一次函数实际应用

合集下载

一次函数在实际生活中的应用

一次函数在实际生活中的应用

一次函数在实际生活中的应用例1某房地产开发公司计划建A B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:分析:设AA型住房的总成本是__________ 万元;B型住房的总成本是______________ 万元;80套住房的总成本是 ______________万丿元。

A型住房的总售价是___________ 万元;B型住房的总售价是___________ 万元;80套住房的总售价是_______________ 万元。

A型住房的总利润是___________ 万元;B型住房的总利润是___________ 万元;80套住房的总利润是_______________ 万元。

依据所筹资金情况可列不等式组彳-----------不等式组的解集是____________ ,故有_________ 种建房方案。

依据总利润的解析式,当x= _________ 套时总利润最大,最大利润为__________ 万元•终上所述,共有 _____ 种建房方案;当建A型房________ 套,B型住房____ 套时,总利润最大,最大利润是_________ 万元。

例2塑料厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y i元和y2元,分别求y i和屮关于x的函数解析式(注: 利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?例3某商场欲购进A、B两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示。

设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.⑴求y关于x的函数关系式?⑵如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润。

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 y = kx + b 的形式,其中 k 是函数的增减速度,b 是函数的零点。

一次函数在生活中有许多实际应用,以下是一些实际问题的例子:1. 温度计:一次函数可以用来描述温度的变化情况。

当温度上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示温度变化的水平方向。

例如,在摄氏 0 度和 100 度之间,温度每增加 1 度,温度计上的指针会上升多少格,就可以用一次函数来描述。

2. 流量控制:一次函数在流量控制中被广泛应用,特别是在水管和发动机的设计之中。

当水流量为恒定值时,一次函数可以用来描述水流量和水压之间的关系。

例如,如果想控制水流量为一定值,可以通过调节水管中的阀门大小来控制水压,从而实现流量的控制。

3. 存款利率:一次函数可以用来描述存款利率的变化情况。

当利率上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示利率变化的水平方向。

例如,如果利率上升 1%,银行的存款利率会相应上涨多少元,就可以用一次函数来描述。

4. 股票价格:一次函数可以用来描述股票价格的变化情况。

当股票价格上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示股票价格变化的水平方向。

例如,如果股票价格上升 1%,投资者获得的回报率会相应上涨多少个百分点,就可以用一次函数来描述。

5. 植物生长:一次函数可以用来描述植物的生长情况。

当植物的生长速度加快或减缓时,一次函数的斜率会发生变化,而常数 b 则表示植物的生长速度保持不变的水平方向。

例如,如果想预测植物在未来几天内的生长速度,可以使用一次函数来计算。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 什么是一次函数一次函数是指数学中的一种特殊函数形式,通常表示为f(x) = ax + b的形式。

a和b是常数,且a不等于0。

一次函数也被称为一次多项式函数,因为它的最高次数为1。

在一次函数中,变量x的最高次数为1,这使得函数的图像呈现为一条直线。

一次函数的特点是其图像是一条直线,具有线性的特性。

这种简单的函数形式在数学建模和实际问题求解中具有重要意义。

一次函数可以描述很多实际生活中的问题,比如描述两个变量之间的线性关系,预测未来的变化趋势,进行经济预测和规划等。

在实际应用中,一次函数可以帮助我们分析经济学、物理学、工程学、社会科学和医学领域中的各种现象和问题。

通过一次函数的建模和分析,我们可以更好地理解和解决复杂的实际问题,为社会发展和个人发展提供有力的支持和指导。

了解一次函数的基本概念和应用是非常重要的。

1.2 为什么一次函数在生活中具有重要意义一次函数在生活中的重要意义在于其简单性和直观性。

一次函数是最基本的一种函数形式,具有线性关系的特点,易于理解和应用。

通过一次函数,我们可以轻松地描述许多实际问题的规律和模式,比如物体的运动轨迹、经济的增长趋势、工程中的力学关系等,为我们理解和解决问题提供了重要的工具和方法。

一次函数在生活中的重要意义还体现在其广泛应用的范围。

一次函数几乎涉及到生活的各个领域,包括经济学、物理学、工程学、社会科学、医学等,可以用来分析和描述各种不同的现象和问题。

掌握一次函数的知识和技能对我们了解世界、改善生活具有重要的意义。

一次函数在生活中的重要意义在于其简单性、直观性和广泛应用性。

通过学习和应用一次函数,我们可以更好地理解世界、解决问题,促进社会的发展和进步。

深入理解和掌握一次函数的知识对我们每个人来说都是非常重要的。

2. 正文2.1 一次函数在经济学中的应用一次函数在经济学中的应用非常广泛,经济学家们经常使用一次函数来描述和分析各种经济现象和关系。

一次函数实际应用问题(复习)

一次函数实际应用问题(复习)

一次函数一、知识要点:1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、性质:(1)图象的位置:(2)增减性k>0时,y随x增大而增大k<0时,y随x增大而减小4.求一次函数解析式的方法求函数解析式的方法主要有三种(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。

(3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义构造方程组。

②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。

③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。

④利用题目已知条件直接构造方程。

二、例题举例:例1.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。

解:依题意,得解得 n=-1,∴=-3x-1,=(3-)x, 是正比例函数;=-3x-1的图象经过第二、三、四象限,随x的增大而减小;=(3-)x的图象经过第一、三象限,随x的增大而增大。

说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用一次函数是一种简单且广泛应用于生活实践的数学函数。

它描述了两个变量之间的线性关系,其中一个变量(因变量)随着另一个变量(自变量)的变化而变化。

下面是一些一次函数在生活中的具体应用:1. 财务分析:在财务领域,一次函数被广泛应用于分析销售,收入和成本的关系。

例如,一个公司可以使用一次函数来预测其收入如何随着广告支出的增加而增加。

一次函数也可以用来计算产品的成本与其销量的关系等。

2. 物理学:一次函数也可以被用来描述许多物理量之间的关系。

例如,物体的速度随着时间的变化可以用一次函数来解释。

通过测量物体在一定时间内移动的距离,可以计算出其速度。

另外,一次函数还可以用来分析物体的加速度与时间或距离的关系。

3. 建筑工程:在建筑领域,一次函数可以被用来计算结构件的导线长度,尺寸以及重量之间的关系。

例如,钢梁的重量可以用一次函数来计算,该函数可以用支持的长度和横截面积作为变量。

4. 统计学:在统计学中,一次函数可以被用来分析两个数值变量之间的关系。

例如,一个调查可能会问参与者他们每周在社交媒体上花费的时间以及他们对自己幸福感的评分。

使用一次函数,研究人员可以分析时间和幸福感之间的线性关系。

5. 经济学:在经济学领域,一次函数可以被用来描述市场供给和需求之间的关系。

例如,在一个市场中,商品的价格可以用一次函数来描述,该函数可以使用销售量作为自变量,而价格作为因变量。

综上所述,一次函数是生活实践中非常广泛的一种数学工具,它可以被应用于财务、物理、建筑、统计和经济等领域。

掌握一次函数的应用场景可以使我们更好地理解和分析各种现象,为生活提供更高级的工具和技能。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用【摘要】一次函数在生活中具有广泛的应用,在经济学领域,需求函数可以用一次函数来描述商品需求的变化规律;而在物理学中,运动学问题中的速度、位移等参数也可以用一次函数表示;工程学中常常使用一次函数描述线性关系,如电阻、弹簧等的特性;市场营销中的定价策略也可以通过一次函数来制定;在数据分析领域,一次函数被广泛用于趋势预测。

一次函数的应用不仅局限于特定领域,其在各个领域都有着重要作用。

未来,随着科学技术的不断发展,一次函数在生活中的应用将得到更广泛的拓展,为解决实际问题提供更多可能性。

我们应该充分认识一次函数在生活中的价值,并积极探索其未来的发展前景。

【关键词】一次函数、生活中的具体应用、经济学、需求函数、物理学、运动学问题、工程学、线性关系、市场营销、定价策略、数据分析、趋势预测、广泛应用、发展前景1. 引言1.1 一次函数在生活中的具体应用一次函数是数学中的一个基本概念,它在生活中有着广泛的应用。

一次函数的图像是一条直线,具有简单的线性关系,因此在各个领域中都有着实际的应用价值。

本文将探讨一次函数在经济学、物理学、工程学、市场营销和数据分析中的具体应用,展示一次函数在生活中的重要作用。

在经济学中,需求函数是描述产品需求与价格之间关系的一次函数。

需求量随着价格的变化而变化,通过需求函数可以分析市场的需求趋势,帮助企业制定合理的定价策略。

物理学中的运动学问题也常常涉及到一次函数,如描述物体的位置随时间变化的关系。

工程学中的线性关系则可以通过一次函数来描述,例如材料的强度与温度之间的关系。

市场营销中的定价策略和数据分析中的趋势预测也离不开一次函数的应用,通过对数据进行分析和建模,可以帮助企业做出更加准确的决策。

一次函数在生活中有着广泛的应用,不仅可以帮助我们更好地理解各个领域中的问题,还可以指导我们做出更加科学合理的决策。

未来随着科技的发展,一次函数在生活中的应用还将继续扩大,为我们带来更多的便利和可能性。

一次函数实际应用(带解析)

一次函数实际应用(带解析)

一次函数实际应用(解析版)1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?y (件)5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。

一次函数的应用

一次函数的应用

一次函数的应用
一次函数可以应用于很多实际问题中,以下是一些常见的
应用示例:
1. 经济学:一次函数可以用来表示成本、收入、利润等经
济指标与产量或销量之间的关系。

特别是在线性需求模型中,一次函数可以用来表示价格和数量之间的关系。

2. 工程学:一次函数可以用来表示物理量之间的线性关系,比如运动的速度和时间的关系、电阻和电流之间的关系等。

在工程设计和控制中,一次函数可以用来建立系统输入和
输出之间的关系。

3. 计划和预测:一次函数可以用来预测未来的趋势或变化。

通过拟合历史数据,可以使用一次函数来预测未来的趋势,并进行计划和决策。

4. 统计分析:一次函数可以用来描述两个变量之间的关系,并进行回归分析。

通过最小二乘法可以得到一次函数的最
佳拟合线,从而可以用来解释和预测变量之间的关系。

5. 材料科学:一次函数可以用来描述材料的线性弹性特性。

材料的应力和应变之间的关系可以通过一次函数来表示,
并用来研究材料的应力-应变性能。

总之,一次函数在很多领域中都有着广泛的应用。

通过建
立变量之间的线性关系,可以帮助我们分析和理解问题,
并进行预测和决策。

一次函数在科学研究中的实际应用(四大类型)

一次函数在科学研究中的实际应用(四大类型)

一次函数在科学研究中的实际应用(四大类型)一次函数是数学中最基础且常见的函数类型之一。

它的形式为y = ax + b,其中a和b是常数。

一次函数在科学研究中有广泛的实际应用。

下面将介绍一些常见的应用领域及其实际应用。

线性关系一次函数可以描述两个变量之间的线性关系。

例如,当研究人员想要了解某个因变量如何随着自变量的改变而变化时,可以使用一次函数来建模这种线性关系。

这在众多科学领域中都有应用,比如物理学中的速度与时间的关系、经济学中的供求关系等。

一次函数可以用来描述线性关系,例如:y = 2x + 3趋势分析一次函数在趋势分析中也有应用。

通过对已有数据进行拟合,可以得到一次函数的斜率和截距,从而分析数据的趋势。

这在统计学和经济学等领域特别重要。

通过对一次函数的趋势分析,可以预测未来的变化趋势和做出相应的决策。

一次函数的趋势分析可以预测数据的未来变化趋势,例如:y = 0.5x + 10最小二乘法最小二乘法是一种常用的数据拟合方法,它使用一次函数来拟合实验数据。

通过最小化实际数据与一次函数之间的误差平方和,可以得到最佳拟合直线。

这在物理学、化学学以及工程学等领域中常被使用,用于分析实验数据并得出合适的模型。

最小二乘法可以通过一次函数来拟合实验数据,例如:y = 1.2x - 5统计回归分析统计回归分析是一种运用一次函数进行数据分析和预测的方法。

它将一次函数应用于多个自变量与一个因变量之间的关系,并通过统计学方法对数据进行分析。

这种分析常用于社会科学、生物学等领域,可以帮助研究者了解不同变量对目标变量的影响程度。

一次函数可以用于统计回归分析,例如:y = 2x1 + 3x2 - 5x3 + 10总结一次函数在科学研究中有多种实际应用。

它可以描述线性关系、进行趋势分析、拟合实验数据以及进行统计回归分析。

这些应用帮助研究者理解数据和变量之间的关系,并在科学研究中做出准确的预测和决策。

*注意:文档中的一次函数示例仅为说明目的,实际应用中的函数形式可能因研究对象和需求而异。

一次函数模型及应用

一次函数模型及应用

一次函数模型及应用一次函数模型是指含有一次幂的函数,可以用以下形式表示:y = kx + b,其中k和b为常数,x为自变量,y为因变量。

一次函数又称为线性函数,其与直线的关系密切。

一次函数模型广泛应用于实际生活中各个领域,下面将以几个具体的实际例子来说明一次函数模型的应用。

第一个例子是汽车的油耗问题。

假设某辆汽车在行驶时,每小时的平均油耗为k 升,初始油量为b升。

那么在x小时后,油量为y升的关系可以用一次函数模型来表示:y = -kx + b。

其中负号表示油量在不断减少。

这个模型可以帮助我们预测在车速不变的情况下,汽车在行驶x小时后的剩余油量。

通过测量汽车不同车速下的油耗数据,可以确定k的值,并通过初始油量来确定b的值。

在实际生活中,这个模型可以帮助我们合理安排加油时间,避免油量不足造成的困扰。

第二个例子是商品价格的变化。

假设某商品的价格在每个月都以恒定的速度上涨,每月涨价k元。

初始价格为b元。

那么在x个月后,商品价格为y元的关系可以用一次函数模型来表示:y = kx + b。

通过测量商品连续几个月的变价趋势,可以确定k的值,并通过初始价格来确定b的值。

这个模型可以用来预测未来几个月内商品价格的变化情况,帮助消费者做出购买决策。

第三个例子是人口增长问题。

假设某地区的人口在每年都以固定比例的速度增长,每年增长k人。

初始人口数量为b人。

那么在x年后,人口数量为y人的关系可以用一次函数模型来表示:y = kx + b。

通过观察人口连续几年的增长情况,我们可以确定k的值,并通过初始人口数量来确定b的值。

这个模型可以用来预测未来几年内人口的增长趋势,对于城市规划和社会发展具有重要意义。

以上三个例子只是一次函数模型在实际应用中的几个常见例子,实际上一次函数模型在各个领域都有广泛的应用。

在经济学中,一次函数模型被用来研究需求和供应的关系,分析市场价格的变化。

在物理学中,一次函数模型被用来描述物体的速度、加速度和位移之间的关系。

利用一次函数解决问题

利用一次函数解决问题

利用一次函数解决问题一次函数(也称为线性函数)是数学中常见且重要的函数类型之一。

它的表达式为 y = ax + b,其中 a 和 b 是常数,且a ≠ 0。

一次函数的图像是一条直线,具有许多应用领域。

本文将介绍如何利用一次函数解决问题。

一、利用一次函数解决实际问题一次函数在实际问题中的应用非常广泛。

它可以描述物体的直线运动、收入与支出的关系、成本与产量的关系等。

下面举例说明:例1:小明每天骑自行车上学,他发现骑行的时间与距离之间存在一定的关系。

他测量了两天的数据,如下所示:时间(分钟):10 20 30 40距离(千米):1 2 3 4小明想要知道骑行 50 分钟可以骑多远,他可以利用一次函数解决这个问题。

解:我们可以先通过已知数据构建一个一次函数。

选择时间作为自变量 x,距离作为因变量 y。

现在我们来求解 a 和 b 的值。

已知点 A (10, 1) 和点 B (20, 2),可以利用两点间的斜率公式计算 a的值:a = (yB - yA) / (xB - xA) = (2 - 1) / (20 - 10) = 1 / 10 = 0.1接下来,我们可以代入其中一点的坐标和已知的 a 值,求解 b 的值:1 = 0.1 * 10 + bb = 1 - 1 = 0所以,一次函数为 y = 0.1x + 0。

现在可以利用求得的一次函数来解决问题。

当 x = 50 时,我们可以通过函数表达式求得对应的 y 值:y = 0.1 * 50 + 0 = 5因此,小明骑行 50 分钟可以骑行 5 千米。

二、利用一次函数解决图像问题一次函数的图像是一条直线,通过直线的性质,我们可以解决一些与图像相关的问题。

下面举例说明:例2:某公司生产零件,每天生产数量与花费的时间之间呈一次函数的关系。

已知当生产数量为 1000 时,需要 4 小时。

而当生产数量为2000 时,需要 8 小时。

现在需要求解该函数的表达式并计算生产 3000 个零件所需的时间。

一次函数的实际应用(分类题型)

一次函数的实际应用(分类题型)

一次函数的实际应用一、方案择优问题1、某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优惠.乙店标价530元/克,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.⑴分别写出到甲、乙商店购买该种铂金饰品所需费用y(元)和重量x(克)之间的函数关系式;⑵李阿姨要买一条重量不少于4克且不超过10克的此种铂金饰品,到哪个商店购买最合算?2.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用1y(元)和蔬菜加工厂自己加工制作纸y(元)关于x(个)的函数关系式;箱的费用2(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.二、分配方案问题1、辽南素有“苹果之乡”美称,某乡组织20辆汽车装运A、B、C三种苹果42吨到外地销售,按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车。

(1)设有x辆车装A种苹果,用y辆车装B种苹果,根据下表提供的信息求y与x的函数关系式,并求x 的取值范围。

苹果的品种A B C每辆车运载量(吨) 2.2 2.12每吨苹果获利(百685元)(2)设此次外销活动的利润为W(百元),求W与x的函数关系式及最大利润,并安排相应的车辆分配方案。

2、荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。

y(万元),用A型货厢的节数为x(节),试写出y与x之间的函数关系(1)设运输这批货物的总运费为式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。

一次函数的实际应用(经典)

一次函数的实际应用(经典)

一次函数的应用用一次函数解决实际生活问题:常见类型:(1)求一次函数的解析式;(2)利用一次函数的图象与性质解决某些问题,如最大(小)值问题等.一次函数解决实际问题的步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题探究类型之一利用一个一次函数的方案选择例1:某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,购进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6 710元且不超过6 810元购进这两种商品共100件.(1)求这两种商品的进价;(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?类似性问题1.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的23,求该校本次购买A型和B 型课桌凳共有几种方案?哪种方案的总费用最低?2.建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如下表:设购买A种树苗x棵,绿化村道的总费用为y元.解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?探究类型之二利用两个一次函数的方案选择例3 川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式.(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.探究类型之三利用一次函数与不等式的关系进行方案选择例4 某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.(1)填空:甲种收费的函数关系式是___________________,乙种收费的函数关系式是___________________.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?类似性问题1、某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A和y B与x之间的关系式.(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.2、某工厂有甲种原料130 kg,乙种原料144 kg. 现用这两种原料生产出A,B 两种产品共30件. 已知生产每件A产品需甲种原料5 kg,乙种原料4 kg,且每件A产品可获利700元;生产每件B产品需甲种原料3 kg,乙种原料6 kg,且每件B产品可获利900元. 设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.探究类型之四利用一次函数与图像解决问题。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用【摘要】一次函数是数学中的基本概念,其在生活中有着广泛的应用。

在经济学中,一次函数被用来分析市场供求关系,帮助决策者制定价格策略。

在物理学中,一次函数可以描述物体的运动状态,如速度与时间的关系。

在工程学中,一次函数被用来设计桥梁和建筑物的结构,保证其稳定性。

在社会学中,一次函数可以分析人口增长和社会趋势,帮助政府调整政策。

在医学中,一次函数被用来研究药物的代谢过程,优化治疗方案。

结合以上应用领域,可以看出一次函数在生活中扮演着重要的角色,拥有广泛的应用价值。

通过深入理解和应用一次函数,我们可以更好地解决实际问题,提高生活质量和工作效率。

【关键词】一次函数,生活应用,经济学,物理学,工程学,社会学,医学,广泛应用1. 引言1.1 一次函数的定义一次函数,也称为线性函数,是数学中最简单的一种函数类型之一。

一次函数的一般形式可以表示为f(x) = ax + b,其中a和b为常数,且a不等于0。

在这个函数中,变量x的最高次数为1,因此称为一次函数。

一次函数的特点包括斜率和截距。

斜率a表示函数图像的倾斜程度,正斜率表示函数图像向上倾斜,负斜率表示函数图像向下倾斜,斜率的绝对值表示倾斜的程度。

截距b表示函数图像与y轴的交点,即当x 等于0时,函数值为b。

一次函数在生活中有着广泛的应用,可以用来描述各种实际情况和问题。

在经济学中,一次函数常常用来描述成本、收入、利润等与数量的关系。

在物理学中,一次函数可以用来描述速度、加速度等物理量随时间的变化。

在工程学中,一次函数可以用来建立模型、优化设计等。

在社会学中,一次函数可以用来分析人口增长、社会变化等。

在医学中,一次函数可以用来研究疾病传播、药物代谢等。

一次函数在生活中具有非常重要的作用,深刻影响着我们的生活和工作。

1.2 一次函数的特点一次函数是一种最简单的线性函数,其特点主要有以下几点:1. 一次函数的图像是一条直线。

这是因为一次函数的图像是以常数速率变化的,因此在坐标系中表现为一条倾斜的直线。

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 $y=ax+b$ 的形式,其中 $a$ 和 $b$ 是常数,$x$ 和 $y$ 是自变量和因变量。

一次函数在数学中主要用于求解线性方程组和描绘线性函数图像。

在生活中,一次函数也有许多实际应用。

以下是一些实际问题的例子:1. 设计一个最好的方法来清洁房间。

如果我们想要清洁一个房间,我们可以使用一次函数来规划清洁时间。

我们可以将房间分为若干个部分,然后分别清洁每个部分。

这样,我们可以将清洁时间最小化,从而达到最有效的清洁效果。

2. 确定股票价格的趋势。

股票价格的走向是投资者关注的重要问题。

一次函数可以用来描述股票价格的变化趋势。

如果我们能够捕捉到一次函数的图像,就可以预测股票价格的未来走向。

这对于投资者具有重要的参考价值。

3. 设计一个最好的方法来种植植物。

如果我们想要种植一棵植物,我们可以使用一次函数来决定种植的位置。

我们可以将植物盆栽放在一个网格上,然后根据一次函数的图像来确定每个位置应该种植什么植物,从而最大限度地利用空间,并保证植物得到充分的阳光和水分。

4. 确定一个问题的解决方式。

有时候,我们会遇到一些复杂的问题,很难找到解决方法。

如果我们能够将问题转化为一次函数的形式,然后求解该函数的方程,就可以找到问题的解。

例如,如果我们想要解决交通拥堵问题,我们可以使用一次函数来描述交通流量,然后求解该函数的方程,以找到最佳的交通管理措施。

这些只是一次函数在生活中实际应用的一小部分,实际上,一次函数在许多领域都有广泛的应用,例如工程、物理、化学、经济等等。

一次函数实际应用题选题(含答案)

一次函数实际应用题选题(含答案)

一次函数实际应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式; ⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费) 2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题: ⑴分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量的取值范围) ⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米? 3、教室里放有一台饮水机,饮水机上有两个放水管。

课间同学们到饮水机前用茶杯接水。

假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。

两个放水管同时打开时,它们的流量相同。

放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。

饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水? 4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题:⑴乙队开挖到30m 时,用了 h .开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?12623S(千米)t(小时)C D E F B 甲乙O 21281718y(升)x(分钟)5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x (个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表: (单位:千元/吨)品种先期投资 养殖期间投资 产值 西施舌9 3 30 对虾4 10 20养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨 (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少? 7、 元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表:纸环数x (个) 1 2 3 4 …… 彩纸链长度y (cm ) 19 36 53 70 ……(1)把上表中x y ,的各组对应值作为点的坐标,在如图3的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。

生活生产中有关的一次函数

生活生产中有关的一次函数

生活、生产中有关的一次函数运用函数知识解决简单的实际问题,体会函数是解决实际问题的数学模型和方法,既是新课程标准的要求,也是中考命题的热点,近几年的中考试题对一次函数的考查力度呈加大趋势,热点问题集中在一次函数的实际应用上,应该引起同学们的关注.现就应用一次函数知识在生活、生产实际中解决实际问题举几例说明.1在日常生活中的应用一次函数在我们的日常生活中应用十分广泛.例如,当我们购物、租车、住宿、缴水电费时,会为我们提供两种或多种优惠方案,这些问题往往可利用一元一次函数解决.例1为加强公民的节水意识,某市制定如下的用水标准:每月每户用水未超过7 m3时,每立方米收1.0元并加收0.2元污水处理费;超过7 m3时,超过部分每立方米收1.5元并加收0.4元污水费,设某户每月的用水为x m3,应交水费y元.(1)写出y与x之间的函数关系式.(2)若某单元所在小区共有50户,某月共交水费541.6元,且每户用水均未超过10 m3,这个月用水未超过7 m3的用户最多可能有多少户?解(1)由题意可知,当0≤x≤7时,y=1.2x.当x>7时,y=1.9(x-7)+7×1.2=1.9(x-7)+8.4.所以y与x之间的函数关系式为(2)设月用水量未超过7 m3共有x户.因为月用水7 m3的应交水费8.4元,用水10 m3的应交水费(5.7+8.4)元,根据题意,得(50-x)(5.7+8.4)+8.4x=541.6.解得x≈28. 67.若x=29时,交费的最大额数为29×8.4+21×14.1=539.7<541.6.所以x=28(户).即月用水量未超过7 m3的用户最多有28户.2在市场经济中的应用随着市场经济体制的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券……都已进入我们的生活.同时与这一系列经济活动相关的数学,利息与利率,统计与概率,运筹与优化等,都将在数学课程中呈现出来.例2某镇组织20辆汽车装运完A、B、C三种脐橙共100 t到外地销售.按计划20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种脐橙的车辆数为x,装运B,种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.解 (1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为(20-x -y ),则有6x +5 y +4(20-x -y )=100.整理,得y =-2x +20.(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、-2x +20、x ,根据题意,得42204x x ≥⎧⎨-+≥⎩,解得4≤x ≤8.因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种,方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车.(3)设利润为W(百元),根据题意,得W =6x ×12+5(-2x +20)×16+4x ×10=-48x +1 600.因为k =-48<0,所以W 的值随x 的增大而减小,要使利润W 最大,x 取最小值4,故选方案一.W 最大=-48×4+1 600=1 408(百元)=14.08(万元).3 在工程问题中的应用下面这道题看似平常却是别有新意的好题,本题突破了传统的工程问题的模式,将工程问题与一次函数图像相联系,进一步加强了传统经典习题与现实生活的联系,以利于同学们在新的时代背景中更好地学习和掌握数学知识.例3 某县在实施“村村通”工程中,决定在P 、Q 两村之间修筑一条公路,甲、乙两个工程队分别从P 、Q 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.如图1是甲、乙两个工程队所修道路的长度y (m)与修筑时间x (天)之间的函数图像,请根据图像所提供的信息,求该公路的总长.解 由乙图像可知,A(12,840).设y 乙=k x (0≤x ≤12),因为840=12k ,所以k =70.解得y 乙=70x .当x =8时,y 乙=560,所以C(8,560).设y 甲=m x +n(4≤x ≤16),将B(4,360)、C(8, 560)代入,得43608560m n m n +=⎧⎨+=⎩,解得50160m n =⎧⎨=⎩. 所以y 甲=50x +160.当x =16时,y 甲=50×16+160=960.由此可得乙修筑公路长840 m ,甲修筑公路长960 m .故该公路全长为1800 m .4在行程问题中的应用行程问题是一个常规的问题,而新课程下的行程问题,往往与图像、图形、表格等结合在一起,不仅考查了我们对知识的理解,而且考查了识图能力和数形结合的数学思想.例4甲、乙两人骑自行车前往A地,他们距A地的路程5 (km)与行驶时间t(h)之间的关系如图2所示,请根据图像所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A地的路程s与行驶时间t之间的函数关系式(任写一个).(3)在什么时间段内乙比甲离A地更近?解(1)由图像知,甲2.5 h行驶50 km,所以V甲=502.5=20(km/h).乙2h行驶60 km,所以V乙=602=30(km/h).(2)s甲=50-20t或s乙=60-30t.(3)当1<t<2.5时,s乙的图像在s甲的图像的下面,说明在同一时刻,s乙<s甲,即乙离A 地距离小于甲离A地距离,乙比甲离A地更近,以上四例说明,一次函数在我们的日常生活中应用十分广泛,内容十分丰富,上述题目联系实际和时代的热点,较为自然地考查了一次函数模型的实际问题,同时也考查了同学们利用函数思想和方程、不等式、最值等知识解决问题的能力,希望同学们能从中得到启示,善于运用数学去分析身边周围的现象,学会用数学知识分析和解决生产、生活中的一些实际问题.。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数,又称为线性函数,是指形式为y=ax+b的函数,其中a 和b为常数,且a不为零。

在一次函数中,x的最高次数为1,因此表现为直线的图像。

一次函数具有简单的特征:斜率为a,截距为b。

一次函数在数学中的地位十分重要,它是初等数学中最基本的函数之一。

通过一次函数,我们可以描述简单的线性关系,例如时间和距离之间的关系、价格和数量之间的关系等。

一次函数在解决实际问题中具有广泛的应用。

除了在数学中应用广泛之外,一次函数在生活中也有着重要的作用。

它被广泛运用在经济学、物理学、工程学等领域中,帮助人们分析问题、预测趋势、优化方案等。

通过一次函数的建模方法,人们可以更好地理解现实世界中的复杂现象,并做出科学的决策。

一次函数在生活中扮演着重要的角色,是现代社会中不可或缺的数学工具之一。

通过深入研究一次函数的应用,我们可以更好地理解世界,解决问题,推动社会的发展和进步。

1.2 一次函数在生活中的重要性一次函数在生活中的重要性体现在许多方面。

一次函数在生活中的具体应用非常广泛,涉及到经济学、物理学、工程学等多个领域。

通过一次函数的应用,可以更好地解决实际问题,提高生活质量和工作效率。

一次函数能够帮助我们更好地理解和分析各种现象,为决策和规划提供重要参考。

一次函数在生活中的重要性不可忽视,它为我们提供了丰富的思维工具和解决问题的方法。

在日常生活中,无论是计算开支、预测销量,还是设计建筑、分析运动,都离不开一次函数的运用。

了解和掌握一次函数的知识,对我们发展个人能力和解决各种实际问题都有着重要的意义。

通过对一次函数的深入研究和应用,我们可以更好地理解世界的运行规律,提高自身的分析能力和解决问题的能力,从而更好地适应社会的发展需求。

2. 正文2.1 经济学中的应用在经济学中,一次函数也被广泛运用于各种实际问题的建模和分析中。

经济学家常常使用一次函数来描述市场需求、供给和成本等关键概念,从而帮助他们预测市场走势、制定政策和做出决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)当17≤x≤30时,求y 与x的函数关系式
(2)当一户居民在某月用水15吨时,求这户居民这个月的水 费是多少元?
(3)已知某户居民上月水费为91元,求这户居民上月的用水
量是多少吨?
y/元
B
116
66
A
O
17 20 30 x/吨
专题三:分析题意建立函数关系式, 并设计最优方案
❖ 解题一般步骤: 1、设出问题中的两个变量 2、建立一次函数关系式 3、分类讨论(三种情况) 关键:确定函数关系式 易错点:分三种情况讨论后回答所问问题
专题四:分析题意,建立函数关系式,并求最值
▪ 解题一般步骤:
▪ 1、弄清两个变量,根据题意建立函数关系 式
▪ 2、根据题中的不等关系列出不等式组确定 自变量的取值范围
▪ 3、利用一次函数的性质求最值 ▪ 关键:确定函数关系式列出不等式组 ▪ 易错点:计算错误
2014学林二模第21题(8分)
某超市欲购进A、B两种品牌的书包共400个,已知这 两种书包的进价和售价如下表所示。2014学林Fra bibliotek模第21题(8分)
❖ 如今,网上购物已成为一种新的消费时尚,某校为鼓励学生加强体育锻 炼,准备在淘宝网上购买10副某种品牌的羽毛球拍,每副羽毛球拍配x ( x ≥2)个 羽毛球,供学生免费借用,小强在互联网上搜索到了A、B 两家网店都有该种品牌的羽毛球拍和羽毛球出售,且每副球拍的单价均 为30元,每个羽毛球的单价均为3元,目前两家网店同时在做销售活动:
A网店:所有商品均打九折销售(不含运费),一次运费12元; B网店:买一副羽毛球拍送2个羽毛球,包邮(免运费)
设A网店购买羽毛球拍和羽毛球的费用为 (元),在B网店购买羽毛球拍 和羽毛球的费用为yB(元)请解答下列问题:
(1)分别写出yA、 yB与x之间的函数关系式;
(2)若该校只在一家网店购买,你认为在哪家网店购买更划 算?
品牌 价位
进价 (元/个 ) 售价(元/个)
A
47
65
B
37
50
设购进A种书包x个,且所购进的两种书包全部卖出,获得总利润为w 元。
(1)求 w与 x的函数关系式;
(2)若购进两种书包的总费用不超过17800元,那么该商场如何进 货才能使利润最大?
课堂小结
一次函数实际应用是中考的重点,均在解答 题中考察(第21题),分值8分,研究从 2007年以来的考察形式,大致分为以上4种 题型,解答此题关键是正确确定函数表达式, 同时,同学们在计算过程中一定要细心,确 保运算不出差错。研究2011---2013年中考试 题命题方向,预测今年第三种考法可能性较 大,望同学们在二轮复习中强化训练,盼同 学们在今后的模拟考试中拿下这8分!
专题二:分析函数图象解决实际问题
解题一般步骤: 1、根据函数图象确定函数关系式 2、数形结合解决实际问题 关键:确定函数关系式
2013年陕西中考副题第21题(8分)
某市为了倡导居民节约用水,生活用自来水按阶梯式水价计
费,如图是居民每户每月的水费y(元)与用水量x(吨)之 间的函数图象,根据图象提供的信息,解答下列问题
一次函数实际应用
木瓜九年制学校 王利晓
专题一:分析题意建立函数关系式并求值
解题一般步骤: 1、根据题意建立函数关系式 2、带入自变量的值求对应的函数值或带入函数
值求对应自变量的值 关键:确定函数关系式
2014年府谷县中考一模第22题(8分)
温度有摄氏温度和华氏温度之分,已知当摄 氏温度为10℃时,华氏温度为50℉;当设 摄氏温度为20℃时,华氏温度为68℉,已 知华氏温度y( ℉ )可以看成是摄氏温度x ( ℃ )的一次函数。 (1)求y与x的函数关系式; (2)当摄氏温度为30℃时,求对应的华氏温 度。
相关文档
最新文档