全等三角形证明过程训练(习题及答案)

合集下载

三角形全等的判定证明题-(含答案)

三角形全等的判定证明题-(含答案)

三角形全等的判定一、(SSS)1.如图,AD=AC ,BD=BC ,QA 求证:△ABC≌△ABD .证明:在△ABC 和ABD 中,⎩⎨⎧ AD =ACBD =BCAB =AB ,∴△ABC≌△ABD(SSS )2.如图,AB=AD ,CB=CD ,求证:△ABC≌△AD C .证明:∵在△ABC 和△ADC 中⎩⎨⎧ AB =ADBC =CDAC =AC,∴△ABC≌△ADC(SSS ).3.如图,A 、D 、B 、E 在同一直线上,AC=EF ,AD=BE ,BC=DF ,求证:∠C=∠F.证明:∵AD=BE∴AD+DB=BE+DB,即:AB=DE ,在△ABC 和△DEF 中,⎩⎨⎧ AC =EFAB =DEBC =DF ,∴△ABC≌△DEF(SSS ),∴∠C=∠F.4.如图,已知线段AB 、CD 相交于点O,AD 、CB 的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.解:连结OE 在△EAC 和△EBC 中OA OC EA EC OE OE ⎧⎪⎨⎪⎩===(已知)(已知)(公共边)∴△EAC ≌△EBC (SSS )∴∠A =∠C (全等三角形的对应角相等)二、(SAS )5.已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .6.如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB ,∴∠DCA+∠ACE=∠BCE+∠ACE ,∴∠DCE=∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB (SAS )∴DE=AB .7. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .8. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB(SAS)∴DE=AB.三、(ASA)(AAS)9.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.证明:∵FB=CE,∴BC=EF.∵AB∥ED,∴∠B=∠E∵AC∥EF,∴∠ACB=∠DFE.在△ABC和△DEF中{∠B=∠EBC=EF∠ACB=∠DFE∴△ABC≌△DEF(ASA).∴AC=DF.10. 如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,AE∥DF,AB=CD,求证:CE=BF。

全等三角形证明题及答案15道

全等三角形证明题及答案15道
1.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证: BC=ED.
证明:∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD,
即:∠EAD=∠BAC,
在△EAD和△BAC中
∠B=∠E AB=AE
∠BAC=∠EAD ,
∴△ABC≌△AED(ASA),
∴BC=ED.
全等三角形的判定与性质.
如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF, AE=CF,BE=DF.求证:△ADE≌△CBF.
∴△BCF≌△CBD(ASA). 全等三角形的判定.
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,BE=CF. 求证:AD是△ABC的角平分线.
证明:∵DE⊥AB,DF⊥AC, ∴Rt△BDE=Rt△DCF=90°. BD=DC BE=CF , ∴Rt△BDE≌Rt△DCF(HL), ∴DE=DF, 又∵DE⊥AB,DF⊥AC, ∴AD是角平分线.
直角三角形全等的判定
如图,△ABC中,∠ABC=∠BAC=45°,点 P在AB上,AD⊥CP,BE⊥CP,垂足分别为D, E,已知DC=2,求BE的长.
∵∠ABC=∠BAC=45° ∴∠ACB=90°,AC=BC ∵∠DAC+∠ACD=90°,∠BCE+∠ACD=90° ∴∠DAC=∠BCE 又∵∠ADC=∠CEB ∴△ACD≌△CEB ∴BE=CD=2.
:∵AC平分∠BAD, ∴∠BAC=∠DAC, 在△ABC和△ADC 中, AB=AD ∠BAC=∠DAC AC=AC , ∴Fra bibliotekABC≌△ADC.
全等三角形的判定.
9.如图,已知点E,C在线段BF上,BE=CF, AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.

2020年秋人教版八年级数学上册第12章《全等三角形证明过程训练》(讲义及答案)

2020年秋人教版八年级数学上册第12章《全等三角形证明过程训练》(讲义及答案)

人教版八年级数学上册第12章全等三角形证明过程训练(讲义、随堂测试、习题)➢ 课前预习1. 判定三角形全等的方法有______,______,______,______.要证三角形全等需要找_____组条件,其中必须有_____.2. 在做几何题时,我们往往借助对图形的标注来梳理信息,进而把条件直观化,请学习下图中的标注.①如图1,在四边形ABCD 中,AB ∥CD ,AD ∥BC .②如图2,在四边形ABCD 中,连接BD ,∠ABD =∠CDB ,∠ADB =∠CBD ,∠A =∠C .③如图3,在四边形ABCD 中,连接AC ,BD 相交于点O ,AO =OC ,BO =DO .D C BA ××AB CDOABCD图1图2图33. 数学推理中,有理有据地思考和表达是一项基本的数学素养,请走通思路后,完整书写过程.如图是一个易拉罐的纵截面示意图,易拉罐的上下底面互相平行(AB ∥CD ),用吸管吸饮料时,若∠1=110°,求∠2的度数.➢ 知识点睛1. 直角三角形全等的判定定理:_________________________.2. 已知:如图,在△ABC 与△A′B′C′中,∠C =∠C′=90°,AB =A′B′,AC =A′C′.321DC BA求证:△ABC ≌△A′B′C′.C'B'A'CB A证明:如图,在Rt △ABC 和Rt △A′B′C′中AB A'B'AC A'C'=⎧⎨=⎩(已知)(已知) ∴Rt △ABC ≌Rt △A′B′C′(HL )➢ 精讲精练1. 如图,AC =AD ,∠C ,∠D 是直角,将上述条件标注在图中,则___________≌___________,从而BC ________BD .D CBA 2. 如图,DE ⊥AB 于E ,DF ⊥AC 于F ,AE =AF ,则_____≌______,从而DE =______.ABCD EF3. 已知:如图,AB =CD ,AF =CE ,DE ⊥AC 于E ,BF ⊥AC 于F .求证:△ABF ≌△CDE .ABCDEF4.已知:如图,∠B=∠D=90°,如果要使△ABC≌△ADC,那么还需要一个条件,这个条件可以是_________________,理由是____________;这个条件也可以是_______________,理由是____________;这个条件也可以是_______________,理由是____________;这个条件还可以是_______________,理由是____________.ABC D ABCDE Fl第4题图第5题图5.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则EF的长为_________.6.已知:如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E.求证:△ACD≌△AED.E DC7. 已知:如图,点B ,E ,C ,F 在同一直线上,AC ∥DF 且AC =DF ,BE =CF .求证:△ABC ≌△DEF .FE DC B A8. 如图,在正方形ABCD 中,∠A =∠ABC =90°,AB =BC ,E ,F 分别是AB ,AD 上的点,已知CE ⊥BF ,垂足为M . 求证:BE =AF .ABCDEFM9. 已知:如图,在△ABC 中,∠ACB =90°,AC =BC ,D 为AB 上一点,连接CD ,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F .求证:CF =AE .10. 已知:如图,在△ABC 中,∠B =∠C =60°,D ,E ,F 分别为边BC ,AB ,AC 上的点,且BE =CD ,∠EDF =60°.求证:ED =DF .FED CBAAB DE F【参考答案】➢课前预习1.SAS,SSS,ASA,AAS3,边2.略3.解:如图∵AB∥CD∴∠1=∠3∵∠1=110°∴∠3=110°∵∠2+∠3=180°∴∠2=180°-∠3=180°-110°➢ 知识点睛 1. SAS ,SSS ,ASA ,AAS ,HL ➢精讲精练1. Rt △CAB ,Rt △DAB ,=2. Rt △AED ,Rt △AFD ,DF3. 证明:如图,∵DE ⊥AC ,BF ⊥AC ∴∠DEC =∠BFA =90° 在Rt △ABF 和Rt △CDE 中,AB CD AF CE =⎧⎨=⎩(已知)(已知) ∴Rt △ABF ≌Rt △CDE (HL ) 4. AB =AD ,HLBC =DC ,HL ∠BAC =∠DAC ,AAS ∠BCA =∠DCA ,AAS 5. 36. 证明:如图,∵DE ⊥AB ∴∠DEA =90° ∵∠C =90° ∴∠C =∠DEA ∵AD 平分∠BAC ∴∠CAD =∠EAD 在△ACD 和△AED 中C DEA CAD AED AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边) ∴△ACD ≌△AED (AAS ) 7. 证明:如图,21A BC DE F第8题图∵AC ∥DF∵BE =CF ∴BE +EC =CF +EC 即BC =EF在△ABC 和△DEF 中1 2 AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已证) ∴△ABC ≌△DEF (SAS ) 8. 证明:如图,∵∠ABC =90° ∴∠ABF+∠MBC =90° ∵AE ⊥BF ∴∠CMB =90° ∴∠MBC +∠BCE =90° ∴∠ABF =∠BCE 在△ABF 和△BCE 中A EBC AB BC ABF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩(已知)(已知)(已证) ∴△ABF ≌△BCE (ASA )∴AF =BE (全等三角形对应边相等) 9. 证明:如图,第9题图321A BDE F∵∠ACB =90° ∴∠1+∠2=90° ∵AE ⊥CD ,BF ⊥CD ∴∠F =∠AEC =90° ∴∠3+∠2=90° ∴∠1=∠3在△BCF 和△CAE 中1 3 F AEC BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(已知) ∴△BCF ≌△CAE (AAS )∴CF =AE (全等三角形对应边相等) 10. 证明:如图,∵∠B =60° ∴∠1+∠2=120° ∵∠EDF =60° ∴∠2+∠3=120° ∴∠1=∠3在△BDE 和△CFD 中1 3 BE CD B C ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(已知)(已知) ∴△BDE ≌△CFD (ASA )∴ED =DF (全等三角形对应边相等)全等三角形证明过程训练(随堂测试)1. 已知:如图,在△ABC 中,AD ⊥BC 于点D ,E 为AD 上一点,且BE =AC ,如果要使△BDE ≌△ADC ,那么还需要一个条件,这个条件可以是____________________,理由是_________;这个条件也可以是__________________,理由是_________; 这个条件也可以是__________________,理由是_________; 这个条件还可以是__________________,理由是_________.2. 已知:如图,在△ABC 中,D 为BC 边的中点,过点C 作 CF ⊥AD 于点F ,过点B 作BE ⊥AD ,交AD 的延长线于点E . 求证:CF =BE . 证明:如图,ED CB A 第10题图321A BCD E FF DCA【参考答案】1. DE =DC ,HLBD =AD ,HL ∠EBD =∠CAD ,AAS ∠BED =∠C ,AAS 2. 证明:如图,∵CF ⊥AD ,BE ⊥AD ∴∠CFD=∠BED =90° ∵D 为BC 边的中点 ∴CD =BD在△CFD 和△BED 中∴△CFD ≌△BED (AAS )∴CF =BE (全等三角形对应边相等)全等三角形证明过程训练(习题)1 2 CFD BED CD BD ∠=∠⎧⎪=⎨⎪=⎩(已证)∠∠(对顶角相等)(已证)第2题图➢ 例题示范例1:已知:如图,在正方形ABCD 中,AB =CB ,∠ABC =90°.E 为正方形内一点,BE ⊥BF ,BE =BF ,EF 交BC 于点G . 求证:AE =CF . 【思路分析】 ① 读题标注:② 梳理思路:要证AE =CF ,可以把它们放在两个三角形中证全等.观察发现,放在△ABE 和△CBF 中进行证明.要证全等,需要三组条件,其中必须有一组边相等. 由已知得,AB =CB ;BE =BF ;根据条件∠ABC =90°,BE ⊥BF ,推理可得∠1=∠2. 因此由SAS 可证两三角形全等.【过程书写】(在演草部分先进行规划,然后书写过程) 证明:如图 ∵BE ⊥BF ∴∠EBF =90° ∴∠2+∠EBC =90° ∵∠ABC =90° ∴∠1+∠EBC =90° ∴∠1=∠2在△ABE 和△CBF 中12AB CB BE BF =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知)∴△ABE ≌△CBF (SAS )∴AE =CF (全等三角形对应边相等)➢ 巩固练习11. 如图,PD ⊥AB ,PE ⊥AC ,垂足分别为点D ,E ,且PD =PE ,将上述条件标注在图中,易得___________≌___________,从而AD =__________.21G FE DCB A GABC DEF第1题图第2题图12. 已知:如图,AB ⊥BD 于点B ,CD ⊥BD 于点D ,如果要使△ABD ≌△CDB ,那么还需要添加一组条件,这个条件可以是_______________,理由是_____________;这个条件也可以是_____________,理由是_____________;这个条件也可以是_____________,理由是_____________;这个条件还可以是_____________,理由是_____________.13. 已知:如图,C 为BD 上一点,AC ⊥CE ,AC =CE ,∠ABC =∠CDE =90°.若AB =4,DE =2,则BD 的长为______.14. 已知:如图,点A ,E ,F ,B 在同一条直线上,CE ⊥AB 于点E ,DF ⊥AB 于点F ,BC =AD ,AE =BF . 求证:△CEB ≌△DFA .15. 如图,点C ,F 在BE 上,∠1=∠2,BF =EC ,∠A =∠D .求证:△ABC ≌△DEF .PEDCBADC B A ED CBAF E DC BA16. 已知:如图,点A ,B ,C ,D 在同一条直线上,且AC =BD ,BE ∥CF 证:△ABE ≌△DCF .17. 已知:如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D ,E ,AD 与CE 相交于点H ,AE =CE . 求证:AH =CB .FDCBA HEA➢思考小结1.要证明边或者角相等,可以考虑边或者角所在的两个三角形_______;要证明三角形全等,需要准备_____组条件,其中有一组必须是_______相等.2.阅读材料我们是怎么做几何题的?例1:已知:如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠B=∠D.EBC A第一步:读题标注,把题目信息转移到图形上(请把条件标注在图上)第二步:分析特征走通思路①要求∠B=∠D,考虑放在两个三角形里面证全等,把∠B放在△ABC中,把∠D放在△ADE中,只需要证明这两个三角形全等即可.②要证明△ABC≌△ADE,需要找三组条件,由已知得AB=AD,AC=AE,还差一组条件,根据∠BAE=∠DAC,同时加上公共角∠CAE,可得∠BAC=∠DAE,利用SAS可得两个三角形全等.第三步:规划过程过程分成三块:①由∠BAE=∠DAC,可得∠BAC=∠DAE;②由SAS得△ABC≌△ADE;③由全等得∠B=∠D.第四步:过程书写【参考答案】➢巩固练习1.Rt△ADP,Rt△AEP,AE2.AD=CB,HLAB=CD,SAS∠A=∠C,AAS∠ADB=∠CBD,ASA3. 64.证明:如图,∵CE ⊥AB ,DF ⊥AB ∴∠CEB =∠DFA =90° ∵AE =BF ∴AE +EF =BF +EF 即AF =BE在Rt △CEB 和Rt △DFA 中BC AD BE AF =⎧⎨=⎩(已知)(已证) ∴Rt △CEB ≌Rt △DFA (HL ) 5. 证明:如图,∵BF =EC ∴BF +FC =EC+FC 即BC =EF在△ABC 和△DEF 中1 2 A D BC EF =⎧⎪=⎨⎪=⎩∠∠(已知)∠∠(已知)(已证) ∴△ABC ≌△DEF (AAS ) 6. 证明:如图,∵AC =BD ∴AC -BC =BD -BC 即AB =DC ∵BE ∥CF ∴∠1=∠2 ∵∠1+∠3=180° ∠2+∠4=180° ∴∠3=∠4 ∵AE ∥DF ∴∠A =∠D在△ABE 和△DCF 中3 4 AB DC A D =⎧⎪=⎨⎪=⎩∠∠(已证)(已证)∠∠(已证) ∴△ABE ≌△DCF (ASA ) 7. 证明:如图,第5题图4321A B CDF∵AD ⊥BC ∴∠ADC =90° ∴∠1+∠2=90° ∵CE ⊥AB∴∠AEH =∠CEB =90° ∴∠3+∠4=90° ∵∠2=∠4 ∴∠1=∠3在△AEH 和△CEB 中3 1 AEH CEB AE CE =⎧⎪=⎨⎪=⎩∠∠(已证)(已知)∠∠(已证) ∴△AEH ≌△CEB (ASA )∴AH =CB (全等三角形对应边相等)➢ 思考小结1. 全等;3,边第6题图3124AB DEH。

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。

全等三角形的性质及判定(习题及答案)

全等三角形的性质及判定(习题及答案)

全等三角形的性质及判定(习题)例题示范例1:已知:如图,C 为AB 中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.【思路分析】①读题标注:DDBB②梳理思路:要证全等,需要三组条件,其中必须有一组边相等.由已知得,CD=BE;根据条件C 为AB 中点,得AC=CB;这样已经有两组条件都是边,接下来看第三边或已知两边的夹角.由条件CD∥BE,得∠ACD=∠B.发现两边及其夹角相等,因此由 SAS 可证两三角形全等.【过程书写】先准备不能直接用的两组条件,再书写全等模块.过程书写中需要注意字母对应.证明:如图∵C 为AB 中点ACEACE∴AC =CB ∵CD ∥BE ∴∠ACD =∠B 在△ACD 和△CBE 中 AC = CB(已证)ACD = B (已证) CD = BE (已知) ∴△ACD ≌△CBE (SAS )EC巩固练习1. 如图,△ABC ≌△AED ,有以下结论:①AC =AE ;②∠DAB =∠EAB ;③ED =BC ;④∠EAB =∠DAC . 其中正确的有( ) A .1 个B .2 个C .3 个D .4 个EAA1F EBC 2BDCD第 1 题图第 2 题图2. 如图,B ,C ,F ,E 在同一直线上,∠1=∠2,BF =EC ,要使△ABC ≌△DEF ,还需要添加一组条件, 这个条件可以是 ,理由是 ; 这个条件也可以是 ,理由是 ; 这个条件还可以是,理由是.3. 如图,D 是线段 AB 的中点,∠C =∠E ,∠B =∠A ,找出图中的一对全等三角形是,理由是.AC AG DFHB E B D第3 题图第4 题图4.如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需要添加一组条件,这个条件可以是,理由是;这个条件也可以是,理由是;这个条件还可以是,理由是.BCDF5. 如图,将两根钢条 AA' , BB' 的中点连在一起,使 AA' , BB'可以绕着中点 O 自由旋转,这样就做成了一个测量工具,A'B' 的长等于内槽宽 AB .其中判定△OAB ≌△ OA'B' 的理由是 ()A .SASB .ASAC .SSSD .AASA B'A'E第 5 题图第 6 题图6. 要测量河两岸相对的两点 A ,B 的距离,先在 AB 的垂线 BF上取两点 C ,D ,使 CD =BC ,再定出 BF 的垂线 DE ,使 A ,C ,E 在一条直线上(如图所示),可以说明△E DC ≌△ABC ,得 ED =AB ,因此测得 ED 的长就是 AB 的长.判定△EDC ≌ △ABC 最恰当的理由是( ) A .SASB .ASAC .SSSD .AAA7. 已知:如图,M 是 AB 的中点,∠1=∠2,∠C =∠D .求证:△AMC ≌△BMD . 【思路分析】 ① 读题标注: ② 梳理思路: C DA要证全等,需要 组条件,其中必须有一组 相等.由已知得:=,= .A OB根据条件,得= .因此,由可证两三角形全等.【过程书写】证明:如图8.已知:如图,点B,F,C,E 在同一条直线上,且BC=EF,AB∥DE,AB=DE.A求证:△ABC≌△DEF.CB F E【思路分析】①读题标注:②梳理思路:D要证全等,需要组条件,其中必须有一组相等.由已知得:= ,= .根据条件,得= .因此,由可证两三角形全等.【过程书写】证明:如图思考小结1.两个三角形全等的判定有,, _,,其中AAA,SSA 不能证明三角形全等,请举反例进行说明.2.如图,A,B 两点分别位于一个池塘的两端,小明想用绳子测量A,B 间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:先在地上取一个可以直接到达A 点和B 点的点C,连接AC 并延长到D,使CD=CA;连接BC 并延长到E,使CE=CB ,连接DE 并测量出它的长度,DE 的长度就是A,B 间的距离.你能说明其中的道理吗A ECB D【参考答案】 巩固练习1. B2. AC =DF ,SAS ;∠B =∠E ,ASA ;∠A =∠D ,AAS3. △BCD ≌△AED ,AAS4. AC =AE ,SAS ;∠B =∠D ,ASA ;∠C =∠E ,AAS5. A6. B7. ①略②3,边∠1,∠2;∠C ,∠DM 是 AB 的中点,AM ,BM AAS【过程书写】证明:如图, ∵M 是 AB 的中点 ∴AM =BM在△AMC 和△BMD 中C =D (已知) 1 = 2 (已知) AM = BM (已证) ∴△AMC ≌△BMD (AAS ) 8. ①略②3,边BC ,EF , AB ,DE AB ∥DE ,∠B ,∠E SAS【过程书写】证明:如图, ∵AB ∥DE∴∠B =∠E在△ABC 和△DEF 中 AB = DE (已知)B = E (已证) BC = EF (已知)∴△ABC ≌△DEF (SAS )思考小结1. SAS ,SSS ,ASA ,AASAAA 反例:大小三角板SSA 反例:作图略2. 证明:如图,在△ABC 和△DEC 中AC = DC (已知)ACB = DCE (对顶角相等) BC = EC (已知) ∴△ABC ≌△DEC (SAS )∴AB =DE (全等三角形对应边相等) 即 DE 的长度就是 A ,B 间的距离。

八年级数学上册全等三角形证明过程训练(习题及答案)(人教版)

八年级数学上册全等三角形证明过程训练(习题及答案)(人教版)
全在正方形 ABCD中, AB=CB,∠ ABC=90°.E 为正方形内一点,
A
D
BE⊥BF, BE=BF,EF交 BC于点 G.
求证: AE=CF.
【思路分析】 A
D
① 读题标注:
E
E 1
B2 G
C
B
G
C
F
② 梳理思路:
F
要证 AE=CF,可以把它们放在两个三角形中证全等.观察发现,放在△
ABE
和△ CBF中进行证明.
要证全等,需要三组条件,其中必须有一组边相等.
由已知得, AB=CB; BE=BF; 根据条件∠ ABC=90°, BE⊥BF,推理可得∠ 1=∠2.
因此由 SAS可证两三角形全等. 【过程书写】(在演草部分先进行规划,然后书写过程) 证明:如图 ∵ BE⊥BF ∴∠ EBF=90° ∴∠ 2+∠ EBC=90°
△ABD≌△ CDB,那么还需要添加一组条件,
这个条件可以是 _______________,理由是 _____________;这个条件也可以
是_____________,理由是 _____________;这个条件也可以是
_____________,理由是 _____________;这个条件还可以是 _____________,
过程规划: 1.准备不能直接用的条件:
∠ 1=∠ 2 2.证明△ ABE≌△ CBF 3.根据全等性质得, AE=CF
∵∠ ABC=90°
∴∠ 1+∠ EBC=90°
∴∠ 1=∠ 2
在△ ABE和△ CBF中
AB CB 12
BE BF
(已知) (已证) (已知)
∴△ ABE≌△ CBF(SAS)

(完整版)全等三角形证明经典50题(含答案)

(完整版)全等三角形证明经典50题(含答案)

证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。

: / ABC= / AED 。

二 / ABE= / AEB 。

• AB=AE 。

在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。

•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。

连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。

完整版)全等三角形经典例题(含答案)

完整版)全等三角形经典例题(含答案)

完整版)全等三角形经典例题(含答案)全等三角形证明题精选1.在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F。

证明:△ADE≌△CBF;若AC与BD相交于点O,证明:AO=CO。

2.已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D。

证明:AC∥DE;若BF=13,EC=5,求BC的长。

3.在△ABC中,BD⊥AC于点D,CE⊥AB于点E,AD=AE。

证明:BE=CD。

4.点O是线段AB和线段CD的中点。

证明:△AOD≌△BOC;AD∥BC。

5.点C是AE的中点,∠A=∠ECD,AB=CD。

证明:∠B=∠D。

6.已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC。

证明:AE=BC。

7.在△ABE和△DEF中,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF。

证明:AF=DF。

8.点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF。

证明:AB∥DE。

9.在△ABC中,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB。

证明:AE=CE。

10.点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF。

证明:DE=CF。

11.点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD。

证明:AE=FB。

12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.证明:BD=CE;∠M=∠N。

13.在△ABC中,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD。

证明:AB=AC。

14.在△ABC和△CED中,AB∥CD,AB=CE,AC=CD。

证明:∠B=∠E。

15.在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F。

证明:AB=AC;若AD=2,∠DAC=30°,求AC的长。

16.已知直角三角形ABC和直角三角形DBF,且它们相似,∠D=28°,求∠GBF的度数。

全等三角形证明50题(含答案)

全等三角形证明50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=2ADBC2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。

连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角)BA CDF2 1 EEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC∴△ADC ≌△AFC (SAS ) ∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DEADB C∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=29.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。

全等三角形的性质及判定(习题及答案)

全等三角形的性质及判定(习题及答案)

全等三角形的性质及判定(习题)例题示范例1:已知:如图,C 为AB 中点,CD =BE ,CD ∥BE .求证:△ACD ≌△CBE .【思路分析】1读题标注:2梳理思路:要证全等,需要三组条件,其中必须有一组边相等.由已知得,CD =BE ;根据条件C 为AB 中点,得AC =CB ;这样已经有两组条件都是边,接下来看第三边或已知两边的夹角.由条件CD ∥BE ,得∠ACD =∠B .发现两边及其夹角相等,因此由SAS 可证两三角形全等.【过程书写】先准备不能直接用的两组条件,再书写全等模块.过程书写中需要注意字母对应.证明:如图∵C 为AB 中点∴AC =CB∵CD ∥BE∴∠ACD =∠B在△ACD 和△CBE 中AC CB ACD B CD BE =⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(已知)∴△ACD ≌△CBE (SAS )巩固练习1.如图,△ABC ≌△AED ,有以下结论:①AC =AE ;②∠DAB =∠EAB ;③ED =BC ;④∠EAB =∠DAC.其中正确的有()A.1个B.2个C.3个D.4个第1题图第2题图2.如图,B,C,F,E在同一直线上,∠1=∠2,BF=EC,要使△ABC≌△DEF,还需要添加一组条件,这个条件可以是_______________,理由是_____________;这个条件也可以是_____________,理由是_____________;这个条件还可以是_____________,理由是_____________.3.如图,D是线段AB的中点,∠C=∠E,∠B=∠A,找出图中的一对全等三角形是_______________,理由是_________.第3题图第4题图4.如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需要添加一组条件,这个条件可以是_______________,理由是_____________;这个条件也可以是_____________,理由是_____________;这个条件还可以是_____________,理由是_____________.5.如图,将两根钢条AA',BB'的中点连在一起,使AA',BB'可以绕着中点O自由旋转,这样就做成了一个测量工具,A'B'的长等于内槽宽AB.其中判定△OAB ≌△OA'B'的理由是()A.SAS B.ASA C.SSS D.AAS第5题图第6题图6.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED =AB ,因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 最恰当的理由是()A .SAS B .ASA C .SSSD .AAA 7.已知:如图,M 是AB 的中点,∠1=∠2,∠C =∠D .求证:△AMC ≌△BMD .【思路分析】1读题标注:2梳理思路:要证全等,需要______组条件,其中必须有一组_____相等.由已知得:_______=_______,_______=_______.根据条件_________________,得_______=_______.因此,由________可证两三角形全等.【过程书写】证明:如图8.已知:如图,点B ,F ,C ,E 在同一条直线上,且BC =EF ,AB ∥DE ,AB =DE .求证:△ABC ≌△DEF .【思路分析】1读题标注:2梳理思路:要证全等,需要_____组条件,其中必须有一组____相等.。

全等三角形证明经典40题(含答案)

全等三角形证明经典40题(含答案)

1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求AD 的长 .AB CD解:延伸AD 到 E,使 AD=DE∵D 是 BC中点∴BD=DC在△ ACD和△ BDE中AD=DE∠B DE=∠ ADCBD=DC∴△ ACD≌△ BDE∴A C=BE=2∵在△ ABE中AB-BE< AE< AB+BE∵A B=4即 4-2< 2AD<4+21<AD< 3∴A D=22.已知: BC=ED,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2证明:连结BF 和 EF∵BC=ED,CF=DF,∠ BCF=∠ EDF∴三角形 BCF全等于三角形EDF(边角边 )∴BF=EF,∠CBF=∠ DEF连结 BE在三角形BEF中 ,BF=EF∴ ∠EBF=∠ BEF。

∵ ∠ABC=∠ AED。

∴ ∠ABE=∠AEB。

∴AB=AE。

在三角形ABF 和三角形AEF中AB=AE,BF=EF,∠A BF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF∴三角形 ABF 和三角形AEF全等。

∴ ∠BAF=∠ EAF (∠ 1=∠ 2)。

A A12FCDEB已知:∠ 1=∠ 2,CD=DE,EF如图,四边形ABCD中, AB∥DC,BE、CE分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。

求证:BC=AB+DC。

在 BC上截取 BF=AB,连结 EF∵BE 均分∠ ABC∴∠ ABE=∠ FBE又∵ BE=BE∴⊿ ABE≌⊿ FBE( SAS)∴∠ A=∠ BFE∵AB 知:AB=CD,∠A=∠D,求证:∠B=∠C证明:设线段 AB,CD所在的直线交于E,则:△AED是等腰三角形。

∴ AE=DE而 AB=CD∴ BE=CE∴△ BEC是等腰三角形∴∠ B=∠ C.是∠ BAC均分线 AD 上一点, AC>AB,求证: PC-PB<AC-AB在 AC 上取点 E,使 AE= AB。

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。

连接AP,BP∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2) 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又,EF ∥AB ∴,∠EFD =∠1 ∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )A C DEF 21 ADBCDABBA CDF2 1 EA∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF ∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。

连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGB ACDF21 E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:1CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)

1.已知:AB=4,AC=2,D 是BC 中点,已知 AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=2已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又,EF ∥AB∴,∠EFD =∠1∠1=∠2 AD B CBACDF21 E∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC。

在BC上截取BF=AB,连接EF∵BE平分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE ≌⊿FBE (SAS )∴∠A=∠BFE∵AB//CD∴∠A+∠D=180º∵∠BFE+∠CFE=180º∴∠D=∠CFE又∵∠DCE=∠FCECE 平分∠BCDCE=CE∴⊿DCE ≌⊿FCE (AAS )∴CD=CF∴BC=BF+CF=AB+CD5.已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC∵作AG ∥BD 交DE 延长线于G∴AGE 全等BDE∴AG=BD=5∴AGF ∽CDFAF=AG=5∴DC=CF=26.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .做BE 的延长线,与AP 相交于F 点,∵PA//BC ∴∠PAB+∠CBA=180°,又∵,AE ,BE 均为∠PAB 和∠CBA的角平分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB 为直角三角形在三角形ABF 中,AE ⊥BF ,且AE 为∠FAB 的角平分线∴三角形FAB 为等腰三角形,AB=AF,BE=EF在三角形DEF 与三角形BEC 中,F A EDCB P E DCB A∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC7.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.证明:∵∠CEB=∠CAB=90°∴ABCE四点共元∵∠AB E=∠CB E∴AE=CE∴∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG∴∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)∴∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB∴△AEC≌△AGB∴EC=BG=DG∴BE=2CE8.在△ABC中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.FEDCBA∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE9.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD 相等吗?请说明理由在AB上取点N ,使得AN=AC∵∠CAE=∠EAN∴AE为公共,∴△CAE≌△EAN∴∠ANE=∠ACE又∵AC平行BD∴∠ACE+∠BDE=180而∠ANE+∠ENB=180∴∠ENB=∠BDE∠NBE=∠EBN∵BE为公共边∴△EBN≌△EBD∴BD=BN∴AB=AN+BN=AC+BD10.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C 作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.作CG ⊥AB,交AD 于H,则∠ACH=45º,∠BCH=45º∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE 又∵AC=CB, ∠ACH=∠B=45º∴△ACH ≌△CBE, ∴CH=BE又∵∠DCH=∠B=45º, CD=DB∴△CFD ≌△BED∴∠ADC=∠BDE AB CD E F图9。

全等三角形证明过程训练(习题及答案)

全等三角形证明过程训练(习题及答案)

全等三角形证明过程训练(习题)>例题示范例i :已知:如图,在正方形ABCD 中,AB=CB, ZABC=90°. 为正方形内一点,BE 丄BF, BE 二BF, EF 交BC 于点G. 求证:AE=CF.【思路分析】①读题标注:可以把它们放在两个三角形中证全等.观察发 现,放在△ABE 和△CBF 中进行证明.要证全等,需要三组条件,其中必须有一组边相等.山已知得,AB=CB ; BE 二BF ;根据条件ZABC=90。

,BE 丄BF,推理可得 Z1=Z2.因此山SAS 可证两三角形全等.【过程书打】(在演草部分先进行规划,然后书写过程) 证明:如图 •: BE 丄/. ZEBF=90。

/. Z2+ZEBC 二90°'/ ZABC=90°/.Zl + Z£BC=90°/.Z1=Z2在和△CBF 中AB = CB ■ ZI =Z2 BE = BF :仏ABE^'CBF (SAS )/.AF=CF (全等三角形对应边相等)®梳理思路: 要证AE=CF.过程规划: 1. 准备不能直接用的条件: Z 1=Z2 2. 证明△ABE 仝△CF 3. 根据全等性质得,AE=CF(S知){已证)巩固练习如图,PD 丄AB, PE 丄AC,垂足分别为点D, E,且PD=PE, 将上述条件标注在图中, 从而AD= ________________ .第I 题图 已知:如图,AB 丄BD 于点B, △ABDSMDB,那么还需要添加一组条件, 这个条件可以是 ___________ ,理出是 ________________ ; 这个条件也可以是 ________________ ,理由是 ______________ ; 这个条件也可以是 _________________ ,理出是 ______________ ; 这个条件还可以是 ________________ ,理由是 ______________ . 已知:如图,C 为BD 上一点,AC 丄CE, AC=CE, ZABC= ZCDE=90\ 若 AB=4, DE=2,则 BD 的长为________________________ - 已知:如图,点A, E, F. B 在同一条直线上,CE 丄A3于点 E, DF 丄AB 于点 F, BC 二AD,AE=BF ・ 求证:△CEBmbDFA.易得第2题图CD 丄BD 于点D,如果要使5 如图,点C, F 在BE 上,Z1=Z2, BF=EC,ZA=ZD・求证;△ABC竺△DEF・6 已知:如图,点A, B, C, D在同一条直线上,且AC=BD. BE//CF,AE//DF,求证:过程规划: 过程规划:7 已知:如图,在△ABC中,AD丄BC, CE丄AB,垂足分别为过程规划: >思考小结1.要证明边或者角相等,可以考虑边或者角所在的两个三角形;要证明三角形全等,需要准备组条件,其中有一组必须是相等.2.阅读材料我们是怎么做儿何题的? 例1:已知:如图,AB=AD, AC=AE,ZBAE=ZDAC.求证s Z B=ZD・第一步:读题标注,把题目信息转移到图形上(请把条件标注在图上)第二步:分析特征走通思路①要求ZB二上D,考虑放在两个三角形里面证全等,把ZB 放在中,把ZD放在△>!£)£;中,只需要证明这两个三角形全等即可.②要证明△ ABC竺△ADE ,需要找三组条件,山已知得AB=AD.AC=AE.还差一组条件,根据ZBAE=ZDAC. 同时加上公共角ZCAE,可得ZBAC=ZDAE,利用SAS 可得两个三角形全等.第三步:规划过程过程分成三块:①li]ZBAE=ZDAC,可得ZBAC=ZDAE;②III SAS 得^ABC^£^ADE,③山全等得ZB二ZQ.第四步:过程书写E 证明:如图ZBAE=ZDAC/. ZBAE+ZCAE =ZDAC+ZCAE 即ZBAC=ZDAE 全等准备条件在△ABC和中'AB=AD4 ZBAC = ZDAE AC = AE (已知)(已证)(已知)•••△ABC丝(SAS):上B=ZD(全等三角形对应角相等)卜f 全等模块过程书写由全等证明结论【参考答案】巩固练习RtA/iDP, RtAAEP, AE2 .AD=CB. HLAB=CD. SASZA=ZC, AAS ZADB=ZCBD, ASA3. 4. 6证明:如图,•: CE丄AB, DFLAB /. ZCEB=Z DFA=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
B 1 2 G C
E
G


全等三角形证明过程训练(习题)
例题示范
例 1:已知:如图,在正方形 ABCD 中,AB =CB ,∠ABC =90°.E A
D
为正方形内一点,BE ⊥BF ,BE =BF ,EF 交 BC 于点 G . 求证:AE =CF .
【思路分析】 A D ① 读题标注:
B
C
F ② 梳理思路: F
要证 AE =CF ,可以把它们放在两个三角形中证全等.观察发现
,放在△ABE 和△CBF 中进行证明. 要证全等,需要三组条件,其中必须有一组边相等. 由
已知得,AB =CB ;BE =BF ;
根据条件∠ABC =90°,BE ⊥BF ,推理可得∠1=∠2. 因此由 SAS 可证两三角形全等.
【过程书写】(在演草部分先进行规划,然后书写过程) 证明:如图
∵BE ⊥BF ∴∠EBF =90°
∴∠2+∠EBC =90° ∵∠ABC =90°
∴∠1+∠EBC =90° ∴∠1=∠2
在△ABE 和△CBF 中
⎧ A B = CB ⎪
∠1 = ∠2 ⎪BE = BF (已知) (已证) (已知)∴△ABE ≌△CBF (SAS )
∴AE =CF (全等三角形对应边相等)
过程规划:
1.准备不能直接用的条件: ∠1=∠2
2.证明△ABE ≌△CBF
3.根据全等性质得,AE =CF
E 巩固练习
1.
如图,PD ⊥AB ,PE ⊥AC ,垂足分别为点 D ,E ,且 P D =PE , 将
上述条件标注在图中,易得 ≌ , 从而 A D = .
B
D
A D
A
P
E
B
C C
第 1 题图 第 2 题图
2.
已知:如图,AB ⊥BD 于点 B ,CD ⊥BD 于点 D ,如果要使 △ABD ≌△CDB ,那么还需要添加一组条件, 这个条件可以是 ,理由是 ; 这个条件也可以是 ,理由是 ; 这个条件也可以是 ,理由是 ; 这个条件还可以是
,理由是

3.
已知:如图,C 为 BD 上一点,AC ⊥CE ,AC =CE ,∠ABC = ∠CDE =90°.若 A B =4,DE =2,则 B D 的长为 . A
B C
D 4.
已知:如图,点 A ,E ,F ,B 在同一条直线上,CE ⊥AB 于点 E ,DF ⊥AB 于点 F ,BC =AD ,AE =BF . 求证:△CEB ≌△DFA .
A
C D E
F
B
5.如图,点C,F 在BE 上,∠1=∠2,BF=EC,∠A=∠D.求
证:△ABC≌△DEF.
6.已知:如图,点A,B,C,D
∥CF,AE∥DF.求证:△过程规划:过程规划:
E
H
7. 已知:如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为 点 D ,E ,AD 与 C E 相交于点 H ,AE =CE .
A 求证:AH =C
B .
B
D
C
思考小结
1. 要证明边或者角相等,可以考虑边或者角所在的两个三角形 ;要证明三角形全等,需要准备 _组条件,其中
有一组必须是 相等.
过程规划:
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
2. 阅读材料
我们是怎么做几何题的?
例 1:已知:如图,AB =AD ,AC =AE ,∠BAE =∠DAC . 求证:∠B =∠D .
E
B
第一步:读题标注,把题目信息转移到图形上(请把条件标注在图上)
第二步:分析特征走通思路
C
A
① 要求∠B =∠D ,考虑放在两个三角形里面证全等,把∠B 放在△ABC 中,把∠D 放在△ADE 中,只需要证明这两 D
个三角形全等即可.
② 要证明△ ABC ≌△ ADE ,需要找三组条件,由已知得 AB =AD ,AC =AE ,还差一组条件,根据∠BAE =∠DAC , 同时加上公共角∠CAE ,可得∠BAC =∠DAE ,利用 SAS 可得两个三角形全等. 第三步:规划过程过程分成三块:
① 由∠BAE =∠DAC ,可得∠BAC =∠DAE ; ② 由 SAS 得△ABC ≌△ADE ; ③ 由全等得∠B =∠D . 第四步:过程书写
A
B
3 2 1
4 C
D


⎩ 【参考答案】 巩固练习
1. Rt △ADP ,Rt △AEP ,AE
2. AD =CB ,HL
AB =CD ,SAS ∠A =∠C ,AAS
∠ADB =∠CBD ,ASA 3. 6
4. 证明:如图,
∵CE ⊥AB ,DF ⊥AB ∴∠CEB =∠DFA =90° ∵AE =BF
∴AE +EF =BF +EF 即 AF =BE
在 Rt △CEB 和 Rt △DFA 中 ⎧BC = AD (已知) ⎨
BE = AF (已证) ∴Rt △CEB ≌Rt △DFA (HL ) 5. 证明:如图,
∵BF =EC
∴BF +FC =EC+FC 即 BC =EF
在△ABC 和△DEF 中 ⎧∠A =∠∆ (已知) ⎪
∠1 =∠2 (已知) ⎪BC = EF (已证) ∴△ABC ≌△DEF (AAS ) F
6. 证明:如图,
∵AC =BD
∴AC -BC =BD -BC 即 AB =DC ∵BE ∥CF ∴∠1=∠2
∵∠1+∠3=180°
E
3
E 4
H 2 1
⎨ ⎩
⎨ ⎩
∠2+∠4=180° ∴∠3=∠4 ∵AE ∥DF ∴∠A =∠D
在△ABE 和△DCF 中 ⎧∠3 =∠4 (已证) ⎪
AB = DC (已证) ⎪∠A =∠∆ (已证) ∴△ABE ≌△DCF (ASA ) 7. 证明:如图,
A B D C ∵AD ⊥BC ∴∠ADC =90° ∴∠1+∠2=90° ∵CE ⊥AB ∴∠AEH =∠CEB =90° ∴∠3+∠4=90° ∵∠2=∠4 ∴∠1=∠3
在△AEH 和△CEB 中
⎧∠AEH =∠XEB (已证) ⎪
AE = CE (已知) ⎪∠3 = ∠1 (已证) ∴△AEH ≌△CEB (ASA )
∴AH =CB (全等三角形对应边相等)
思考小结
1. 全等;3,边。

相关文档
最新文档