点,所以,()1124AE AD AB AC ==+,因此,()131444EB AB AE AB AB AC AB AC =-=-+=- ,即34λ=,14μ=-.故答案为:34;14-.【例5】如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 中点,点F 为线段BC 的中点,则FE =()A .2136AB AC+B .2136AB AC-+C .1263AB AC+D .1263AB AC-+点F 为线段BC 的中点,13BD BA AD BA BC BA =+=+=+ 又2BD FE = ,2136FE AB AC ∴=-+.【题型专练】1.设,,D E F 分别为ABC 的三边BC,CA,AB 的中点,则EB FC +=()A .ADB .12ADC .12BCD .BC【答案】A【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=,故选:A2.设D为△ABC所在平面内的一点,若3,AD BD CD CA CBλμ==+,则μλ=_____.【答案】3-【解析】如图所示:3CD CA AD CA BD=+=+,CA=+3(CD CB-),即有CD=﹣1322CA CB+,因为CD CA CBλμ=+,所以λ=﹣12,μ=32,则μλ=﹣3,故答案为:﹣3.3.在ABC中,4AC AD=,P为BD上一点,若13AP AB ACλ=+,则实数λ的值()A.18B.316C.16D.38【答案】C【解析】4AC AD=,14AD AC∴=,则14BD AD AB AC AB=-=-,1233BP AP AB AB AC AB AC ABλλ⎛⎫=-=+-=-⎪⎝⎭,由于P为BD上一点,则//BP BD,设BP k BD=,则21344kAC AB k AC AB AC k ABλ⎛⎫-=-=-⎪⎝⎭,所以423kkλ⎧=⎪⎪⎨⎪=⎪⎩,解得16λ=.4.在ABC 中,2AB =,4BC =,60ABC ∠=︒,AD 为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,则λμ+=()A .13B .23C .38D .58【答案】D【解析】AD 是BC 边上的高,∴90ADB ∠=︒,在ADB △中,1cos 22BD BD ABD AB ∠===,解得1BD =, 4BC =,∴14BD BC =,∴14AD AB BD AB BC =+=+, O 为AD 中点,∴1111122428AO AD AB BC AB BC ⎛⎫==+=+ ⎪⎝⎭ , AO AB BC λμ=+ ,∴1128AB BC AB BC λμ+=+ ,∴12λ=,18μ=,∴115288λμ+=+=.5.已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么()A .AO OD =B .2AO OD=C .3AO OD=D .4AO OD =【答案】A【解析】D 为BC 边中点,∴2OB OC OD +=,∵20OA OB OC ++=,∴0OA OD =+,即AO OD =.6.设D 为ABC 所在平面内一点,且满足3CD BD =,则()A .3122AD AB AC =-B .3122=+AD AB ACC .4133AD AB AC =-D .4133AD AB AC=+ ∴2CB BD =,即12BD CB = .()12123122AD AB BD ABCBAB AB ACAB AC ∴=+=+=+-=- 故选:A.题型二:平面向量共线问题【例1】已知向量()1,2a =- ,()sin ,cos b αα= ,若//a b,则tan α=()A .12-B .2-C .12D .2【例2】与模长为13的向量()12,5d =平行的单位向量为()A .1251313⎛⎫ ⎪⎝⎭,B .1251313⎛⎫-- ⎪⎝⎭,C .1251313⎛⎫ ⎪,或1251313⎛⎫-- ⎪,D .1251313⎛⎫- ⎪,或1251313⎛⎫- ⎪,【例3】已知向量()1,2AB =,(),7BC m =,()3,1CD =-,若A ,B ,D 三点共线,则m =________.【例4】设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ=___.【答案】21【解析】因向量λ+a b 与2+a b 平行,所以()b a b a ba μμμλ22+=+=+,所以⎩⎨⎧==μμλ21,解得⎪⎩⎪⎨⎧==2121μλ【例5】在ABC ∆中,点P 满足3BP PC = ,过点P 的直线与AB 、AC 所在的直线分别交于点M 、N ,若AM AB λ= ,()0,0AN AC μλμ=>>,则λμ+的最小值为()A .212+B .12+C .32D .52【答案】B【解析】如下图所示:3BP PC = ,即()3AP AB AC AP -=- ,1344AP AB AC∴=+ ,AM AB λ= ,()0,0AN AC μλμ=>> ,1AB AM λ∴=,1AC ANμ= ,1344AP AM ANλμ∴=+ ,M 、P 、N 三点共线,则13144λμ+=.()133********λμλμλμλμμλ⎛⎫∴+=++=++≥=+ ⎪⎝⎭,当且仅当μ=时,等号成立,因此,λμ+的最小值为312+,故选:B.【题型专练】1.已知非零向量a ,b ,c ,若(1)a x = ,,(41)b =- ,,且//a c ,//b c则x =()A .4B .4-C .14D .14-【答案】D【解析】:因非零向量c b a ,,,且//a c ,//b c ,所以a 与b 共线,所以()x 411=-⨯,所以41-=x 2.已知向量的(7,6)AB =,(3,)BC m =- ,(1,2)AD m =- ,若A ,C ,D 三点共线,则m =______.3.已知向量a ,b 是两个不共线的向量,且35OA a b =+,47OB a b =+,OC a mb =+,若A ,B ,C 三点共线,则m =()A .1B .1-C .2D .2-【答案】A【解析】法一:b a b a b a OB AO AB 27453+=++--=+=,()b m a b m a b a OC BO BC 7374-+-=++--=+=,因A ,B ,C 三点共线,所以AB 与BC 共线,所以()[]()b m a b m a b a 73732-+-=-+-=+λλλ,所以()⎩⎨⎧-=-=7231m λλ,解得⎪⎩⎪⎨⎧=-=131m λ法二:由,,A B C 三点共线,得(1)(4)(72)OC xOA x OB x a x b =+-=-+-,故41,72,x x m -=⎧⎨-=⎩解得1m =.4.设12e e,是两个不共线的向量,若向量12m e ke =-+(k ∈R )与向量212n e e =-共线,则A .0k =B .1k =C .2k =D .12k =【答案】D【解析】因为向量12=-+ m e ke (k ∈R )与向量212=-n e e 共线,所以存在实数λ,使得λ=m n ,所以有2211(2)λ-+=- e ke e e ,因此12k λλ=⎧⎨-=-⎩,解得12k =.5.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM = ,AC nAN =,则m n +=()A .1B .32C .2D .3【答案】C【解析】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+,M 、O 、N 三点共线,122m n∴+=,2m n ∴+=.故选:C.6.已知M 为ABC 的边AB 的中点,N 为ABC 内一点,且13AN AM BC =+ ,则AMNBCNS S =△△()A .16B .13C .12D .23【答案】B【解析】因为13AN AM BC =+,所以13MN BC = ,所以MN ∥BC ,又因为M 为边AB 的中点,所以点A 到MN 的距离等于点N 到BC 的距离,所以13AMNBCNMN S S BC== △△,题型三:平面向量垂直问题【例1】已知向量(1)(32)m =-,,=,a b ,且()+⊥a b b ,则m =()A .8-B .6-C .6D .8【答案】D【解析】:()()()2,42,3,1-=-+=+m m b a ,因()b b a ⊥+,所以()0=⋅+b b a ,即()()()022122,32,4=--=--m m ,所以8=m 【例2】已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:22k =.【例3】已知单位向量,a b 的夹角为60°,则在下列向量中,与b 垂直的是()A .b a 2+B .ba +2C .ba 2-D .ba -2【答案】D【思路导引】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.【解析】由已知可得:11cos 601122⋅=︒=⨯⨯=a b a b .A :∵215(2)221022+⋅=⋅+=+⨯=≠a b b a b b ,∴本选项不符合题意;B :∵21(2)221202+⋅=⋅+=⨯+=≠a b b a b b ,∴本选项不符合题意;C :∵213(2)221022-⋅=⋅-=-⨯=-≠a b b a b b ,∴本选项不符合题意;D :∵21(2)22102-⋅=⋅-=⨯-=b b b a b b ,∴本选项符合题意.故选D .【例4】已知向量(2,1),(3,)a b m →→=-=,且()a b a →→→+⊥,则实数m =___________.【答案】1【分析】先求出+=(1,1)a b m →→+,再解方程1(2)1(1)0m ⨯-+⨯+=即得解.【详解】解:由题得+=(1,1)a b m →→+,因为()a b a →→→+⊥,所以()=0a b a →→→+g ,所以1(2)1(1)0,1m m ⨯-+⨯+=∴=.故答案为:1【例5】已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为()A .4B .–4C .94D .–94【答案】B 【解析】由()t ⊥+n m n 可得()0t ⋅+=n m n ,即20t ⋅+=m n n ,所以2221|cos |3||t |||<,>|||=-=-=-⋅⋅⨯⨯n n n m n m n m n m n ||4334||3=-=-⨯=-n m .故选B .【例6】已知向量AB 与AC 的夹角120,且|AB |=3,|AC |=2,若AP AB AC λ=+ ,且AP BC ⊥ ,则实数λ的值为_____.【答案】712【解析】向量与的夹角为,且所以.由得,,即,所以,即,解得.【题型专练】1.ΑΒC ∆是边长为2的等边三角形,已知向量a ,b 满足2ΑΒ= a ,2ΑC =+a b ,则下列结论正确的是()A .1=b B .⊥a bC .1⋅=a b D .()4ΒC-⊥a b 【答案】D【解析】如图由题意,(2)2BC AC AB a b a b =-=+-= ,故||2b = ,故A 错误;|2|2||2a a ==,所以||1a = ,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=- ,故,B C 错误;设,B C 中点为D ,则2AB AC AD += ,且AD BC ⊥ ,所以()4C a b +⊥B ,故选D .2.已知1e ,2e 12-e 与12λ+e e 的夹角为60 ,则实数λ的值是.【答案】33【解析】解法一:因1e ,2e 11==,021=⋅e e所以221212112122)()λλλ-⋅+=+⋅-⋅-=-e e e e e e e e ,12|2-=e ,12||λ+===e e ,2cos60λ==,解得:33λ=.解法二:建立坐标系,设()()1,0,0,121==e e ()()λλ,1,1,3212=+-=-e e e ,所以()()2221213λ+=+=-+=)()λλ-=+-3212e e e所以由数量积的定义得︒⨯+⨯=-60cos 1232λλ,解得:33λ=.3.已知向量()(),2,1,1a m b ==,若()a b b +⊥ ,则m =__________.【答案】4-【分析】根据向量的坐标运算即可求解.【详解】由题意可得()1,3a b m +=+,则130m ++=,解得4m =-.故答案为:4-4.已知向量(,2),(2,4)m a a n a =+=- ,且()n m n ⊥-,则实数=a _____________.【答案】2【分析】根据向量坐标运算及向量垂直的坐标表示即得.【详解】因为(,2)(2,4)(2,2)m n a a a a -=+--=-,又()n m n ⊥- ,所以2(2)(2)40a a ⨯-+-⨯=,解得2a =.故答案为:2.5.在ABC 中,()1,2,3A k -,()2,1,0B -,()2,3,1C -,若ABC 为直角三角形,则k 的值为()A .23B .83C .-1D .325-题型四:平面向量的夹角问题【例1】已知平面向量a ,b满足||4,||1== a b ,()a b b -⊥ ,则cos ,a b 〈〉= ()A .14B .4C.4D .4【例2】已知(2,0)a = ,1,22b ⎛= ⎝⎭r ,则a b - 与12a b + 的夹角等于()A .150°B .90°C .60°D .30°【例3】已知向量a=(2,1),()3,1b =- ,则()A.若c =-⎝⎭ ,则a c ⊥B .向量a 在向量b 上的投影向量为12b-C .a 与a b -D .()//a b a+【例4】若向量a ,b 满足||a = ,(2,1)b =-,5a b ⋅=- ,则a 与b 的夹角为_________.【例5】已知向量a b ,满足566a b a b ==⋅=-,,,则cos ,a a b +=()A .3135-B .1935-C .1735D .1935【例6】若非零向量,a b 满足32a b a b ==+,则a 与b 夹角的余弦值为________.【例7】设向量(68)=-,a ,(34)=,b ,t =+c a b,t ∈R ,若c 平分a与b 的夹角,则t 的值为.【答案】2【解析】解法一:()t t b t a c 48,36++-=+=,所以()()t t t c a 14100488366+=+++--=⋅;()()1425484363+=+++-=⋅t t t c b 510==因c 平分a 与b 的夹角,所以=c b c a ==,所以()1425214100+=+t t ,解得2=t解法二:因c 平分a 与b的夹角,所以()()⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-=⎫⎛=58,054,3108,6λλλb a c ,又因()t t b t a c 48,36++-=+=,所以()()t t 3658480+-=+⨯,解得2=t 【例8】已知A B C △的三个顶点分别为(3(60)(5A B C ,,,,,求ACB ∠的大小.【答案】C【解析】()()3,1,0,2=-=CB CA()()()2312022222=+==+-=所以21223012cos -=⨯⨯+⨯-==∠CB CA ACB ,所以︒=∠120ACB 【题型专练】1.设非零向量、ab满足||2||,||||a b a b b =+= ,则向量a 与b的夹角为()A .30°B .60︒C .120︒D .150︒2.已知(2,1)a =-,||b =,且()10a b a +⋅= ,则,a b 〈〉= ___________.3.已知向量,a b 满足||1a =,||a b =+1)b =- ,则,a b 的夹角等于___________.4.若两个非零向量a 、b 满足2a b a b a +=-=,则a b - 与b 的夹角___________.5.已知单位向量a ,b 满足0a b ⋅=,若向量c =+,则sin ,a c =()A B C D6.已知向量,a b 满足()()3,4,·28a b a b a b ==+-=,则向量a 与b 所成的夹角为()A .π6B .π3C .π2D .2π37.已知向量a ,b 满足||2||2b a == ,|2|2a b -= ,则向量a ,b 的夹角为()A .30°B .45︒C .60︒D .90︒8.已知向量()PA =,(1,PB =,则APB ∠=A .30︒B .60︒C .120︒D .150︒【答案】D【解析】根据题意,可以求得2,2PA PB ===,所以333cos 222PA PB APB PA PB⋅∠===-⋅,结合向量所成角的范围,可以求得150APB ∠=︒,故选D .9.非零向量a ,b 满足:-=a b a ,()0⋅-=a a b ,则-a b 与b 夹角的大小为A .135︒B .120︒C .60︒D .45︒【答案】A【解析】 非零向量a ,b 满足()0⋅-=a a b ,∴2=⋅a a b,由-=a b a 可得2222-⋅+=a a b b a,解得=b ,()22cos 2θ-⋅⋅-∴===--a b ba b b a b ba b,θ为-a b 与b 的夹角,135θ∴= ,故选A .10.已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos,=a c ___________.【答案】23【解析】因为2=c a,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .11.已知向量(4,3),(1,2)a b =-=-,,a b的夹角为θ,则sin θ=__________.【答案】55【解析】依题意[]0,πθ∈,所以255cos ,sin 55||||a b a b θθ⋅===-== .故答案为.12.已知向量,a b 满足5,6,6==⋅=-a b a b ,则cos ,+=a a b ()A .3531-B .3519-C .3517D .3519【答案】D【思路导引】计算出()a ab ⋅+ 、a b + 的值,利用平面向量数量积可计算出cos ,a a b <+>的值.【解析】5a = ,6b = ,6a b ⋅=- ,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选D .题型五:平面向量数量积的计算【例1】(2021新高考2卷)已知向量0,||1,||||2,a b c a b c a b b c c a ++====⋅+⋅+⋅=_______.【答案】29-【解析】方法一:因为0=++c b a ,所以()02=++cb a ,即0222222=+++++c b c a b a c b a所以0222441=+++++c b c a b a ,所以9222-=++c b c a b a ,所以29-=++c b c a b a 方法二:因为0=++c b a ,所以c b a -=+,所以()()22c b a -=+,即2222cb a b a=++所以4241=++b a ,所以21-=b a ,同理b c a -=+,所以()()22b ca -=+,即2222b c a c a =++,所以4241=++c a ,所以21-=c a ,同理a c b -=+,所以()()22a c b -=+,即2222a c b c b =++,所以1244=++c b ,所以27-=⋅c b ,所以29-=++c b c a b a 【例2】在△ABC 中,6,AB O =为△ABC 的外心,则AO AB ⋅等于A B .6C .12D .18【答案】D【解析】试题分析:如图,过点O 作OD AB ⊥于D ,则()36018AO AB AD DO AB AD AB DO AB ⋅=+⋅=⋅+⋅=⨯+=,应选D.【例3】已知边长为3的正2ABC BD DC = ,,则AB AD ⋅=()A .3B .9C .152D .6【例4】已知ABC 为等边三角形,AB =2,设点P ,Q 满足AP AB λ=,(1)AQ AC λ=-,R λ∈,若2BQ CP ⋅=-,则λ=()A .12B .12C .12±D故选:A.【例5】在ABC 中,6A π=,||AB =||4AC =,3BD BC =,则AB AD ⋅=______.【答案】24-【分析】利用基底,AB AC 3AD AB BD AB BC =+=+ ,BC AC = 23AD AB AC ∴=-+ ,∴()232AB A AB AD AB AB C =⋅-+=-⋅ 【题型专练】1.如图,在△ABC 中,AD ⊥AB ,BC =,1AD = ,则AC AD ⋅=()A .B CD .3-2.在ABC 中,3AB AC ==,DC BD 2=﹒若4AD BC ⋅=,则AB AC ⋅=______.3.ABC 中,90C ∠=︒,2AC =,P 为线段BC 上任一点,则AP AC ⋅=()A .8B .4C .2D .64.已知ABC 为等边三角形,D 为BC 的中点,3AB AD ⋅=,则BC =()A BC .2D .45.如图,在ABC 中,3BAC ∠=,2AD DB =,P 为CD 上一点,且满足2AP mAC AB =+,若||3AC =,||4AB =,则AP CD ⋅的值为()A .-3B .1312-C .1312D .1126.在平行四边形ABCD 中,AC =6,AB AD ⋅=5,则BD =____________.【详解】AC AB BC AB AD =+=+ ,则2AC AB = 236226AD AB AD +=-⋅=,AD AB - ,则222BD AD AB AD =-⋅+ 7.已知在ABC 中,90C ∠=︒,4CA =,3CB =,D 为BC 的中点,2AE EB =,CE 交AD 于F ,则CE AD ⋅=_______【答案】73-##123-题型六:平面向量的模问题【例1】已知(1)t =,a ,(6)t =-,b ,则|2|+a b 的最小值为________.【答案】52【解析】:()()()40205362444462262,2222222+-=+-+++=-++=-+=+t t t t t t t t t t a对称轴2=t ,所以当2=t 时,524040202=+-=a 【例2】(2021新高考1卷)已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin )P ββ-,3(cos(),sin())P αβαβ++,(1,0)A ,则:A .12||||OP OP = B .12||||AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α===== ,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯= ,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC【例3】已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b =.【答案】324211244+⨯⨯⨯+====+3212==【例4】已知a 与b 均为单位向量,其中夹角为θ,有下列四个命题1p :||1+>a b ⇔θ∈[0,23π)2p :||1+>a b ⇔θ∈(23π,π]3p :||1->a b ⇔θ∈[0,3π)4p :||1->a b ⇔θ∈(3π,π]其中真命题是(A )1p ,4p (B)1p ,3p (C)2p ,3p (D)3p ,4p 【答案】A【解析】由||1+>a b 得,221∙>a +2a b +b ,即∙a b >12-,即cos θ=||||∙a b a b >12-,∵θ∈[0,π],∴θ∈[0,23π),由||1->a b 得,22-1∙>a 2a b +b ,即∙a b <12,即cos θ=||||∙a b a b <12,∵θ∈[0,π],∴θ∈(3π,π],故选A .【例5】设a ,b 是两个非零向量A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a b C .若||||||+=-a b a b ,则存在实数λ,使得λ=b a D .若存在实数λ,使得λ=b a ,则||||||+=-a b a b 【答案】C【解析】对于A b b a a2222-=⇒+-=+⋅+⇒=θ,所以1cos -=θ,所以︒=180θ,所以A 错,B 错;C 对,D 有可能为︒0【题型专练】1.设向量(10),a =,22()22=-b ,若t =+c a b (t ∈R),则||c 的最小值为A B .1C .2D .12【答案】C【解析】()⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=+=t t t b t a c 22,22122,220,12222221⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=t t 222122122121212222≥+⎪⎪⎭⎫ ⎝⎛+=++=+++=t t t t t t 2.已知向量(1,2)a =- ,(21,1)b m =- ,且a b ⊥,则|2|a b -= ()A .5B .4C .3D .23.已知向量a ,b满足1a =,2b =,a b -=,则2a b +=()A .B .C D4.已知[02π)αβ∈、,,(cos ,sin )a αα=r,(cos(),sin())b αβαβ=++,且23a b -=,则β可能为()A .π3B .2π3C .πD .4π3【答案】BD【分析】根据向量模的运算列方程,化简求得cos β的值,进而求得正确答案.5.平面向量a 与b 的夹角为60︒,(3,4),||1==a b ,则|2|a b += _____________.6.已知向量,a b 满足||2,(2,2)a b == ,且|2|6a b += ,则||a b += __________.7.设,a b 为单位向量,且||1+=a b ,则||a b -=______________.【解析】因为,a b为单位向量,所以1a b ==r r所以1a b +==,解得:21a b ⋅=-所以a b -==8.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵33-=+a b a b ,∴22(3)(3)-=+a b a b ,∴2269-⋅+=a ab b 2296+⋅+a a b b ,又||||1==a b ,∴0⋅=a b ,∴⊥a b ;反之也成立,故选C .9.已知向量a ,b 夹角为045,且|a |=1,|2-a b |b |=.【答案】.【解析】∵|2-a b |=平方得224410-= a a b +b ,即260--=|b |b |,解得|b |=(舍)题型七:平面向量的投影问题【例1】已知向量(2,1),(1,1)a b =-= ,则a 在b上的投影向量的模为()A B .12C .2D .1【例2】已知6a =,3b =,向量a 在b 方向上投影向量是4e ,则a b ⋅ 为()A .12B .8C .-8D .2【例3】已知平面向量a ,b ,满足2a =,1b =,a 与b 的夹角为23π,2b 在a 方向上的投影向量为()A .1-B .12aC .12a - D .1【例4】已知平面向量a ,b 满足2=a ,()1,1b =,a b +=r r a 在b 上的投影向量的坐标为()A .22⎛ ⎝⎭B .()1,1C .()1,1--D .⎛ ⎝⎭【例5】已知O 为正三角形ABC 的中心,则向量OA 在向量AB 上的投影向量为()A .ABB C .12AB-D .12AB故选:C【例6】设向量a 在向量b 上的投影向量为m ,则下列等式一定成立的是()A .||a b m bb ⋅=⋅ B .2||a b m bb ⋅=⋅ C .m b a b⋅=⋅ D .ma b a⋅=⋅【题型专练】1.已知()1,2a = ,()1,2b =- ,则a 在b上的投影向量为()A .36,55⎛⎫- ⎪B .36,55⎛⎫- ⎪C .36,55⎛⎫-- ⎪D .36,55⎛⎫ ⎪2.如图,在平面四边形ABCD 中,120ABC BCD ∠=∠= ,AB CD =,则向量CD 在向量AB 上的投影向量为()A .2AB -B .12AB -C .12AB D .2AB 【答案】B【分析】根据图形求出向量AB 与CD的夹角,再根据投影向量的公式进行求解即可.【详解】延长AB ,DC 交于点E ,如图所示,3.已知向量()1,3a =,()2,4b =-,则下列结论正确的是()A .()a b a+⊥r r r B .2a b +=C .向量a 与向量b 的夹角为34πD .b 在a的投影向量是()1,34.已知()3,1a =-,()1,2b =,下列结论正确的是()A .与b同向共线的单位向量是⎝⎭B .a 与bC .向量a在向量b 上的投影向量为12,55⎛⎫ ⎪⎝⎭D .15a b b⎛⎫-⊥ ⎪ 5.关于平面向量,有下列四个命题,其中说法正确的是()A .若1,,120a b a b ===︒,则()2a b a+⊥r r r B .点()()1,1,3,2M N --,与向量MN同方向的单位向量为43,55⎛⎫- ⎪⎝⎭C .若20a b a b a +=-=≠ ,则+r r a b 与a b - 的夹角为60°D .若向量()()2,1,6,2a b =-= ,则向量b 在向量a 上的投影向量为2a-同方向的单位向量为6.己知空间向量||3,||2a b ==,且2a b ⋅=,则b 在a 上的投影向量为________.【答案】29a ##29a7.已知1a =,2b =,且()a ab ⊥+,则a 在b 上的投影向量为()A .b -B .bC .14b- D .14b【答案】C 【详解】因为()a a b ⊥+ ,所以()0a a b ⋅+= ,即220,0a a b a a b +⋅=+⋅= ,又因为1a = ,设,a b 的夹角为θ,所以1a b ⋅=-,a 在b 上的投影为:cos b a b a θ⋅=⋅ ,所以a 在b 上的投影向量为214cos b a b b b ba b θ⋅⋅=⋅=⋅- .故选:C8.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为ABC.D.【答案】A【解析】AB =(2,1),CD =(5,5),则向量AB 在向量CD方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==CD AB AB θ9.若向量,a b满足22a a b =+= ,则a 在b 方向上投影的最大值是AB.CD.【答案】B【详解】由题意2,22a a b =+= ,所以2||4164b a b +⋅+=,设,a b 的夹角为θ,则2||8cos 120b b θ++= ,所以212cos 8b bθ+=- ,所以a 在b 方向上投影为2123cos 2()(48b b a bb θ+=⨯-=-+,因为3b b +≥cos a θ≤ ,故选B.题型八:万能建系法解决向量问题边长为a 的等边三角形已知夹角的任意三角形正方形矩形平行四边形直角梯形等腰梯形圆建系必备(1)三角函数知识cos ,sin x r y r q q ==;(2)向量三点共线知识(1)OC OB OAl l =+-(对面女孩看过来).【例1】如图,在等腰梯形ABCD 中,2,3,4AB BC CD BC BE ==== ,则CA DE ⋅=()A .43B .154-C .558-D .6516-3315,0,,0,1,D C A ⎛⎛⎫⎛⎫【例2】如图,正八边形ABCDEFGH 中,若AE AC AF λμ=+()R λμ∈,,则λμ+的值为________.正八边形的中心【详解】、HD BF 所在的直线分别为x y 、轴建立平面直角坐标系,正八边形的中心M 点,3608⎛∠=∠=∠=∠= ⎝AOB COB AOH EOD 18045135-= ,所以22.5∠= BAC ,13522.5112.5∠-∠=-= HAB CAB ,所以∠HAC y 轴,、AOM MOC 为等腰直角三角形,2,则2=====OD OF OE OA OC ,()0,2F ,2===OM MC ,所以()2,2--A ,(2,-C【点睛】本题主要考查了平面向量坐标法解决几何问题,建立坐标系是解题的关键,还考查了向量的加法运算,考查方程思想及转化思想,属于中档题.【题型专练】1.如图,在梯形ABCD 中,//AB DC ,10AB =,7BC =,2CD =,5AD =,则AC BD ⋅=___________.则5,02A ⎛⎫- ⎪⎝⎭,532,2C ⎛⎫ ⎪ ⎪⎝⎭,15,02B ⎛⎫ ⎪⎝⎭,530,2D ⎛ ⎝953,22AC ⎛⎫∴= ⎪ ⎪⎝⎭ ,1553,22BD ⎛⎫=- ⎪ ⎪⎝⎭,AC BD ∴⋅ 故答案为:15-.2.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD = _________;PB PD ⋅=_________.【答案】(1).(2).1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.题型九:平面向量中的最值范围问题【例1】如下图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,3BCD π∠=,CB CD ==M 为边BC 上的动点,则AM DM ⋅的最小值为()A .83B .214C .114-D .133-【例2】ABC 是边长为4的等边三角形,点D 、E 分别在边AC 、BC 上,且DE BC ⊥,则DA DE ⋅的最小值为()AB .C .3D .-3则(0,0),(2,23),(4,0)C A B【例3】四边形ABCD 中,4AB =,60A B ∠=∠=︒,150D ∠=︒,则DA DC ⋅的最小值为()AB .C .3D .-3∴90,60DCB E ∠=︒∠= ,设CE x =,则3,DC x DA =∴()423cos150DA DC x x ⋅=-⋅⋅ 所以当1x =时,DA DC ⋅的最小值为【例4】如图,在梯形ABCD 中,//AD BC ,2AD =,9BC =,5AB =,cos 5B =,若M ,N 是线段BC上的动点,且1MN = ,则DM DN ⋅的最小值为()A .134B .132C .634D .352//AD BC ,32AD =,9BC =,5AB =(9,0)C ∴,∴3cos 5A xB AB ==,3,4A A x y ==9(3,4),(,4)2A D ∴,【例5】已知边长为2的菱形ABCD 中,点F 为BD 上一动点,点E 满足2BE EC =,3AE BD ⋅=-,则AF BE⋅的最小值为()A .0B .23C .43D .2【例6】已知向量a,b,c共面,且均为单位向量,0a b⋅=,则ab c++的最大值是()A B C1D1【例7】骑自行车是一种能有效改善心肺功能的耐力性有氧运动,深受大众喜爱,如图是某一自行车的平面结构示意图,已知图中的圆A (前轮),圆DABE △,BEC △,ECD 均是边长为4的等边三角形.设点P 为后轮上的一点,则在骑动该自行车的过程中,AC BP ⋅的最小值为()A .12B .24C .36D .18故选:A【例8】已知AB AC ⊥ ,1AB t = ,AC t = ,若点P 是ABC ∆所在平面内一点,且4AB AC AP AB AC=+ ,则PB PC ⋅的最大值等于()A .13B .15C .19D .21【答案】A【解析】以题意,以点A 为坐标原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立如图所示的平面直角坐标系,所以点(1,4)P ,1(,0)B t,(0,)C t ,所以11(1,4)(1,4)(1)(1)4(4)PB PC t t t t ⋅=----=-⨯--⨯- =1174t t --17-≤=13(当且仅当14t t =,即12t =时取等号),所以PB PC ⋅ 的最大值为13.故选A .【题型专练】1.已知梯形ABCD 中,3B π∠=,2AB =,4BC =,1AD =,点P ,Q 在线段BC 上移动,且1PQ =,则DP DQ ⋅的最小值为()A .1B .112C .132D .1142.在ABC 中,902A AB AC ∠=== ,,点M 为边AB 的中点,点P 在边BC 上运动,则AP MP ⋅的最小值为___________.【答案】78【分析】建立平面直角坐标系,利用数量积的坐标运算求出3.ABC 为等边三角形,且边长为2,则AB 与BC 的夹角大小为120,若1BD =,CE EA =,则AD BE ⋅的。

平面向量知识点总结、经典例题及解析、高考题50道及答案

平面向量知识点总结、经典例题及解析、高考题50道及答案

)))))))第五章 平面向量【考纲说明】1、理解平面向量的概念和几何表示,理解两个向量相等及共线的含义,掌握向量的加、减、数乘运算及其几何意义,会用坐标表示。

2、了解平面向量的基本定理,掌握平面向量的坐标运算。

3、掌握数量积的坐标表达式,会进行平面向量数量积的运算,会用向量方法解决简单的平面几何问题、力学问题与其他一些实际问题。

【知识梳理】一、 向量的基本概念与线性运算 1 向量的概念:(1)向量:既有大小又有方向的量,记作AB ;向量的大小即向量的模(长度),记作|AB | 向量不能比较大小,但向量的模可以比较大小.(2)零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行(3)单位向量:模为1个单位长度的向量常用e 表示.(4)平行向量(共线向量):方向相同或相反的非零向量,记作a ∥b平行向量也称为共线向量(5)相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a= 大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x(6)相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量若a 、b是互为相反向量,则a =b -,b =a -,a +b =2 向量的线性运算:(1)向量的加法:求两个向量和的运算叫做向量的加法 向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则” .(2)向量的减法 :求向量a 加上b 的相反向量的运算叫做a 与b的差.向量的减法有三角形法则,b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)(3)向量的数乘运算:求实数λ与向量a 的积的运算,记作λa.①a a⋅=λλ;②当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反; 当0=λ时,0 =a λ,方向是任意的③数乘向量满足交换律、结合律与分配律3. 两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =λ向量b 与非零向量a共线⇔有两个均不是零的实数λ、μ,使得0a b λμ+=.二、平面向量的基本定理与坐标表示 1 平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底2. 平面向量的坐标表示:(1)在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底 由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标显然0=(0,0),(1,0)i =,(0,1)j =. (2)设OA xi y j =+.则向量OA 的坐标(x,y)就是终点A 的坐标,即若OA =(x,y),则A 点的坐标为(x,y),反之亦成立(O 是坐标原点). 3 平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±. (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =--,1(AB x =(3)若a =(x,y),则λa =(λx,λy).(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=. (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅. 三、平面向量的数量积 1 两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,a ·b 等于a 的长度与b 在a 方向上的投影的乘积叫做a 与b 的数量积(或内积),即a ·b =︱a ︱·︱b ︱cos θ,规定00a ⋅=2 向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影 3 向量的模与平方的关系:22||a a a a ⋅==4 乘法公式成立:()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+.5 平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅.②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈.③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±; 特别注意:①结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅.②消去律不成立a b a c⋅=⋅不能得到b c =.③a b ⋅=0不能得到a =0或b =06 两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 7 向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b⋅<>=⋅=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题8 垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥ba ⊥b ⇔a ·b=O ⇔2121=+y y x x【经典例题】【例1】(2010全国Ⅱ,8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,ECBA CA b =,1,2a b ==,则CD = ( )(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B .【解析】由角平分线的性质得2AD DB =,即有22()()33AD CB CA a b =-=-.从而221()333CD CA AD b a b a b =+=+-=+.故选B .【例2】(2009北京,2)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d , 那么 ( ) A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 【答案】D .【解析】取a ()1,0=,b ()0,1=,若1k =,则c =a +b ()1,1=,d =a -b ()1,1=-, 显然,a 与b 不平行,排除A 、B .若1k =-,则c =-a +b ()1,1=-,d =-a +b ()1,1=--, 即c //d 且c 与d 反向,排除C ,故选D .【例3】(2009湖南卷文)如图,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --= 【答案】A . 【解析】,,AD DB AD BE DB BE DE FC =∴+=+==得0AD BE CF ++=.或0AD BE CF AD DF CF AF CF ++=++=+=.【例4】(2009宁夏海南卷文)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.16【答案】A .【解析】向量a b λ+=(-3λ-1,2λ),2a b -=(-1,2),因为两个向量垂直,故有(-3λ-1,2λ)×(-1,2)=0,即3λ+1+4λ=0,解得:λ=17-,故选A . 【例5】(2009全国卷Ⅰ文)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a , ( )A .150° B.120° C.60° D.30° 【答案】B .【解析】由向量加法的平行四边形法则,知a 、b 可构成菱形的两条相邻边,且a 、b 为起点处的对角线长等于菱形的边长,故选择B .【例6】(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________.【答案】43. 【解析】设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+=. 【例7】(2009辽宁卷文)在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为___________. 【答案】(0,-2).【解析】平行四边形ABCD 中,OB OD OA OC +=+ ∴OD OA OC OB =+-=(-2,0)+(8,6)-(6,8)=(0,-2) 即D 点坐标为(0,-2).【例8】(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为 BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是___.【答案】2.【解析】由2AB AF =,得cos 2ABAF FAB ∠=,由矩形的性质,得cos =AF FAB DF ∠.∵2AB =,∴22DF ⋅=,∴1DF =∴21CF =-.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =. ∴()()=cos =cos =cos cos sin sin AE BF AEBF AEBF AE BF θαβαβαβ+-()=cos cos sin sin =122212AE BF AE BF BE BC AB CF αβαβ--=⨯--=.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.【例9】(2009湖南卷理)在ABC ∆,已知2233AB AC AB AC BC ⋅=⋅=,求角A ,B ,C 的大小. 【答案】2,,663A B C πππ===. 【解析】解:设,,BC a AC b AB c ===由23AB AC AB AC ⋅=⋅得2cos 3bc A bc =,所以3cos 2A = 又(0,),A π∈因此6A π=由233AB AC BC ⋅=得23bc a =,于是23sin sin 3sin 4C B A ⋅=-所以53sin sin()64C C π⋅-=,133sin (cos sin )224C C C ⋅+=,因此 22sin cos 23sin 3,sin 23cos 20C C C C C ⋅+=-=,既sin(2)03C π-=由A=6π知506C π<<,所以3π-,4233C ππ-<,从而20,3C π-=或2,3C ππ-=,既,6C π=或2,3C π=故2,,,636A B C πππ===或2,,663A B C πππ===. 【课堂练习】一、选择题1.(2012辽宁理)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .{0,1,3}D .a +b =a -b2. (2009年广东卷文)已知平面向量a =,1x (),b =2,x x (-),则向量+a b ( )A. 平行于x 轴B. 平行于第一、三象限的角平分线C. 平行于y 轴D. 平行于第二、四象限的角平分线3.(2012天津文)在ABC ∆中,90A ∠=︒,1AB =,AC=2,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )( )A .13 B .23C .43D .2 4.(2009浙江卷理)设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )A .3 B.4 C .5D .65.(2012重庆理)设,x y ∈R,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则a b += ()A B C .D .106. (2009浙江卷文)已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93B .77(,)39--C .77(,)39D .77(,)93--7.(2012浙江理)设a ,b 是两个非零向量.( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |8.(2009全国卷Ⅰ理)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最 小值为( )A.2- 2C.1-D.19.(2012天津理)已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ ( )A .12 B .12± C .12± D .32-±10.(2009全国卷Ⅱ理)已知向量()2,1,10,||a a b a b =⋅=+=||b =( )A.B. C. 5 D. 2511.(2012大纲理)ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =( )A .1133a b -B .2233a b - C .3355a b - D .4455a b - 12.(2008湖南)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC( )A. 反向平行B. 同向平行C. 互相垂直D. 既不平行也不垂直13.(2008广东)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 14.(2007湖北)设(43)=,a ,a 在b 上的投影为522,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),15.(2012安徽理)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ 则点Q 的坐标是 ( ) A .(72,2)-- B .(72,2)- C .(46,2)-- D .(46,2)-二、填空题16.(2012浙江文)在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.17.(2009安徽卷理)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若,OC xOA yOB =+其中,x y R ∈,则x y + 的最大值是________.18.(2012上海文)在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .19.(2012课标文)已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 20.(2012湖南文)如图4,在平行四边形ABCD 中 ,AP ⊥BD,垂足为P,3AP =且APAC = _____.A DBCP21.(2012湖北文)已知向量(1,0),(1,1)a b ==,则(Ⅰ)与2a b +同向的单位向量的坐标表示为____________; (Ⅱ)向量3b a -与向量a 夹角的余弦值为____________.22.(2012北京文)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________. 23.(2012安徽文)设向量(1,2),(1,1),(2,)a m b m c m ==+=,若()a c +⊥b ,则a =_____.24.(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD上,若2AB AF =,则AE BF 的值是___.25.(2012安徽理)若平面向量,a b 满足:23a b -≤;则a b 的最小值是_____三、解答题26. (2009年广东卷文)(已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 27.(2009上海卷文)已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- .(1) 若m //n ,求证:ΔABC 为等腰三角形; (2) 若m ⊥p ,边长c = 2,角C =3π,求ΔABC 的面积 . 28. 已知A 、B 、C 分别为ABC △的三边a 、b 、c 所对的角,向量)sin ,(sin B A m =,)cos ,(cos A B n =,且C n m 2sin =⋅.(Ⅰ)求角C 的大小;(Ⅱ)若A sin ,C sin ,B sin 成等差数列,且18)(=-⋅AC AB CA ,求边c 的长.【课后作业】一、选择题1.(2009辽宁卷理)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )A.B. C. 4 D. 22.(2009宁夏海南卷理)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的( )A. 重心 外心 垂心B. 重心 外心 内心C. 外心 重心 垂心D. 外心 重心 内心3.(2008安徽)在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.(2008浙江)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是( )A. 1B. 2C.2 D.225.(2007海南、宁夏)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b( ) A .(21)--, B .(21)-,C .(10)-,D .(12),6.(2007湖南)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( )A .⊥a bB .∥a bC .||||=a bD .||||≠a b7. (2007天津)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中mλα,,为实数.若2=a b ,则mλ的取值范围是 ( ) A .[-6,1]B .[48],C .(-6,1]D .[-1,6]8. 在ABC BC AB ABC ∆︒︒=︒︒=∆则已知向量中),27cos 2,63cos 2(),72cos ,18(cos ,的面积等于( ) A .22 B .42 C .23 D .29. 已知平面向量(3,1),(,3),//,a b x a b x ==-则等于 ( )A .9B .1C .-1D .-910. 已知a 、b 是不共线的AB a b λ=+AC a b μ=+(,)R λμ∈,则A 、B 、C 三点共线的充要条件是:( )A .1λμ+=B .1λμ-=C .1λμ=-D .1λμ=二、填空题11. 设向量2,3,19,AB AC AB AC CAB ==+=∠=则_________.12. 若向量,2,2,()a b a b a b a ==-⊥ 满足,则向量b a 与的夹角等于 .13. 已知平面上的向量PA 、PB 满足224PA PB +=,2AB =,设向量2PC PA PB =+,则PC 的最小值是 .14.(2008江苏)a ,b 的夹角为120︒,1a =,3b = 则5a b -= . 15. (2007安徽)在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).16.(2007北京)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .17. 已知向量(cos15,sin15)a =,(sin15,cos15)b =--,则a b |+|的值为 .18.(2007广东)若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= .三、解答题19.(2009湖南卷文)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值;(2)若||||,0,a b θπ=<<求θ的值。

高中数学第二章平面向量向量应用举例例题与探究(含解析)

高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。

思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。

证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。

图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。

∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。

∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。

又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。

绿色通道:1。

向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。

这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。

平面向量知识点+例题+练习+答案

平面向量知识点+例题+练习+答案

五、平面向量1.向量的概念①向量 既有大小又有方向的量。

向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。

向量不能比较大小,但向量的模可以比较大小。

向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。

(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。

人教A版数学必修第二册第六章【平面向量及其应用(解三角形篇)典型例题讲解】

人教A版数学必修第二册第六章【平面向量及其应用(解三角形篇)典型例题讲解】

平面向量及其应用(解三角形篇)典型例题讲解一、基本概念回归1、正弦定理①asin A=bsin B=csin C=2R(为外接圆半径)②边角互化:;;③比值:④应用:;;2、余弦定理3、余弦定理变形:4、三角形面积公式(为内切圆半径)5、三角形中常用角的变换注意这两个公式的正向,逆向应用6、三角形中,中线问题核心技巧①:向量形式,进一步可通过两边平方法求解核心技巧②:7、三角形中角平分线常用结论①倍角:②内角平分线定理:或③面积关系式:高频考点一:利用正余弦定理解三角形角度1:利用正弦定理解三角形1.(2023秋·陕西西安·高二统考期末)在中,内角A,B,C所对的边为a,b,c,若,则()A.B.或C.D.或2.(2023秋·陕西宝鸡·高二统考期末)在中,内角所对的边分别是,已知,,,则的大小为()A.B.C.或D.或3.(2023春·河南新乡·高三校联考开学考试)已知的内角A,B,C所对的边分别为a,b,c,,则()A.B.C.D.4.(2023春·湖南湘潭·高二统考期末)在中,,则______.5.(2023春·北京海淀·高三首都师范大学附属中学校考开学考试)已知函数.(1)求函数的单调递减区间;(2)在中,角,,的对边分别为,,,且,求的面积.角度2:利用余弦定理解三角形1.(2023秋·陕西宝鸡·高二统考期末)在中,已知,,,则()A.1B.C.2D.2.(2023秋·贵州黔东南·高二凯里一中校考期末)已知的内角,,的对边分别为,,,的面积为,,,则()A.2B.C.4D.163.(2023·高三课时练习)设的内角、、所对的边分别为、、,已知,,且,则______.4.(2023春·山西晋城·高三校考阶段练习)在中,角所对的边分别为,满足.(1)求;(2)若,求面积的最小值.5.(2023·新疆乌鲁木齐·统考一模)在△ABC中,边a,b,c所对的角分别为A,B,C,,.(1)求角C的大小;(2)若,求边c.高频考点二:三角形解的个数问题1.(2023·全国·高一专题练习)在中,角、、的对边分别为、、,其中有两解的是()A.,,B.,,C.,,D.,,2.(2023秋·浙江杭州·高一浙江省杭州第二中学校考期末)中,角的对边分别为,且,,,那么满足条件的三角形的个数有()A.0个B.1个C.2个D.无数个3.(2023·全国·高三专题练习)在中,角所对的边分别为,下列条件使有两解的是()A.B.C.D.4.(多选)(2023·全国·高三专题练习)已知中,角A,B,C所对的边分别为a,b,c,下列条件中,能使的形状唯一确定的有()A.B.C.D.高频考点三:判断三角形形状1.(2023秋·陕西西安·高二统考期末)在中,内角A,B,C所对的边分别是a,b,c,且,则的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形2.(2023·高一课时练习)三角形两边之差为2,且这两边的夹角的余弦值为,面积为14,此三角形是().A.钝角三角形;B.锐角三角形;C.直角三角形;D.不能确定.3.(2023·高一课时练习)在中,是三角形的三条边,若方程有两个相等的实数根,则是()A.锐角三角形;B.直角三角形;C.钝角三角形;D.以上都有可能.4.(2023·高一课时练习)在中,已知,则是()A.直角三角形;B.锐角三角形;C.钝角三角形;D.等边三角形.5.(2023·全国·高三专题练习)△ABC内角A、B、C的对边分别为a、b、c,若△ABC面积为,,B.则△ABC是( )A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形高频考点四:边角互化角度1:正弦定理边角互化1.(2023·陕西西安·统考一模)已知在中,角所对边分别为,满足,且,则的取值范围为______.2.(2023春·青海西宁·高三统考开学考试)在中,角的对边分别为,若.(1)求角的大小;(2)若的面积为,,求的周长.3.(2023秋·宁夏吴忠·高二吴忠中学校考期末)已知的内角,,的对边分别为,,,且.(1)求角;(2)若,且的面积为,求边长4.(2023·全国·模拟预测)在△ABC中,角A,B,C的对边分别为a,b,c,.(1)求证:;(2)若,,求△ABC的面积.5.(2023·广东佛山·统考一模)在锐角三角形中,角A,B,C的对边分别为a,b,c,为在方向上的投影向量,且满足.(1)求的值;(2)若,,求的周长.角度2:余弦定理边角互化1.(2023·全国·高三专题练习)在△ABC中,内角A,B,C所对的边分别为a,b,c,且,则的值为()A.4B.5C.6D.72.(2023·全国·高三专题练习)在△中,角A,B,C的对边分别为a,b,c,且,则角C的大小为()A.B.C.D.3.(多选)(2023·江苏南京·南京市秦淮中学校考模拟预测)在中,内角A,B,C的对边分别为a,b,c,若,则B的值为()A.B.C.D.4.(2023·全国·模拟预测)在中,角的对边分别是,.(1)求C;(2)若,的面积是,求的周长.5.(2023秋·广东广州·高三广州市第七中学校考阶段练习)记的内角,,的对边分别为,,.已知,.(1)证明:;(2)求面积的最大值.高频考点五:三角形外接圆问题1.(2023秋·河南·高三安阳一中校联考阶段练习)在中, 角,,所对的边分别为,,,,则的外接圆面积为()A.B.C.D.2.(2023·黑龙江·黑龙江实验中学校考一模)已知的内角A、B、C的对边分别为a、b、c,且.若,则的外接圆半径为____________.3.(2023春·山东烟台·高三校考开学考试)在中,角A,B,C的对边分别为a,b,c,且.(1)求C;(2)已知的外接圆半径为4,若有最大值,求实数m的取值范围.4.(2023春·安徽·高三合肥市第六中学校联考开学考试)在锐角中,BC在AB上的投影长等于的外接圆半径R.(1)求的值;(2)若,且,求R.5.(2023·全国·高三专题练习)△ABC的内角A,B,C的对边分别为a,b,c,且.(1)求角A;(2)若3a=b+c,且△ABC外接圆的半径为1,求△ABC的面积.高频考点六:三角形周长(边长)问题角度1:三角形周长(边长)定值问题1.(2023·江西抚州·高三金溪一中校考开学考试)已知在锐角中,角所对的边分别为.(1)求;(2)若的面积为1,且__________(在下面两个条件中任选一个),求的周长.①;②.注:如选择多个条件分别解答,按第一个解答计分.2.(2023·高一课时练习)在中,所对的边为,满足.(1)求A的值;(2)若,求的周长.3.(2023秋·云南曲靖·高三曲靖一中校考阶段练习)在中,角的对边长分别为,且.(1)求;(2)若,求的周长.4.(2022秋·辽宁·高三校联考期中)已知分别为的三个内角的对边,.(1)求B;(2)若的面积为4,求.角度2:三角形周长(边长)最值问题1.(2023秋·浙江宁波·高三期末)在中,内角A,B,C的对应边分别为a,b,c,已知,且的面积为,则周长的最小值为()A.B.C.D.2.(2023春·河南·高三洛阳市第三中学校联考开学考试)在中,若内角A,B,C所对的边分别为a,b,c,的平分线交AC于点D,且,则周长的最小值为()A.7B.C.D.43.(2023秋·贵州贵阳·高三统考期末)已知平面四边形中,,若,的面积为.(1)求的长;(2)求四边形周长的最大值.4.(2023秋·辽宁辽阳·高三统考期末)在①,②D是边的中点且,这两个条件中任选一个,补充在下面问题中,并作答.问题:在中,内角A,B,C的对边分别是a,b,c,且.(1)求A;(2)若__________,求的最大值.注:如果选择两个条件分别解答,按第一个解答计分.5.(2023·全国·高三专题练习)中,已知,,为上一点,,.(1)求的长度;(2)若点为外接圆上任意一点,求的最大值.6.(2023·全国·高三专题练习)在中,角A,B,C所对的边分别为a,b,c.在①,② ,③ 中任选一个,(1)求角C的大小;(2)若,求周长的最大值.7.(2023·全国·高三专题练习)在△ABC中,角A,B,C的对边分别为a,b,c,若.(1)求角A的大小;(2)若,求△ABC周长的最大值.角度3:三角形周长(边长)取值范围问题1.(2023·陕西西安·统考一模)已知在中,角所对边分别为,满足,且,则的取值范围为______.2.(2023秋·广东潮州·高三统考期末)在平面四边形中,.(1)求的长;(2)若为锐角三角形,求的取值范围.3.(2023·广东茂名·统考一模)已知的内角A,B,C所对的边分别为a,b,c,且.(1)求证:.(2)求的取值范围.4.(2023·陕西咸阳·校考模拟预测)已知锐角中,a,b,c分别为内角A,B,C的对边,若.(1)求;(2)若,求周长的取值范围.5.(2023·全国·高三专题练习)在锐角中,角、、的对边分别为、、,且.(1)求角的大小;(2)当时,求的取值范围.6.(2023·全国·高三专题练习)在中,角所对的边分别为,已知.(1)求角的大小;(2)若,求的取值范围.答案解析高频考点一:利用正余弦定理解三角形角度1:利用正弦定理解三角形1.(2023秋·陕西西安·高二统考期末)在中,内角A,B,C所对的边为a,b,c,若,则()A.B.或C.D.或【答案】D【详解】解:在中,,由正弦定理得,所以,所以或,故选:D2.(2023秋·陕西宝鸡·高二统考期末)在中,内角所对的边分别是,已知,,,则的大小为()A.B.C.或D.或【答案】A【详解】在中由正弦定理可得,即,解得,又因为,所以,所以,故选:A3.(2023春·河南新乡·高三校联考开学考试)已知的内角A,B,C所对的边分别为a,b,c,,则()A.B.C.D.【答案】B【详解】因为,所以.因为,所以.故选:.4.(2023春·湖南湘潭·高二统考期末)在中,,则______.【答案】【详解】根据正弦定理可知,代入题中数据,可知,所以故答案为:5.(2023春·北京海淀·高三首都师范大学附属中学校考开学考试)已知函数.(1)求函数的单调递减区间;(2)在中,角,,的对边分别为,,,且,求的面积.【答案】(1),(2)【详解】(1)解:,即,令,,解得,,故的单调递减区间为,.(2)解:因为,则,因为,所以,所以,即,由正弦定理得,即,解得,又,所以,故,所以.角度2:利用余弦定理解三角形1.(2023秋·陕西宝鸡·高二统考期末)在中,已知,,,则()A.1B.C.2D.【答案】C【详解】解:在中,因为,,,由余弦定理,即,解得或(舍去).故选:C2.(2023秋·贵州黔东南·高二凯里一中校考期末)已知的内角,,的对边分别为,,,的面积为,,,则()A.2B.C.4D.16【答案】B【详解】由题意,,所以,,所以,解得或(舍去).故选:B3.(2023·高三课时练习)设的内角、、所对的边分别为、、,已知,,且,则______.【答案】5【详解】由得,由正弦定理以及得,故由余弦定理得,故答案为:54.(2023春·山西晋城·高三校考阶段练习)在中,角所对的边分别为,满足.(1)求;(2)若,求面积的最小值.【答案】(1)(2)【详解】(1)由可得,由正弦定理可得,整理得,又,即可得,所以;又,所以(2)利用正弦定理由可得,即;所以的面积利用余弦定理可得,当且仅当时等号成立;解得,所以,即面积的最小值为.5.(2023·新疆乌鲁木齐·统考一模)在△ABC中,边a,b,c所对的角分别为A,B,C,,.(1)求角C的大小;(2)若,求边c.【答案】(1)(2)【详解】(1)因为,,所以;因为,所以.(2)因为,所以;因为,所以,即;因为,所以,所以.高频考点二:三角形解的个数问题1.(2023·全国·高一专题练习)在中,角、、的对边分别为、、,其中有两解的是()A.,,B.,,C.,,D.,,【答案】C【详解】对于A项,方法1:∵,,∴,∴由正弦定理得:∴a、c值唯一确定,∴只有一解.方法2:如图所示,∴只有一解.故选项A错误;对于B项,方法1:由余弦定理得:,∴只有一解.方法2:如图所示,∴只有一解. 故选项B错误;对于C项,方法1:由正弦定理得:,解得:又∵∴角B有两个解.方法2:如图所示,∵,∴,∴角B有两个解.故选项C正确;对于D项,方法1:∵,∴,又∵,∴,∴不存在这样的三角形.方法2:如图所示,∵,∴∴此时A、B、C三点不能构成三角形.故选项D错误;故选:C.2.(2023秋·浙江杭州·高一浙江省杭州第二中学校考期末)中,角的对边分别为,且,,,那么满足条件的三角形的个数有()A.0个B.1个C.2个D.无数个【答案】C【详解】因为在中,,,,由余弦定理可得:,所以,也即,解得:,所以满足条件的三角形的个数有2个,故选:.3.(2023·全国·高三专题练习)在中,角所对的边分别为,下列条件使有两解的是()A.B.C.D.【答案】D【详解】选项A. 由余弦定理可得的三边分别为,所以满足条件的三角形只有一个.选项B. ,则, 由正弦定理可得所以,的三边为定值,三个角为定值,所以满足条件的三角形只有一个.选项C. 由,则由正弦定理可得所以, 由则,所以角为一确定的角,且,则角角为一确定的角,从而边也为定值,所以满足条件的三角形只有一个.选项D. 作,在的一条边上取,过点作垂直于的另一边,垂足为.则,以点为圆心,4为半径画圆弧,因为,所以圆弧与的另一边有两个交点所以均满足条件,所以所以满足条件的三角形有两个.故选:D4.(多选)(2023·全国·高三专题练习)已知中,角A,B,C所对的边分别为a,b,c,下列条件中,能使的形状唯一确定的有()A.B.C.D.【答案】ACD【详解】对于A,由余弦定理可得,解得,故A正确;对于B,根据正弦定理:,可得,又因为,所以,所以或,故B不正确;对于C,由三角形的内角和可知,又,利用正弦定理,可知均有唯一值,故C正确;对于D,根据正弦定理:,可得,又因为,所以,所以只能是锐角,故D正确;故选:ACD高频考点三:判断三角形形状1.(2023秋·陕西西安·高二统考期末)在中,内角A,B,C所对的边分别是a,b,c,且,则的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】A【详解】,由正弦定理,得,即∴,可得,又,∴,则的形状为等腰三角形.故选:A.2.(2023·高一课时练习)三角形两边之差为2,且这两边的夹角的余弦值为,面积为14,此三角形是().A.钝角三角形;B.锐角三角形;C.直角三角形;D.不能确定.【答案】B【详解】解:设三角形两边a,b之差为2,且这两边的夹角的余弦值为,则,,,由,得,解得,由余弦定理得,则,所以,所以三角形是锐角三角形,故选:B3.(2023·高一课时练习)在中,是三角形的三条边,若方程有两个相等的实数根,则是()A.锐角三角形;B.直角三角形;C.钝角三角形;D.以上都有可能.【答案】B【详解】由题可知, 方程有两个相等的实数根,,,再由正弦定理可得,是直角三角形.故选:B.4.(2023·高一课时练习)在中,已知,则是()A.直角三角形;B.锐角三角形;C.钝角三角形;D.等边三角形.【答案】A【详解】解:由已知,所以,因为,所以,即三角形为直角三角形.故选:A.5.(2023·全国·高三专题练习)△ABC内角A、B、C的对边分别为a、b、c,若△ABC面积为,,B.则△ABC是( )A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形【答案】C【详解】∵△ABC面积为,b=3,B,∴ac sin B,即,整理得:ac =3,①由余弦定理得:b 2=a 2+c 22﹣ac cos B ,即9=a 2+c 2+ac =(a +c )2﹣ac =(a +c )23﹣,整理得:a +c =2,②联立①②,解得:a =c ,则△ABC 为等腰三角形,故选:C .高频考点四:边角互化角度1:正弦定理边角互化1.(2023·陕西西安·统考一模)已知在中,角所对边分别为,满足,且,则的取值范围为______.【答案】【详解】由题意在中,满足,即,即,而,故,又,则,同理,故,又,故,则,故答案为:2.(2023春·青海西宁·高三统考开学考试)在中,角的对边分别为,若.(1)求角的大小;(2)若的面积为,,求的周长.【答案】(1)(2)【详解】(1)由正弦定理得:,,,,,则.(2),,由余弦定理得:,解得:,的周长.3.(2023秋·宁夏吴忠·高二吴忠中学校考期末)已知的内角,,的对边分别为,,,且.(1)求角;(2)若,且的面积为,求边长【答案】(1)(2)或.【详解】(1),由正弦定理可得,即,因为,则,,所以,,因此,;(2)∵的面积为,则∴根据题意得,则或若,则△ABC为等边三角形,;若,则,即∴或.4.(2023·全国·模拟预测)在△ABC中,角A,B,C的对边分别为a,b,c,.(1)求证:;(2)若,,求△ABC的面积.【答案】(1)证明见解析(2)【详解】(1)由及正弦定理可得.因为,所以,即.因为A,B为三角形的内角,所以或,得(舍去)或.故.由正弦定理可得,故.(2)由(1)得:,又,所以,,则.因为,,所以,得,则,所以△ABC的面积为.5.(2023·广东佛山·统考一模)在锐角三角形中,角A,B,C的对边分别为a,b,c,为在方向上的投影向量,且满足.(1)求的值;(2)若,,求的周长.【答案】(1)(2)【详解】(1)由为在方向上的投影向量,则,即,根据正弦定理,,在锐角中,,则,即,由,则,整理可得,解得.(2)由,根据正弦定理,可得,在中,,则,,,由(1)可知,,则,由,则,解得,,根据正弦定理,可得,则,,故的周长.角度2:余弦定理边角互化1.(2023·全国·高三专题练习)在△ABC中,内角A,B,C所对的边分别为a,b,c,且,则的值为()A.4B.5C.6D.7【答案】C【详解】由已知及正弦定理得,所以,所以=.故选:C.2.(2023·全国·高三专题练习)在△中,角A,B,C的对边分别为a,b,c,且,则角C的大小为()A.B.C.D.【答案】B【详解】因为,则,整理得,所以即,则,∵,所以.故选:B.3.(多选)(2023·江苏南京·南京市秦淮中学校考模拟预测)在中,内角A,B,C的对边分别为a,b,c,若,则B的值为()A.B.C.D.【答案】BD【详解】解:根据余弦定理可知,代入,可得,即,因为,所以或,故选:BD.4.(2023·全国·模拟预测)在中,角的对边分别是,.(1)求C;(2)若,的面积是,求的周长.【答案】(1).(2).【详解】(1)由题意在中,,即,故,由于,所以.(2)由题意的面积是,,即,由,得,故的周长为.5.(2023秋·广东广州·高三广州市第七中学校考阶段练习)记的内角,,的对边分别为,,.已知,.(1)证明:;(2)求面积的最大值.【答案】(1)证明见解析(2).【详解】(1)由正弦定理及已知可得,整理可得.由余弦定理可得,整理可得,所以.(2)由(1)可知.由余弦定理可得,化简可得.记的面积为,则.注意到,所以,等号成立当且仅当.此时回代有,可反解出,,,易知符合题意.所以面积的最大值为.高频考点五:三角形外接圆问题1.(2023秋·河南·高三安阳一中校联考阶段练习)在中, 角,,所对的边分别为,,,,则的外接圆面积为()A.B.C.D.【答案】D【详解】由正弦定理可知,,即,因为,,,根据正弦定理可知,得,则的外接圆面积.故选:D2.(2023·黑龙江·黑龙江实验中学校考一模)已知的内角A、B、C的对边分别为a、b、c,且.若,则的外接圆半径为____________.【答案】【详解】根据余弦定理由,因为,所以,由正弦定理可知的外接圆半径为,故答案为:3.(2023春·山东烟台·高三校考开学考试)在中,角A,B,C的对边分别为a,b,c,且.(1)求C;(2)已知的外接圆半径为4,若有最大值,求实数m的取值范围.【答案】(1);(2).【详解】(1)中,,,由正弦定理得,即,显然,∴,,,;(2)由(1),,由正弦定理,,,,其中,又,若有最大值,则在上有解,∴,解得,∴的取值范围是.4.(2023春·安徽·高三合肥市第六中学校联考开学考试)在锐角中,BC在AB上的投影长等于的外接圆半径R.(1)求的值;(2)若,且,求R.【答案】(1)(2)2【详解】(1)因为是锐角三角形,所以,又,所以,(2)由得,与已知条件,相加得,,即,,所以.于是,故.5.(2023·全国·高三专题练习)△ABC的内角A,B,C的对边分别为a,b,c,且.(1)求角A;(2)若3a=b+c,且△ABC外接圆的半径为1,求△ABC的面积.【答案】(1)(2)(1),化简得:,由正弦定理得:,因为,所以,因为,所以,所以因为所以;(2)设△ABC外接圆的半径为R,则R=1,由正弦定理得,由余弦定理得,﹣bc,即3=273∴bc=8,∴△ABC的面积.高频考点六:三角形周长(边长)问题角度1:三角形周长(边长)定值问题1.(2023·江西抚州·高三金溪一中校考开学考试)已知在锐角中,角所对的边分别为.(1)求;(2)若的面积为1,且__________(在下面两个条件中任选一个),求的周长.①;②.注:如选择多个条件分别解答,按第一个解答计分.【答案】(1)(2)【详解】(1)由及正弦定理得,整理得,因为,所以,因为在锐角中,,所以.(2)若选①:由的面积为1,得,所以,在锐角中,由,得,由余弦定理得,所以,所以,即的周长为.若选②:由的面积为1,得,所以,在锐角中,由,得,由余弦定理得,即,由,解得,所以,所以的周长为.2.(2023·高一课时练习)在中,所对的边为,满足.(1)求A的值;(2)若,求的周长.【答案】(1).(2).【详解】(1)∵,,可得∶,可得∶,,∵,.(2)在中,∵,,∴,∴由正弦定理可得:,即,所以的周长为.3.(2023秋·云南曲靖·高三曲靖一中校考阶段练习)在中,角的对边长分别为,且.(1)求;(2)若,求的周长.【答案】(1)(2)【详解】(1)由条件,得,由正弦定理得:,由于,,代入上式得:,,由于,;(2)由余弦定理:,将代入得:,(舍);的周长为;综上,,的周长为.4.(2022秋·辽宁·高三校联考期中)已知分别为的三个内角的对边,.(1)求B;(2)若的面积为4,求.【答案】(1);(2)8【详解】(1)由,得,即,由余弦定理,得,由于,所以;(2)因为的面积为,所以,即,因为,,则,所以,所以.角度2:三角形周长(边长)最值问题1.(2023秋·浙江宁波·高三期末)在中,内角A,B,C的对应边分别为a,b,c,已知,且的面积为,则周长的最小值为()A.B.C.D.【答案】C【详解】因为,根据正弦定理及诱导公式得,,,,即,,则,则解得,所以,所以,所以,当且仅当时等号成立,根据余弦定理得,即,设的周长为,所以,设,则,根据复合函数单调性及增函数加增函数为增函数的结论得:在上为单调增函数,故,故,当且仅当时取等.故选:C.2.(2023春·河南·高三洛阳市第三中学校联考开学考试)在中,若内角A,B,C所对的边分别为a,b,c,的平分线交AC于点D,且,则周长的最小值为()A.7B.C.D.4【答案】C【详解】由题可得,,即,又,所以,则,因为,所以,则,所以,即,又因为,,所以,整理得,所以,解得或(舍去),所以,当且仅当时,等号成立,则,故周长的最小值为.故选:C..3.(2023秋·贵州贵阳·高三统考期末)已知平面四边形中,,若,的面积为.(1)求的长;(2)求四边形周长的最大值.【答案】(1)(2)周长的最大值为【详解】(1)在中,由题意有,解得,又由余弦定理得, 所以 .(2),,设,四边形周长设为,则,由题可知,,在中,由余弦定理得( ,则所以,即,当且仅当时等号成立,所以 ,即四边形周长的最大值为4.(2023秋·辽宁辽阳·高三统考期末)在①,②D是边的中点且,这两个条件中任选一个,补充在下面问题中,并作答.问题:在中,内角A,B,C的对边分别是a,b,c,且.(1)求A;(2)若__________,求的最大值.注:如果选择两个条件分别解答,按第一个解答计分.【答案】(1)(2)选①,的最大值是8;选②,的最大值是【详解】(1)因为,所以,所以,则.因为,所以.(2)选①,由余弦定理可得,即,则.因为,所以.因为,所以,当且仅当时,等号成立,则,解得,即的最大值是8.选②,因为D是边的中点,所以,所以,因为,且,所以,即.因为,所以,当且仅当时,等号成立,则,解得,即的最大值是.5.(2023·全国·高三专题练习)中,已知,,为上一点,,.(1)求的长度;(2)若点为外接圆上任意一点,求的最大值.【答案】(1);(2).【详解】(1)设,,则.在与中,由余弦定理知:,即,,即.,,可得.,,即.解得,..(2)由(1)知:中,,,为外接圆的直径.为外接圆上任意一点,当在点时,.当在点时,.当在优弧上时,,设,则.中,由正弦定理知,.,当时,的最大值为.当在劣弧上时,,设,则.中,由正弦定理知,..当时,的最大值为.综上,的最大值为.6.(2023·全国·高三专题练习)在中,角A,B,C所对的边分别为a,b,c.在①,② ,③ 中任选一个,(1)求角C的大小;(2)若,求周长的最大值.【答案】(1)(2)6(1)选①,得∴∵∴∴选②∵∴选③又所以,所以(2)由余弦定理知:由基本不等式知:所以所以:(当且仅当时,等号成立),所以综上:△ABC的周长的最大值为6.7.(2023·全国·高三专题练习)在△ABC中,角A,B,C的对边分别为a,b,c,若.(1)求角A的大小;(2)若,求△ABC周长的最大值.【答案】(1);(2)(1)因为所以由正弦定理可得,即,由余弦定理知,,因为, 所以.(2)由和(1)可知,则,得,即,所以(当且仅当时,取得等号),所以周长的最大值为.角度3:三角形周长(边长)取值范围问题1.(2023·陕西西安·统考一模)已知在中,角所对边分别为,满足,且,则的取值范围为______.【答案】【详解】由题意在中,满足,即,即,而,故,又,则,同理,故,又,故,则,故答案为:2.(2023秋·广东潮州·高三统考期末)在平面四边形中,.(1)求的长;(2)若为锐角三角形,求的取值范围.【答案】(1)或(2)【详解】(1)在中,,由余弦定理可得,即,解得或;(2)因为,所以,因为为锐角三角形,所以,解得,在中,因为,所以,由,得,所以,所以.3.(2023·广东茂名·统考一模)已知的内角A,B,C所对的边分别为a,b,c,且.(1)求证:.(2)求的取值范围.【答案】(1)证明见解析(2)【详解】(1)在中,由及正弦定理得:又∵,∴即,∵,∴.∵,∴,(2)得:得,∴,∴,由题意,及正弦定理得:∵,∴,即故的取值范围为方法二:由正弦定理得:∵,∴,由(1)得:,故由(1)得:得,∴,∴,∴,即,故的取值范围为4.(2023·陕西咸阳·校考模拟预测)已知锐角中,a,b,c分别为内角A,B,C的对边,若.(1)求;(2)若,求周长的取值范围.【答案】(1)(2)【详解】(1)由及正弦定理,得即.所以,由为锐角, 得,所以.(2)由得.∴得周长.,因为,,所以,,所以,即.所以周长的取值范围为.5.(2023·全国·高三专题练习)在锐角中,角、、的对边分别为、、,且.(1)求角的大小;(2)当时,求的取值范围.【答案】(1);(2).【详解】解:(1)由及正弦定理得,所以,所以,所以,由,可得;(2),,所以,所以:,因为为锐角三角形,则,解得,所以,,则,所以,.6.(2023·全国·高三专题练习)在中,角所对的边分别为,已知.(1)求角的大小;(2)若,求的取值范围.【答案】(1);(2)【详解】(1)∵,∴,即,∵,∴,∴.(2)由余弦定理可知,代入可得,当且仅当时取等号,∴,又,∴的取值范围是.。

平面向量经典例题讲解

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________一、选择题(题型注释)1. 空间四边形OABC 中,OA a =,OB b =, OC c =,点M 在OA 上,且MA OM 2=,N 为BC 的中点,则MN =( ) A 121-32a b c + B 211322a b c ++C 112-223a b c +D 221-a b c +【答案】B 【解析】试题分析:因为N 为BC 1()2ON OB OC =+,12()2MN ON OM OB OC OA =-=+-=112b c a +-,选B2.已知平面向量a ,b 满足||1=a ,||2=b ,且()+⊥a b a ,则a 与b 的夹角是( )(A (B (C (【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+⋅=∴+⋅=,||1=a ,||2=b ,设夹角为θ,则2112cos a a b+⋅=+⨯考点:本题考查向量数量积的运算点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角3.若OA 、OB 、OC 三个单位向量两两之间夹角为60OA OB OC ++= 【答案】D 【解析】试题分析: OA 、OB 、OC 三个单位向量两两之间夹角为60°222222232coa b c a b c ab bc ac a b ++=+++++=+4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a =,BD b =,则AF =( )A.1142a b + B.1233a b +C.1124a b + D.2133a b +【答案】D【解析】试题分析:AEB 与FED ∆相似,且相似比为3:1,所以1DF DC =,,AB AD a AD AB b +=-=,解得,,a b a bAD AB +-==121AF AD DF AD AB a b =+=+=+,故考点:平面向量的加减法5.在边长为1的等边ABC ∆中,,D E 分别在边BC 与AC 上,且BD DC =,2AE EC = 则AD BE ⋅=( )AC A 【解析】试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =,2AE EC = 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系,设),(y x E ,由EC AE =2可得:考点:平面向量的坐标运算6.在平行四边形ABCD 中,AC 为一条对角线,(2,4)AB =,(1,3)AC =,则DA =( )A .(2,4)B .(3,5)C .(1,1)D .(-1,-1) 【答案】C . 【解析】试题分析:()(1,1)DA AD AC AB =-=--=. 考点:平面向量的线性运算.7.已知向量()1,2a =,()//a b b +,则b 可以为( )A .()1,2B .()1,2-C .()2,1D .()2,1- 【答案】A 【解析】试题分析:设),(y x b =,则)2,1(++=+y x b a ,因()//a b b +,所以0)2()1(=+-+y x y x ,02=-x y ,只有A满足考点:向量共线的条件8.已知向量(2,3),(1,2)a b ==-,若4ma b +与2a b -共线,则m 的值为( ) A . 2 C .2- 【答案】D 【解析】试题分析:由已知得4ma b+)83,42()2,1(4)3,2(+-=-+=m m m ,又因为4ma b +与2a b -共线, 所以有228140)83(4)1()42(-=⇒-=⇒=+⨯--⨯-m m m m ,故选D .考点:1.向量的坐标运算;2.向量平行的坐标条件.9.已知平面直角坐标系内的两个向量)2,1(=→a ,)23,(-=→m m b ,且平面内的任一向量→c 都可以唯一的表示成→→→+=b a c μλμλ,(为实数),则实数m 的取值范围是( )A .(,2)-∞B .(2,)+∞C .(,)-∞+∞D .(,2)(2,)-∞+∞【答案】D【解析】试题分析:平面内的任一向量→c 都可以唯一的表示成→→→+=b a c μλμλ,(为实数)的充要条件是)2,1(=→a ,)23,(-=→m m b 不共线,即()132202m m m ⨯--⨯≠⇒≠,故选 D.考点:平面向量的基底及向量共线 10.若向量(1,2)=-a ,(2,1)=b ,(4,2)--c =,则下列说法中错误..的是( ) A. a b ⊥B. 向量a 与向量c 的夹角为90︒C. b ∥cD.对同一平面内的任意向量d ,都存在一对实数12,k k ,使得12k k =d b+c 【答案】D 【解析】A 正确;0)2()2()4(1=-⨯-+-⨯=⋅c a ,所以B 正故C 正确;因为c b ,是共线D 错 考点:向量的夹角11.已知向量()3,4a =,)A .1C .1±D 【解析】试题分析:因为()3,4a =,所以,解得:1λ=±,故选D . 考点:1、向量的数乘运算;2、向量的模. 12.若向量()2,1a =-,()0,2b =,则以下向量中与a b +垂直的是( )A .()1,2-B .()1,2C .()2,1D .()0,2 【答案】A 【解析】试题分析:∵向量()2,1a =-,()0,2b =,∴(2,1)a b +=,而12(2)10⨯+-⨯=,∴以下向量中与a b +垂直的是()1,2-.考点:向量垂直的充要条件.13.在边长为1的正三角形ABC 中,设2BC BD =,CA CE λ=,若1A DB E ⋅=-则λ的值为( )(A (B )2 (C )1(D C【解析】试题分析:由题意可得: =211AB BC BC AB CA BC CAλλ⋅++⋅+⋅14.已知向量(1,2)a =, (1,0)b =,(3,4)c =,若λ为实数,()a b c λ+⊥,则)D 【解析】试题分析:()1,2a bλλ+=+,因为()a b c λ+⊥,所以()()31420a b c λλ+⋅=++⨯=,解得故D 正确. ;向量的数量积.15.在△ABC 中,已知||4,||1AB AC ==,,则AB AC ⋅的值为( ) (A )2-(B )2(C )4±(D )2± 【答案】D 【解析】试题分析:由题根据三角形面积公式不难得到角A 的正弦值,然后得到其对应的余弦值,结合平面向量数量积运算求得结果.cosA AB AC AB AC ∴⋅=⨯⨯故选D 考点:平面向量的数量积二、填空题(题型注释) 16.已知两个非零向量a 与b ,定义|a×b|=|a|·|b|sin θ,其中θ为a 与b 的夹角.若a =(-3,4),b =(0,2),则|a×b|的值为________. 【答案】6 【解析】|a|5,|b|=2,a·b=-3×0+4×2=8,所以cos θθ∈[0,π],所以sin θ故根据定义可知|a×b|=|a|·|b|sin θ 6.17.△ABC 中AB =2,AC 点D 是△ABC 的重心,则AD ·BC =________.E 为边BC 是△ABC 的重心,所以AD =3AE =3(AB +AC )3(AB +AC ),又BC =AC -AB ,所以AD ·BC =3(AB +AC )·(AC -AB )(AC 2-AB 2)=18.已知a =(2,0),||3b =,,a b 的夹角为2|a b -= 【解析】 试题分析:2224416a b a a b b -=-⋅+=-.考点:向量的基本运算.19.已知A 、B 、C 是球O 的球面上三点,∠BAC=90°,AB=2,BC=4,球O 的表面积为48π,则异面直线AB 与OC 所成角余弦值为 .【解析】试题分析:过O 作BC 的垂线,垂足为M ,以MA 所在线为x 轴,以MC 所在线为y 轴,以MO 所在线为z 轴,建立直角坐标系,所以(2,00)A ,,(0,2,0)B -,(0,2,0)C ,,(2,2,0)BA =,(0,2,OC =考点:1.空间向量法;2.夹角公式. 20.已知||1a =,||2b =,a 与b 的夹角为120︒,0a c b ++=,则a 与c 的夹角为 .【答案】90︒ 【解析】试题分析:要求a 与c 的夹角一般可先求两向量的数量积a c ⋅,而()c a b =-+,因此a c ⋅=()a a b -⋅+=2a ab --⋅,而根据已知,这是可求的,而且其结果是0,故a ⊥c ,夹角为90︒.考点:向量的夹角.21.已知0=++c b a ,且a 与c 的夹角为︒60,,则〉〈b a ,cos 等于 .【解析】试题分析:∵0=++c b a ,∴()b a c =-+,∴22202||||cos60b a c a c =++, ∴2223||||a a c a c =++,∴222||||0a a c c --=,∴||||a c =, ∴2203()||||||cos60a b a a c a a c a a c ∙=-+=--∙=--=-23||32,2||||||3||a ab a b a b a a -∙>===-.考点:1.向量的运算;2.两向量的夹角公式. 22.已知点G 为ABC △的重心,过点G 作直线与AB ,AC 两边分别交于,M N两点,且,AM xAB = ,AN y AC = ,x y R ∈,则【答案】3 【解析】试题分析:根据题意画出图像,因为G 为ABC △的重心,所以()2111111AG AB AC AM AN AM ⎛⎫=⨯+=+=+⎪,因为:,,M G N 三点共线,所以答案为: 3.考点:1.向量的运算;2.三点共线的性质.23.已知向量),2,4(),3,1,2(x b a -=-=,若//a b ,则=x ; 【答案】-6 【解析】试题分析:由b a λ=可知,2λ=-,所以6x =-.考点:空间向量共线定理. 24.设向量(3,1),(2,2)a b ==-,若()()a b a b λλ+⊥-,则实数λ= .【解析】试题分析:由已知得(3a b λλ+=+(3a b λλ-=- 由()()a b a b λλ+⊥-得()()0a b a b λλ+⋅-=所以有即0842=-λ,解得考点:向量的数量积的坐标运算. 25.已知向量(1,2)a =-,(2,3)b =,若m a b λ=+与n a b =-的夹角为钝角,则实数λ的取值范围是 . 【答案】9λ<且1x ≠- 【解析】试题分析:m a b λ=+(2,23)λλ=-++,n a b =-(3,1)=--,若m a b λ=+与n a b =-的夹角为钝角,则()()3(2)(23)0a b a b λλλ+⋅-=--+-+<,即:9λ<,又m n 与不共线,则(2)λ--+3+(23)0λ+≠,即:1λ≠-,则9λ<且1x ≠-考点:1.向量的夹角;2.向量的数量积;3.共线向量;4.向量的坐标运算公式; 26.已知向量b a ,满足则a 在b 上的投影为_______________.试题分析:设a 与b 的夹角为θ,∵向量a ,b满足(∴22146a a b b a b +⋅+=+⋅+=,∴a b ⋅=1.∴cos a b a b⋅⋅=12,再由围为[0,ππ.若向量a 与b 满足||2a =,||2b =,()a b a -⊥.则向量a 与b 的夹角等于 ;||a b += 10. 试题分析:()a b a -⊥,()0a b a -⋅=,22a a b ∴=⋅=,2cos ,2a b a b a b⋅∴==,,4a b π=,()2222a b a ba ab b+=+=+⋅+24410=++=.222(2)()21226a b a b a a b b a b +⋅-=+⋅-=+⋅-⨯=-,1a b ⋅=,所以1cos ,2a b a b a b ⋅<>==,,a b π<>=.考点:向量的数量积与向量的夹角.三、解答题(题型注释),若b ka -与.(2)13k =-.2)两向量()(),,,a x y b x y ==平行,满足条件是).)()()2,21,3,1x --=-,则分5,6.- 分⑵因为()()1,31,5=-,)(()4,12,2,1BC =--, 8分所以)()2,51k k k -==---a b ,)7,2-. 10分 70=,向量共线.BM =BC ,CN =CD ,OA =,OB=b ,用a 、b 表示OM 、ON 、MN . 26【解析】BA =,BM =6BA =6,OM =OB +BM =6a +6b .OD ,ON =OC +CN =2OD +6OD =3OD =3a +3b .MN =ON -OM =2a -6b(2)小问cos6014a b a b ⋅=⋅=⨯()()222222a b a b a a b b -⋅+=+⋅-=+2)∵()()2a b a b λ+⊥-,∴()()20a b a b λ+⋅-=,∴()22220a a b b λλ+-⋅-=,∴()22320λ--=,点评:解决此题的关键是掌握平面向量数(1试题解析:(1)因为⊥a b ,所以=0⋅a b ,2分4分因为cos 0θ≠,所以6分(2)由a ∥b ,得8分11分14分考点:向量平行与垂直,两角和正弦及二倍角公式33.(本题满分9分)已知向量)sin ,(cos αα=a ,)sin ,(cos ββ=b ,(1)求cos()αβ-的值; (2,求sin α的值。

平面向量的基本定理及坐标表示知识点及例题

平面向量的基本定理及坐标表示知识点及例题

知识点总结:1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则数量||||cosθ叫与的数量积,记作⋅,即⋅ = ||||cosθ,并规定与任何向量的数量积为02.平面向量的数量积的几何意义:数量积⋅等于的长度与在方向上投影||c osθ的乘积.3.两个向量的数量积的性质设、为两个非零向量,是与同向的单位向量1︒⋅ = ⋅ =||cosθ; 2︒⊥⇔⋅ = 03︒当与同向时,⋅ = ||||;当与反向时,⋅ = -||||,特别地⋅ = ||24︒cosθ =; 5︒|⋅| ≤ ||||4.平面向量数量积的运算律①交换律:⋅ = ⋅②数乘结合律:()⋅ =(⋅) = ⋅()③分配律:( + )⋅ = ⋅ + ⋅5.平面向量数量积的坐标表示①已知两个向量,,则.②设,则.③平面内两点间的距离公式如果表示向量的有向线段的起点和终点的坐标分别为、,那么.④向量垂直的判定两个非零向量,,则.⑤两向量夹角的余弦co sθ =().1.平面向量数量积的坐标表示已知两个非零向量,,怎样用与的坐标来表示呢?设向量分别为平面直角坐标系的轴、轴上的单位向量,则有,∴两个向量的数量积等于它们对应坐标的乘积的和.3.平面向量数量积的坐标表示的性质⑴向量的模设,则有或⑵平面内两点间的距离公式设,,则,⑶两向量垂直的坐标表示的判断条件设,,则⑷两向量的夹角的坐标表示公式设非零向量,,为与的夹角,则二.例题讲解1.平面向量数量积的运算例题1 已知下列命题:①; ②; ③; ④其中正确命题序号是②、④ .点评: 掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.例题2 已知; (2) ;(3) 的夹角为,分别求.解(1)当时, =或=.(2)当时, =.(3)当的夹角为时, =.变式训练:已知,求解:=点评:熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整.2.夹角问题例题3 若,且,则向量与向量的夹角为 ( )A. B. C. D.解:依题意故选C 学生训练: ①已知,求向量与向量的夹角.②已知,夹角为,则 .解: ①,故夹角为.②依题意得.变式训练:已知是两个非零向量,同时满足,求的夹角.法一解:将两边平方得,则, 故的夹角.为.法二: 数形结合点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法.3.向量模的问题例题4 已知向量满足,且的夹角为,求.解: ,且的夹角为;变式训练 :①已知向量,若不超过5,则的取值范围 ( )A. B. C. D.②已知的夹角为,, ,则等于( )A 5 B. 4 C. 3 D. 1解: ①,故选C②, ,解得,故选B 点评:涉及向量模的问题一般利用,注意两边平方是常用的方法.3.已知,,求,,,与的夹角.解:∵∴4.已知,,,试判断的形状,并给出证明. 解:是直角三角形. 证明如下:∵,∴∴∴是直角三角形例题引伸:在直角中,,,求实数的值;解:①若,则∴∴②若,则而∴∴③若,则而∴∴4.平面向量数量积的综合应用例题5 已知向量.(1) 若 ; (2)求的最大值 .解:(1)若,则,.(2) ==,的最大值为.。

平面向量基本定理及经典例题

平面向量基本定理及经典例题

平面向量基本定理一.教学目标:了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件;教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行.二.课前预习1.已知a =(x,2),b =(1,x),若a //b ,则x 的值为 ( )A 、2B 、 2-C 、 2±D 、 22.下列各组向量,共线的是 ( )()A (2,3),(4,6)a b =-= ()B (2,3),(3,2)a b ==()C (1,2),(7,14)a b =-= ()D (3,2),(6,4)a b =-=-3.已知点)4,3(),1,3(),4,2(----C B A ,且CB CN CA CM ⋅=⋅=2,3,则=MN ____4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为三.知识归纳1. 平面向量基本定理:如果12,e e 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+成立。

其中12,e e 叫做这一平面的一组____________,即对基底的要求是向量___________________;2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ,j 作基底,则对任一向量a ,有且只有一对实数x ,y ,使j y i x a +=、就把_________叫做向量a 的坐标,记作____________。

3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量OA 的坐标为OA=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标.4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有:OM =________________,M 点的坐标为_____________.5.两个向量平行的充要条件是:向量形式:_____________)0(//⇔≠ b b a ;坐标形式: _____________)0(//⇔≠ b b a .6. a =(x,y ), 则a =___________.与a 共线的单位向量是:aa e ±=四.例题分析:例1.(1)、 已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P点的坐标为( )A (-14,16) (B )(22,-11) (C )(6,1) (D ) (2,4)(2)、已知两点A(4,1), B(7,-3), 则与向量AB 同向的单位向量是 ( )(A )⎪⎭⎫ ⎝⎛-54,53 (B)⎪⎭⎫ ⎝⎛-54,53 (C)⎪⎭⎫ ⎝⎛-53,54 (D)⎪⎭⎫ ⎝⎛-53,54(3)、若a =(2,3),b =(-4,7),则a 在b 方向上的投影为____________。

平面向量例题

平面向量例题

平面向量例题摘要:1.平面向量的概念2.平面向量的基本运算3.平面向量的应用举例4.例题解析正文:一、平面向量的概念平面向量,又称二维向量,是具有大小和方向的几何对象。

在平面直角坐标系中,一个平面向量可以表示为一个有序的实数对(x, y),其中x 和y 分别表示向量在x 轴和y 轴上的分量。

我们可以将平面向量表示为一个带箭头的线段,线段的长度表示向量的大小,箭头的方向表示向量的方向。

二、平面向量的基本运算1.加法两个平面向量相加,是将它们的对应分量分别相加,即(x1, y1) + (x2,y2) = (x1 + x2, y1 + y2)。

2.减法两个平面向量相减,是将它们的对应分量分别相减,即(x1, y1) - (x2, y2) = (x1 - x2, y1 - y2)。

3.数乘平面向量与实数相乘,是将向量的大小乘以实数,方向保持不变,即(x, y) * λ= (λx, λy)。

三、平面向量的应用举例假设有一个向量A = (3, 4),另一个向量B = (1, 2)。

我们可以进行以下运算:1.向量加法:A + B = (3 + 1, 4 + 2) = (4, 6)2.向量减法:A - B = (3 - 1, 4 - 2) = (2, 2)3.向量数乘:2A = (2 * 3, 2 * 4) = (6, 8)四、例题解析例题:求向量(2, 3) 与向量(1, 1) 的和,差及数乘。

解:1.向量加法:(2, 3) + (1, 1) = (2 + 1, 3 + 1) = (3, 4)2.向量减法:(2, 3) - (1, 1) = (2 - 1, 3 - 1) = (1, 2)3.向量数乘:2 * (2, 3) = (2 * 2, 2 * 3) = (4, 6)综上所述,平面向量是具有大小和方向的几何对象,可以进行加法、减法和数乘等基本运算。

方法技巧专题26 平面向量(解析版)

方法技巧专题26 平面向量(解析版)

方法技巧专题26 平面向量解析版【一】向量的概念1.例题【例1】给出下列结论:①数轴上相等的向量,它们的坐标相等;反之,若数轴上两个向量的坐标相等,则这两个向量相等; ②对于任何一个实数,数轴上存在一个确定的点与之对应;③数轴上向量AB 的坐标是一个实数,实数的绝对值为线段AB 的长度,若起点指向终点的方向与数轴同方向,则这个实数取正数,反之取负数;④数轴上起点和终点重合的向量是零向量,它的方向不确定,它的坐标是0. 其中正确结论的个数是( ) A.1 B.2C.3D.4【答案】D【解析】①向量相等,则它们的坐标相等,坐标相等,则向量相等,①正确;②实数和数轴上的点是一一对应的关系,即有一个实数就有一个点跟它对应,有一个点也就有一个实数与它对应,②正确;③数轴用一个实数来表示向量AB ,正负决定其方向,绝对值决定其长度,③正确; ④数轴上零向量其起点和终点重合,方向不确定,大小为0,其坐标也为0,④正确. 【例2】下列命题中,正确的个数是( ) ①单位向量都相等;②模相等的两个平行向量是相等向量;③若a ,b 满足b a >且a 与b 同向,则a b >; ④若两个向量相等,则它们的起点和终点分别重合; ⑤若a b b c ∥,∥,则a c ∥. A .0个 B .1个C .2个D .3个【答案】A【解析】对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误;对于④,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误; 对于⑤,0b =时,a b b c ∥,∥,,则a 与c 不一定平行. 综上,以上正确的命题个数是0. 2.巩固提升综合练习 【练习1】给出下列命题: ①若c b b a ==,则c a=;②若A ,B ,C ,D 是不共线的四点,则DC AB =是四边形ABCD 为平行四边形的充要条件;③b a==且b a //;④若c b b a //,//,则c a //; 其中正确命题的序号是 . 【答案】①②【解析】①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵DC AB ==且DC AB //, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,=且DC AB //,,因此,DC AB =.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. ④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②.【二】平面向量的线性表示1.例题【例1】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A.AC AB 4143- B. AC AB 4341- C. AC AB 4143+ D. AC AB 4341+ 【解析】根据向量的运算法则,可得,所以,故选A.【例2】在梯形ABCD 中,AB →=3DC →,则BC →等于( )A .-13AB →+23AD → B .-23AB →+43AD → C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形, 则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【例3】已知A ,B ,C 为圆O 上的三点,若()12AO AB AC =+则AB 与AC 的夹角为__________. 【解析】由()12AO AB AC =+可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°,故AB 与AC 的夹角为90°. 2.巩固提升综合练习【练习1】在正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+,则λμ+的值为( ) A .12-B .12C .1-D .1【答案】B【解析】由题得1111111122222222AE AD AC BC AC AC AB AC AB AC =+=+=-+=-+, 11,1,22λμλμ∴=-=∴+=.故选:B【练习2】已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++OC OB OA 22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】如图所示:设AB 的中点是E ,△O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,△2EO →=OC →, △OP →=13()4EO →+OE →=EO →,△P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【练习3】如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A.2116B.32C.2516D.3【答案】A【解析】连接BD,取AD 中点为O,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD 为等边三角形,BD =.设(01)DE tDC t =≤≤AE BE ⋅223()()()2AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+ =233322t t -+(01)t ≤≤ 所以当14t =时,上式取最小值2116,选A.【三】向量共线的应用1.例题【例1】设两个非零向量a 与b不共线.(1)若b a AB +=,b a BC 82+=,)(3b a CD-=,求证:D B A ,,三点共线;(2)试确定实数k ,使b a k +和b k a+共线.【答案】(1)见解析;(2)k =±1.【解析】(1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)假设k a +b 与a +k b 共线,则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0. 消去λ,得k 2-1=0,∴k =±1.【例2】已知点()3,1A ,()1,4B -,则与向量AB 的方向相反的单位向量是( ) A.43,55⎛⎫-⎪⎝⎭ B.43,55⎛⎫-⎪⎝⎭ C.34,55⎛⎫-⎪⎝⎭D.34,55⎛⎫- ⎪⎝⎭1.共线向量定理:向量a (0≠a )与b 共线,当且仅当有唯一一个实数λ,使得a b λ=2.平面向量共线定理的三个应用:3.求解向量共线问题的注意事项:(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用;(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线;(3)直线的向量式参数方程:B P A ,,三点共线OB t OA t OP +-=⇔)1((O 为平面内任一点,R t ∈).【解析】(4,3)AB =-,∴向量AB 的方向相反的单位向量为4343(,)(,)5555||AB AB --=-=-,2.巩固提升综合练习【练习1】设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【练习2】设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.【解析】因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.【四】平面向量基本定理及应用 1.例题【例1】如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(,)DE AB AD R λμλμ=+∈,则λμ+等于( ).A .12-B .12C .1D .1-【答案】A【解析】由平面向量基本定理,化简()11DE DA AE DA AC AD AB AD 44=+=+=-++ 13AB AD 44=-,所以13λ,μ44==-,即1λμ2+=-,【例2】在中,点满足,当点在射线(不含点)上移动时,若,则 的 取值范围为__________.【答案】【解析】因为点在射线(不含点)上,设,又,所以, 所以 , , 故的取值范围.2.巩固提升综合练习【练习1】如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n △R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB →+13AD →,又AC→=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12△m +n =32. 故应填答案32.ABC ∆D 34BD BC =E AD A AE AB AC λμ=+()221λμ++()1,+∞E AD A ,0AE k AD k =<34BD BC=()()33444kk AE k AB AD k AB AC AB AB AC ⎡⎤=+=+-=+⎢⎥⎣⎦4{34kk λμ==()2222295291114168510k t k k λμ⎛⎫⎛⎫=++=++=++> ⎪ ⎪⎝⎭⎝⎭()221λμ++()1,+∞【练习2】如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,EA BE 2=,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【五】平面向量的坐标运算1.例题【例1】已知向量)3,2(=a,)2,3(=b ,则=-b a ( )A .2B .2C .52D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b故选A【例2】在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3 D.6+2+1 【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3), △|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点, 求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【例3】在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1]【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又△OA →+OB →+OD →=(x -1,y +3), △|OA →+OB →+OD →|=(x -1)2+(y +3)2.△|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解.如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),△OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, △OA →+OB →+OD →=OD →-ON →=ND →,△|OA →+OB →+OD →|=|ND →|,△|ND →|max =|NC →|+1=7+1,|ND →|min =7-1.2.巩固提升综合练习【练习1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C. 5D .2【解析】如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z=0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z的最大值是3,即λ+μ的最大值是3.【练习2】如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65 D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1, AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).△AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫ ⎝⎛+-μλμλ2,2,△⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,△M ,N 分别为BC ,CD 的中点, △AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【例1】已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A.C.D.0【答案】C 【解析】.【例2】若()3,4a =-,则与a 同方向的单位向量0a =____________【答案】34,55⎛⎫- ⎪⎝⎭【解析】与a 同方向的单位向量0134(3,4)(,)555aa a ==-=-2.巩固提升综合练习【练习1】如图,在平面四边形ABCD 中,90CBA CAD ∠=∠=︒,30ACD ∠=︒,AB BC =,点E 为线段BC 的中点.若AC AD AE λμ=+(,R λμ∈),则λμ的值为_______.【解析】以A 为原点,建立如图所示的平面直角坐标系,不妨设AB =BC =2, 则有A (0,0),B (2,0),C (2,2),E (2,1),AC =, AD =,过D 作DF⊥x 轴于F ,∠DAF=180°-90°-45°=45°, DF=32=D(), AC =(2,2),AD=(3-),AE =(2,1),因为AC AD AE λμ=+,所以,(2,2)=λ(3-,3)+μ(2,1),所以,2223μλμ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:43λμ⎧=⎪⎪⎨⎪=⎪⎩λμ【练习2】已知向量a =(3,1),b =(1,3),c =(k ,-2),若(a -c )△b ,则向量a 与向量c 的夹角的余弦值是( )A.55 B.15 C .-55 D .-15【解析】 △a =(3,1),b =(1,3),c =(k ,-2),△a -c =(3-k,3),△(a -c )△b , △(3-k )·3=3×1,△k =2,△a ·c =3×2+1×(-2)=4,△|a |=10,|c |=22, △cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A.【一】平面向量数量积的概念 1.例题【例1】在如图的平面图形中,已知0120,2,1=∠==MON ON OM ,NA CN MA BM 2,2==则OM BC •的值为( )1.两个向量的夹角:(1)定义:已知两个非零向量a 和b ,作a =,b =,则θ=∠AOB 叫做向量a 与b 的夹角.(2)范围:向量夹角θ的范围是πθ≤≤0;a 与b 同向时,夹角θ=0°;a 与b反向时,夹角θ=180°.(3)向量垂直:如果向量a 与b 的夹角是90°,则a 与b垂直,记作b a ⊥.2.平面向量的数量积的概念:(1)已知两个非零向量a 与b ,则数量θcos b a ⋅叫做a 与b的数量积,记作b a •,即:b a •=θcos b a ⋅,其中θ是a 与b的夹角.规定:00=•a ;(2)b a •的几何意义:数量积b a•等于a 的长度a与b在a的方向上的投影θcos b的乘积. 3.数量积的运算律:(1)交换律:a b b a•=•;(2)分配律:()c b c a c b a •+•=•+;(3)对R ∈λ,()())(b a b a b aλλλ•=•=•.4.计算向量数量积的三种常用方法:(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即b a •=θcos b a⋅,其中θ是a 与b的夹角.(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.OA OBA .B .C .D .0【答案】C【解析】如图所示,连结MN , 由 可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C 选项.【例2】已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .-3 B .-2 C .2 D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .2.巩固提升综合练习【练习1】如图,AB 是半圆O 的直径,C 、D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点.若6OA =,则MD NC ⋅的值是( )A.12B.C.26D.36【答案】C 【解析】连接,OC OD ,由C 、D 是弧AB 的三等分点,得∠AOD =∠BOC =60°,()()MD NC OD OM OC ON ⋅=-⋅-OD OC OD ON OM OC OM ON =⋅-⋅-⋅+⋅66cos6062cos12026cos12022=⨯⨯-⨯⨯-⨯⨯-⨯18664=++-26=.【练习2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【练习3】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.【解析】∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t .∴t =2.1.例题【例1】已知平面向量,a b不共线,且1a=,1a b⋅=,记b与2a b+的夹角是θ,则θ最大时,a b-=()A.1B C D.2【答案】C【解析】设|b|=x,则()22·22?2b a b a b b x+=+=+,22|2+|=44?8a b a a b b++=+所以()2·22cos 28b a bb a bx θ++==++易得cos 0θ>,()()()2222222222211cos 124811411222263x x x x xx θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x =时,2cos θ取得最小值,θ取得最大值, 此时22||=2?12a b a a b b --+=-=故选C.【例2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【例3】设向量a =(1,0),b =(−1,m ),若()a mab ⊥-,则m =_________. 【解析】(1,0),(1,)a b m ==-,(,0)(1,)(1,)ma b m m m m ∴-=--=+-,由()a ma b ⊥-得:()0a ma b ⋅-=,()10a ma b m ∴⋅-=+=,即1m =-.2.巩固提升综合练习【练习1】若两个非零向量a ,b 满足2a b a b a +=-=,则向量a b +与a b -的夹角是( ) A.6πB.2π C.23π D.56π 【解析】将2a b a b a +=-=平方得:22222224a a b b a a b b a +⋅+=-⋅+=,解得:2203a b b a⎧⋅=⎪⎨=⎪⎩ . 222()()1cos ,42||||a b a b a b a b a b a a b a b +⋅--<+->===-+-.所以向量a b +与a b -的夹角是23π.【练习2】已知非零向量a与b满足b a2=,且b b a⊥-)(,则a与b的夹角为( ) A .π6B .π3C .2π3D .5π6【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【练习3】已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 【解析】由|2a -b |=10,得4 a 2-4 a ·b +b 2=10,得4-4×|b |×cos45°+|b |2=10,即-6-22|b |+|b |2=0,解得|b |=32或|b |=-2(舍去).1.例题【例1】已知e b a ,,是平面向量,e 是单位向量.若非零向量a 与e的夹角为3π,向量b 满足0342=+•-b e b ,则b a-的最小值是( )A .1-3B .13+C .2D .3-2 【答案】A 【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.【例2】在ABC △,若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC △的形状为( ) A.直角三角形 B.等腰三角形C.等边三角形D.无法判断【答案】C【解析】由题意可得:()cos cos AB BC B AC BC C AB AC BC AB AC AB AC ⎛⎫⨯⨯-⨯⨯ ⎪+⋅=+ ⎪⎝⎭()cos cos BC C B =⨯-,故()cos cos 0BC C B ⨯-=,cos cos ,B C B C ∴==,且:cos 1cos 2AB AC A AB AC A ABACAB AC⨯⨯⋅===⨯,则3A π=, 结合,3B C A π==可知△ABC 为等边三角形.【例3】如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b △R ),则ab 的值为( )A.14 B .1 C.12 D.18【解析】由题意易知E 1(2,1),E 2(2,-1),△e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,△(2a +2b )24-(a -b )2=1,整理可得4ab =1,△ab =14.【答案】 A2.巩固提升综合练习【练习1】在平面四边形ABCD 中,o90=∠BAD ,1,2==AD AB ,若CB CA BC BA AC AB •=•+•34, 则CD CB 21+的最小值为____.【答案】【解析】如图,以的中点为坐标原点,以方向为轴正向,建立如下平面直角坐标系.则,,设,则,,因为所以,即:整理得:,所以点在以原点为圆心,半径为的圆上. 在轴上取,连接可得,所以,所以由图可得:当三点共线时,即点在图中的位置时,最小.此时最小为.【练习2】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =(2)0x =时,取得最大值,为3; 5π6x =时,取得最小值,为23-.【解析】解:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为,所以ππ7π[,]666x +∈, 从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最大值3; 当π6x +=π,即5π6x =时,取到最小值23-.1.已知O,A,B 是平面上的三个点,直线AB 上有一点C ,且20AC CB +=,则OC =( ) A.2OA OB - B.2OA OB -+C.2133OA OB - D.1233OA OB -+【答案】A【解析】因为20AC CB +=,所以2()()0OC OA OB OC -+-=, 所以OC =2OA OB -, 故选:A.2.已知G 是ABC ∆的重心,D 是AB 的中点 则GA GB GC +-=____________ 【答案】4GD【解析】因为D 是AB 的中点,G 是ABC ∆的重心,则2CG GD =,即2GC GD =- 又1()2GD GA GB =+,所以2GA GB GD +=, 所以2(2)4GA GB GC GD GD GD +-=--=, 故答案为:4GD .3.在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____.【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.4.在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________. 【答案】1-.【解析】建立如图所示的直角坐标系,则B ,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE y x =-,直线AE的斜率为-y x =.由(3y x y ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)122BD AE =-=-.5.已知数列{}n a 为等差数列,且满足12107OA a OB a OC =+,若AB AC λ=(R λ∈),点O 为直线BC 外一点,则1009a =( )A . 3B . 2C . 1D .12【答案】D6.设向量a,b 满足|+|=a b ||-=a b ,则a ·b =( ).A .1B .2C .3D .5 【解析】∵|+|=a b (a +b )2=10,即a 2+b 2+2a ·b =10.①∵||-=a b ,∴(a -b )2=6,即a 2+b 2-2a ·b =6.②由①②可得a ·b =1.故选A.7.已知a =(3,2),b =(2,-1),若λa +b 与a +λb 平行,则λ=________.【解析】 △a =(3,2),b =(2,-1),△λa +b =(3λ+2,2λ-1),a +λb =(3+2λ,2-λ),△λa +b △a +λb ,△(3λ+2)(2-λ)=(2λ-1)(3+2λ), 解得λ=±18.在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2 D .211 【解析】如图,取AE 的中点G ,连接BG △AE →=23AD →,BF →=13BC →,△AG →=12AE →=13AD →=13BC →=BF →,△EF →=GB →,△|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,△|EF →|=|GB →|=25,故选B.9.已知锐角△ABC 的外接圆的半径为1,△B =π6,则BA →·BC →的取值范围为__________.【解析】如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,△B =π6.由正弦定理得a sin A =c sin C =2,△a=2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,△BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A=32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. △π3<A <π2,△π3<2A -π3<2π3,△32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,△3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32. △BA →·BC →的取值范围为⎥⎦⎤ ⎝⎛+233,3.10.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心 【解析】因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心. 【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a △b =(a 1,a 2)△(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m △OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( ) A .4 B .2 C .2 2 D .23【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m △OP →+n △(x ,y )=⎪⎭⎫ ⎝⎛4,21△(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π△(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π△⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π△y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x △⎥⎦⎤⎢⎣⎡3,6ππ时,由π6≤x ≤π3△π3≤2x ≤2π3△0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1△2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 12.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( ) A .-2 B .-32 C .-43 D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标, 则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以 P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y )所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.13.已知O 是正△ABC 的中心.若CO AB ACλμ→→→=+,其中λ, R μ∈,则λμ的值为( ) A . 14-B . 13-C . 12- D . 2 【解析】由题O 是正△ABC 的中心,延长CO 交AB 与.D 则()()221112,332333CO CD CA CB AC AB AC AB AC ⎡⎤==+=-+-=-⎢⎥⎣⎦ 即121,,.332λλμμ==-=- 故选C.。

【高中数学】平面向量的应用 典型例题课件 高一下学期数学人教A版(2019)必修第二册

【高中数学】平面向量的应用 典型例题课件 高一下学期数学人教A版(2019)必修第二册

+
.



×




+ ×


=
题型8 三角形的面积公式
.
典例8、[分析计算能力]在△ 中, = ∘ , = ,其面积为 ,则
++
等于(
+ +
A.
思路

B.

)

C.

D.


根据三角形面积公式分析计算,再利用正弦定理和余弦定理解三角形进行
由余弦定理得
即 =
=

+


− = + − × = ,
++
,由于
+ +
=


=



=

.

的值;

(2)若 = , =
思路

,求△

的面积.
本题通过直观图形,利用正、余弦定理进行分析计算.(1)在△ 和△ 中,利用
正弦定理表示出和,从而运算求解比值.(2)直接利用正弦定理解三角形.
题型6 正、余弦定理在几何中的运用
.
典例6、[分析计算能力、观察记忆能力]如图,在△ 中,平分∠,且

− ,从而得

出角的值;(2)先利用余弦定理找出, 的关系,再利用基本不等式放缩,求出 +
的取值范围.
题型4 平面向量基本定理的应用
典例4、[分析计算能力]在△ 中,角, , 的对边分别为, , ,且 +
( + ) − = .

2023年高考数学----平面向量基本定理及其应用规律方法与典型例题讲解

2023年高考数学----平面向量基本定理及其应用规律方法与典型例题讲解

2023年高考数学----平面向量基本定理及其应用规律方法与典型例题讲解【规律方法】1、应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.2、用基底表示某个向量的基本方法:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【典型例题】例1.(2022·全国·模拟预测)如图,在ABC 中,点D 是边AB 上一点且2BD AD =,E 是边BC 的中点,直线AE 和直线CD 交于点F ,若BF 是ABC ∠的平分线,则BCBA =( )A .4B .3C .2D .12 【答案】C【解析】因为BF 是ABC ∠的平分线,所以存在一个实数λ使得BA BC BF BA BC λ⎛⎫ ⎪=+ ⎪⎝⎭,(根据角平分线的条件,选择合适的基底)因为E 是边BC 的中点,所以2BA BE BF BA BC λ⎛⎫ ⎪ ⎪⎝⎭=+,又点A ,E ,F 共线,所以21BA BC λλ+=①.(三点共线的应用:OA OB OC λμ=+(λ,μ为实数),若A ,B ,C 三点共线,则1λμ+=) 因为2BD AD =,所以32BD BC BF BABC λ⎛⎫ ⎪=+ ⎪ ⎪⎝⎭,又点C ,F ,D 共线,所以312BA BC λλ+=②,联立①②,得112BA BC =,则2BC BA =,即2BC BA =.故选:C . 例2.(2022·全国·模拟预测)如图,在平行四边形ABCD 中,点E 在线段BD 上,且EB mDE =(m R ∈),若AC AE AD λμ=+(λ,μ∈R )且20λμ+=,则m =( )A .13B .3C .14D .4【答案】B 【解析】方法1:在平行四边形ABCD 中,因为EB =mDE ,所以()AB AE m AE AD −=−,所以11AE AB m =++1m AD m +, 又∵AB DC AC AD ==−,∴()111m AE AC AD AD m m =−+++, ∴()()11AC m AE m AD =++−,又∵AC AE AD λμ=+,∴1m λ=+,1m μ=−,(平面向量基本定理的应用)又∵20λμ+=,∴()1210m m ++−=,解得3m =,故选:B.方法2:如图,以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则()0,0A ,设(),0B a ,(),D b c ,∵AB DC = 则 (),C a b c +,又∵EB mDE =,设(),E x y ,则()()11mb a x a x m x b m y m y c mc y m ⎧+⎧=⎪⎪−=−⎪⎪+⇒⎨⎨−=−⎪⎪=⎪⎪+⎩⎩即:,11mb a mc E m m +⎛⎫ ⎪++⎝⎭∴,11mb a mc AE m m +⎛⎫= ⎪++⎝⎭,(),AC a b c =+,(),AD b c =, 又∵AC AE AD λμ=+,20λμ+=∴2AC AE AD μμ=−+∴()(),=2,,11mb a mc a b c b c m m μμ+⎛⎫+−+ ⎪++⎝⎭∴2()121a bm a b b m mc c c m μμμμ−+⎧+=+⎪⎪+⎨−⎪=+⎪+⎩①② 由②得1=1m mμ+−,将其代入①得3m =, 故选:B. 例3.(2022·北京·牛栏山一中高三期中)在平行四边形ABCD 中,E 是边CD 的中点,AE 与BD 交于点F .若AB a =,AD b =,则AF =( )A .1344a b +B .2133a b +r rC .3144a b +D .1233a b + 【答案】D【解析】12AE AD DE AD AB =+=+. 设AF AE λ=()01λ<<, 则1122BF AF AB AD AB AB AD AB λλλ⎛⎫⎛⎫=−=+−=+− ⎪ ⎪⎝⎭⎝⎭, 又BD AD AB =−,且,,B F D 三点共线,则,BF BD 共线,即R μ∃∈,使得BF BD μ=,即12AD AB AD AB λλμμ⎛⎫+−=− ⎪⎝⎭, 又,AB AD 不共线,则有12λμλμ=⎧⎪⎨−=−⎪⎩,解得2323λμ⎧=⎪⎪⎨⎪=⎪⎩,所以,22112123323333AF AE AD AB AB AD a b ⎛⎫==+=+=+ ⎪⎝⎭. 故选:D.例4.(2022·广东广州·高三期中)如图,在平行四边形ABCD 中,,M N 分别为,AB AD 上的点,且42,53AM AB AN AD ==,连接,AC MN 交于P 点,若AP AC λ=,则λ的值为( )A .35B .57C .411D .815【答案】C 【解析】设MP kMN = 则45AP AM MP AB kMN =+=+ 显然2435MN AN AM AD AB =−=− 得()42424153535k AP AB k AD AB AD k AB ⎛⎫=+−=+− ⎪⎝⎭ 显然AC AD AB =+因为AP AC λ= 所以有()()24135k AD k AB AD AB λ+−=+ 即()24135k AD k AB AD AB λλ+−=+ 根据向量的性质可知()23415k k λλ⎧=⎪⎪⎨⎪−=⎪⎩ 解得611411k λ⎧=⎪⎪⎨⎪=⎪⎩故选:C例5.(2022·安徽省舒城中学模拟预测(文))已知平面向量OA ,OB 满足2OA OB ==,2OA OB ⋅=−,点D 满足2DA OD =,E 为AOB 的外心,则OB ED ⋅的值为( )A .83− B .83 C .163− D .163 【答案】A 【解析】2OA OB ==uu r uu u r Q ,cos 4c 2os OA O OA OB B AOB AOB ⋅=−∴⋅∠=∠=uu r uu u r uu r uu u r ,1cos 2AOB ∴∠=−,23AOB π∴∠=, 以O 为原点,OA ,垂直于OA 所在直线为x ,y 轴建立平面直角坐标系,如图所示,则()0,0O ,()2,0A ,(B −,设(),0D x 又2DA OD =,知()(),022,0x x =−,解得23x =,2,03D ⎛⎫∴ ⎪⎝⎭ 又E 为AOB 的外心,123AOE AOB π∴∠=∠=,OE EA =3AOE EAO OEA π∴∠=∠=∠=,AOE ∴为等边三角形,(E ,∴1,3ED ⎛=− ⎝,∴83OB ED ⋅=−. 故选:A例6.(多选题)(2022·湖北·华中师大一附中高三期中)如图,ABC 中,13BD BC =,12AE AC =,AD 与BE 交于点F ,则下列说法正确的是( )A .1233AD AB AC =+ B .12BF BE = C .:1:3BFD AFE S S =△△D .20AF BFCF ++=【答案】BCD 【解析】为了判断下面的有关结论,先引入三点共线向量形式的充要条件,设,,A B C 三点共线,O 为线外一点,则()1OB mOC m OA =+−, 即OA 与OC 前系数和为1,证:,,A B C 三点共线,AB mAC ∴=,()OB OA m OC OA ∴−=−, ()1OB mOC m OA ∴=+−.()11213333AD AB BD AB BC AB AC AB AB AC =+=+=+−=+, 故A 错; ,,B F E 三点共线,()()112AF AB AE AB AC λλλλ−∴=+−=+, ,,A F D 三点共线,233AF AD AB AC μμμ∴==+, 23132μλμλ⎧=⎪⎪∴⎨−⎪=⎪⎩, 解得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,1122AF AB AE ∴=+, ∴ F 为BE 的中点, 12BF BE ∴=,故B 对; 111443BFD ABD ABC S S S ==⨯⋅△△△, 111222AFE ABE ABC S S S ==⨯⋅△△△, :1:3BFD AFE S S ∴=△△,故C 对;取AB 中点G ,BC 中点H ,如下图,则,,G F H 三点共线,()()()()2AF BF CF AF BF BF CF FB FB F FA C ⎡⎤∴++=−++++=++⎣⎦ ()()220FG FH EA EC =−+=−+=,故D 对. 故选:BCD .例7.(2022·黑龙江·哈尔滨三中模拟预测)在ABC 中,13A A D B =,34A A E C =,BE 与DC 交于点F ,若AF AB AC λμ=+,则λμ+的值为__________. 【答案】79【解析】由已知可得,13A A D B =,34A A E C =. 因为,,,D F C 三点共线,设DF mDC =uuu r uuu r ,01m <<. 13DC AC AD AC AB =−=−uuu r uuu r uuu r uuu r uu u r ,则111333m AF AD DF AB m AC AB AB mAC −⎛⎫=+=+−=+ ⎪⎝⎭uu u r uuu r uuu r uu u r uuu r uu u r uu u r uuu r . 1233m m BF AF AB AB mAC AB AB mAC −+=−=+−=−+uu u r uu u r uu u r uu u r uuu r uu u r uu u r uuu r , 又34BE AE AB AB AC =−=−+uur uu u r uu u r uu u r uuu r ,因为,,B E F 三点共线,则存在R n ∈,使得BF nBE =uu u r uur ,即233344m n AB mAC n AB AC nAB AC +⎛⎫−+=−+=−+ ⎪⎝⎭uu u r uuu r uu u r uuu r uu u r uuu r , 因为,,AB AC 不共线,所以有2334m n n m +⎧−=−⎪⎪⎨⎪=⎪⎩,解得2389m n ⎧=⎪⎪⎨⎪=⎪⎩, 所以,1293AF AB AC =+uu u r uu u r uuu r ,即19λ=,23μ=,79λμ+=. 故答案为:79.例8.(2022·全国·高三专题练习)根据毕达哥拉斯定理,以直角三角形的三条边为边长作正方形,从斜边上作出的正方形的面积正好等于在两直角边上作出的正方形面积之和.现在对直角三角形CDE 按上述操作作图后,得如图所示的图形,若AF AB AD x y =+,则x y −=____________.【答案】12− 【解析】如图,以A 为原点,分别以,AB AD 为,x y 轴建立平面直角坐标系,设正方形ABCD 的边长为2a ,则正方形DEHI,正方形EFGC 边长为a 可知()0,0A ,()2,0B a ,()0,2D a,)1DF a =则)1cos30F x a =⋅,)1sin 302F y a a =⋅+,即F ⎫⎪⎪⎝⎭ 又AF AB AD x y =+,()()()2,00,22,2x a y a ax ay ⎫∴=+=⎪⎪⎝⎭即22ax ay ⎧=⎪⎪⎨⎪=⎪⎩,即22ax ay −=,化简得12x y −=− 故答案为:12−。

(完整word版)平面向量(逐题详解)

(完整word版)平面向量(逐题详解)

2012年高考文科数学解析分类汇编:平面向量一、选择题1 .(2012年高考(重庆文))设x R ∈ ,向量(,1),(1,2),a x b ==-且a b ⊥ ,则||a b +=( )A .5B .10C .25D .102 .(2012年高考(浙江文))设a,b 是两个非零向量.( )A .若|a+b|=|a|-|b|,则a ⊥bB .若a ⊥b,则|a+b|=|a|-|b|C .若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD .若存在实数λ,使得b=λa,则|a+b|=|a|-|b|3 .(2012年高考(天津文))在ABC ∆中,90A ∠=︒,1AB =,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )A .13B .23 C .43D .24 .(2012年高考(四川文))设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A .||||a b =且//a bB .a b =-C .//a bD . 2a b =5 .(2012年高考(辽宁文))已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x =( )A .—1B .—12C .12D .16 .(2012年高考(广东文))(向量、创新)对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=ab ()A .12B .1C .32D .527 .(2012年高考(广东文))(向量)若向量()1,2AB =,()3,4BC =,则AC =( )A .()4,6B .()4,6--C .()2,2--D .()2,28 .(2012年高考(福建文))已知向量(1,2),(2,1)a x b =-=,则a b ⊥的充要条件是( )A .12x =-B .1x =-C .5x =D .0x =9 .(2012年高考(大纲文))ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =( )A .1133a b - B .2233a b - C .3355a b -D .4455a b -二、填空题10.(2012年高考(浙江文))在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.11.(2012年高考(上海文))在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .12.(2012年高考(课标文))已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 13.(2012年高考(江西文))设单位向量(,),(2,1)m x y b ==-。

高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案

高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案

1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。

第二章平面向量及其应用(讲义+典型例题)(原卷版)

第二章平面向量及其应用(讲义+典型例题)(原卷版)

第二章平面向量及其应用(讲义+典型例题)一.平面向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±a|a|平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为0例1:(1).如图,在矩形ABCD中,可以用同一条有向线段表示的向量是()A.DA和BC B.DC和ABC.DC和BC D.DC和DA(2).如图,O是正六边形ABCDEF的中心,且OA a=,OB b=,OC c=.在以A,B,C,D,E,F,O这七个点中任意两点为起点和终点的向量中,问:(1)与a相等的向量有哪些?(2)b的相反向量有哪些?(3)与c共线的向量有哪些?.举一反三1.下列说法正确的是()A .若a b =,则a b =±B .零向量的长度是0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量2.(多选)如图,在四边形ABCD 中,若AB DC =,则图中相等的向量是( )A .AD 与BCB .OB 与ODC .AC 与BDD .AO 与OC3.如图,在矩形ABCD 中,AD =2AB =2,M ,N 分别为AD 和BC 的中点,以A ,B ,C ,D ,M ,N 为起点和终点作向量,回答下列问题:(1)在模为1的向量中,相等的向量有多少对? (2)2二.平面向量的线性运算 向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a +b =b +a . (2)结合律:(a +b )+c =a +(b +c ).减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb例2:①.如图,已知平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA a = ,OB b = ,则BC 可以表示为( )A .a b +B .a b -C .b a -D .a b --②.如图,已知下列各组向量a ,b ,求作a b +.③.在ABC 中,已知AB b =,AC c =,求作: (1)2b ; (2)()2b c -;(3)32b c -.④.化简: (1)AB BC DC +-;(2)AB BC DC DE EA +-++; (3)()OA O BC B --. 举一反三1.5()3(2)a b a b ---= ___________.2.如图,已知M ,N 分别是四边形ABCD 的边AB ,CD 的中点,求证:()12MN AD BC =+.3.如图所示,O 是平行四边形ABCD 的对角线AC ,BD 的交点,设AB =a ,DA =b ,OC =c .证明:b c a +-=OA .4.(1)设O 是正五边形ABCDE 的中心,求OA OB OC OD OE ++++; (2)设O 是正n 边形12n A A A 的中心,求12n OA OA OA +++.5.如图,已知a ,b 为两个非零向量.(1)求作向量a b +及a b -;(2)向量a ,b 成什么位置关系时,a b a b +=-?(不要求证明)三.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa .例3(1)如图,OA ,OB 不共线,且()AP t AB t =∈R ,用OA ,OB 表示OP .(2)已知任意两个非零向量a ,b ,若23OA a b =+,22OB a b =+,25OC a b =+,你能判断A ,B ,C 三点之间的位置关系吗?为什么? 举一反三1.在ABC 中,已知D 是AB 边上的一点,若13CD CA CB λ=+,则λ等于( )A .13B .23C .12D .342.设1e 与2e 是不共线的非零向量,若12ke e +与12e ke +共线且方向相反,则k 的值是( ) A .1- B .1C .±1D .任意不为零的实数3.已知1e 与2e 不共线,12AB e e =+,1228BC e e =+,()123CD e e =-.求证:A ,B ,D 三点共线.四.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.例4(1).等腰直角三角形ABC 中,90A ︒=,,AB AC D =是斜边BC 上一点,且3BD DC =,则AD =( )A .3544AC AB +B .3144AC AB +C .5144AC AB +D .3144AC AB -(2)(多选).在ABC 中,边BC 上的中线与边AC 上的中线的交点为E ,若CE AB AC λμ=+,则2λμ+=______.举一反三1.在平面四边形ABCD 中,已知ABC 的面积是ACD △的面积的2倍.若存在正实数,x y 使得1141AC AB AD x y ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭成立,则2x y +的最小值为( )A .1B .2C .3D .42.(多选)如图,在等腰梯形ABCD 中,222AB AD CD BC ===,E 是BC 的中点,连接AE ,BD 相交于点F ,连接CF ,则下列说法正确的是( )A .3142AE AB AD →→→=+ B .3255AF AB AD →→→=+ C .1255BF AB AD →→→=-+D .13105CF AB AD →→→=-五.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 6.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.例5(1)已知向量(1,4)a =-,(2,3)b =,则2a b -的坐标为( ) A .(-3,-10) B .(-3,-2) C .(-3,2)D .(3,-10)(2).已知向量1(1,)2a =-,(2,)b m =-,若a 与b 共线,则||b =( )A .3B .5C .6D .22(3).已知向量a ,b 满足()1,2a λ=+,()1,b λ=,//a b ,则实数λ的值为______. 举一反三1.已知向量()3,4a =-,2AB a =,点A 的坐标为()3,4-,则点B 的坐标为______. 2.若(1,1),(1,2)a b ==-,则与a b +同方向的单位向量是_______. 3.已知点A (1,2),B (4,5),O (0,0)及OP mOA AB =+. (1)当m 为何值时,P 在x 轴上?P 在y 轴上?P 在第四象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的m 的值;若不能,说明为什么.六.平面向量的数量积1,概念:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是 a·b =0,两个非零向量a 与b 平行的充要条件是 a·b =±|a||b|.2.平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积的重要性质(1)e·a =a·e =|a |cos θ; (2)非零向量a ,b ,a ⊥b ⇔a·b =0; (3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|,a·a =|a |2,|a |=a·a ; (4)cos θ=a·b |a||b|; (5)|a·b |__≤__|a||b|.4.平面向量数量积满足的运算律(1)a·b =b·a (交换律); (2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c . 5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.例6:(1).如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则AB AD ⋅的值是( )A .18B .22C .18-D .22-(2).已知,a b 是非零向量,且,a b 不共线,3,4a b ==,若向量a kb +与a kb -互相垂直,则实数k 的值为( ) A .2± B .12±C .43±D .34±3.已知平面向量a ,b 满足()1,2a =,10b =,522a b ⋅=,则cos a b ⋅=______.举一反三1.设两向量12,e e 满足12122,1,,e e e e ==的夹角为60︒,12122,2=+=+a e e b e e ,则a 在b 上的投影为( ) A 53B 521C 57D 522.(多选)已知在△ABC 中,2AB =,2AB AM =,2CM CN =,若0AN BC ⋅=,则( )A .23AB AC AN += B .()2AB ACCM -C .AB AC ⊥D .45ACM ∠=︒3.已知向量()3,2a =-,()1,0b =,向量()()2a b a b λ+⊥-,则向量()()a b a kb λ-+时实数k的值为______.4.已知向量()2,3a =,()3,1b =,若()a ab λ⊥+,则λ的值为___________.七.向量在平面几何中的应用 用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2) 垂直问题 数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,a =(x 1,y 1),b =(x 2,y 2),其中a ,b 为非零向量夹角问题 数量积的定义 cos θ=a ·b|a |·|b |(θ为向量a ,b 的夹角)长度问题 数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y )例7:①.已知2a =,4b =,a 与b 的夹角为60︒.(1)计算()a ab ⋅+的值;(2)若()0a a kb ⋅-=,求实数k 的值.②.已知非零向量a ,b 满足2a b =,且()a b b -⊥. (1)求a 与b 的夹角;(2)若14a b +=,求b .③.已知2a =,3b =,在下列情况下,求()2()a b a b +-的值: (1)//a b ;(2)a b ⊥;(3)a 与b 的夹角为120°.举一反三1.已知向量(5,12)a =-,(3,4)b =-.(1)求a 与b 夹角θ的余弦值;(2)若向量a tb +与a b -垂直,求实数t 的值. 2.在平行四边形ABCD 中,AC 为一条对角线.若()2,4AB =,()1,3AC =.(1)求cos DAB ∠的值;(2)求BD AD ⋅的值.3.已知向量2,1(),1,),3,1(b m a b n b a a k -==+=-=-. (1)若mn ,求k 的值;(2)当=2k 时,求m 与n 夹角的余弦值.八、正弦定理和余弦定理解三角形正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C cB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A =;sin sin c b C B =;sin sin c aC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin ===二.三角形面积1.B ac A bcC ab S ABC sin 21sin 21sin 21===∆三.余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即A bc c b a cos 2222-+= B ac c a b cos 2222-+=C ab b a c cos 2222-+=2.变形:bc a c b A 2cos 222-+=ac b c a B 2cos 222-+=ab c b a C 2cos 222-+= 注意整体代入,如:21cos 222=⇒=-+B ac b c a利用余弦定理判断三角形形状:设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若,,所以为锐角②若为直角A a b c ⇔=+222 ③若, 所以为钝角,则是钝角三角形三角形中常见的结论三角形三角关系:A+B+C=180°;C=180°—(A+B);三角形三边关系:两边之和大于第三边:,,; 两边之差小于第三边:,,; 在同一个三角形中大边对大角:B A b a B A sin sin >⇔>⇔>4) 三角形内的诱导公式:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-)2sin()2cos()22cos()22sin()22tan(2tan C C C C C B A =--=-=+πππ7) 三角形的五心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点内心——三角形三内角的平分线相交于一点旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点例9:1.在ABC 中,角,,A B C 分别对应边,,a b c ,已知2a =,3b =.角60B =,求角C .2.已知:如图,在梯形ABCD 中,//AD BC ,2AB AD ==,60A ∠=︒,5BC =,求CD 的长3.△ABC 中,a =7,c =3,且sin sin C B =35. (1)求b ;(2)求∠A .4.已知b ,a ,c 是ABC 中B ,A ,C 的对边,且B ,A ,C 成等差数列. (1)求A ;(2)若2b =,6c =,求ABC 的面积.5.已知b ,a ,c 是ABC 中B ,A ,C 的对边,且B ,A ,C 成等差数列. (1)求A ;(2)若2b =,6c =,求ABC 的面积.举一反三1.若ABC 的面积为22,1,6b c ==,且A ∠为锐角. (1) 求cos A 的值;(2) 求sin 2sin A C的值. 2.在ABC ∆中,32b =,6cos 3A =,2B A π=+. (Ⅰ)求a 的值;(Ⅱ)求cos 2C 的值.3.在ABC 中,a 、b 、c 分别是角A.B.C 的对边,且()2cos cos a c B b C -=. (1)求角B 的大小;(2)若7b =,8a c +=,求ABC 的面积.4.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且22(2)(2)a b c b c b c =-+-. (Ⅰ)求角A 的大小;(Ⅱ)若2cos b c A =,试判断ABC 的形状5.在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足1cos 2a b c B +=⋅. (1)求角C ;(2)若2,3a b ==,求ABC 外接圆的半径.6.在ABC中,已知12 tan5A .(1)若ABC外接圆的直径长为132,求BC的值;(2)若ABC为锐角三角形,其面积为6,求BC的取值范围.。

高考数学压轴专题人教版备战高考《平面向量》图文解析

高考数学压轴专题人教版备战高考《平面向量》图文解析

【高中数学】数学《平面向量》复习知识点一、选择题1.已知平面向量a v ,b v 的夹角为3π,且||2a =v ,||1b =v ,则2a b -=v v ( )A .4B .2C .1D .16【答案】B 【解析】 【分析】根据向量的数量积和向量的模的运算,即可求解. 【详解】由题意,可得222|2|||4||4444||||cos 43a b a b a b a b π-=+-⋅=+-⋅=r r r r r r r r ,所以|2|2a b -=r r,故选B.【点睛】本题主要考查了平面向量的数量积的运算及应用,其中解答中熟记平面向量的数量积的运算公式,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.2.已知点M 在以1(,2)C a a -为圆心,以1为半径的圆上,距离为,P Q 在圆222:8120C x y y +-+=上,则MP MQ ⋅u u u r u u u u r的最小值为( )A .18-B .19-C .18+D .19+【答案】B 【解析】 【分析】设PQ 中点D ,得到,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,求得23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,再利用圆与圆的位置关系,即可求解故()223MP MQ ⋅≥-u u u r u u u u r ,得到答案.【详解】依题意,设PQ 中点D ,则,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,所以23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,221C D ==Q ,D ∴在以1为半径,以2C 为圆心的圆上,21C C ==≥Q ,1221min min MD C C C D MC ∴=--故()2322319122MP MQ ⋅≥--=-u u u r u u u u r .【点睛】本题主要考查了圆的方程,圆与圆的位置关系的应用,以及平面向量的数量积的应用,着重考查了推理论证能力以及数形结合思想,转化与化归思想.3.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u u r方向上的投影为4-,则向量BA u u u r 与AC u u ur 的夹角为( )A .45°B .60°C .120°D .150°【答案】C 【解析】 【分析】设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u u r方向上的投影为cos =4BD α-u u u r,利用线性代换并结合向量夹角公式即可求出夹角.【详解】312AB AC ==,D 是AC 的中点,则4AC =,2AD DC ==,向量BD u u u r 在AC u u ur 方向上的投影为4-,设BDA α∠=,向量BA u u u r 与AC u u ur 的夹角为θ, 则cos =4BD α-u u u r,∴()cos ===BD DA AC BA AC BD AC DA ACBA AC BA AC BA AC θ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r()()cos cos180444211===1242BD AC DA AC AB ACα⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u ru ur r u, 故夹角为120°, 故选:C . 【点睛】本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.4.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b rr,则()a b R λλ=∈rr;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r不共线,故③错误;对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.5.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v的值为( )A .22B .19C .-19D .-22【答案】D 【解析】由余弦定理可得22211cos 216AB BC AC B AB BC +-==⋅,又()11cos 482216AB BC AB BC B π⎛⎫⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭u u u v u u u v u u u v u u u v ,故选D.【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用.6.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r( )A .2133BA AC +u uu r u u u rB .2133BA AC -u uu r u u u rC .1233BA AC +u uu r u u u rD .4233BA AC +u uu r u u u r【答案】A 【解析】 【分析】连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,则()()221121332333OD BO BE BA BC BA BA AC BA AC ===⨯+=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u uu r u u u r . 故选:A.【点睛】本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题.7.已知向量(sin ,cos )a αα=r,(1,2)b =r, 则以下说法不正确的是( ) A .若//a b rr,则1tan 2α=B .若a b ⊥rr,则1tan 2α=C .若()f a b α=⋅rr 取得最大值,则1tan 2α= D .||a b -r r 51【答案】B 【解析】 【分析】根据向量平行、垂直、模以及向量的数量积的坐标运算即可判断. 【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,若()f a b α=⋅r r取得最大值时,则())f ααϕ=+,取得最大值时,()sin 1αϕ+=,2,2k k Z παϕπ+=+∈,又tan 2ϕ=,则1tan 2α=,则C 正确.D 选项,||a b -==r r的最大值为1=,选项D 正确.故选:B . 【点睛】本题主要考查向量的坐标运算,以及模的求法,掌握向量平行、垂直、数量积的坐标运算是解题的关键,是基础题.8.若向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r满足(3)10a b c +⋅=rrr,则x =( )A .1B .2C .3D .4【答案】A 【解析】 【分析】根据向量的坐标运算,求得(3)(2,6)a b +=rr ,再根据向量的数量积的坐标运算,即可求解,得到答案. 【详解】由题意,向量(1,1)a =r,(1,3)b =-r ,(2,)c x =r,则向量(3)3(1,1)(1,3)(2,6)a b +=+-=rr ,所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=r r r,解得1x =,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.9.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C在AB 边上的射影为D ,则CD =( ) A .4 B .22C .2D .2【答案】A 【解析】 【分析】画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可求221216y y -=,结合221244y y CD =-即可求解 【详解】如图:设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可得0CA CB ⋅=u u u r u u u r ,222212121212,,,44y y y y CA y y CB y y ⎛⎫⎛⎫--=-=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,()222221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()222122212016y y y y ---= 解得221216y y -=(0舍去),所以222212124444y y y y CD -=-==故选:A 【点睛】本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题10.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u ur u u u r 的最小值为( ) A .1- B .3-C .12-D .32-【答案】A【解析】 【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】建立如图所示坐标系,设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r,故223131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭所以当32x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-.故选:A . 【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.11.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2-3b 2=2ac ,BA u u u r ⋅BC uuur =2,则△ABC 的面积为( ) A 2B .32C .22D .42【答案】C 【解析】 【分析】利用余弦定理求出B 的余弦函数值,结合向量的数量积求出ca 的值,然后求解三角形的面积. 【详解】在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且3a 2+3c 2﹣3b 2=2ac ,可得cosB222123 a c bac+-==,则sinB223=,BAu u u r⋅BC=u u u r2,可得cacosB=2,则ac=6,∴△ABC的面积为:1122622acsinB=⨯⨯=22.故选C.【点睛】本题考查三角形的解法,余弦定理以及向量的数量积的应用,考查计算能力.12.已知点()2,1A,O是坐标原点,点(),P x y的坐标满足:20230x yx yy-≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA=⋅u u u r u u u r,则z的最大值是()A.2B.3C.4D.5【答案】C【解析】【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可.【详解】解:由不等式组20230x yx yy-≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q()2,1A,(),P x y∴2z OP OA x y=⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B时,z取最大值,即24z x y=+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.13.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,225+=8λμ,则双曲线的离心率为( )A .B C .2D .98【答案】A 【解析】 【分析】先根据已知求出,u λ,再代入225+=8λμ求出双曲线的离心率. 【详解】由题得双曲线的渐近线方程为b y x a =±,设F(c,0),则2(,),(,),(,),bc bc b A c B c P c a a a-因为(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v ,所以2(,)((),())b bc c u c u a aλλ=+-.所以,,bu c u cλλ+=-= 解之得,.22b c c bu c cλ+-==因为225+=8λμ,所以225()(),228b c c b c e c c a +-+=∴=∴= 故答案为A 【点睛】本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.解答本题的关键是根据(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v求出,u λ.14.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且.2BP PA =,则CP CB ⋅=u u u v u u u v( ) A .13B .12C .23D .1【答案】C 【解析】【分析】利用向量的加减法及数乘运算用,CA CB u u u r u u u r 表示CP u u u v,再利用数量积的定义得解.【详解】依据已知作出图形如下:()11213333CP CA AP CA AB CA CB CA CA CB =+=+=+-=+u u u v u u v u u u v u u v u u u v u u v u u u v u u v u u v u u u v .所以221213333CP CB CA CB CB CA CB CB ⎛⎫+=+ ⎪⎝⎭⋅=⋅⋅u u u v u u u v u u v u u u v u u u v u u v u u u v u u u v221211cos 13333π=⨯⨯⨯+⨯= 故选C 【点睛】 本题主要考查了向量的加减法及数乘运算,还考查了数量积的定义,考查转化能力,属于中档题.15.已知向量()()75751515a b ︒︒︒︒==r r cos ,sin ,cos ,sin ,则a b -r r 的值为A .12B .1C .2D .3【答案】B 【解析】 【分析】 【详解】因为11,1,cos75cos15sin 75sin15cos602a b a b ==⋅=︒︒+︒︒=︒=r r r r ,所以2221||()12112a b a b -=-=-⨯+=r r r r ,故选B.点睛:在向量问题中,注意利用22||a a =r ,涉及向量模的计算基本考虑使用此公式,结合数量积的运算法则即可求出.16.在ABC V 中,E 是AC 的中点,3BC BF =u u u r u u u r ,若AB a =u u u r r ,AC b =u u u r r ,则EF =u u u r( )A .2136a b -r r B .1133a b +r r C .1124a b +r r D .1133a b -r r 【答案】A【解析】【分析】根据向量的运算法则计算得到答案.【详解】 1223EF EC CF AC CB =+=+u u u r u u u r u u u r u u u r u u u r ()12212336AC AB AC AB AC =+-=-u u u r u u u r u u u r u u u r u u u r 2136a b =-r r . 故选:A .【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力.17.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅u u u u r u u u r 的最大值为( )A .714-B .24-C .514-D .30-【答案】A【解析】【分析】依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求出边CD 所在直线的方程,设(,353M x x -+,利用坐标表示,AM ME u u u u r u u u r ,根据二次函数的性质求出最大值.【详解】解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,()0,0A ∴,(3B ,(3C ,()5,0D因为点E 在线段CB 的延长线上,设()0,3E x ,01x < AE BE =Q()()2220031x x +=-解得01x =-()1,3E ∴-()4,3C Q ,()5,0D CD ∴所在直线的方程为353y x =-+因为点M 在边CD 所在直线上,故设(),353M x x -+ (),353AM x x ∴=-+u u u u r()1,343E x M x -=--u u u r()()()3433531AM ME x x x x --∴⋅=--++u u u u r u u u r 242660x x =-+-242660x x =-+-23714144x ⎛⎫= ⎪⎭---⎝当134x =时()max 714AM ME ⋅=-u u u u r u u u r 故选:A【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.18.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α=C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 1 【答案】B【解析】【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确.D 选项,由向量减法、模的几何意义可知||a b -r r 1,此时a =r ,,a b r r 反向.故选项D 正确.故选:B【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.19.已知1F 、2F 分别为双曲线22146x y -=的左、右焦点,M 为双曲线右支上一点且满足120MF MF ⋅=u u u u v u u u u v ,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( )A .12B .C .24D .【答案】C【解析】【分析】设1MF m =,2MF n =,根据双曲线的定义和12MF MF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积.【详解】解:设1MF m =,2MF n =,∵1F 、2F 分别为双曲线22146x y -=的左、右焦点, ∴24m n a -==,122210F F c ==.∵120MF MF ⋅=u u u u v u u u u v , ∴12MF MF ⊥,∴222440m n c +==,∴()2222m n m n mn -=+-,即2401624mn =-=,∴12mn =,解得6m =,2n =,设2NF t =,则124NF a t t =+=+,在1Rt NMF ∆中可得()()222426t t +=++,解得6t =,∴628MN =+=,∴1MF N ∆的面积111862422S MN MF =⋅=⨯⨯=. 故选C .【点睛】本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.20.在OAB ∆中,已知2OB =u u u v 1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( ) A .35 B.25 C .63 D .62【答案】A【解析】【分析】 根据2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】 在OAB ∆中,已知2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u r 代入22=,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛ ⎝⎭所以22OA =⎝⎭u u u r ,)2,0OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)22OP λμ⎛ =+ ⎝⎭u u ur ,22λλ⎛⎫ ⎪ ⎪⎝⎭=则OP =u u u r=因为23λμ+=,则32μλ=-代入上式可得==所以当95λ=时, min OP ==u u u r 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。

平面向量的应用题解析

平面向量的应用题解析

平面向量的应用题解析平面向量是解析几何中重要的概念之一,广泛应用于不同领域的问题求解。

本文将通过几个具体的应用题,来解析平面向量在实际问题中的运用。

一、题目一:平面向量求面积假设有一个三角形ABC,已知向量AB为a向量,向量AC为b向量。

求证:三角形ABC的面积等于向量a和向量b的叉积的绝对值的一半。

解析:首先,我们可以通过向量减法得到向量AB和向量AC之间的关系:向量AB = 向量AC - 向量BC。

由于向量BC等于向量AC - 向量AB,所以向量BC也可以用向量a和向量b表示,即向量BC = 向量AC - 向量AB = b - a。

根据向量的叉积公式,向量a和向量b的叉积等于向量a和向量BC (即向量b - 向量a)的模长乘以它们之间的夹角的正弦值。

设向量AB和向量AC的夹角为θ,则有向量a和向量b的叉积等于|a × (b - a)| = |a × (b - a)| = |a||b - a|sinθ。

而三角形ABC的面积等于底边AB的长度|AB|乘以高度h,其中h= |AC|sinθ。

由于|AB| = |a|,所以有三角形ABC的面积等于|a × (b - a)|的一半。

二、题目二:平面向量求几何中点坐标给定三个点A(x1, y1)、B(x2, y2)和C(x3, y3),求证:点D(xd, yd)为线段AB的中点,当且仅当向量CD为向量AB的一半。

解析:设向量AB为a向量,向量CD为b向量。

由于点D为线段AB的中点,所以点D的横坐标xd和纵坐标yd分别是线段AB两个端点横坐标的平均值和纵坐标的平均值。

即xd = (x1 + x2)/2,yd = (y1 + y2)/2。

另一方面,向量AB在坐标系中的坐标表示为(bx - ax, by - ay),其中ax、ay为点A的横纵坐标,bx、by为点B的横纵坐标。

同样地,向量CD在坐标系中的坐标表示为(dx - cx, dy - cy),其中cx、cy为点C的横纵坐标,dx、dy为点D的横纵坐标。

平面向量5类解题技巧(解析版)

平面向量5类解题技巧(解析版)

平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB+yAC。

则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD,则()A.AD =-13AB+43ACB.AD =13AB-43AC C.AD =43AB +13ACD.AD =43AB -13AC 【解析】解析:由图可想到“爪字形图得:AC =14AB +34AD ,解得:AD =-13AB+43AC答案:A2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC,则实数m 的值为()A.911B.511C.311D.211【解析】解:观察到B ,P ,N 三点共线,利用“爪”字型图,可得AP =mAB +nAN ,且m +n =1,由AN =13NC 可得AN =14AC ,所以AP =mAB +14nAC ,由已知AP =mAB +211AC 可得:14n =211⇒n =811,所以m =311答案:C1(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n,则CB =()A.3m -2n B.-2m +3nC.3m +2nD.2m +3n【答案】B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D 在边AB 上,BD =2DA ,所以BD =2DA ,即CD -CB =2CA -CD,所以CB =3CD -2CA =3n -2m =-2m +3n .故选:B .2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD=()A.23b +13c B.53c -23bC.23b -13cD.13b +23c【答案】A【详解】试题分析:AD =AB +BD =c +23AC -AB =c +23b -c =23b +13c,故选A .3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF等于()A.12a +bB.12a -bC.12b -aD.12a +b 【答案】A【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为△ABC 的中位线,∴EF =12AC =12a +12b ,故选:A4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB-14ACB.14AB-34ACC.34AB+14ACD.14AB+34AC【答案】A【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得BE =12BA +12BD ,之后应用向量的加法运算法则-------三角形法则,得到BC =BA +AC ,之后将其合并,得到BE=34BA+14AC ,下一步应用相反向量,求得EB =34AB -14AC ,从而求得结果.【详解】根据向量的运算法则,可得BE =12BA +12BD =12BA +14BC =12BA +14BA +AC =12BA+14BA +14AC =34BA +14AC ,所以EB =34AB -14AC ,故选A .【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC(λ1,λ2为实数),则λ1+λ2的值是【答案】12【详解】依题意,DE =DB +BE =12AB +23BC=12AB +23(AC -AB )=-16AB+23AC ,∴-16AB +23AC =λ1AB +λ2AC ,∴λ1=-16,λ2=23,故λ1+λ2=-16+23=12.【考点定位】平面向量的加法、减法法则.分析、计算能力.中等题.技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k 由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB 所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP=λOC +(1-λ)OD =kλOA +(1-λ)OB所以OP=-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k综合上面的讨论可知:图中OP 用OA ,OB线性表示时,其系数和x +y 只与两三角形的相似比有关。

平面向量的奔驰定理(解析版)

平面向量的奔驰定理(解析版)

专题九 平面向量的奔驰定理1.奔驰定理如图,已知P 为△ABC 内一点,则有S △PBC ·P A →+S △P AC ·PB →+S △P AB ·PC →=0.证明:如图,延长AP 与BC 边相交于点则D ,BD DC =S △ABD S △ACD =S △BPD S △CPD =S △ABD -S △BPD S △ACD -S △CPD =S △PAB S △PAC, ∵PD →=DC BC PB →+BD BC PC →,∴PD →=S △PAC S △PAC +S △PAB PB →+S △PAB S △PAC +S △PABPC →, ∵PD PA =S △BPD S △BPA =S △CPD S △CPA S △BPD +S △CPD S △BPA +S △CPA =S △PBC S △PAC +S △PAB ,∴PD →=-S △PBC S △PAC +S △PABPA →, 即-S △PBC S △PAC +S △PAB PA →=S △PAC S △PAC +S △PAB PB →+S △PAB S △PAC +S △PABPC →,∴S △PBC ·PA →+S △PAC ·PB →+S △PAB ·PC →=0. AB CP由于这个定理对应的图象和奔驰车的标志很相似,我们把它称为“奔驰定理”.这个定理对于利用平面向量解决平面几何问题,尤其是解决跟三角形的面积和“四心”相关的问题,有着决定性的基石作用.奔驰定理是三角形四心向量式的完美统一.推论:已知P 为△ABC 内一点,且xP A →+yPB →+zPC →=0.(x ,y ,z ∈R ,xyz ≠0,x +y +z ≠0).则有(1)S △PBC ∶S △P AC ∶S △P AB =|x |∶|y |∶|z |.(2)S △PBC S △ABC =|x x +y +z |,S △P AC S △ABC =|y x +y +z |,S △P AB S △ABC =|z x +y +z|. 【例题选讲】[例1](1)设点O 在△ABC 的内部,且有OA →+2OB →+3OC →=0,则△ABC 的面积和△AOC 的面积之比为( )A .3B .53C .2D .32答案 A 解析 分别取AC 、BC 的中点D 、 E ,∵OA →+2OB →+3OC →=0,∴OA →+OC →=-2(OB →+OC →),即2OD →=-4OE →,∴O 是DE 的一个三等分点,∴S △ABC S △AOC =3.秒杀 根据奔驰定理得,S △ABC ∶S △AOC =(1+2+3)∶2=3.(2)在△ABC 中,D 为△ABC 所在平面内一点,且AD →=13AB →+12AC →,则S △BCD S △ABD等于( ) A .16 B .13 C .12 D .23答案 B 解析 如图,由点D 在△ABC 中与AB 平行的中位线上,且在靠近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =⎝⎛⎭⎫1-12-13S △ABC =16S △ABC ,所以S △BCD S △ABD =13.秒杀 由AD →=13AB →+12AC →得,DA →+2DB →+3DC →=0,根据奔驰定理得,S △BCD ∶S △ABD =1∶3. (3)已知点A ,B ,C ,P 在同一平面内,PQ →=13P A →,QR →=13QB →,RP →=13RC →,则S △ABC ∶S △PBC 等于( )A .14∶3B .19∶4C .24∶5D .29∶6答案 B 解析 由QR →=13QB →,得PR →-PQ →=13(PB →-PQ →),整理得PR →=13PB →+23PQ →=13PB →+29P A →,由RP →=13RC →,得RP →=13(PC →-PR →),整理得PR →=-12PC →,∴-12PC →=13PB →+29P A →,整理得4P A →+6PB →+9PC →=0,根据奔驰定理得,∴S △ABC ∶S △PBC =(4+6+9)∶4=19∶4.(4)已知点P ,Q 在△ABC 内,P A →+2PB →+3PC →=2QA →+3QB →+5QC →=0,则|PQ →||AB →|等于( )A .130B .131C .132D .133答案 A 解析 根据奔驰定理得,S △PBC ∶S △P AC ∶S △P AB =1∶2∶3,S △QBC ∶S △QAC ∶S △QAB =2∶3∶5,∴S △P AB =S △QAB =12S △ABC ,∴PQ ∥AB ,又∵S △PBC =16S △ABC ,S △QBC =15S △ABC ,∴|PQ →||AB →|=15-16=130. (5)点O 为△ABC 内一点,若S △AOB ∶S △BOC ∶S △AOC =4∶3∶2,设AO →=λAB →+μAC →,则实数λ和μ的值分别为( )A .29,49B .49,29C .19,29D .29,19答案 A 解析 秒杀 根据奔驰定理,得3OA →+2OB →+4OC →=0,即3OA →+2(OA →+AB →)+4(OA →+AC →)=0,整理得AO →=29AB →+49AC →,故选A . (6)设点P 在△ABC 内且为△ABC 的外心,∠BAC =30°,如图.若△PBC ,△PCA ,△P AB 的面积分别为12,x ,y ,则x +y 的最大值是________.答案 33 解析 根据奔驰定理得,12P A →+xPB →+yPC →=0,即AP →=2xPB →+2yPC →,平方得AP →2=4x 2PB →2+4y 2PC →2+8xy | PB →|·|PC →|·cos ∠BPC ,又因为点P 是△ABC 的外心,所以|P A →|=|PB →|=|PC →|,且∠BPC =2∠BAC=60°,所以x 2+y 2+xy =14,(x +y )2=14+xy ≤14+⎝⎛⎭⎫x +y 22,解得0<x +y ≤33,当且仅当x =y =36时取等号.所以(x +y )max =33. 【对点训练】1.设O 是△ABC 内部一点,且OA +OC =-2OB ,则△AOB 与△AOC 的面积之比为________.1.答案 12解析 设D 为AC 的中点,连接OD ,则OA →+OC →=2OD →.又OA →+OC →=-2OB →,所以OD →=- OB →,即O 为BD 的中点,从而容易得△AOB 与△AOC 的面积之比为12.秒杀 由OA +OC =-2OB ,得OA +OC +2OB =0,根据奔驰定理得,△AOB 与△AOC 的面积之比为12. 2.设O 在△ABC 的内部,D 为AB 的中点,且OA →+OB →+2OC →=0,则△ABC 的面积与△AOC 的面积的比值为________.2.答案 4 解析 ∵D 为AB 的中点,则OD →=12(OA →+OB →),又OA →+OB →+2OC →=0,∴OD →=-OC →,∴O 为CD 的中点.又∵D 为AB 的中点,∴S △AOC =12S △ADC =14S △ABC ,则S △ABC S △AOC=4.秒杀 因为OA →+OB →+2OC →=0,根据奔驰定理得,S △ABC S △AOC=4. 3.已知P ,Q 为△ABC 中不同的两点,且3P A →+2PB →+PC →=0,QA →+QB →+QC →=0,则S △P AB ∶S △QAB 为_____.3.答案 1∶2 解析 因为3P A →+2PB →+PC →=2(P A →+PB →)+P A →+PC →=0,所以P 在与BC 平行的中位线上,且是该中位线上的一个三等分点,可得S △P AB =16S △ABC ,QA →+QB →+QC →=0,可得Q 是△ABC 的重心,因此S △QAB =13S △ABC ,S △P AB ∶S △QAB =1∶2,故选A . 秒杀 由3P A →+2PB →+PC →=0,QA →+QB →+QC →=0,根据奔驰定理得,S △P AB ∶S △ABC =1∶6,S △QAB ∶S △ABC =1∶3=2∶6,所以S △P AB ∶S △QAB =1∶2,故选A .4.已知D 为△ABC 的边AB 的中点,M 在DC 上满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为( )A .15B .25C .35D .454.答案 C 解析 因为D 是AB 的中点,所以AB →=2AD →,因为5AM →=AB →+3AC →,所以2AM →-2AD →=3AC →-3AM →,即2DM →=3MC →,所以5DM →=3DM →+3MC →=3DC →,所以DM →=35DC →,设h 1,h 2分别是△ABM ,△ABC 的AB 边上的高,所以S △ABM S △ABC =12×AB ×h 112×AB ×h 2=h 1h 2=DM DC =|DM →||DC →|=35.秒杀 由5AM →=AB →+3AC →,得AM →+BM →+3CM →=0,根据奔驰定理得,S △ABM S △ABC =35. 5.若M 是△ABC 内一点,且满足BA →+BC →=4BM →,则△ABM 与△ACM 的面积之比为( )A .12B .13C .14D .2 5.答案 A 解析 设AC 的中点为D ,则BA →+BC →=2BD →,于是2BD →=4BM →,从而BD →=2BM →,即M 为BD的中点,于是S △ABM S △ACM =S △ABM 2S △AMD =BM 2MD =12. 秒杀 由BA →+BC →=4BM →,得AM →+2BM →+CM →=0,根据奔驰定理得,S △ABM S △ACM =12. 6.已知O 是面积为4的△ABC 内部一点,且有OA →+OB →+2OC →=0,则△AOC 的面积为__________.6.答案 1 解析 如图,设AC 中点为M ,BC 中点为N .因为OA →+OC →+OB →+OC →=0,所以2OM →+2ON →=0,所以OM →+ON →=0,O 为中位线MN 的中点,所以S △AOC =12S △ANC =12×12S △ABC =14×4=1.秒杀 根据奔驰定理得,S △OBC ∶S △OAC ∶S △OAB =1∶1∶2.因为S △ABC =4,所以S △AOC =1.7.已知点D 为△ABC 所在平面上一点,且满足AD →=15AB →-45CA →,若△ACD 的面积为1,则△ABD 的面积为 ________.7.答案 4 解析 由AD →=15AB →-45CA →,得5AD →=AB →+4AC →,所以AD →-AB →=4(AC →-AD →),即BD →=4DC →.所以点D 在边BC 上,且|BD →|=4|DC →|,所以S △ABD =4S △ACD =4.秒杀 由AD →=15AB →-45CA →,得8AD →+BD →+4CD →=0,根据奔驰定理得,S △ABD ∶S △ACD =4∶1,所以S △ABD =4.8.已知点P 是△ABC 的中位线EF 上任意一点,且EF ∥BC ,实数x ,y 满足P A →+xPB →+yPC →=0,设△ABC ,△PBC ,△PCA ,△P AB 的面积分别为S ,S 1,S 2,S 3,记S 1S =λ1,S 2S =λ2,S 3S=λ3,则λ2λ3取最大值时,3x +y 的值为( )A .12B .32C .1D .2 8.答案 D 解析 由题意可知λ1+λ2+λ3=1.因为P 是△ABC 的中位线EF 上任意一点,且EF ∥BC ,所以λ1=12,所以λ2+λ3=12,所以λ2λ3≤⎝⎛⎭⎫λ2+λ322=116,当且仅当λ2=λ3=14时,等号成立,所以λ2λ3取最大值时,P 为EF 的中点.延长AP 交BC 于M ,则M 为BC 的中点,所以P A =PM ,所以P A →=-PM→=-12(PB →+PC →),又因为P A →+xPB →+yPC →=0,所以x =y =12,所以3x +y =2.故选D . 秒杀 根据奔驰定理得,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量经典例题讲解讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释)1. 空间四边形OABC 中,OA a =,OB b =, OC c =,点M 在OA 上,且MA OM 2=,N 为BC 的中点,则MN =( )A 121-232a b c + B 211322a b c ++C 112-223a b c +D 221-332a b c +【答案】B的中点,则1()2ON OB OC =+,12()23MN ON OM OB OC OA =-=+-=112223b c a +-,选B2.已知平面向量a,b 满足||1=a ,||2=b ,且()+⊥a b a ,则a 与b 的夹角是( )(A (B (C (D 【解析】试题分析:2()()00a b a a b a a a b +⊥∴+⋅=∴+⋅=,||1=a ,||2=b ,设夹角为θ,则2112cos a ab +⋅=+⨯ 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角3.若OA 、OB 、OC 三个单位向量两两之间夹角为60OA OB OC ++= 【答案】D【解析】试题分析: OA 、OB 、OC 三个单位向量两两之间夹角为60°222222232cos602cos602cos60a b c a b c ab bc ac a b b c a c ++=+++++=+++4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a =,BD b =,则AF =( )A.1142a b + B.1233a b + C.1124a b + D.2133a b +【答案】D【解析】试题分析:由题意可知,AEB ∆与FED ∆相似,且相似比为3:1,所以13DF DC =,由向量加减法的平行四边形法则可知,,AB AD a AD AB b +=-=,解得,,a b a bAD AB +-==,由向量加法的三角形法则可知,121333AFAD DF AD AB a b =+=+=+,故D 正确。

考点:平面向量的加减法5.在边长为1的等边ABC ∆中,,D E 分别在边BC 与AC 上,且BD DC =,2AE EC = 则AD BE ⋅=( )A .A 【解析】试题分析:由已知,D E 分别在边BC 与AC上,且BD DC =,2AE EC = 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系,设),(y xE ,由EC AE =2可得:考点:平面向量的坐标运算6.在平行四边形ABCD 中,AC 为一条对角线,(2,4)AB =,(1,3)AC =,则DA =( ) A .(2,4) B .(3,5) C .(1,1) D .(-1,-1) 【答案】C . 【解析】试题分析:()(1,1)DA AD AC AB =-=--=. 考点:平面向量的线性运算.7.已知向量()1,2a =,()//a b b +,则b 可以为( )A .()1,2B .()1,2-C .()2,1D .()2,1- 【答案】A 【解析】试题分析:设),(y x b =,则)2,1(++=+y x b a ,因()//a b b +,所以0)2()1(=+-+y x y x ,02=-x y ,只有A 满足考点:向量共线的条件8.已知向量(2,3),(1,2)a b ==-,若4ma b +与2a b-共线,则m 的值为( ) A . 2 C .2- 【答案】D 【解析】试题分析:由已知得4ma b +)83,42()2,1(4)3,2(+-=-+=m m m , 又因为4ma b +与2a b -共线,所以有228140)83(4)1()42(-=⇒-=⇒=+⨯--⨯-m m m m , 故选D .考点:1.向量的坐标运算;2.向量平行的坐标条件.9.已知平面直角坐标系内的两个向量)2,1(=→a ,)23,(-=→m m b ,且平面内的任一向量→c 都可以唯一的表示成→→→+=b a c μλμλ,(为实数),则实数m 的取值范围是( ) A .(,2)-∞ B .(2,)+∞ C .(,)-∞+∞ D .(,2)(2,)-∞+∞【答案】D【解析】试题分析:平面内的任一向量→c 都可以唯一的表示成→→→+=b a c μλμλ,(为实数)的充要条件是)2,1(=→a ,)23,(-=→m m b 不共线,即()132202m m m ⨯--⨯≠⇒≠,故选D. 考点:平面向量的基底及向量共线10.若向量(1,2)=-a ,(2,1)=b ,(4,2)--c =,则下列说法中错误..的是( ) A. a b ⊥B. 向量a 与向量c 的夹角为90︒C. b ∥cD.对同一平面内的任意向量d ,都存在一对实数12,k k ,使得12k k =d b +c 【答案】D【解析】试题分析:022=-=⋅b a ,故A 正确;0)2()2()4(1=-⨯-+-⨯=⋅c a ,所以B 故C 正确;因为c b ,是共线的,不能作为基底,故D 错 考点:向量的夹角11.已知向量()3,4a =,若,则实数λ的值为( )A .1 C .1±D 【解析】试题分析:因为()3,4a =,所以得:1λ=±,故选D .考点:1、向量的数乘运算;2、向量的模.12.若向量()2,1a =-,()0,2b =,则以下向量中与a b +垂直的是( ) A .()1,2- B .()1,2 C .()2,1 D .()0,2 【答案】A 【解析】试题分析:∵向量()2,1a =-,()0,2b =,∴(2,1)a b +=,而12(2)10⨯+-⨯=,∴以下向量中与a b +垂直的是()1,2-.考点:向量垂直的充要条件.13.在边长为1的正三角形ABC 中,设2BC BD =,CA CE λ=,若14AD BE ⋅=-则λ的值为( )(A (B)2 (C (D )3C 【解析】211AB BC BC AB CA BC CAλλ⋅++⋅+⋅=14.已知向量(1,2)a =, (1,0)b =,(3,4)c =,若λ为实数,()a b c λ+⊥,则λ=( )A D 【解析】试题分析:()1,2a b λλ+=+,因为()ab c λ+⊥,所以()()31420a b c λλ+⋅=++⨯=,解得故D 正确.;向量的数量积.15.在△ABC 中,已知||4,||1AB AC ==,,则AB AC ⋅的值为( ) (A )2-(B )2(C )4±(D )2±【答案】D 【解析】 试题分析:由题根据三角形面积公式不难得到角A 的正弦值,然后得到其对应的余弦值,结合平面向量数量积运算求得结果.cosA AB AC AB AC ∴⋅=⨯⨯D考点:平面向量的数量积 二、填空题(题型注释) 16.已知两个非零向量a 与b,定义|a×b|=|a|·|b|sin θ,其中θ为a 与b 的夹角.若a =(-3,4),b=(0,2),则|a×b|的值为________. 【答案】6【解析】|a|5,|b|2,a·b=-3×0+4×2=8,所以cos θθ∈[0,π],所以6.17.△ABC 中AB =2,AC =3,点D 是△ABC 的重心,则AD ·BC =________.【解析】设E 为边BC 的中点,因为点D 是△ABC 的重心,所以AD =3AE =32(AB +AC )3(AB +AC ),又BC =AC -AB ,所以AD ·BC =(AB+AC )·(AC -AB )(AC 2-AB 2)318.已知a =(2,0),||3b =,,a b 的夹角为2|a b -= 【解析】2224416a b a a b b -=-⋅+=- 考点:向量的基本运算.19.已知A 、B 、C 是球O 的球面上三点,∠BAC=90°,AB=2,BC=4,球O 的表面积为48π,则异面直线AB 与OC 所成角余弦值为 . 【解析】试题分析:过O 作BC 的垂线,垂足为M ,以MA所在线为x 轴,以MC 所在线为y 轴,以MO 所在线为z 轴,建立直角坐标系,所以(2,00)A ,,(0,2,0)B -,(0,2,0)C ,(2,2,0)BA =,(0,2,OC = 考点:1.空间向量法;2.夹角公式.20.已知||1a =,||2b =,a 与b 的夹角为120︒,0a c b ++=,则a 与c 的夹角为 . 【答案】90︒ 【解析】试题分析:要求a 与c 的夹角一般可先求两向量的数量积a c ⋅,而()c a b =-+,因此a c ⋅=()a ab -⋅+=2a ab --⋅,而根据已知,这是可求的,而且其结果是0,故a ⊥c ,夹角为90︒.考点:向量的夹角.21.已知0=++c b a ,且a 与c 的夹角为︒60,,则〉〈b a ,cos 等于 .【解析】试题分析:∵0=++c b a ,∴()b a c =-+,∴22202||||cos60b a c a c =++, ∴2223||||a a c a c =++,∴222||||0a a c c --=,∴||||a c =,∴22023()||||||cos60||a b a a c a a c a a c a •=-+=--•=--=-23||32,2||||||3||a ab a b a b a a -•>===-.考点:1.向量的运算;2.两向量的夹角公式.22.已知点G 为ABC △的重心,过点G 作直线与AB ,AC 两边分别交于,M N 两点,且,AM xAB = ,AN y AC = ,x y R ∈,则【答案】3 【解析】试题分析:根据题意画出图像,因为G 为ABC △的重心,所以()211111132333AG AB AC AM AN AM AN x y xy ⎛⎫=⨯+=+=+ ⎪,因为:,,M G N 三点共线,所所以答案为: 3. 考点:1.向量的运算;2.三点共线的性质.23.已知向量),2,4(),3,1,2(x b a -=-=,若//a b ,则=x; 【答案】-6【解析】试题分析:由b a λ=可知,2λ=-,所以6x =-. 考点:空间向量共线定理.24.设向量(3,1),(2,2)a b ==-,若()()a b a b λλ+⊥-,则实数λ= . 【解析】试题分析:由已知得(3a b λλ+=+(3a b λλ-=- 由()()a b a b λλ+⊥-得()()0a b a b λλ+⋅-=即0842=-λ,解得考点:向量的数量积的坐标运算.25.已知向量(1,2)a =-,(2,3)b =,若m a b λ=+与n a b =-的夹角为钝角,则实数λ的取值范围是 . 【答案】9λ<且1x ≠- 【解析】试题分析:m a b λ=+(2,23)λλ=-++, n a b =-(3,1)=--,若m a b λ=+与n a b =-的夹角为钝角,则()()3(2)(23)0a b a b λλλ+⋅-=--+-+<,即:9λ<,又m n 与不共线,则(2)λ--+3+(23)0λ+≠,即:1λ≠-,则9λ<且1x ≠-考点:1.向量的夹角;2.向量的数量积;326.已知向量b a ,满足.【解析】试题分析:设a 与b 的夹角为θ,∵向量a ,b 满足()2(-•+b a b ∴22146a a b b a b +⋅+=+⋅+=,∴a b ⋅=1.∴cos a ba b ⋅⋅=12,再由θ的范围为3a b 132π考点:向量的数量积。

相关文档
最新文档